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An analytically solvable time-dependent coupled light-matter problem is presented. An N-electron
system is confined by a harmonic oscillator potential and interacts with photons in a cavity. Both
the electrons and the photons can interact with a time-dependent external field. The light-matter
coupling is described by the Pauli-Fierz Hamiltonian. By separating the relative and center-of-mass
motion, the Hamiltonian of the system can be simplified to a sum of a Hamiltonian of the relative
and the center-of-mass motion. The Hamiltonian of the relative motion is time-independent, not
coupled to light, and can be solved by conventional approaches. The Hamiltonian of the center-of-
mass motion reduces to that of a time-dependent harmonic oscillator and can be solved analytically.
The analytical solution will be used to study excitations, high harmonic generation spectrum, and
nonlinear optical properties in a cavity.

I. INTRODUCTION

The interaction of light and matter in cavities is very
successfully described by the Jaynes-Cummings (JC)
model [1]. The predictions of the JC model have been
experimentally tested [2–4] and new physical effects, for
example, Rabi oscillations [5], Fock states [6–8], squeezed
states [9], entanglement of atoms and photons [10],
Schrödinger cat states [11], and anti-bunching [12, 13]
are predicted.
The JC model was also extended to explicitly time-

dependent Hamiltonians, e.g. a classical laser field is
added to drive the system [14–20]. The coupling [21] or
the frequency [22] can also be time-dependent. Time-
dependent JC Hamiltonians where the driving field can
couple either to the atom or to the cavity mode were
also studied [23]. These approaches were used to model
the dynamic stark effect [23, 24], synchronization of
qubits [20], photon blockade [25], entanglement gener-
ation [24, 26], highly excited Fock states [27], coherent
states [28], induced atomic resonance fluorescence [29],
or control of the quantum electromagnetic field [30] in
cavities or superconducting circuits.
With the advance of experimental approaches the

study of systems with strong and ultra-strong light-
matter coupling became the center of interest [31–42].
In the ultra strong regime the approximations of the JC
model are not valid and a new level of theoretical descrip-
tion is needed. The most popular and practical approach
is based on the Pauli-Fierz (PF) Hamiltonian. The PF
Hamiltonian describes the interaction between quantum
matters (electrons) and a massless quantized radiation
field (photons) in the low-energy non-relativistic limit of
quantum electrodynamics (QED) [43]. The PF approach
has often been used in describing the modification of ma-
terial properties in optical cavities [44–53]. In a previ-
ous paper, [54], we have shown that the PF Hamiltonian
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is analytically solvable for a harmonically confined two-
electron system. Later we extended the analytical solu-
tion to harmonically confined N-electron systems [55].

In this work, we will investigate a harmonically con-
fined N-electron system in time-dependent driving fields.
Two driving fields will be considered, an external laser
pulse interacting with the electrons and an external cur-
rent interacting with the photons. As the electrons and
the photons are coupled, the external field acting on the
electrons excite the photons and vice versa. Coupled
electrons and photons in external fields haven been stud-
ied using perturbation theory [56, 57] or with numeri-
cal approaches [58]. The effect of light-matter coupling
on electron-electron interaction and correlation in laser
driven cavities has been investigated [59–62].

The wave function of the harmonically confined elec-
tron systems can be factorized into a relative motion and
a center-of-mass motion part. The wave function of the
relative motion is time-independent and it can be solved
analytically for N = 2 electrons [54] or numerically for
N > 2 electrons [55]. The center-of-mass Hamiltonian is
coupled to light and it is time-dependent. This Hamil-
tonian can be separated into a sum of laser-driven time-
dependent one-dimensional harmonic oscillator Hamilto-
nians. These Hamiltonians have analytic solutions, or al-
ternatively, they can be solved by exact diagonalization
and time-propagation as will be shown in this paper.

Numerical calculations will be presented to show how
the time-dependent external fields can be used to excite
photons and electrons. We will show that by a suitable
chosen external field the system can be excited to a de-
sired photon number state. One photon states have been
experimentally generated for quantum computer applica-
tions using entangled atoms [7, 8] using. Our calculations
show that states with fixed number of photons can also be
created using quantum dots with harmonic confinement.
The external fields can also change the high harmonic
generation (HHG) spectra and the nonlinear properties
of the system. The tunability of the nonlinear properties
of molecules has been studied in Ref. [63] using the QED
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time-dependent density functional theory [58, 64, 65]. In
this work we study these effects in an analytically solv-
able model system. The numerical examples highlight
several interesting possibilities. In the case of HHG, the
coupling to the cavity can remove inversion symmetry
and even harmonics can appear in the spectrum. The
coupling also introduces new polaritonic excitation peaks
that appear in the HHG spectrum. The position of these
peaks are independent of the frequency of the exciting
laser field but depend on the confining potential and the
cavity parameters. Thus, the HHG spectrum can be al-
tered by the cavity and it is not only determined by the
driving field. It will be also shown that the nonlinear sus-
ceptibility can be tuned by the coupling strength and the
cavity frequency. We have found that the susceptibility
strongly depends on the occupation of the excited states.
The occupation of the excited states can be tuned by
the cavity frequency and the light matter coupling. The
occupation increases with stronger coupling, but has a
maximum value as a function of the frequency. The non-
linear susceptibilities follow a similar tendency.
The outline of the paper is as follows. In section II. the

formalism is introduced and the separation of the Hamil-
tonian into exactly solvable terms is presented. In sec-
tion III. the diagonalization of the coupled light center-of
mass Hamiltonian is discussed. In section IV. numerical
calculations for the laser-driven Hamiltonian are consid-
ered. This is followed by a short summary. Appendices
are added to make the paper self-containing.

