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Studies of Hamiltonians modeling electron-electron (e-e) and electron-phonon (e-ph) coupling have
been fundamental in capturing the novel ordering seen in many quasi-one dimensional condensed
matter systems. Extending such studies to quasi-two dimensional systems is of great current interest,
as electron-phonon couplings are predicted to play a major role in the stabilization or enhancement
of novel phases in 2D material systems. In this work, we study model systems that describe the
interplay between the Hubbard coupling and the phonon modes in the Holstein (H) and Su-Schrieffer-
Heeger (SSH) Hamiltonians using the functional renormalization group (fRG). For both types of
electron phonon couplings, we find the predicted charge density wave phases in competition with
anti-ferromagnetic (AF ) ordering. As the system is doped, the transition shifts, with both orders
showing incommensurate peaks. We compare the evolution of the quasiparticle weight for the
Holstein model with that of the SSH model as the systems transition from antiferromagnetic to
charge-ordered ground states. Finally, we calculate the self-energy of the phonon and capture the
impact of charge ordering on the phonon modes.

I. INTRODUCTION

Many of the novel phenomena observed in low dimen-
sional electronic systems are driven by the combined ef-
fects of electron-electron (e-e) and electron-phonon (e-
ph) interactions. Interactions among electrons drive
charge and spin fluctuations which can lead to order-
ing of the spin and charge densities with the remnants
of the density order in the doped system serving to sta-
bilize various types of superconducting order. Electron-
phonon interactions can dramatically modify these orders
by distorting the electronic band structure, altering the
mobility in conductors and providing the mechanism for
conventional superconductivity. The interplay between
these two interactions has helped explain the physics
of conducting polymers1,2, superconducting order in the
fullerenes3 and density wave orders in the charge transfer
solids4,5. But even in systems in which the leading or-
der is driven primarily by only one of these interactions,
the impact of the other interaction can be significant.
The high Tc Cuprates are a prime example, with weakly
coupled phonon modes predicted to have considerable
impact on the physics of the material despite occuring
at frequencies far below the hopping and the presence
of strong e-e interactions6–10. Similarly, recent studies
of superconductivity in FeSe heterostructures show an
up-to-an-order of magnitude enhancement in the criti-
cal temperature, much of it attributed to the coupling
of electrons to phonons in the substrate11,12. The inter-
play between these interactions also explains the charge
ordering observed in competition with superconductivity
in the transition metal dichalcogenides13–15.

Beyond the novel orderings due to the interplay be-
tween these interactions, an accounting of the couplings
is necessary for a quantitative description of the materi-
als. An excellent example of this are models of conduct-
ing polymers, which require Hubbard-like e-e couplings
along with the dominant Su-Schrieffer-Heeger (SSH) e-
ph interactions in order to explain the optical absorp-
tion spectra observed in these systems1. In the result-
ing SSH-Hubbard (SSHH) models we see the standard
transition from a Peierls phase, a bond ordered density
wave (BOW ), to an antiferromagnet (AF ) with the crit-
ical e-ph coupling at the transition decreasing to zero
with phonon frequency16. Studies of the model found
that bond correlations are enhanced by Coulomb interac-
tions up to intermediate values of order the bandwidth,
with retardation effects not playing much of a role17,18.
In general systems, the distinction between inter-site
(SSH) electron-phonon coupling and intra-site (Holstein
or Molecular Crystal) e-ph coupling, along with the fre-
quency and dispersion relation of the phonons, can lead
to important differences, as was demonstrated in the pi-
oneering papers of Fradkin and Hirsch19,20.
A number of studies have explored the nature of possi-

ble phases in two-dimensional models involving e-ph and
e-e interactions. Studies of the 2D Hubbard-Holstein
(HH) Hamiltonian show competition between an anti-
ferromagnet (AF ) and a charge density wave (CDW )
with a possible metallic phase at the critical transition
line. The existence and size of the finite region of metal-
licity in the 2D HH model has been difficult to deter-
mine as variational Monte Carlo studies find a metal-
lic phase whose domain size is inconsistent for different
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FIG. 1. Equations for the electron and phonon vertices. (a) The effective dynamic vertex constructed from the electron-electron
and electron-phonon vertices. (b) Equation for the electron-phonon vertex in terms of the dynamic vertex given in (a). (c)
Expression for the self energy of the phonon

phonon frequencies21,22 whereas the correlated metallic
phase captured in determinant Monte Carlo studies at
phonon frequencies of order the hopping does not extend
to the Holstein model at U = 023,24. Earlier Quantum
Monte Carlo (QMC) results suggested the CDW phase
as the likely sole ground state of the 2D Holstein and
Hubbard-Holstein models with the difference to the one
dimensional system possibly due to the larger electronic
susceptibility24 and weak coupling CDW instability25,26.
Before extrapolation of finite size response to the thermo-
dynamic limit, the transition to a metallic phases is found
at λc = 0.61t24 while the sensitivity of the metallic phase
to phonon frequencies larger than the hopping remains an
open question. The qualitatively similar phase diagram
for the model in 1D shows the domain of metallicity ex-
panding with phonon frequency, indicating a robust com-
petition between the two interactions, and an extrapola-
tion of this behavior to the 2D system suggests a metallic
phase in the 2D Holstein model27,28. Alternatively, stud-
ies of the 2D SSH and SSHH models show a first-order
transition from an AF to a BOW phase occurring at
a finite e-ph coupling for all phonon frequencies29–31.The
transition shows only minor changes as the local Hubbard
coupling is altered, suggesting little competition between
the two interactions31. Studies of the SSH phonon carried
out with a focus on polyacetylene found stronger compe-
tition between the AF and BOW phases, but modeling
polyacetylene requires the additional nearest neighbor
density-density coupling (V ) to obtain agreement with
the optical absorption spectra, which has the additional
effect of enhancing BOW ordering in 1D systems16,32.
Finally, there have been limited studies of the impact of
doping on these systems with most results confined to
1D. DMRG studies of the doped HH model show little
change due to doping, with superconducting fluctuations
on a par with charge fluctuations for much of the doping
regime around half filling28.
In the present work, we address a number of open ques-

tions in these systems by analyzing the impact of doping
and the phonon frequency in the HH and SSHH models
in one and two dimensions. The models incorporate the
on-site Hubbard coupling (U) and the nearest neighbor
density-density interaction (V ), along with a coupling to
a phonon mode which can be either of the SSH type or the
Holstein type. We present a functional renormalization
group (fRG) study of the system from two perspectives.

First, we integrate out the quadratic phonon fields and
run the flow for the fermions with a new effective two-
particle vertex. As the displacements in the lattice are
coupled to the electrons (the density operator in the case
of the Holstein phonon and the hopping operator for the
SSH phonon), the general e-ph coupling has a non-trivial
momentum structure. Integrating out the phonons cou-
ples these e-ph vertices, leading to a dynamical e-e vertex.
Within this picture, the fRG captures the transition from
an AF phase to a charge-ordered phase as a function of
the e-ph coupling. Further access to the electron self-
energy shows the deformation due to the phonons with
asymmetries from the modes emerging in the quasiparti-
cle weight as a function of the e-ph coupling. We study
the consequences of doping and changes to the phonon
frequency on this transition. Second, we study the flow
of the phonon vertices as the e-ph coupling is the primary
driver of deformations in the fermion self-energy. Such
studies can be of general interest, as in many systems
ordering in the electronic sector can lead to a soften-
ing of phonon modes. For example, phonon softening is
seen in the FeSe superconductors at the structural tran-
sition with a smaller softening as the system becomes
superconducting33. Access to the phonon self-energy en-
ables us to capture this softening and help quantify pos-
sible enhancements of electronic order due to phonon
modes.
The remainder of the article is organized as follows. We

begin in Sec.II with the flow equations for the vertices
of a general electron-phonon system. The response in
the Hubbard model to a Holstein phonon is presented in
Sec.III. The impact of the SSH phonon on an extended
Hubbard model is given in Sec.IV. Our conclusions and
a summary of our results are given in Sec.V.

