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Moire systems offer an exciting playground to study many-body effects of strongly correlated electrons in
regimes that are not easily accessible in conventional material settings. Motivated by a recent experiment on
WSe2/WS2 moire bilayers [Y. Tang et al., Nature 579, 353–358 (2020)], which realizes a triangular superlattice
with a small hopping (of approximately 10 Kelvin), with tunable density of holes, we explore the Hubbard model
on the triangular lattice for intermediate temperatures t ≲ T < U . Employing finite temperature Lanczos
calculations, and closely following the fitting protocols used in the experiment, we recover the observed trends
in the reported Curie-Weiss temperature Θ with filling, using the reported interaction strength U/t = 20. We
focus on the large increase of |Θ| on decreasing the density below half filling and the sign change of Θ at higher
fillings, which signals the onset of ferromagnetism. The increase in |Θ| is also seen in the t-J model (the low
energy limit of the Hubbard model) in the intermediate temperature range, which we clarify is opposite to the
trend in its high temperature limit. Differences between the low, intermediate and high temperature regimes
are discussed. Our numerical calculations also capture the crossover between short-range antiferromagnetic to
ferromagnetic order in the intermediate temperature regime, a result broadly consistent with the experimental
findings. We find that this behavior is a finite-temperature remnant of the underlying zero temperature phase
transition, which we explore with ground state density matrix renormalization group calculations. We provide
evidence of ferromagnetism characterized by weak (but robust) correlations that explain the small Θ seen in the
experiment.

I. INTRODUCTION

Magnetism in strongly correlated electronic systems poses
fundamental questions related to the intricate ways electrons
can order (or fail to order) in different settings and condi-
tions - temperature, lattice geometry, frustrated interactions,
spin-orbit coupling etc. [1]. While there has been tremen-
dous progress in our understanding of low-temperature and
ground state properties of such systems (see for example, [2–
6]), far less is definitively understood about their finite tem-
perature properties and response. The “intermediate tempera-
ture scale” (temperature larger than hopping but smaller than
the interaction strength) in real materials can be rather large
(∼ 1000 K or more) and is hence difficult to access experi-
mentally. This situation changed with a recent breakthrough
in engineering moire systems [7–11] which realize a triangu-
lar superlattice with significantly renormalized parameters but
with relative interaction to kinetic energy strengths (eg. U/t
in the Hubbard model) comparable to other strongly corre-
lated materials, such as the high Tc superconducting cuprates.
Moire systems thus offer an exciting platform to study many-
body effects of strongly correlated electrons in regimes that
are not easily accessible in conventional material settings.

Our work here is motivated by experiments on a transi-
tion metal dichalcogenide (TMD) WSe2/WS2 bilayer sys-
tem [9, 12], which realizes a triangular moire superlattice with
a small hopping of approximately 10 Kelvin, with tunable
density of holes and whose intermediate temperature scale has
been readily accessed. We henceforth refer to Ref. [9] as the
“Cornell experiment” (CE). Rather curiously, and somewhat
unexpectedly, CE reported an increase in the absolute value of
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FIG. 1. Inverse susceptibility (1/χ) versus temperature (T , in
units of t) for the T-9 cluster for fillings (a) f = 0.39 and (b)
f = 0.56. Red dashed lines represent the linear fits to the data for
T/t ∈ [0.8, 5.5]. Insets show the range where the linear fits intersect
the horizontal temperature axis, the intercept yields the Curie-Weiss
temperature Θ. Similar analyses are performed for the T-12 and T-
15 clusters with the finite temperature Lanczos method to generate
Fig. 2(a).

the Curie-Weiss (CW) temperature on reducing the hole den-
sity from half filling. This may appear counterintuitive and
defies the expectation that the effective magnetic interactions
must decrease (and hence the CW temperature must decrease)
with lowering the particle density. CE also suggested the exis-
tence of a ferromagnet (FM) based on the positivity of the CW
temperature for a range of densities above half filling. While
the Nagaoka theorem [13, 14], admits such a possibility at in-
finite U for the square lattice, FM has not been observed at
finite U . The frustrated/non-bipartite nature of the triangular
lattice has been argued to potentially destabilize the tendency
for local antiferromagnetism (AFM) and admit a FM ground
state especially at large U/t [15–18] and in a finite magnetic
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FIG. 2. (a) Curie-Weiss temperature (Θ) as a function of density (f ) for the triangular lattice Hubbard model with U/t = 20. The simulations
are compared to the experiments reported in Ref. [9], denoted by Cornell. (b) Specific heat versus temperature of the T-15 cluster for repre-
sentative filling f showing three regimes associated with magnetism, hopping and Hubbard interactions. (c) Window-dependent Curie-Weiss
temperature (as defined in the text) versus temperature for the T-15 cluster for representative filling f .

field [19]. Nagaoka ferromagnetism has been found to be un-
stable in the U = ∞ limit on the hole doped side [20], it
is thus useful to clarify the theoretical situation for finite but
large U/t.