II. FORMALISM

We assume that the system is nonrelativistic and the
coupling to the light can be described by the dipole ap-
proximation (the wavelength of light is much larger than
the size of the system). The non-relativistic PF QED
Hamiltonian provides a consistent quantum description
at this level. The PF Hamiltonian in the Coulomb gauge
[44–48]:

H = He +Hep (1)

He =

N
∑

i=1

(

− ~
2

2me

~∇2
i + vext (ri, t)

)

+
e2

4πǫ0

N
∑

i>j

1

|ri − rj |

Hep =

Np
∑

α=1

{

1

2

[

p̂2α + ω2
α

(

q̂α − λα

ωα
·D
)2
]

+
j
(α)
ext (t)

ωα
q̂α

}

(2)

where ri are the positions, me is the mass and e is the
charge of the electrons. In Eq. (2) the photon fields
are described by quantized oscillators using raising and
lowering operators âα and â+α . D is the dipole operator

D =

N
∑

i=1

ri, (3)

where N is the number of electrons and

qα =

√

~

2ωα
(â+α + âα) (4)

is the displacement field. pα is the canonical conjugate
momentum to qα, which can be written as

pα = i

√

~ωα

2
(â+α − âα). (5)

In addition to the static terms a time-dependent ex-
ternal potential, vext (ri, t) interacts with the electrons

and a time-dependent external current, j
(α)
ext (t) interacts

with the photons. The Hamiltonian in Eq. (2) describes
Np photon modes with photon frequency ωα and cou-
pling λα. The coupling term is usually written as [66]

λα =
√
4π Sα(r)eα, where Sα(r) is the cavity mode func-

tion at position r and eα is the transversal polarization
vector of the photon modes.
The external potential will be taken in the form

vext (ri, t) =
1

2
m2

eω
2
0

N
∑

i=1

r2i +Eext(t)D (6)

=
1

2
m2

e

ω2
0

N





N
∑

i<j

(ri − rj)
2 +

(

N
∑

i=1

ri

)2


+Eext(t)D,

which is a sum of harmonic oscillator confinements and
an external electric pulse described as a classical field.
In the second line we have used an identity that will be
useful later in this section.
Atomic units are used, ~, e, me, and 4πǫ0 are all equal

to unity and may be dropped from the equations.
One can define N-1 relative coordinates (see Appendix

A for more details)

xi = ri−R, (i = 1, . . ., N − 1), R =
1

N

N
∑

j=1

rj . (7)

Many different relative coordinate system can be defined
(two are presented and the relation between them are
discussed in Appendix A). The above choice is a partic-
ularly simple because the single particle coordinates can
be expressed as

ri = xi+R, (i = 1, . . ., N −1), rN = −
N−1
∑

j=1

xj +R.

(8)
The Hamiltonian for the electrons can be written as

He = Hx +HR, (9)

with

Hx =
1

2

N−1
∑

i=1

π
2
i +

1

2

ω2
0

N

N
∑

i<j

(ri − rj)
2 +

1

2

N
∑

i<j

1

|ri − rj |
,

(10)
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and

HR =
1

2N
P2 +

1

2
Nω2

0R
2 +NEext(t)R, (11)

where P is the canonically conjugate momentum to R

and πi are canonically conjugate momenta to xi. Note,
that Hx depends on ri− rj but using Eq. (8) ri− rj can
be expressed using the N − 1 relative coordinates xk and
there is no dependence on R.
Assuming that we have only one photon mode with fre-

quency ω and defining the coupling term as λ = λ(1, 1, 0)
the electron-photon coupling term becomes

Hep = ω

(

â+â+
1

2

)

−Nωq̂λR+
1

2
N2 (λR)

2
+
jext(t)

ω
q̂.

(12)
The generalization to many photon modes and different
forms of λ is simple and can be found in Ref. [55]. To
simplify the notation and make the paper more readable,
we will restrict to a single mode and the above-defined
λ.
Now the total Hamiltonian can be written as

H = Hx +

[

ω

(

â+â+
1

2

)

+
jext(t)

ω
q̂

]

− NωqλR+

(

HR +
1

2
N2 (λR)2

)

. (13)

The first term is the Hamiltonian of the relative motion
and it is not coupled to the center-of-mass motion or to
the photon space and it is time-independent. For N = 2
electrons, Hx can be analytically solved [54], for more
than 2 electrons it can be treated numerically [55].
The terms in the square bracket represent the Hamil-

tonian of the photons coupled to the center-of-mass
through the third term (NωqλR). The terms in the
round bracket represents the Hamiltonian acting on the
center-of-mass motion.
As it is shown in Appendix B the Hamiltonian can be

decoupled into the following form

H = Hx +Hv +Hz +Hc, (14)

where

Hc = ω

(

â+â+
1

2

)

− ωq
√
2Nλu+

jext(t)

ω
q̂ +Hu. (15)

HereHu, Hv andHz are one dimensional time-dependent
harmonic oscillator functions. These are analytically
solvable [67, 68] (see Appendix C) and the time-
dependent eigenfunctions φv(v, t) and φz(z, t) are known.
We note, that as it is discussed in Appendix B one sim-
plify the model further by assuming an external field de-
fined as Eext(t) = (E(t), E(t), 0). In that case φv and φz
are time-independent harmonic oscillator functions.
The ansatz

Ψ = Φ(x)e−iExtφv(v, t)φz(z, t)Φc(u, t), (16)

satisfies the time-dependent Schrödinger equation

i
∂

∂t
Ψ = HΨ. (17)

The wave functions Φx, φv, and φz are already known
and we only need to deal with Hc as it will be discussed
in the next section.

III. DIAGONALIZATION OF THE

LIGHT-MATTER COUPLED HAMILTONIAN

The Hamiltonian Hc can be diagonalized in two dif-
ferent ways. In the first approach, new variables are in-
troduced to decouple the CM and photon harmonic os-
cillators. In the second one, a product basis of the CM
and photon harmonic oscillators φk(u)|n〉 is used, where
φk(u) satisfies the time-independent equation

Huφk(u) =

(

k +
1

2

)

ωuφk(u), ω2
u = ω2

0 + 2Nλ2 (18)

(see Appendix B). The advantage of the first approach is
that it is exact, while numerical diagonalization is needed
in the second approach. The advantage of the second
approach is that the solution is directly obtained as a
product of spatial and photon spaces.