II. THE FLOW EQUATIONS IN THE FRG
METHOD

The functional renormalization group (fRG) has be-
come a standard tool to study competing orders in in-
teracting electron systems34–36. Starting from a scale-
dependent action, equations for the various interaction
vertices of the system are derived as functions of the scale
(Λ). The flow equations track the evolution of these ver-
tices as, scale by scale, modes are integrated out. RG
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methods have been crucial in the study of these models
and have helped elucidate the phase diagrams of Hol-
stein, Hubbard-Holstein and Peierls-Hubbard models in
one dimension37–41. In the case of electronic systems cou-
pled to a phonon mode, there is some ambiguity as to how
to regulate both propagators. Previous electron-boson
fRG studies adopted a momentum regulator in both the
bosonic and fermionic sectors, but as the ph-ph vertices
in the system are irrelevant with the marginal and rele-
vant vertices being of the e-e and e-ph type, we choose to
insert the regulator into the electron propagator42. This
choice simplifies the flow equations, as scale derivatives
of the phonon propagator are set to zero. To capture
deformations of the Fermi surface in the half-filled and
doped systems we utilize a pure frequency regulator and
retain all momentum modes of the lattice.

A general Hamiltonian for coupling a system of inter-
acting electrons to a phonon mode λ can be written as

H =
∑
kσ

ξkc
†
kσckσ +

∑
k1k2k3

Uk1,k2,k3,k4
c†k1↑c

†
k2↓ck3↓ck4↑

+
∑
q

Ωλ
q b

†
qbq +

∑
k,q,σ

gλ(k, q)c
†
k+q,σck,σ(bq + b†−q)

(1)

where c and b operators correspond to the electron and
to the phonon modes, ξk and Ωk are the electron and
phonon dispersions, Uk is the electron-electron interac-
tion and gλ represents coupling between the electron and
phonon modes43. As the phonon operators are quadratic
they can be integrated out exactly, leading to an electron-
electron interaction mediated by the phonon. The inter-
action is of the form

Ueff
k1,k2,k3,k4

= Uk1,k2,k3,k4 + gλk1+kph,−kph
gλk3,kph

Gλ
kph

(2)

where kph= (k3 − k2) is the particle-hole singular mode
and Gλ is the phonon propagator. The fRG flow can then
be constructed identically to a pure electronic Hamilto-
nian with the only modification coming in as a change
in the initial vertex. The phonon mediated interaction
can be paramaterized by λ = 2g2/ωphonon with g corre-
sponding to the strength of the e-ph coupling given by
gλk,q = gfλ(k, q).

Alternatively, we can construct a flow for both the
electron and phonon vertices. This approach presents
some difficulties, as in addition to the electron vertices
we need to track the phonon self-energy and the electron-
phonon vertices. As the regulator is inserted only into the
fermionic propagator, the fRG equations for the phonon
vertices flow with the electronic single-scale propagator.
The flow for the phonon self-energy is given by

∂ΛΣ
λ
q =

∑
k,σ

gk,q∂Λ(GΛ
k GΛ

k+q)gk+q,−q (3)

and the flow of the e-ph vertex is

∂Λgk1,q =
∑
k

gk,q∂Λ(GΛ
k+qGΛ

k )gk+q,−qGλ
q gk1,q+∑

k

gk,q∂Λ(GΛ
k GΛ

k+q)Γ
eff
k1,−k,−k−q,k1+q (4)

where G is the fermion propagator. The flow of the
electron vertices is identical to the pure fermionic flows
with the two-particle electron vertex in the equations re-
placed by a scale-dependent form of the effective vertex
(Γeff ↔ Ueff ) defined in Eq.2. The full set of fRG equa-
tions are given in detail in Appendix.A. The modification
of the vertex also accounts for the contributions to the
fermion self-energy from the e-ph coupling. We note that
in the case of flowing phonon vertices, the effective two-
particle vertex has to be constructed along each point in
the flow.

Either choice leads to a system with frequency-
dependent vertices. To deal with the frequency and mo-
mentum dependencies of the vertex in an efficient man-
ner, we employ a decoupled variant of the fRG at the
two-loop level44. Treatment of the frequency dependence
leads to stable flows and allows us to construct the flow of
the self-energy which should capture deformations from
the e-ph coupling at the single particle level45. The fRG
equations for the e-ph vertex and the phonon self-energy
given above in Eqns.3 and 4 can be further simplified
by using the basis expansion used to derive the decou-
pled fRG equations44,46. The inclusion of the e-ph ver-
tex within the decoupled fRG framework can be achieved
by expanding the fermion label in the appropriate fre-
quency and momentum basis sets. The vertex describes
a forward scattering process due to the phonon and is al-
ready parameterized by the particle-hole frequency and
momentum. Thus, we utilize the same auxiliary variables
used for the particle-hole channel in the decoupling of the
vertex to expand the e-ph interaction44. Within the de-
coupled framework, the vertex Γ is expanded in the three
channels along the singular frequencies with the scaling of
the vertex going from O(N3

fN
3) to O(NfN

2
ωNN

2
k ) with

Nf corresponding to the number of Matsubara frequen-
cies retained, Nω representing the number of frequency
basis functions used for expansion, N is the number of
sites in the system, and Nk is number of momentum basis
functions. Using a similar expansion for the e-ph vertex,
we have

gm,i(sph) =
1

Nβ

∑
ωphx

,k

gk,kph
(ω, ωph)fm(ωphx

)fi(k) (5)

where ω,k represent the incoming frequency and mo-
menta of the fermion and the auxiliary frequency vari-
ables ωphx

= 2ω+ωph and fm/i are the frequency and mo-
mentum basis functions. The basis functions are Fourier
modes in both cases with the frequency basis sets mod-
ified to scale with the flow and cover the entirety of the
imaginary time axis. Applying this expansion, the flow
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for the self-energy becomes

∂ΛΣ
λ(sph) = g(sph)L

ph
Λ (sph)g(sph) (6)

and the flow for the e-ph vertex is given by

∂Λg(sph) = g(sph)L
ph
Λ (sph)∆(sph) (7)

where Lph
Λ represents an exchange propagator con-

structed from the electron propagator (L[∂Λ(GG)]) and
∆ is the two-particle vertex (Γk1k2k3k4

) expanded in the
particle-hole channel. The above expressions are matrix
multiplications with g corresponding to a [1×NωNk] ma-
trix for all singular particle-hole frequencies. The two-
loop equations for the fermion vertices have been out-
lined in previous works47,48. The contributions to the
e-ph vertex at higher loop orders can be accounted for
by the derivative of the two-particle vertex. In particu-
lar, the projection of the fermion flows in the particle-
particle (Φ̇pp) and particle-hole-exchange (Φ̇phe) chan-
nels contribute to the particle-hole vertex at the two loop
level(∆2−L = P (Φ̇pp) + P (Φ̇phe)). This adds to the one-
loop flow above as