While the details of a quantitatively accurate effective
Hamiltonian of the TMD bilayer system still remain to be
completely fleshed out, we study the simplest model be-
lieved to be broadly consistent with experiments–the Hubbard
model [21] on the triangular lattice,

H = −t
∑

⟨i,j⟩,σ

c†i,σcj,σ + U
∑
i

ni,↑ni,↓ (1)

where c†i,σ(ci,σ) refer to the usual creation (annihilation) oper-
ators with spin σ at site i, and ni,σ refer to number operators.
We will denote the filling by f ∈ [0, 1]. For example, f = 1/2
refers to half filling, i.e., one hole per triangular site. We fo-
cus on the reported value of U/t = 20 [9] and intermediate
temperatures t ≲ T < U .

A key result of this work is that our numerical simulations
recover the reported trends of the CW temperature Θ as a
function of carrier density. We also find the increase in |Θ|
on reducing the carrier density away from half-filling within
the framework of the t-J model, the low-energy limit of the
Hubbard model. However, this trend is the opposite of the
one predicted by the high-T expansion; we probe this further
and explain the origin of this apparent conflict. Finally, we
monitor the spin structure factor in our numerical calculations
which explain how FM and AFM correlations develop on low-
ering the temperature. It also reveals parallels with the un-
derlying zero temperature phase transition, which we explore
with the ground state density matrix renormalization group
(DMRG) [22].

II. FINITE TEMPERATURE LANCZOS RESULTS AND
COMPARISON WITH EXPERIMENTS

The ground state phase diagram of the triangular lat-
tice Hubbard model has been extensively investigated, partly

due to its relevance to organic-charge transfer salts such as
(BEDT-TTF)2X [23], using a variety of numerical methods
including exact diagonalization (ED), dynamical mean field
theory (DMFT) [24, 25] and DMRG [26–29]. At f = 1/2
and for large U/t, 120 degree spiral order is stabilized; at low
U/t, a metallic phase exists and at intermediate U/t ≈ 8 a
gapless [26] and possible chiral spin liquid [28] has been re-
ported. Less is definitively known for the case of doping away
from half filling: At low filling (f = 0.2− 0.3), a stripe AFM
[24] and at higher filling (f ∼ 0.75, and at large U/t) a ferro-
magnet is stabilized [24, 25].

We explore the intermediate temperature regime [30] with
ED and the finite temperature Lanczos method (FTLM) [31,
32] on triangular lattices with N = 9, 12 and 15 sites which
we refer to as “T-N” clusters (see Appendix A for cluster
shapes). We typically use M = 150 Krylov vectors and
R = 100 − 1500 seeds (per sector). We compute the sus-
ceptibility χ (per site) at temperature T within the framework
of fluctuation dissipation, i.e., using

χ =
⟨S2

z ⟩th − ⟨Sz⟩2th
TN

(2)

where ⟨· · · ⟩th represents the thermal average. Note that
⟨Sz⟩th = 0 since the Hamiltonian is time-reversal symmetric.
To extract the CW temperature we use the mean field result,

χ =
C

T −Θ
(3)

where C is the Curie constant (which for a purely magnetic
model equals 1

3S(S + 1) where S is the spin of a single mag-
netic moment) and Θ is the CW temperature, Θ > 0 corre-
sponds to effective FM and Θ < 0 AFM interactions. In order
to carry out a one-to-one comparison with CE, we choose the
same range of temperatures for fitting (0.8t ≤ T ≤ 5.5t).
The fitting range is important since the CW temperature is
sensitive to the temperature window used, an issue we will
elaborate on.

Results of our fits for two representative doping densities
are presented in Fig. 1 (other representative fits are shown in
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FIG. 3. (a) Curie-Weiss temperature (Θ) for the T-15 cluster as a function of f for both the Hubbard and t − J models using U/t = 20 and
J/t = 0.20 respectively. The susceptibility was fitted in the temperature range 0.8t ≤ T ≤ 5.5t. The inset shows Θ as a function of filling
for the t − J model, obtained by fitting the susceptibility data in the temperature range 20t ≤ T ≤ 30t and compared with the high-T series
expansion result (to the lowest two orders). Panels (b) and (c) show the window-dependent Curie-Weiss temperature (Θw(T )) of the triangular
t−J model, with the same parameters as in (a), in (b) the low to intermediate temperature and (c) the intermediate to high temperature regimes.