A. Shifted Fock states

The coupling Hamiltonian can be rewritten as

Hc = −1

2

∂2

∂q2
+
1

2
ω2q2− 1

2

∂2

∂u2
+
1

2
ω2
uu

2+κuq+ǫqq+ǫuu,

(19)
with

κ = −ω
√
2Nλ, ǫq =

jext(t)

ω
. (20)

This is a Hamiltonian of two coupled time-dependent har-
monic oscillators. The Hamiltonian can be decoupled by
introducing the following coordinate rotations

r = q cos θ − u sin θ,

s = q sin θ + u cos θ,
(21)

with tan 2θ = 2κ
ω2

u−ω2 . The Hamiltonian is decoupled into

two uncoupled time-dependent harmonic oscillators

Hc = Hr +Hs, (22)

Hr = −1

2

∂2

∂r2
+

1

2
ω2
rr

2 + cr(t)r,

Hs = −1

2

∂2

∂s2
+

1

2
ω2
ss

2 + cs(t)s,

(23)
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where

ω2
r = ω2 cos2 θ + ω2

u sin
2 θ − κ sin 2θ,

ω2
s = ω2 sin2 θ + ω2

u cos
2 θ + κ sin 2θ,

(24)

and

cr(t) = ǫq cos θ − ǫu sin θ,

cs(t) = ǫq sin θ + ǫu cos θ.
(25)

Now the analytical solution can be written as a product of
the eigen functions of Hr and Hs in Eq. (23) as outlined
in Appendix C.

B. Exact diagonalization

The Hamiltonian in Eq. (15) can also be solved by
exact diagonalization using the product of center-of-mass
eigenfunctions and photon Fock states as basis states

|nu, nq〉 = φnu
(u)|nq〉. (26)

To diagonalize Hc, one needs the matrix elements of
the Hamiltonian which are readily available. The opera-
tors Hu and u act on the real space, and â+ â+ acts on
the photon space. The matrix elements of q and u are

〈m|q|n〉 = 1√
2ω
Dmn, (27)

〈i|u|j〉 = 1√
2ωu

Dij , (28)

where

Dmn =



















0
√
1 0 0 0 . . .√

1 0
√
2 0 0 . . .

0
√
2 0

√
3 0 . . .

0 0
√
3 0

√
4 . . .

0 0 0
√
4 0 . . .

...
...

...
...

...
. . .



















. (29)

Thus, the matrix elements of Hc are

〈i,m|Hc|j, n〉 = δmnδij(j +
1

2
)ωu + δmnδij(n+

1

2
)ω +

k

2
√
ωωu

DmnDij +
ǫu(t)√
2ωu

Dijδnm +
ǫq(t)√
2ω
Dnmδij . (30)

After the diagonalization, we have the eigenenergies
and the eigenfunctions. The eigenfunction has the fol-
lowing form

Φc =
∑

nu,nq

cnu,nq
φnu

(u)|nq〉, (31)

where cnu,nq
are the components of the eigenvector.

In the large N limit we have ωu ≈
√
2Nλ and the

coupling strength in the last term of Eq. (30) will be
√
ω(N/8)1/4 (32)

which is independent of λ. In this case, ωu is very large
and the lowest u harmonic oscillator state dominates

Φc =
∑

nq

c0,nq
φ0(u)|nq〉. (33)

IV. RESULTS

In this section, we present numerical examples using
the exact diagonalization approach. The advantage of
this method is that the matter and photon coordinates
are factorized and one can analyze the weight of the mat-
ter and light components in the wave function easily.
First one has to construct a product basis

φnu
(u)|nq〉, (34)

where the highest nu and nq values depend on the cou-
pling strength, on the frequency of light, and on the con-
fining harmonic oscillator potential. One can easily find
the appropriate values by testing the convergence of the
lowest energies as a function of the basis dimension.
The converged ground or excited state

Φc(t = 0) =
∑

nu,nq

cnu,nq
φnu

(u)|nq〉, (35)

will be time propagated to solve the time-dependent
problem. In the time propagation, the basis is time-
independent but the linear coefficients change in time
and the wave function is

Φc(t) =
∑

nu,nq

cnu,nq
(t)φnu

(u)|nq〉 (36)

We will use the Crank-Nicolson [69] time-propagator to
solve the time-dependent Schrödinger-equation:

Φc(t+∆t) = exp(− i

~
H∆t)Φc(t) (37)

≈ 1− i
2H∆t

1 + i
2H∆t

Φc(t), (38)

where H is the Hamiltonian matrix defined in Eq. (30).
The Crank-Nicolson method is unconditionally stable,
and with an appropriately small time step, it converges
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to the exact solution [70]. In our case the dimension of
H is low so the calculation of the inverse in the Crank-
Nicolson step is computationally cheap, but H is very
sparse and one could use iterative inversion even for H
of large dimensions. Atomic units will be used in the
calculations.
We will calculate the following quantities.

1. Norm of the wave function as a function of time

|Φc(t)|2 =
∑

nu,nq

∣

∣cnu,nq
(t)
∣

∣

2
. (39)

This is a good measure of the accuracy of the time
propagation, the norm remains one if the time step
is suitably chosen and will diverge if the time step
is too large.

2. The occupation probability of a given CM harmonic
oscillator wave function as a function of time

Φcm(nu, t) =
∑

nq

∣

∣cnu,nq
(t)
∣

∣

2
. (40)

This function shows how the oscillator states are
excited during the external time-dependent pulse.