∂Λg
2−L(sph) = g(sph)L

ph
F,Λ(sph)∆

2−L(sph) (8)

with Lph
F,Λ corresponding to the full exchange propagator

(L[GG]). Ultimately, the momentum structure of the e-
ph coupling and the dispersion of the phonon introduce
electron-electron interactions that drive charge fluctua-
tions with a variety of momentum structures. To allow
for deformations to the electron and phonon self-energies
and an unbiased treatment of the charge fluctuations, the
results throughout this work were constructed with the
litim regulator implemented over the frequency axis of
the electron propagator49.
The main observables we use for studying the phases

in the e-ph models are the spin, charge and supercon-
ducting correlators. From these one can construct the
static susceptibility and structure factors for ordering in
the three channels. In parameter regimes with symmetry
breaking instabilities, the flow has to be stopped due to
a diverging interacting vertex, which limits us to correla-
tors constructed from the partially integrated vertex at
the critical scale Λ. In all cases we search for local orders
with a profile characterized by the form factor fO. The
spin and charge susceptibilities for a nesting vector q⃗ at
a frequency Ω are given by

χc/s(Ω, q⃗) =
∑

p1,p2,σ1,σ2

⟨sσ1
fO(p1)c

†
p1,σ1

cp1+pq,σ1
×

sσ2
fO(p2)c

†
p2,σ2

cp2−pq,σ2
⟩c (9)

with the form factor corresponding to phase of interest
and s↑,↓ = ±. We investigate forms for all harmonics as-
sociated with the square lattice. Explicitly, searches for
possible BOW order along the x,y or z axes can be con-
ducted with the factors fO = sin(pi). The frequency con-
tent of the flow allows the calculation of the structure fac-
tor associated with a particular χ(SO = 1

β

∑
Ω χO(Ω, q⃗))
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FIG. 2. The static anti-ferromagnetic susceptibility as a func-
tion of the electron-phonon coupling (λ) for different values
of Hubbard coupling (U) in the HH model. Calculations were
performed at 2-loop with T = 0.02t on a 32-site lattice at a
resolution of Nω = 4,Nk = 4 with the f-fRG(solid) and eph-
fRG(dashed). The renormalized phonon dispersion and the
self-energy of the phonon for different couplings calculated
via the eph-fRG is shown on the right.
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FIG. 3. The scaled CDW susceptibility of the 1D Hol-
stein model as a function of the e-ph coupling for different
lattice sizes at β = 64 with resolution Nω = 4,Nk = 4.
The inset shows the charge correlation ratio (1− SCDW (π +
δq)/SCDW (π)) of the susceptibilities.

which can be ideal for determining phase boundaries.
Preliminary transition lines constructed by direct com-
parison between susceptibilities can be supplemented (es-
pecially in cases with divergent flows) with studies of the
structure factor. For cases where runs over different lat-
tice sizes are possible, we extrapolate the transition lines
for changes in the dominant susceptibility to the infinite
lattice.
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FIG. 4. The ground states of the 1D HH model at half fill-
ing via the two-loop fRG with ω0 = t. The transition from
dominant charge to spin fluctuations is shown in green with
metallic phase constructed by finite-size scaling of response in
lattices of N ≤ 256. The mean-field transition line (U = λ) is
plotted for reference. The susceptibilities for N = 32(dashed)
and N = 64 along with the spin (orange) and charge (blue)
transition lines is shown in the lower panel.

III. THE HUBBARD-HOLSTEIN MODEL

The Hubbard-Holstein (HH) model is a prototype
Hamiltonian for capturing the interplay between e-e and
e-ph interactions. The model describes the coupling of
fermions interacting via the Hubbard coupling to a non-
dispersive optical phonon. Studies of the model show the
expected antiferromagnetic phase (AF ) for large e-e in-
teractions (U) and a charge density wave (CDW ) phase
for strong e-ph coupling (g) with a metallic phase in the
transition region between the ordered phases. In both
one and two dimensions the metallic phases show strong
superconducting correlations with 1D DMRG studies
showing a metallic phase in the Hubbard Holstein model
(U = 0) up to O(1) values of e-ph coupling for various
values of the phonon frequency28,50. Monte Carlo stud-
ies of the model in 2D show a CDW phase at U = 0
for any values of the e-ph coupling24–26,51. Monte carlo
studies in Ref. 24 find that the metallic phase still ex-
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FIG. 5. The charge (top), spin (inset) and s-superconducting
(bottom) susceptibilities of the 2D Holstein model at various
phonon frequencies (left) and doping levels (right) on a 16×16
lattice at β = 32.

ists in 2D, albeit with a reduced domain restricted to
U > 0 and weaker sensitivity to the frequency of the
Holstein phonon. In terms of a full description of the
model, the studies in 2D have yet to address the impact
of doping and of the phonon frequency on the metallic
phase. In 1D, DMRG studies of the model find a signifi-
cant enlargement of the metallic phase as the phonon fre-
quency is increased. Additionally, the 1D study finds the
CDW phase persists even as doping destroys the nested
Fermi surface, and large levels of doping are required
(x > 0.1) before the superconducting fluctuations dom-
inate the density wave. In what follows we will study
the role of these parameters in the two dimensional mod-
els. These models offer a rich playground that captures
the interplay between superconducting and incommen-
surate spin fluctuations seen in the Hubbard model with
the charge and superconducting response created by the
retarded interaction with the phonon mode.
The presence of the metallic phase with charge and

superconducting correlations complicates the usual insta-
bility analysis carried out for vertices constructed by the
fRG. Quantum Monte Carlo studies of the one dimen-
sional Holstein model found that corrections for finite-
size systems compounded with the exponentially small
gap make the determination of the metallic domain dif-
ficult to determine numerically52. With this in mind, we
separate charge fluctuations in the metallic phase from
the CDW phase by performing a finite size scaling anal-
ysis on the charge correlation ratio53,54. This approach
enables the determination of the CDW phase boundary
with the charge susceptibilities for various lattice sizes
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FIG. 6. The antiferromagnetic, superconducting (s, dx2−y2) and charge susceptibilities of the 2D HH model as a function of
doping for different values of the e-ph coupling at U = 4t. Calculations were performed at the 2-loop level with T = 0.02t on
a 16×16 lattice at a resolution of Nω = 4,Nk = 3.

as input. Though it offers numerous computational ad-
vantages, our current limitation to a 20 × 20 lattice in
two dimensions requires an alternative solution. DMRG
studies of the one dimensional model find charge and su-
perconducting correlations in the metallic phase decay-
ing with power law behavior, whereas in the CDW phase
charge fluctuations show little decay with other correla-
tions suppressed exponentially. So we will perform the
susceptibility analysis of the various orders across various
system sizes to construct a phase diagram of the models.
Given the previous studies of the model we will focus on
instabilities of s, ext − s and dx2−y2-type with density
profiles f(k) = 1, cos(kx)+cos(ky) and cos(kx)− cos(ky)
in the three channels.