Appendix B). We find that the linear approximation for 1/χ is
indeed rather remarkable, at least visually, given that the ex-
perimental temperature ranges are not in the truly “high tem-
perature” limit. We determine Θ from the intercept on the
horizontal (temperature) axis, which is compared with CE in
Fig. 2(a). While there are variations in the CW estimates as a
function of system size, the general trends and magnitude of
the effect are captured well, given the inherent experimental
uncertainties. For the purpose of comparison, we have also
considered the case of the square lattice Hubbard model in
Appendix C.

The susceptibility is characterized by the CW form only for
temperatures much higher than the effective magnetic interac-
tion J . The situation is more complex for the Hubbard model
- there are three energy scales: J ∼ t2/U which is related
to magnetism, effective/renormalized hopping/kinetic energy
(bandwidth), and Hubbard interactions. The specific heat,
shown in Fig. 2(b) for the T-15 cluster, reveals these scales.
For example, the effective hopping is quenched at f = 1/2,
but it does show up as a intermediate temperature bump that
(typically) moves to higher temperature on lowering the fill-
ing, by f = 1/3 this bump occurs at T ∼ t. A third bump
at higher temperature corresponds to the scale at which dou-
ble occupancy becomes important , we observe that this scale
also increases on either side of half filling. This filling depen-
dence is expected since (for f < 1/2) the lower the density,
the easier it is to avoid the double occupancy cost at increas-
ing temperatures. This temperature scale is less thanU = 20t,
in fact, double occupancy fluctuations are considerable at the
highest temperature probed in CE (T ≈ 6t) and used in the
CW fitting, which we comment on further in the next section.
Due to the presence of these three distinct energy scales in
the Hubbard model, the low energy physics (T ≲ t2/U ) is
dominated by magnetic interactions and we observe competi-
tion among different magnetic orders, the intermediate scale
(T ∼ t) is dominated by phenomena associated with kinetic
frustration [33], and high temperature (T ≳ U ) by charge
fluctuations.

Since the CW theory is based on the properties of a mag-
netic model in its high temperature regime, the Θ extracted

corresponds to the best mean-field fit which depends sensi-
tively on the window of temperature used in its determina-
tion. To make these notions precise, we define the “window-
dependent” CW temperature, Θw(T ), obtained by extrapolat-
ing the inverse susceptibility at a given temperature all the way
to zero,

Θw(T ) ≡ T − χ−1
(dχ−1

dT

)−1

. (4)

Figure 2(c) shows the variation of Θw with temperature for
T ≤ 6t. As expected, there is a big variation at low temper-
ature, however, even for T ≳ t we find that Θw is not flat,
as can be prominently seen for f = 0.33, 0.4 and 0.5. It re-
veals that χ−1 is not perfectly linear with temperature, and
thus the reported Θ reflects an average value in the specified
temperature window.

III. INSIGHTS FROM THE t− J MODEL

For T ≫ Θ, the CW theory can be thought of as a se-
ries expansion for χ in powers of 1/T (by Taylor expanding
1/(T − Θ)), which can be compared with high temperature
series expansions. The term proportionate to 1/T gives the
paramagnetic susceptibility, while the next order term gives
Θ. For T < U it is convenient to work within the framework
of the t-J model, the low-energy limit of the Hubbard model
for large U/t [34, 35]. Its Hamiltonian is,

H = −t
∑

⟨i,j⟩,σ

Pc†iσcjσP + J
∑
⟨i,j⟩

(
Si · Sj −

1

4
ninj

)
. (5)

The first term is a “restricted hopping,” i.e., one which never
permits two holes to be on the same site. In other words, P
projects out states with one or more doubly occupied sites for
f ≤ 1/2, and empty sites in the case of f ≥ 1/2. The sec-
ond term corresponds to magnetic Heisenberg interactions and
density-density interactions arising from degenerate perturba-
tions of the restricted manifold. |Θ| from the high-T expan-
sion of the t-J model is z

4Jf [36] where z is the coordination
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number (z = 4 and z = 6 for the square and triangular lattice
respectively), i.e., it must decrease as one decreases f from
1/2 [37] in which is at complete odds with CE.