3. The occupation probability of a given photon state
as a function of time

Φph(nq, t) =
∑

nu

∣

∣cnu,nq
(t)
∣

∣

2
. (41)

This shows the excitation of the photon states.

4. The time-dependent expectation value of the
Hamiltonian

E = 〈Φc(t)|Hc|Φc(t)〉 (42)

=
∑

nu,nq

∑

n′

u,n
′

q

cnu,nq
(t)∗cn′

u,n
′

q
(t)〈nu, nq|Hc|n′

u, n
′

q〉.

Note that his quantity is not constant because the
energy of the electromagnetic field is not added.
This quantity shows the change of the energy of a
time-propagated state compared to the initial state.

5. The time-dependent dipole moment for the center-
of-mass

u(t) = 〈Φc(t)|u|Φc(t)〉 (43)

=
1√
2ωu

∑

nu,n′

u,nq

cnu,nq
(t)∗cn′

u,nq
(t)Dnun′

u
,

where Dnn′ is defined in Eq. (29).

6. The high harmonic spectrum is calculated using the
dipole acceleration:

I(ωh) =

∣

∣

∣

∣

∣

∫ T

0

∂2u(t)

∂t2
e−iωhtdt

∣

∣

∣

∣

∣

2

. (44)

To calculate the high harmonic spectrum, we time
propagate a system in a laser pulse, calculate u(t),
and then I(ω).

7. The nonlinear susceptibilities. Using an electric
field Eif(t) that is sufficiently weak, the induced
dipole moment ui(t) can be expressed in power se-
ries [71, 72]

ui(t) =
∑

n

p(n)(t) (Ei)
n
, (45)

where p(n)(t) is the nth order component of the po-
larization. The polarization, p(n), can be expressed
using the nth order susceptibility χ(n) as

p(n)(t) =

∫

χ(n) (t− t1, t− t2, · · · t− tn)

× f (t1) f (t2) · · · f (tn) dt1dt2 · · · dtn, (46)

and this describes the nonlinear optical properties
of the system. To calculate χ(n), one time propa-
gates the system subject to Eif(t) for several values
of Ei and invert Eq. (45) to get p(n)(t). Then χ(n)

can be extracted from (46) [71, 72].

A. Excitation by an external field

In this case, the system is subject to a time-dependent
external field of the form

ǫq(t) = Eef(t) f(t) = g(
20π

ωe
,
32π

ωe
, t) sin(ωet) (47)

where Ee is the strength of the excitation, ωe is the exci-
tation frequency and the envelope function is defined as
a trapezoidal

g(a, b, t) =



















2t
b−a t < 1

2 (b− a)

1 1
2 (b− a) ≤ t < 1

2 (a+ b)

1− 2
t− a+b

2

(b−a) t > 1
2 (a+ b)

0 t > b

(48)
As Eq. (19) shows, the coupling Hamiltonian is symmet-
ric in ǫq and ǫu. The former excites the photons through
the coupling to the photon displacement q, and the lat-
ter excites the electrons through coupling to the dipole
moment.
Fig. 1 shows the excitation caused by the external

field. We will investigate the cavity frequency and the
coupling strength dependence of the wave functions us-
ing the first excited state. The ground state only shows
oscillation following the oscillation of the external excita-
tion but the order of states does not change for physically
realistic parameter sets. In the case of the first excited
state, there are changes in level order depending on the
parameters of the cavity. By appropriate choice of pa-
rameters, one can drive the system into a desired photon
number state as experimentally described in Ref. [7, 8].
In Fig. 1a the first excited state and an entangled state

of the photon states |0〉 and |1〉 is time propagated. The
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oscillation of the energy and occupation numbers follows
the oscillation of the laser field. The highest occupied CM
harmonic oscillator occupation state oscillates between
the nu = 0 and nu = 1 states. The order of the higher
occupied photon states changes at the beginning and the
end of the laser pulse. The occupation of the |2〉 photon
states also significantly increases.
In the second case (Fig. 1b), λ is kept the same but

ω is decreased. As Eq. (30) shows, this decreases the
coupling between the CM motion and photons but in-
creases the strength of the external field. As a conse-
quence, the starting first excited state is almost purely
a Φc = φ0(u)|1〉 state and the occupations of the har-
monic oscillator states barely change. The occupations
of the photon states and the order of the states, however,
rapidly change.
In the third case, we increase λ. In this case, the

coupling is stronger and the starting wave function (
Φc = 0.58φ1(u)|0〉 + 0.78φ0(u)|1〉 + 0.13φ2(u)|1〉) con-
tains higher harmonic oscillator components. The os-
cillation of the energy and occupation numbers become
irregular because the higher harmonic oscillator and pho-
ton states get excited. Moreover, the oscillations of
the occupation numbers continue after the laser pulse
in a Rabi-oscillation-like manner. These examples show
that changing the coupling, cavity frequency, and har-
monic confinement can generate a variety of coupled
light-matter states with an external field.

B. High harmonic generation

Fig. 2 shows the high harmonic spectrum of the system
calculated using Eq. (44). The system is subject to a
Gaussian envelop laser pulse

ǫu(t) = Eef(t) f(t) = exp(− (t− τ)2

σ2
) sin(ωet) (49)

and time propagated for 100000 time units. Note that in
this case the CM motion dipole is excited by ǫu (see Eq.
(30)). Fig. 2a shows the HHG for the non-coupled, λ = 0,
ω = 0 case. Due to the inversion symmetry of the CM
harmonic oscillator Hamiltonian, only the odd harmonics
appear in the spectrum at nωe for n = 1, 3, 5, . . .. Once
the light and matter degrees of freedom are coupled (Figs.
2b,2c, and 2d), the inversion symmetry is lost and even
harmonics can appear depending on the coupling and the
cavity frequency.
Fig. 2 shows (blue arrows) the position of the ex-

citation energies of the lowest eigenstates of the time-
dependent Hamiltonian (defined by the first three terms
in Eq. (30)). If the coupling is weak then the first
two terms of Eq. (30) determine the eigenenergies. The
dipole operator couples states φi|n〉 and φj |m〉 if n = m
and j = i± 1. (see Eq. (30)).
In case of no coupling, the lowest states are φ0|0〉,