The dispersion relation for electrons in the HH model
is determined by the nearest neighbor hopping, ξek =

−2t
∑D

i=1 cos(ki), with the system coupled to a non-
dispersive phonon mode (Ωλ = ω0). Similarly, the e-
ph interaction is local, gk,q = g0, and couples equally
to all momentum modes. Specification of electronic dis-
persion (ξk), the phonon dispersion (Ωq) and the e-ph
coupling (gλ) define the Hamiltonian in Eq.1. We be-
gin with a study of the 1D system in order to evaluate
the benefit of retaining the flow of phonon vertices. Be-
yond enabling access to the phonon self-energy, flowing
the e-ph vertex modifies the electronic vertex as the effec-
tive e-e interaction changes with the flow. A comparison
between the spin susceptibility calculated by the two ap-
proaches as we approach the CDW transition is shown
in Fig.2. Suppression of spin fluctuations is expected
as we approach the transition, as both the metallic and
CDW phases show little spin response. The flow of the
e-ph vertex leads to a stronger suppression of the spin
response with the phonon self-energy showing large de-
viations of O(t) for an initial phonon frequency, Ω = t.
The changes to the phonon self-energy occur over a wide
frequency window with the width of order the electronic
bandwidth (W ) centered at the π-phonon corresponding
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FIG. 7. The quasiparticle weight (Zk), the phonon self-energy
(Σλ

q ) spin and charge susceptibilities as a function of the e-ph
coupling at U = 4t of the doped (p = 0.18) 2D HH model on
a 16×16 lattice with T = 0.02t.

to the CDW phase. From it we can extract the renormal-
ized phonon dispersion, ω2

p = ω2
p,0(1 − 2Σλ

k/ωp,0), which
shows the softening of the phonon modes as we approach
the transition. For the pure Holstein model (U = 0) both
Monte Carlo and DMRG studies find charge order setting
in at λ = t for a phonon mode with dispersion Ω = t28,55.
The fRG results for the charge response of the Holstein
model is shown in Fig.3. Analysis of the charge suscepti-
bility and charge correlation ratio (Rχ(q) = 1−Sπ+δq/Sπ)

find the transition at λ = 0.96t53. Usage of the renor-
malized charge susceptibility to accurately determine the
transition out of the metallic phase has been shown to be
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problematic as large system sizes are required to resolve
the spin gap56. Our current implementation of the fRG
is limited to N ≤ 256 thus we can expect some deviation
in the phase boundaries constructed by the fRG espe-
cially in the one dimensional case. Given the truncation
of the fRG hierarchy and of the two-particle vertex in
each of the channels the separation of two phases with a
strong charge response can lead to discrepancies. A final
issue is the integrator utilized in constructing the flow
as divergences in the flow can affect the determination of
transition lines, our choice is detailed in Appendix.D. We
find a consistent system response as we move to larger
system sizes and increase the momentum and frequency
resolution of the vertex; hence we expect the truncations
in hierarchy to be the likely source of the disagreement
with previous results.

Constructing the phase diagram of the HH model re-
quires separating the metallic, charge-ordered and anti-
ferromagnetic regions. We identify the start of charge
correlations in the the U − λ plane by utilizing the cor-
relation ratio to find the intersection between charge re-
sponses for different lattices. A similar procedure can be
performed on the spin response to determine the end of
the antiferromagnetic regime. The intervening metallic
region lacks long-range charge order which should lead
to a charge response that decreases with system size. As
the system transitions into the CDW phase the charge
response saturates, leading to a divergent susceptibility.
We use these points of intersection to construct the phase
diagram shown in Fig.4. Our results show a qualitative
agreement with previous RG and DMRG studies with
much of the error appearing in the transition from the
metallic phase to the CDW phase28,38. Given that the
fRG flow leads to a divergent charge response, this dis-
crepancy is expected. The exponential suppression of
spin fluctuations in the CDW phase allows us to use the
termination point for the spin response as an estimate to
the end point of the metallic phase. The results for the
other transition from an AF to a metallic phase show
much better fidelity, which is consistent with previous
fRG studies, as the spin gap is closed in one dimension
and spin fluctuations show power law scaling.

In 2D, Monte Carlo studies of the model at half-filling
find a shrunken metallic phase nestled between the AF
and CDW 21,24. Given the need to account for the fre-
quency modes of the vertex, the fRG at the two-loop level
is currently limited to lattice sizes of 20× 20. With this
in mind, we carried out studies of phases in the model
with two lattices of linear dimensions 8 and 16. As we
wish to study the self-energy of the phonon, we allow
the e-ph vertices to flow independently. Important di-
rections that have not been explored fully in previous
studies of the model are the sensitivity of the metallic
phase to doping and phonon frequency. Earlier varia-
tional Monte Carlo studies of the model find a strong
response to phonon frequency with results at ωp = 8t
showing a larger metallic phase21. The decoupled fRG is
versatile with respect to both parameters, so we can con-
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FIG. 8. The static (π, π)-spin and dx2−y2 − SU suscepti-
bilities of the half filled 2D HH model as a function of the
e-ph coupling for different phonon frequencies at U = 4t for
Nω = 4,Nk = 2 on a 16×16 lattice. The phonon self-energy
for the different frequencies is shown on the right (λ = 4.16t).

struct the susceptibilities of the system at a large range of
doping levels and phonon frequencies. The performance
of the fRG for different phonon frequencies can be further
improved by adjusting the patching of the time domain
we average over to decouple the frequency dependence of
the vertex to the frequency of the phonon. Control over
these two parameters allows us to explore the proposed
lack of metallic phase in the Holstein model. Previous un-
biased Monte Carlo studies of the model at low phonon
frequencies24–26 (ωp < t) indicate the nonexistence of the
phase, with numerical results restricting possible transi-
tion to λ < 0.61t. To address this, we calculated the re-
sponse of the 2D Holstein model at various doping values
for different phonon frequencies. The results are shown in
Fig.5. At low phonon frequencies (ωp = 0.5t, t) the flow
diverges at finite λ with the strong charge response indi-
cating a transition to a charge ordered phase. The flow
is convergent for larger values of the phonon frequency
with the charge susceptibility decreasing and approach-
ing an increasing s-wave superconducting response. We
extrapolated the charge response at various doping val-
ues and phonon frequencies to find the transition to the
charge ordered phase for ωp = t at λ = 0.64t. For higher
phonon frequencies (ωp ≥ 2) the transition is beyond the
parameter region (0 < λ < t) considered indicating an
expanding metallic phase.
Doping the model at finite U suppresses the strong

spin correlations seen in the Hubbard model, allowing
the spin-facilitated superconducting correlations to come
to the forefront. The presence of superconducting fluc-
tuations in the metallic phase of Holstein model that ex-
pands with phonon frequency leads to the expectation of
superconducting order as the combined system is doped.
The response of the system to doping is shown in Fig.6.
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with N are shown in the lower panel as a function of λ for an
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and charge (blue) transition lines is shown in the lower panel.