So how should one reconcile these apparently contradictory
findings? The resolution to this puzzle lies in the fact that the
high temperature and intermediate temperature regimes of the
t − J model are not the same, even qualitatively. (The high
temperature regime is on a scale of U or larger and is thus not
of direct relevance to what is measured in CE.) We check our
assertion by exploring the CW temperature of the t−J model
in the experimentally relevant intermediate temperature range;
Fig. 3(a) shows that the t− J model captures the same trends
as the Hubbard model and CE. In sharp contrast, and in perfect
quantitative agreement with the high-T expansion result, the
inset of Fig. 3(a) shows the decrease in CW temperature of
the t − J model on reducing f from 1/2, captured by our
FTLM results by using the fitting range 20t ≤ T ≤ 30t.

This calls for a careful look at the temperature window-
dependence of the CW temperature for the t − J model. We
plot Θw for the t − J model in the low to intermediate tem-
perature regime and in the intermediate to high temperature
regime in Fig. 3(b) and (c) respectively. We find enhancement
of Θw on decreasing f for f < 1/2 in the intermediate tem-
perature regime. This trend clearly changes on going to the
high temperature regime - this crossover occurs at T ≈ 3.7t.
For f ≈ 0.73 we observe a positive Θw at low temperature,
which at intermediate temperature crosses over to a negative
value. Also note that at extremely high temperature, Θw is
particle- hole symmetric about half filling, see for example
f = 0.33 and f = 0.67 in Fig. 3(c), even though the under-
lying triangular lattice t − J Hamiltonian does not have that
symmetry. This is because at high temperatures, only on-site
and nearest neighbor correlations dominate and thus informa-
tion about the underlying lattice structure (including loops) is
greatly suppressed.

As one cools the system, other correlations begin to con-
tribute to χ and the nature of the lattice (e.g. frustrated or not)
becomes important. The significance of frustration for doped
magnets was realized in pioneering work by Haerter and Shas-
try [38] who studied thermodynamics of the t − J model on
the triangular lattice in the context of sodium cobaltate, which
resulted in the theory of kinetic frustration [38, 39]. This the-
ory can be summarized as follows. Consider U → ∞ in the
t − J model which corresponds to J = 0. For f = 1/2 all
magnetic orders are exactly degenerate, since magnetism is
completely suppressed. When a single particle is removed or
added on a square lattice, the kinetic term (proportionate to
t) favors the hole or doublon to move in a FM background.
However, for the triangular lattice, which lacks particle-hole
symmetry the result is very different - removal of a particle
favors (120 degree) AFM and addition favors FM. Thus even
in the absence of any magnetic interactions, the kinetic energy
prefers an AFM state, at least at low doping.

These arguments strictly hold at U → ∞ but should ap-
ply, with some modifications, to the case of large but finite
U . For finite U , i.e. non-zero J , the low temperature regime
(T < J) is dominated by the competition between different
magnetic orders. At f = 1/2 and large U/t the 120◦ anti-

ferromagnetic state is selected, while close to f ≈ 0.75, an
itinerant Stoner ferromagnet is favored, see Fig. 4. Antifer-
romagnetic correlations, characterized by the strength of the
weight at the K points in the Brillouin zone, are expected
to weaken on lowering f from 1/2 - this assertion will be
substantiated in the next section. However, at intermediate
temperatures (U > T > J) and f = 1/2 this competition
between magnetic states is greatly suppressed, in this regime
one can think of all the competing magnetic states as essen-
tially degenerate with one another. The dominant scales in
this temperature regime are then only t and U ≫ t (which can
be thought of as infinitely large) and it is in this regime that
the Haerter-Shastry arguments should apply i.e. one should
expect the kinetic energy to enhance AFM in this temperature
range. This expectation is borne out in CE and our numerical
data.

IV. FINITE TEMPERATURE REMNANTS OF AFM TO FM
TRANSITION

To further explore the enhancement of AFM correlations
we study, with FTLM, the thermal momentum dependent spin
structure factor (SSF)

Szz(q, T ) ≡ 1

N

∑
i,j

e−iq·(ri−rj)⟨Sz
i S

z
j ⟩th (6)

where ri represents the physical coordinate of site i. Note that
the SSF is equivalent to Tχ(q, T ), χ(q = (0, 0), T ) corre-
sponds to the measured susceptibility. Though limited by ob-
vious finite size effects, our calculations shed insights on var-
ious competing orders especially at small correlation lengths,
i.e., higher temperature. We also address the small positive Θ
that signals FM, which is weak and possibly fragile as sug-
gested by the FTLM calculations (Θ > 0 is captured only on
the largest cluster we studied, 15 sites). A previous DMFT
(dual-fermion) study in the low-temperature limit (T = 0.1t)
has reported the presence of FM [24] up to U/t = 10, here we
focus on U/t = 20 and additionally explore the relationship
between low and intermediate temperatures.