φ1|0〉, φ2|0〉 and the excitation energies shown in Fig.
2a are ωu and 2ωu (the excitation energy is defined by
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FIG. 1. Time propagation of the light-matter coupled system.
(a)External pulse, energy, center-of-mass, and photon number
occupation probability as a function of time for N=2 electrons
with ω0 = 0.5, ω = 0.5 and λ = 0.025. The starting state
is the first excited state, Φc = 0.69φ1(u)|0〉 + 0.72φ0(u)|1〉.
(b)External pulse, energy, center-of-mass, and photon number
occupation probability as a function of time for N=2 electrons
with ω0 = 0.5, ω = 0.25 and λ = 0.025. The starting state
is the first excited state, Φc = φ0(u)|1〉. (c)External pulse,
energy, center-of-mass, and photon number occupation prob-
ability as a function of time for N=2 electrons with ω0 = 0.25,
ω = 0.25 and λ = 0.075. The starting state is the first ex-
cited state, Φc = 0.58φ1(u)|0〉 + 0.78φ0(u)|1〉 + 0.13φ2(u)|1〉.
ωe = 0.057 is used in the calculations. In the occupation num-
ber figures, the black curve corresponds to quantum number
0, the red to 1, the green to 2, and the blue to 3. The green
and blue are not shown in c because they would overlap the
other curves.
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FIG. 2. High harmonic spectra. a: No coupling; b: ω = 0.2,
λ = 0.025; c: ω = 0.1, λ = 0.025; d: ω = 0.1, λ = 0.05
The exciting laser is defined by Eq. (49) with Ee = 0.2,
ωe = 0.057, τ = 5067 σ = 2067, and T = 100000. The red and
blue bars show the positions of the excitation energy of the
lowest states of the time-independent system. The excitation
energy is defined as the difference between the energy of the
excited state minus the energy of the ground state.

subtracting the ground state energy from the energy of
the given state). One can see that a peak appears at the
position of the excitation energies corresponding to the
transitions from the ground state to the excited states
due to the laser.
The same trend can be observed for the ω > 0 and

λ > 0 cases (e.g. Fig. 2b) but now the spectrum is more
complex due to the coupling to light. The lowest states
are

Φc0 ≈ 0.99φ0|0〉+ 0.06φ1|1〉
Φc1 ≈ 0.66φ1|0〉 − 0.74φ0|1〉
Φc2 ≈ 0.74φ1|0〉+ 0.66φ0|1〉
Φc3 ≈ 0.05φ0|0〉 − 0.46φ2|0〉+ 0.71φ1|1〉
Φc4 ≈ −0.69φ2|0〉+ 0.08φ1|1〉+ 0.71φ0|2〉

(50)

The transition from Φc0 to Φc1 and Φc2 is strong be-
cause Φc1 and Φc2 have large φ1|0〉 components. These
two transition peaks are visible although the first partly
overlaps with the peaks at the laser frequency. The ex-
citation energies corresponding to Φc3 and Φc4 do not
appear in the spectrum because the wave function com-
ponents are much smaller. Transitions from and to other
states are also possible but less significant. The excita-
tion energy peaks in Fig. 2c and Fig. 2d can be explained
similarly. Compared to Fig. 2b, Fig. 2c is calculated for
a smaller cavity frequency. The main effect is that the
excitation energies are different and the corresponding
peaks are shifted. A similar effect can be observed in
Fig. 2d, but in this case the peaks are moved by increas-
ing λ.

0 500 1000
t

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03
ε

u
(t)

u(t)

FIG. 3. Polarization and electric field. The laser is defined by
Eq. (49) with parameters ωe = 0.043, τ = 413 and σ = 206.
Laser strength Ee = 0.0078 was used to calculate u(t).

This example shows that the HHG of the system
changed in the cavity due to two main effects. The first
is that the coupling removed the inversion symmetry re-
striction, allowing the possible appearance of even har-
monics. Secondly, the energy levels of the harmonically
confined electrons in the cavity show up in the HHG spec-
trum. As the energy levels depend on ω0, ω, and λ, one
can add HHG peaks at desired positions and can modu-
late the HHG spectrum with the cavity.

C. Nonlinear susceptibilities

In this section, we calculate the nonlinear susceptibil-
ities for certain cavity parameters. The nonlinear sus-
ceptibilities of molecules in cavities have been studied in
Ref. [63]. It was found that the polaritonic resonances
can enhance the susceptibilities and the nonlinear con-
version efficiency can be tuned by the coupling strength.
Using Eq. (46) we have calculated the polarizations up

to the third order. The exciting electric field is typically
a few-cycle laser pulse, and the pulse used in this calcu-
lation (Eq. (49)) is similar to the choice of Refs. [71, 72].
The frequency of the confining harmonic oscillator po-
tential is chosen to be ω0 = 0.5. The cavity frequency ,ω
and the coupling, λ, is selected in such a way that the
occupation of the excited state is small. In these cases,
the susceptibilities can be extracted using a simple fit.
If the excited states are more dominant then the calcu-
lation of the frequency-dependent susceptibilities will be
more tedious.
Fig. 3 shows the external field and the polarization for

a weak laser field. The time-dependent dipole moment
smoothly follows the oscillation of the laser. By calcu-
lating the dipole moments ui(t) for 3 different laser field
strengths, Eei (see Eq. (49)), we can calculate p(n) us-
ing Eq. (45). The values of p(n) is not sensitive to the
values of Eei provided that the field is sufficiently weak.
Fig. 4 shows that p(n) can be very well approximated by
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FIG. 4. First and third order susceptibilities. a: p(1)(t)