As expected the anti-ferromagnetic correlations in the
system are suppressed by increasing the coupling to the
phonon mode and the destruction of the perfectly nested
Fermi surface due to the doping. The CDW order gener-
ated at large values of λ shows little sensitivity to doping,
in line with the DMRG results for the 1D system. The
s-type superconducting response is more telling, as un-
like the d-type order which shows little change as the
system is doped away from half filling, the s-type is sig-
nificantly reduced as a function of doping. This suggests
that the superconducting fluctuations seen in the metal-
lic phase are formed due to the interplay between the
e-ph coupling and nesting of the Fermi surface, so that
a metallic phase is the likely to dominate the regime of
low doping. Despite the reduction of the spin fluctu-
ations due to the e-ph coupling, the d-type supercon-
ducting response remains large at p > 0.15 suggesting a
transition from d − SU to a metal to the CDW in this
doping regime. Incommensurate correlations are the rule
in the doped regime with both the AF susceptibility and

the phonon self-energy showing peaks at incommensurate
wave vectors. A large enough e-ph coupling suppresses
these incommensurate fluctuations, with the CDW or-
der forming at large λ, as shown in Fig.7. Large values
of the e-ph coupling lead to a stronger renormalization
of the quasiparticle weight (Zk) but the interaction de-
stroys the nodal structure seen in the quasiparticle weight
of the Hubbard model. This is in line with charge order-
ing driven by the Holstein e-ph interaction which couples
equally to all momentum modes.
The impact of the phonon frequency on the system re-

sponse is shown in Fig.8 for the 2D HH model. Increasing
the frequency of the phonon suppresses spin fluctuations
with physics akin to the anti-adiabatic limit (ω0 → ∞)
leading to a sharper transition out of the AF phase. In
the large frequency limit, the electronic interactions have
little effect on the phonon modes which quickly suppress
the spin response allowing the superconducting fluctua-
tions to come to the forefront. In this limit the system
can be approximated by a Hubbard model with an in-
teraction reduced by the e-ph coupling, which is in ac-
cordance with the observed weak spin response21. The
evolution of the system from the anti-adiabatic limit can
be clearly seen in the phonon self-energy. In the ωp ∼W
range we see a weak softening of the (π, π)-mode asso-
ciated with charge ordering. As the frequency of the
phonon is lowered the response broadens with the self-
energy at ωp = 0.5t showing a response at all momentum
modes and the system retaining spin fluctuations into the
charge-ordered phase.
The phase diagram of the 2D HH model constructed

in accordance with its 1D counterpart is shown in Fig.9.
The stronger response in the spin channel leads to a larger
AF phase and a further shift away from the mean field
U = λ line. A background of s − SU fluctuations is
present for much of the U − λ domain but remains sub-
dominant to the CDW response as the e-ph coupling sup-
presses AF correlations. Both in the 8×8 and 16×16 lat-
tices the s−SU susceptibility does not increase with the
coupling which confirms the expected metallic phase pop-
ulated by superconducting fluctuations. Though higher
phonon frequencies lead to a stronger superconducting
response for the frequencies considered (ωp < 5t) we find
and even stronger CDW response. At half filling the
d − SU is suppressed by the e-ph coupling, which is in
line with a suppression of the AF which serves as its
primary driver.

IV. THE EXTENDED HUBBARD-PEIERLS
MODEL

Distortions of an elastic lattice due to coupling to elec-
tronic modes drive the physics in a variety of quasi one-
dimensional materials, including organic charge-transfer
solids and perovskite systems. The study of this inter-
play between electrons and lattice vibrations can fre-
quently be modeled by the Su-Schrieffer-Heeger (SSH)
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Hamiltonian57. The Peierls instability in the SSH model
shows a dimerization of the lattice with a bond-ordered
charge density wave (BOW ) at arbitrary values of the
coupling for 1D systems. Quantum Monte Carlo studies
of the model in two dimensions find a similarly dimer-
ized lattice with the charge ordering on the bond along
the x or y axis, albeit with the transition to the BOW
phase occurring at a finite value of the e-ph coupling
(gc ≈ 0.67)29,58. Although the initial intent of the SSH
Hamiltonian was as a model of dimerization in polyacety-
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q ) spin and charge susceptibilities as a function of
the e-ph coupling at U = 4t of the doped (p = 0.18) 2D PH
model on a 16×16 lattice with T = 0.02t, Nω = 6 and Nk = 2.

lene, a description of the material requires the inclusion
of interactions between the electrons, as a large portion
of the charge gap is due to these interactions59. Stud-
ies of an expanded SSH model with electronic interac-
tions in 1D show a transition between the Peierls BOW
phase and an antiferromagnet as a function of interaction
and phonon frequency16. Renormalization group studies
of the SSH model in one dimension capture this tran-
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sition with the impact of the phonon frequency studied
by a frequency dependent RG38,39,60. Studies of elec-
tronic interactions in the 2D SSH system find a simi-
lar transition from an AF to a BOW as a function of
the e-ph coupling31. The former reference looked at ex-
tended Hubbard interactions expected in polyacetylene
and found a transition between the phases showing ro-
bust competition, while the latter reference considered
only a local Hubbard coupling and captured a transition
showing weak dependence on the interaction. Finally,
recent studies have addressed the role of the phonon fre-
quency in the 2D SSH model and found fast SSH phonons
inducing AF order in the system.30

The electronic sector of this model remains the same,
but the elastic lattice leads to the phonons dispersing as

ξphk = ω0

√
sin(kx/2)2 + sin(ky/2)2. The phonon mode

couples to the hopping of the electrons, leading to an e-ph
interaction given by gk,q = ig(sin( qx2 ) cos(k+ qx

2 ) + (x↔
y)) which specifies the Hamiltonian in Eq.1. The dis-
persive phonon mode and the momentum structure in
the coupling lead to an extended effective interaction be-
tween the electrons. The strength of the effective e-e in-
teraction can be defined by λSSH = 2g2/ω0 though inter-
actions felt by the electrons vary with momenta. The ex-
tended Hubbard interactions in the model are accounted
for by the term V = 2V (cos(qx) + cos(qy)).
At half filling, coupling the Hubbard model to the SSH

phonon leads to a response in the spin channel. Fig.11
shows the antiferromagnetic susceptibility for the model
as a function of the strength of the e-ph coupling. We
see that the coupling to the phonon mode can enhance

spin correlations for larger values of the phonon frequency
(ω ≥ t) but once the system transitions to the BOW
phase, spin fluctuations are suppresed at all ωp. Models
of materials normally occupy this low frequency param-
eter range (ω << t) with slow lattice vibrations and an
e-ph coupling directly related to variations in the hop-
ping integral due to lattice fluctuations. In this regime
the coupling to the phonon mode can be expected to have
little impact on the spin fluctuations with a λ ∼ O(U)
necessary to stabilize a BOW phase in the system. We
note that e-ph coupling scales inversely with phonon fre-
quency (λ = g2/ω), so that this regime is within reach of
material models. As discussed in Ref. 29, the transition
to the BOW phase comes with a breaking of the symme-
try of the square lattice; signatures of this breaking are
present in the self-energy and are shown in Fig.10. Un-
like the quasiparticle weight generated by the Holstein
system, the SSH mode deforms the symmetric weight of
the Hubbard model as the e-ph coupling is increased.
Deep in the BOW phase (rightmost panel), the symme-
try of the nodal structure of the Hubbard model is lost
and we see a quasiparticle weight consistent with a sta-
ble BOW phase. The primary driver of this is the initial
momentum structure of the phonon mode, with other
phonon modes leading to possibly more exotic quasipar-
ticle weights.

Beyond signatures in the electronic self-energy, the e-
ph coupling enhances the phonon self-energy and spin
susceptibility as we approach the transition to the BOW
phase. Fig.12 shows the response of the system doped
away from half filling as the transition to BOW is ap-
proached. The e-ph coupling enhances the incommen-
surate response with the AF and BOW susceptibilities
showing peaks at an incommensurate wave vector. The
interaction magnifies asymmetries between (π, π − δq)
vector and (π − δq, π − δq) normally seen in the Hub-
bard model with BOW ordering occurring firmly at the
former vector for p = 0.18. This preference is seen in the
self-energy of the phonon with a clear trend towards the
(π, π) mode associated with the BOW phase as the e-ph
coupling is increased. The impact of doping on the AF
and BOW response at the transition point between the
phases is shown in Fig.13. Doping the electronic sector
appears to have little impact on the self-energy of the
phonon apart from moving its peak away from (π, π).
The impact is much larger on the BOW response with in-
commensurate response seen for p > 0.15. In this regime
we see the appearance of a novel incommensurate dx2−y2

charge response that dominate over the BOW phase for
U = 4t. The charge response in the d-channel is shown in
Fig.14. Previous studies have considered possible BOW
configurations for the 2D SSH model with the dx2−y2 and
px/y charge orders with the latter showing the larger en-

ergy gain at half filling61. Monte Carlo studies confirmed
the bond order for the half-filled SSH model but the im-
pact of doping at finite U remains unexplored29. The
vector at which we observe the d-type charge shows an
asymmetric shift between the x and y directions, essen-
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tially aligning the bond charge of the BOW phase into
the plaquettes corresponding to dx2−y2 order.

The phase diagram of the Extended Peierls Hubbard
model is shown in Fig.15. We find that a large enough
e-ph coupling stabilizes the BOW phase over the AF
phase for all values of V . The density-density interac-
tion enhances charge order leading to an expansion of
the BOW for all values of the e-ph coupling. In the 1D
system the interaction not only drives charge order but
also stabilizes a finite BOW phase that expands as func-
tion of U in the absence of the e-ph interaction. This
leads to a significant reduction of the AF domain for the
case of V = U/2. The behavior of the spin susceptibili-
ties is similar in 1D and 2D with the system showing the
expected enhancement as we approach the transition to
BOW followed by a suppression in the BOW phase for
all values of V .

V. CONCLUSIONS

In this work, we have applied the decoupled fRG to
study the phases in the Hubbard-Holstein and extended
Peierls Hubbard Hamiltonians in one and two dimen-
sions. The decoupled fRG allows for a computationally
efficient inclusion of frequency modes in the vertex which
are crucial for the study of the role played by interac-
tions between the electrons and lattice. The fRG en-
ables, given a phonon mode and electron-phonon vertex,
access to the self-energies of the electron and phonon
modes, at low temperatures (β ∼ 50) for large system
sizes. We account for the impact of these interactions on
the response of the system by calculating the charge, spin
and superconducting correlators. The fRG captures the
various phases seen in these systems with different e-ph
couplings, for different electron-electron interactions as
function of phonon frequency, doping and temperature.
Our results for the two e-ph systems considered here were
cross-checked against DMRG and Monte Carlo studies in
one and two dimensions. Despite limitations to moderate
coupling, the success of the fRG indicates the possibil-
ity of addressing the impact of arbitrary phonon modes
that couple locally to electronic Hamiltonians. The fRG
also allows the study of systems with large phonon fre-
quencies which are beyond the realm of material mod-
els. Such systems have been proposed in the cold atom
setting, and the study of faster lattice dynamics on elec-
tronic orders can help paint a more complete picture of
e-ph interactions62.
We applied the two-loop fRG to the Hubbard-Holstein

model with the two-pronged goal of validating the ap-
proach and exploring the impact of doping and phonon
frequency on the two dimensional variants of the sys-
tem. In one dimension, the fRG captures the metallic,
AF and CDW phases in the system and reproduces the
extension of the metallic phase to the Holstein model
(U = 0). The transition line shifted from U = λ is re-
produced with the extent of the metallic phase in line
with previous DMRG and RG studies. In two dimensions
we explored the impact of doping and phonon frequency
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on the metallic phase in the HH model. Our results for
charge response of the system at various phonon frequen-
cies and doping indicate a metallic phase that extends to
the Holstein model (U = 0) and expands with phonon
frequency. The accompanying s-wave superconducting
response grows with the e-ph coupling and doping though
a finite U coupling suppresses these correlations leaving
just the d-type superconducting fluctuations usually seen
in the Hubbard model.

For the Peierls-Hubbard model, we find a transition to
a BOW phase in one and two dimensions. The e-ph cou-
pling in the model enhances AF correlations with the sys-
tem showing strong antiferromagnetic response even deep
in the BOW phase. As noted in previous works29, the
stabilization of the BOW phase does break the symme-
try of the square lattice. With the fRG we find evidence
of this symmetry breaking in both electron and phonon
self-energies. Doping the system leads to an incommen-
surate BOW response which appears stable even at large
e-ph coupling and shows sensitivity only to the frequency
of the phonon. In this doped regime at moderate U we
found the incommensurate bond order switching to an
dx2−y2 charge order suggesting a change in the optimal
bond ordering pattern for the doped regime. Inclusion of
a nearest neighbor density density interaction shifts the

transition line in favor of the BOW phase. The magni-
tude of the shift appears much smaller in two dimensions,
which suggests that it has little impact on the nature of
the transition.

Our results for the two models suggest many further
directions to explore, with the most rewarding possibly
being the study of exotic phonons such as the A1g and
B1g modes seen in the Cuprates. Given the two dimen-
sional results, a more thorough study of the interplay
among the phonon frequency, doping and e-ph coupling
coupling for a three dimensional model should further
clarify the nature of the metallic phase in the HH model.
Work along these directions is currently in progress.
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Appendix A: FRG Equations for Electron-Phonon
Systems

The general interacting Hamiltonian that describe such
systems are of the form given in Eq.1 and require the
description of the interaction between fermionic and
bosonic fields. Of interest is the renormalization of
the bosonic fields captured by the phonon self energy
which details the softening of the phonon modes at in-
termediate levels of coupling followed by the onset of a
charge ordered phase. The renormalization also affects
the coupling between the modes. The Hamiltonian of
the system can be separated into a free piece describ-
ing the non-interacting electron and phonon systems and
an interacting piece consisting of interactions between
electrons(Γ(2)) and couplings between the electron and
the phonon modes of the lattice (gλ). The action for the
full Hamiltonian H is given by