(dashed black) and χ(1)f(t) (red) (χ(1) = 4). b: p(3)(t)

(dashed black) and χ(3)f(t)3 (red) (χ(3) = 0.0017) for ω0 =

0.5, ω = 0.5, and λ = 0.1. c: p(3)(t) (dashed black) and

χ(3)f(t)3 (red) (χ(3) = 0.00088) for ω0 = 0.5, ω = 0.25,

and λ = 0.1. d: p(3)(t) (dashed black) and χ(3)f(t)3 (red)

(χ(3) = 0.008) for ω0 = 0.5, ω = 0.5, and λ = 0.2. The leg-
end of b is also a legend of c and d. The laser is defined by
Eq. (49) with parameters ωe = 0.043, τ = 413 and σ = 206.
Three laser strengths, Eei = 0.00195, 0.0039, 0.0078 were used
to calculate p(n).

χ(n)f(t)n, which is a simple time (or frequency) indepen-
dent susceptibility Fig. 4a shows the linear component,
χ(1) = 4 gives an excellent fit to p(1)(t). Fig. 4b, 4c
and 4d show the dependence of p(3) on ω and λ. These
figures show that a simple p(3) = χ(3)f(t)3 gives a good
fit for the third-order polarization, although the fit is not
as perfect as for the first-order one. Note, that while
the calculation of the time-dependent dipole is very ac-
curate, the extraction of χ one has to be averaged over
time which introduces an error bar of about ±5% due to
the fluctuation of the polarization.

Fig. 5 shows the dependence of second and the third-
order susceptibility on λ and ω. The calculations show
that the dependence of χ on ω and λ is closely related to
the occupation probability. The value of χ(n) increases
when the occupation of excited states are higher because
more states will be connected with dipole transitions. We
have investigated the dependence of the occupation prob-
ability on the cavity frequency and coupling in Ref. [55]
and now we apply those finding for this case. Fig. 5a
shows the occupation of the excited states as a function
of ω. For a fixed λ two terms in Eq. (30) influence the
occupation of the excited states. By increasing ω, the
second term shifts the energy of the excited states higher
and that decreases the occupation probability of the ex-
cited states. The third term couples the center-of-mass
and the photon spaces and the coupling is proportional
to

√
ω. By increasing ω the coupling increases and that

leads to higher excited state occupation probability. As
a result of these two competing processes, the occupation
of the excited states first increases with ω then reaches a

0.005
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P
ex
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 ω

0.000

0.001

0.002

 χ

 χ(3)

 χ(2)
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FIG. 5. Dependence of occupation probability of the excited
states and the nonlinear susceptibilities χ(n) on the cavity
frequency and the coupling strength. χ(2) is multiplied by
800 to fit in the same figure as χ(2). λ = 0.1 and ω0 = 0.5 is
used for the ω dependence and ω = 0.5 and ω0 = 0.5 is used
for the λ dependence.

maximum and starts to decrease as it is shown in Fig. 5a.
The behavior of χ(n) is very similar (Fig. 5b), increas-
ing and reaching a maximum before starting to decrease.
The curve is not as smooth as the occupation probability
due to the error related to the extraction. A similar be-
havior can be found for the λ dependence of the occupa-
tion number and χ(2) (see Figs. 5c and 5d). In this case,
the occupation number monotonically increases with λ
because the λ is the larger the coupling (third term in
Eq. (30)). The second-order polarization, χ(2) is much
smaller then the third-order one. The small value of the
chi(2) is due to the fact that the second-order process is
not allowed without coupling to the cavity and remains
hindered for the parameter region of this study.

V. SUMMARY

We have presented an analytically solvable time-
dependent model of the interaction of harmonically con-
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fined electrons and light in a cavity. In the framework
of the Pauli-Fierz Hamiltonian, the relative motion and
center-of-mass motion can be factorized. The Hamilto-
nian of the relative motion is time independent and it
is not coupled to light. It can be solved by various ap-
proaches as we have described in Refs. [54, 55]. The
Hamiltonian of the center-of-mass motion can be written
as the sum of three Hamiltonians, each of them depend-
ing on a single variable only. This separation allows the
factorization of the center-of-mass wave function into a
product form so the three Hamiltonians can be solved
independently. Two of these Hamiltonians are not cou-
pled to the light and these are simple time-dependent
harmonic oscillator Hamiltonians that can be solved an-
alytically (see Appendix C). The third Hamiltonian is
a coupled light-matter harmonic oscillator Hamiltonian.
This Hamiltonian can be decoupled by using shifted Fock
states and it can be solved analytically.
The disadvantage of the analytical solution is that in

the wave functions the light and matter coordinates are
mixed and it is cumbersome to calculate physical proper-
ties in terms of light or matter degrees only. As an alter-
native, we use a product of harmonic oscillators and Fock
states as a basis that allows an exact diagonalization ap-
proach. The convergence can be controlled by increasing
the number of orthogonal basis states. This product ba-
sis can also be used to solve the time-dependent problem
with time propagation of the wave function.
Three different time-dependent problems are studied.

In the first, we have shown how external fields acting
on either the light or the matter degrees of freedom can
excite the other degrees of freedom. In the second, the
effect of the cavity on the HHG spectrum was investi-
gated. We have shown that with the cavity, one can
introduce intensity peaks in the HHG spectrum at de-
sired locations which may have applications in ultrafast
(attosecond) spectroscopies. In the third example, we
have shown how the third-order nonlinear susceptibility
(which is an important quantity controlling nonlinear op-
tical mixing processes) of the system changes and can be
tuned in the cavity.
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Appendix A: Relative coordinates

In a system of N particles with coordinates ri one can
introduce N − 1 independent relative coordinates xi and
a center-of-mass coordinate R = xN by a linear trans-
formation [73]

xi =

N
∑

j=1

Uijrj . (A1)

Many different choices of definitions of the relative coor-
dinate set are used, for example

U =

















1 −1 0 0 · · · 0
1
2

1
2 −1 0 · · · 0

...
...