SΛ[ψ, ϕ] = −
∑
ω,k,σ

ψ̄ωkσ

(
G−1,Λ
0,ωk − ΣΛ

ω,k

)
ψωkσ

−
∑
s,q

ϕ∗sq
(
D−1

0,sq +Σλ
s,q

)
ϕsq

+
∑
kqσ

gΛλ,k,qψ̄k+qσψkσ

(
ϕ∗q + ϕ−q

)
∑

k1k2k3k4

Γ
(4),Λ
k1,k2,k3,k4

ψ̄k1
ψ̄k2

ψk3
ψk34 (A1)

where G0 is the regulated electronic propagator given by

G−1,Λ
0,ωk = iω +RΛ(ω)− ξk (A2)

and D0 is the free phonon propagtor

D0,sq =

(
1

is− Ωλ
q

− 1

is+Ωλ
q

)
(A3)

with Ωλ
q corresponding to the dispersion of the λ phonon

mode of the free Hamiltonian, ϕ corresponds to the
bosonic phonon mode, ψ,ψ̄ are anticommuting Grass-
mann fields and Γ(2) is the interacting two particle vertex.
Tracking the evolution of these vertices as a function

of scale enables analysis of instabilties away from the
normal state associated with the noninteracting Hamil-
tonian. Extensive reviews of the fRG flow of fermion
vertices and their derivation can be found in previous
works36,63. The flow of the interacting two particle ver-
tex is given by

d

dΛ
Γp1p2p3p4

=
∑
k1k2

∂Λ,S(G
Λ
k1
GΛ

k2
)(Γ

(4)Λ
p1k1k2p4

Γ
(4)Λ
k2p2p3k1

−

Γ
(4)Λ
p2k1k2p4

Γ
(4)Λ
k2p1p3k1

)− 1

2
∂Λ,S(G

Λ
k1
GΛ

k2
)Γ

(4)Λ
p1p2k2k1

Γ
(4)Λ
k1k2p3p4

(A4)

where G is the full electronic propagator and Γ(4) is
the two particle vertex. For the case where the phonon
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FIG. 16. The CDW and AF response of a 32 site 1D Hubbard
Holstein model at β = 64 and U = t as a function of the e-ph
coupling for different frequency basis sets. The AF response
for different Nω with Nk(4) fixed is in the top left and the
CDW response is shown on the right. The phase boundaries
for the various Nω is also shown (bottom).

modes are integrated at the start of the flow the change
amounts to an alteration of the initial condition with
the initial vertex given by the effective vertex defined in
Eq.2. The effective interactions facilitated by the phonon
mode can be extracted directly from the e-ph interac-

tions, g(k1, q)c
†
k1+qck1(bq + b†−q), coupled via the phonon

mode as

Γph
k1+q,k2−q,k2,k1

=∑
k1,k2,q

gλk1,qg
λ
k2,−q ⟨(bq + b†−q)(b−q + b†q)⟩︸ ︷︷ ︸

D−1
Ω,q

c†k1+qc
†
k2−qck2ck1

(A5)

with the initial phonon vertices replaced by their flowing
counterparts if the phonon modes are not integrated out
at the start of the flow. This modification to the inter-
action (Γ(4)Λ → Γ(4)Λ + gλGphgλ) carries through to the
flow of the e-ph vertex given in Eq.4 with Γeff corre-
sponding to the modified vertex. The equation for the
electronic self energy is similarly modified with the flow
in the purely fermionic case given by

d

dΛ
Σp =

∑
k

∂ΛG
Λ
kΓ

(4)Λ
pkkp (A6)

undergoing a change to account for the electron-electron
interaction mediated by a phonon. The equations
(Eq.A6, Eq.A4, Eq.4, Eq.3) make up the full set needed
to describe Hamiltonians of the form Eq.1.

The decoupled flow involves the expansion of the two
particle vertex (Γ(4)) and the e-ph vertex (gλ) in fermion
bilinears. The four fermions in the two particle vertex

are expanded in each of the three channels (PP , PH,
PHE) while the e-ph vertex is expanded soley in the
PH channel. These bilinears are clustered at long times,
parameterized by Nω, then truncated based on their sep-
aration, parameterized by Nk. The expansion for the
e-ph vertex is given in Eq.5. The expansion of the e-e
vertex is given by

Γp1p2p3p4 =
∑

m,n,i,j

Πm×i,n×j(ωpp, kpp)

fm(ωppx
)fn(ωppy

)gi(k2)gj(k3) (A7)

where fm and gm correspond to frequency and momen-
tum basis fucntions. Full details of the decoupling can
be found in previous works44,64.

Appendix B: Dependence of the Vertex on the
Decoupling Parameters

The truncation of the vertex in each channel enables
the efficient construction of the flow but the reduced ba-
sis set coarsens the frequency and momentum content of
the vertices leading to results that are sensitive to the size
and choice of basis set. The dependence of the results on
these parameters is of particular importance near phase
transtions where strong fluctuations can occur in multi-
ple channels. The calculations carried out in this work
the 2D models (Nω = 4, Nk = 2, Ns = 16 × 16) re-
quires tracking arrays of size ∼ 107 in the three channels
throughout the flow thus conducting sweeps of the com-
putational parameters at this level is unfeasible. In what
follows we will consider the dependence of the results on
the 1D variants.

The dependence of spin and charge susceptibilities of
the Hubbard Holstein model on the electron phonon cou-
pling is shown in Fig.16, 17 for different sizes of the fre-
quency and momentum basis sets respectively. The two
transition lines from AF →M andM → CDW show dif-
fering levels of sensitivity as a function of Nω. We note
that the transition out of the metallic phase can be esti-
mated via the charge susceptibility, χc(π)/L > 1, which
is shown shaded in red in Fig.16 or from spin susceptibil-
ity χs(π) → 0. Though we utilize the former the latter
appears less sensitive to the level of frequency resolution.
The lowest frequency resolution (Nω = 2) involves sim-
ply averaging over the time dependence of the auxiliary
channels. As the frequency resolution is increased the
transition lines converge though all choices of frequency
basis sets seem to resolve the AF , M and CDW phases.
For the momentum basis sets this analysis is simplified as
both the CDW and AF phases are local with a flat den-
sity profile (fO(k) = 1) across momentum space. This
local level of approximation captures the divergence of
the charge response in CDW and the power law AF re-
sponse. Higher levels of momentum resolution affect the
transition out of the metallic phase with the transition
converging to λ = 1.6t for U = t.
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FIG. 17. The CDW and AF response of a 32 site 1D Hubbard
Holstein model at β = 64 and U = t as a function of the eph
couling for different momentum basis sets. The AF response
for different Nk with Nω(4) fixed is in the top left and the
CDW response is shown on the right. The phase boundaries
for the various Nk is also shown (bottom).
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FIG. 18. The BOW and AF response of a 32 site 1D SHHH
model at β = 64 as a function of the e-ph coupling for different
frequency basis sets (Nk = 3). The AF response for different
Nω is in the top left and the BOW response is shown on the
right. The phase boundaries for the various Nω is also shown
(bottom).

The comparison of the two flows conducted for the
Hubbard-Holstein model in the section above can also be
readily applied to the SSHH model. The BOW phase
requires some degree of momentum resolution so at the
level of Nk = 0 the effects of the SSH phonon are not
observed. The competition between the AF and BOW
phase for increasing momentum basis sets in the SSHH
model is shown in Fig.19. Both response functions con-
verge as Nk → N . The sensitivity of the model to dif-
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FIG. 19. The BOW and AF response of a 32 site 1D SHHH
model at β = 64 as a function of the eph couling for different
momentum basis sets (Nω = 4). The AF response for different
Nk is in the top left and the BOW response is shown on the
right. The phase boundaries for the various Nk is also shown
(bottom).

ferent frequency basis sets is shown in Fig.18. Though
the suppression of spin response and enhancement of the
BOW is observed for all choices of Nω, the reponse and
transtion lines converge for large Nω. The computational
cost scales roughly as O(N2

ωN
2
k ) with the basis sets which

quickly makes such an analysis intractable for the 2D
case however our choice Nk and Nω were informed by
the basis sets required to capture the phases in the one
dimensional system.

Appendix C: Phonon Self-Energy

The renormalization of the phonon near the charge in-
stability is a commonly observed phenomena which in-
volves an increased linewidth at the nesting vector of the
instability and a softening of the phonon dispersion. As
the e-ph interaction drives ordering in the electron sec-
tor, we can expect antiferromagnetic and superconduct-
ing fluctuations in the electronic sector to renormalize the
e-ph vertex. The phonon dispersion is renormalized by
the phonon self energy and can be extracted from phonon
propagator. Utilizing Eq.A3 we have the full propagtor
given as

D(ω, q) =
−2Ω0

q

ω2 + (Ω0
q)

2 − 2Ω0
qΣ

λ
q (ω)

(C1)

which at ω = 0 leads to the renormalized phonon disper-
sion, Ω2

q = Ω0,2
q (1 − 2Σλ

q (0)/Ω
0
q). The renormalized dis-

persion shows a softening of phonon modes as the system
approaches the transition to the charge ordered phase.
The phonon self energy shown above in Fig.2, 8 captures
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bard couplings is also shown (inset).

the structures in the frequency domain with significant
softening seen at the CDW nesting vector Q. Though
the analysis is invalid after the system transition to the
charge ordered phase, we can equate the transition point
with the zero of the phonon dispersion, ωq = 0.

The behavior of the renormalized phonon dispersion
as we approach the CDW transtion in the 1D Holstein
model is shown in Fig.20. Though all phonon modes are
softening, the impact is more drastic at the CDW nest-
ing vector, q⃗ = π. As the fRG is limited to moderate
coupling, the flow diverges at λ = 0.7t with the renor-
malized phonon disperion at 0.1. We can used the data
from the converged fRG flow to estimate the transition to
the CDW. Extrapolation of the converged flow for the 1D
Hubbard Holstein model is shown in gray in the inset of
Fig.20. A similar analysis is shown for the 2D HH model
in Fig.21. In line with the discussion above, the phonon
modes in the 2D Holstein model soften up to λ = 0.4t
before we see a divergence in the charge sector indicat-
ing the onset of the CDW phase. This strongly suggests
the existence of a metallic phase in the two dimensional
system.

Appendix D: Integrators for FRG Flow

Throughout this work the integration of the flow has
been carried out primarily via the Bogacki-Shampine
(BS3) method. The primary motivation for this choice
was the reduced memory requirements offered by the
method. Integrating the flow for the 16×16 lattices of the
2D HH and 2D SSHH models required retaining a subset
of the intermediate vertices, determined by the order of
the solver, in the three channels. An additional advan-
tage of the BS3 solver is the adaptive stepping through
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FIG. 21. The phonon self energy at the CDW nesting vector
((π, π)) of an 8× 8 2D Hubbard Holstein model at β = 32 for
different Hubbard couplings. The extrapolation of the phonon
dispersion is shown in gray.
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FIG. 22. The charge and spin correlation ratio of the 1D
HH model for various system sizes constructed by the BS3
(O(3)) and DP5(O(5)) integrators.The momentum and fre-
quency resolutions were set at Nk = 4 and Nω = 4.

the flow which allows the flow to move fast at Λ >> W
scales and slow at lower scales (Λ ∼ ∆c). As the sys-
tem approaches a phase transtion our choice of integrator
can introduce noise in our determination of the transtion
line. Recent study of integrators for the fRG have found
the Dormand-Prince solver (DP5) to be the most accu-
rate integrator so in this section we compare the results
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FIG. 24. The scaled SDW and BOW-charge response of the
1D Extended PH model for various values of U , V and N
as function of the electron phonon coupling. The momentum
and frequency resolutions were set at Nω = 4 and Nk = 2
with β = 64.

obatined by the BS3 and DP5 methods65.
The 1D HH model offers the best testing ground as

it contains transitions to a gapped charge phase (M →
CDW ) in the absence of spin fluctuations (U = 0) and
at finite U as function of the e-ph coupling. The re-
sults for the charge and spin correlation ratio, Rx =
1 − Sx(π + δq)/Sx(π), as a function of the e-ph coul-
ing is shown in Fig.22. The spin correlation ratio for the
transition from M → CDW shows little change between
the two integrators while the charge ratio is very sensitive

with the flow from the DP5 out performing the BS3 and
showing stability up to λ = t. Sensitivity at the point of
transition to a long range ordered phase is expected as
there is no gap opening in the fRG flow rather the charge
response diverges as system enters the CDW phase lead-
ing to a divergent flow. The determination of the phase
transition from the metallic to the CDW region can be
performed by analyzing the crossings in the charge corre-
lation ratio for different system sizes. Such an analysis is
impossible for the case of the BS3 method as divergence
in the flow lead to an unstable ratio beyond λ = 0.84t.
For the DP5 integrator we find a λ of 0.96t.
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FIG. 25. The scaled AF and BOW-charge response of the
2D Extended PH model for various values of U , V and N
as function of the electron phonon coupling. The momentum
and frequency resolutions were set at Nω = 4 and Nk = 2
with β = 32.

Appendix E: BOW Susceptibility for 1D Extended
PH Model

The onset of the BOW phase for the SSH model
(U = V = 0) as a function of the phonon coupling is
shown in Fig.23. Strong coupling to the SSH phonon
induces a BOW order at Q = π in the extended PH
model for all values of the nearest neighbor density-
density interaction(V ). The extended Hubbard interaci-
ton drives charge ordering so there is some interplay be-
tweem the two interactions at weak coupling, The system
response is particularly intricate in the 1D system due to
the existence of a BOW phase in the Extended Hub-
bard model around the U = 2V line. We construct the
phase diagram for the model (Fig.15) by analyzing the
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FIG. 26. Temperature dependence of the charge response of the 1D and 2D Holstein model for different values of the electron
phonon coupling.The frequency resolutions was set at Nω = 4 with the momentum resolution at Nk = 3 for N = 64 site 1D
system and Nk = 2 for the 8× 8 2D system.

scaled BOW response for various system sizes. The re-
sponse observed for the 1D and 2D PH models is shown
in Fig.24,25 respectively.

Appendix F: Finite Temperature Response of the
Holstien Model

The phase diagrams for the models above were con-
structed at small but finite temperatures which leaves
open the possibility for finite temperature phase transi-
tions. Though low temperature fRG flows can be com-
putationally expensive to construct the response at high
temperatures is a relatively cheap calculation with the
change in cost tied primarily to the difficulty of perform-
ing matsubara sums for the modes of the vertex. The

temperature dependence of the charge response of the
1D and 2D Holstein models is shown in Fig.26. The di-
vergence of the CDW charge response is clearly observed
in the Holstein models as a function of temperature for
λ > 0.9t for the 1D model and for λ > 0.4t for the 2D
model. Limitation of the method to β ≤ 64 stops us
from utilizing the CDW response from completely ruling
out a possible finite temperature transition from metal
to CDW in the Holstein model. However, the tempera-
ture dependence of the charge response at q = 0, which
is proportional to the charge compressibility, increases
for all T in the metallic domain. Combining this with
the observed peak in the compressibility and its decrease
as we approach the CDW domain both in the 1D and
2D systems, a finite temperature metal to CDW transi-
tion appears as an unlikely scenario for the 2D Holstein
model.