...
. . .

... 0

1
N−1

1
N−1

1
N−1

1
N−1

... −1
1
N

1
N

1
N

1
N

1
N

1
N

















,

or

U ′ =

















1− 1
N − 1

N − 1
N · · · − 1

N
− 1

N 1− 1
N − 1

N · · · − 1
N

...
...

. . .
...

...

− 1
N − 1

N

... 1− 1
N − 1

N
1
N

1
N

1
N

1
N

1
N

















,

and the generalization for unequal masses is straightfor-
ward [73]. The U matrices can be inverted and the dif-
ferent relative coordinates can be transformed into each
other. The inverse of the transformation matrices are

U−1 =















1
2

1
3

1
4 · · · 1

N−1 1

− 1
2

1
3

1
4 · · · 1

N−1 1

0 − 1
3

1
4 · · · 1

N−1 1
...

...
...

. . .
...

...
0 0 0 · · · −N−1

N 1















,

and

U ′−1
=













1 0 0 · · · 0 1
0 1 0 · · · 0 1
0 0 1 · · · 0 1
...

...
...

. . .
...

...
−1 −1 −1 · · · −1 1













.

As all elements of the last row of U are 1/N , the inverse
matrix has a special structure: all elements of its last
column is 1 [73]. That means the we can express the
single particle coordinates as

ri =

N−1
∑

j=1

U−1
ij xj +R (A2)

The relative and center-of-mass momenta πi = −i~ ∂
∂xi

are related to the single particle momenta pi = −i~ ∂
∂ri

as

πi =

N
∑

j=1

U−1
ji pj (i = 1, . . .N). (A3)

This equation defines the total momentum as πi =
∑N

j=1 pj and the center-of-mass kinetic energy is Tcm =

π
2
N/2N . Now we can subtract the center-of-mass kinetic

energy from the total kinetic energy

N
∑

i=1

p2
i

2
− Tcm =

1

2

N−1
∑

i=1

N−1
∑

j=1

Λijπiπj (A4)
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where

Λij =

N
∑

k=1

UikUjk. (A5)

This completes the separation of the relative and center-
of-mass system and works in any system defined by U .
As an example let’s consider N = 3. Using U one can

define

x1 = r1 − r2,

x2 =
r1 + r2

2
− r3,

R =
r1 + r2 + r3

3
, (A6)

and the single particle coordinates are expressed as

r1 =
1

2
x1 +

1

3
x2 +R,

r2 = −1

2
x1 +

1

3
x2 +R,

r3 = −2

3
x2 +R. (A7)

Similarly, using U ′ we can define

x′

1 =
2

3
r1 −

1

3
r2 −

1

3
r3,

x′

2 = −1

3
r1 +

2

3
r2 −

1

3
r3,

R =
r1 + r2 + r3

3
, (A8)

and now the single particle coordinates are

r1 = x′

1 +R,

r2 = x′

2 +R,

r3 = −x′

1 − x′

2 +R. (A9)

Appendix B: Decoupling the center-of-mass

Hamiltonian

The center-of-mass part can be simplified further by
introducing

u =
√
N
X + Y√

2
, v =

√
N
Y −X√

2
, z =

√
NZ (B1)

where R = (X,Y, Z), and

ǫu(t) =
√
N
Ex(t) + Ey(t)√

2
, (B2)

ǫv(t) =
√
N
Ex(t)− Ey(t)√

2
,

ǫz(t) =
√
NEz(t),

(B3)

where Eext(t) = (Ex(t), Ey(t), Ez(t)). Using this nota-
tion, the light-matter coupling term becomes

ωqλR = ωq
√
2Nλu, (B4)

and only the u coordinate is coupled to light. By defining

Hu = −1

2

∂2

∂u2
+

1

2
ω2
uu

2 + ǫu(t)u, (B5)

Hv = −1

2

∂2

∂v2
+

1

2
ω2
vv

2 + ǫv(t)v,

Hz = −1

2

∂2

∂z2
+

1

2
ω2
zz

2 + ǫz(t)z,

(B6)

with frequencies

ω2
u = ω2

0 + 2Nλ2, ω2
v = ω2

z = ω2
0 , (B7)

we can write the CM part as

HR +
1

2
N2 (λR)

2
= Hu +Hv +Hz. (B8)

Now the CM Hamiltonian is a sum of three independent
time-dependent harmonic oscillators, and only Hu is cou-
pled with light. This derivation can be easily generalized
to any form of λ [54] and is not limited to the present
λ = λ(1, 1, 0) choice as we have mentioned before. These
time-dependent Hamiltonians have known analytical so-
lutions [67, 68] which have been reviewed in Appendix
C. If one choose Ex = Ey and Ez = 0, then Hv and Hz

are time-independent and the solution is even simpler.
Now we can define a simplified coupling Hamiltonian

in the following form:

Hc = ω

(

â+â+
1

2

)

− ωq
√
2Nλu+

jext(t)

ω
q̂+Hu. (B9)

The total Hamiltonian now becomes

H = Hx +Hv +Hz +Hc, (B10)

By solving the Schrödinger equation for the time-
independent part

HxΦ(x) = ExΦ(x) (B11)

and solving the time-dependent Schrödinger equations
for the time dependent parts

i
∂

∂t
φv(v, t) = Hvφv(v, t) (B12)

i
∂

∂t
φz(z, t) = Hzφz(z, t) (B13)

i
∂

∂t
Φc(u, t) = HcΦc(u, t). (B14)

The ansatz

Ψ = Φ(x)e−iExtφv(v, t)φz(z, t)Φc(u, t), (B15)

satisfies the time-dependent Schrödinger equation

i
∂

∂t
Ψ = HΨ. (B16)



11

Appendix C: Solution of the time-dependent

harmonic oscillator Hamiltonian

The time-dependent Schrödinger equation for a har-
monic oscillator driven by a laser field is analytically
solvable [67, 68]. We include the key ingredients in this
Appendix for completeness. The starting equation is

− ~
2

2m

∂2

∂x2
+

[

1

2
kx2 − xF (t)

]

ψ = i~
∂ψ

∂t
, (C1)

where F (t) is a time-dependent driving field.
Rewrite ψ into the form

ψ(x, t) = χ(x, t)eg(t)x χ(x, t) = φ(x− u(t), t), (C2)

where u(t) and g(t) are auxiliary functions to be deter-
mined. By substituting this ansatz into Eq. (C1), one
has

− ~
2

2m

∂2φ

∂ξ2
+

(

i~u̇− ~
2

m
g

)

∂φ

∂ξ
+

1

2
kξ2φ

+ (ku− F − i~ġ)ξφ

+

(

1

2
ku2 − Fu− i~uġ − ~

2

2m
g2
)

φ = i~
∂φ

∂t
, (C3)

where ξ = x − u(t). Now we can choose g and u to
eliminate the coefficients of ∂φ/∂ξ and ξφ,

i~u̇− ~
2

m
g = 0, ku− F − i~ġ = 0 (C4)

and Eq. (C3) simplifies to

− ~
2

2m

∂2φ

∂ξ2
+

1

2
kξ2φ = i~

∂φ

∂t
− δ(t)φ, (C5)

where we have defined

δ(t) =
1

2
ku2−Fu− i~uġ− ~

2

2m
g2 =

1

2
mu̇2− 1

2
ku2 (C6)

where the second equality is obtained by using Eqs. (C4).
In Eq. (C5), the ξ and t variables are separable, and

the left-hand side represents the time-independent har-
monic oscillators, with eigenenergies En =

(

n+ 1
2

)

~ω
and wave functions

Nn exp

(

−1

2
α2ξ2

)

Hn(αξ) (C7)

where Hn is the nth Hermite polynomial,

α4 = mk/~2, ω = [k/m]
1
2 , (C8)

Nn2 =
α

π
1
2 2nn!

. (C9)

The right-hand side can be integrated over time, and the
total solution is

φ = Nn exp

{

− i

~

∫

[δ(t) + En] dt

}

exp

(

−1

2
α2ξ2

)

Hn(αξ)

(C10)

Note that Eq. (C4) is equivalent to a driven classical
harmonic oscillator equation

mü+ ku = F (t), (C11)

and g is also uniquely determined by solving for u in this
equation.
As a simple example, we consider a sinusoidal driving

field of the electrons: ǫq = 0, ǫu = CF cos(ωF t) in (19).
The transformed driving fields cr(t), cs(t), corresponding
to F (t) above, are still of the form CF cos(ωF t). The
solution to (C11) is well-known:

u = A1 exp(iωt) +A2 exp(−iωt) +
CF

|ω2 − ω2
F |

cos(ωF t),

(C12)
where A1, A2 are given by the initial conditions, and ω is
the oscillator frequency. Note that the complex parts
of u should not be dropped, as they affect the time-
dependency of the wave functions. One can easily evalu-
ate the integral:

∫

δ(t)dt =
iω

2
(A2

1e
2iωt −A2

2e
−2iωt)

− C2
F t

4(ω2 − ω2
F )

− C2
F (ω

2 + ω2
F )

8ωF (ω2 − ω2
F )

2
sin(2ωF t)

+
iωCF (A1e

iωt −A2e
−iωt)

|ω2 − ω2
F |

cos(ωF t)

(C13)
Thus, the time-dependent wave function is determined.
In our case, the analytical solution for Hc (Eq. (23))

can be written as a product of the eigen functions of Hr

and Hs

Φc = χrχsφr,nφs,m, (C14)

where

φr,n = Nr,n exp

{

−i
∫

[δr(t) + En] dt−
1

2
ωrξ

2
r

)

Hn(
√
ωrξr),

(C15)

Nr,n =
(ωr

π

)
1
4 1√

2n n!
, En =

(

n+
1

2

)

ωr,

δr(t) =
1

2
ẇ2 − 1

2
ω2
rw

2, ξr(t) = r − w(t),

(C16)

χr = exp(irẇ). (C17)

Hn is the n-th Hermite polynomials, and w(t) is the so-
lution to ẅ + ω2

rw = −cr(t), which has exact particular
solutions in integral form for any reasonable cr(t). Ap-
pendix C shows an analytical example. The χs and φs,m
are obtained analogously. In principle, any starting wave
function can be decomposed through a basis formed by
φr,n at t = 0 and time propagated by evolving each φr,n.



12

Appendix D: Decoupling

Suppose the following Hamiltonian

H = −1

2

∂2

∂x2
−1

2

∂2

∂y2
+
1

2
ω2
xx

2+
1

2
ω2
yy

2+kxy+a(t)x+b(t)y

(D1)
Assume the following transformations:

u = x cos θ − y sin θ

v = x sin θ + y cos θ
(D2)

Then we decouple the Hamiltonian

H = Hu +Hv (D3)

where

Hu = −1
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(D4)

and

c = a cos θ − b sin θ, d = a sin θ + b cos θ (D5)

The rotational angle is given by

tan 2θ = − 2k

ω2
x − ω2

y

(D6)

and the frequencies

ω2
u = ω2

x cos
2 θ + ω2

y sin
2 θ − k sin 2θ (D7)

ω2
v = ω2

x sin
2 θ + ω2

y cos
2 θ + k sin 2θ (D8)

Hu and Hv can be solved by Appendix C
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