We subtract out the high temperature correlations
Szz(q, T = 5t) and plot the difference in Fig. 4 for the T-15
cluster for U/t = 20 across different fillings at T/t = 0.1, 0.5
and 1. The importance of subtracting out the high temper-
ature data is clarified in Appendix E. The T-15 cluster re-
tains the prominent momentum points (and their symmetry
related partners): K = (4π3 , 0) (that captures the 120 degree
Néel ordering) and Γ = (0, 0) (that captures FM), but not
M = (0, 2π√

3
). (Additional results are shown in Appendix E

for the T-12 cluster which does contain the M point.) For
a given filling, the subtracted SSF monitors the tendency for
formation of magnetic orders on cooling the high tempera-
ture state. Strictly speaking, there is no true long range or-
der in two dimensions at any finite temperature due to the
Hohenberg-Mermin-Wagner theorem.[40, 41].

For f = 1/2 we see development of weight at the K points
on cooling. Importantly, at low temperature (T ≲ J = 0.2t,
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FIG. 4. (a) Static structure factor with a high temperature subtraction Szz(q, T )− Szz(q, 5t), for the triangular Hubbard model (U/t = 20)
across various fillings f for the T-15 cluster for T/t = 0.1, 0.5, 1. M = 150 Krylov vectors and R = 300 seeds were used for the FTLM. The
red hexagon in each panel marks the Brillouin zone boundary, and prominent momentum points (Γ,K,M) are marked. (b) DMRG ground
state real space spin-spin correlations ⟨So · Sl⟩ for every lattice site (l) with respect to a centrally chosen site (o) marked with black cross for
f = 1/3, 1/2 on a length 6 and f = 0.833 on a length 12 XC-6 cylinder. The diameters of the circles are proportional to the amplitudes of
the spin-spin correlation and the colors indicate the sign of the correlations.

see for example, T = 0.1t in Fig. 4(a)), AFM correlations
are weakened on doping (decreased redness at K points), as
one may intuitively expect. For f ≳ 1/2, the weight at the
K points at low temperature is lost eventually migrating to-
wards the Γ point signaling the onset of FM correlations. (At
low temperature, the overall weak scale of FM relative to the
AFM is apparent from the redness of the color at the Γ vs K
points.) Prominently, at intermediate temperature ( T = 0.5t
and T = t) there is an enhancement of weight for f = 0.433
at the Γ point relative to f = 1/2 (it gets bluer), qualitatively
consistent with the increase in the CW temperature reported
by CE. There is also a mild enhancement at the K points for
T = 0.5t.

For the T = 0 case (where finite size effects are most
prominent) we performed ground state DMRG on XC-6 cylin-
ders of length 6 and 12 (36 and 72 sites respectively) retaining
up to 16000 states. Figure 4(b) shows the results of the real
space spin-spin correlation functions with respect to a cen-
trally chosen site for f = 1/3, f = 1/2 and f = 0.833. The
case of f = 1/3 exhibits extremely short range AFM near-
est neighbor correlations. For f = 1/2 and f = 0.833, the
qualitative conclusion from FTLM holds: The correlations are
clearly AFM (longer-range) and FM respectively.

The real space pattern of spin-spin correlations for f = 1/2
closely resembles what was previously observed for the spin-
1/2 Heisenberg model [42]. Owing to the closeness of the FM
to the van Hove singularity at f = 0.75, the appearance of FM
at high fillings is expected to be due to a Stoner instability. We
find a reduced magnetic moment, for example for U/t = 20
and f ≈ 0.833 we find the moment to be roughly half of
what would be expected for a fully polarized FM at the same
particle density. Due to the effectively low density of spin
carrying particles (doublons do not contribute to the magnetic
moment) in this regime, and the reduced moment from quan-

tum fluctuations, the FM correlations are weak compared to
the corresponding AFM counterparts. This is at the heart of
the small Θ observed in CE. Note however that CE sees FM at
possibly lower f ∼ 0.6− 0.7, but also reports a considerable
errorbar in f of 0.1. This requires a further review of both the
model and the experiments, in particular it would be valuable
to precisely nail down the extent and location of FM in the
triangular Hubbard model. We leave the resolution of this and
related issues to future work.

V. CONCLUSION

In summary, we have studied the intermediate-temperature
physics associated with the triangular lattice Hubbard model,
and reproduced several aspects of the Cornell experiment on
the moire superlattice formed by WS2 and WSe2 [9]. In gen-
eral, however, we expect the need for more refined models of
moire materials [43]. We emphasize that increase in |Θ| on
lowering filling does not necessarily imply the strengthening
of magnetic correlations in the ground state. We interpret the
experimental and numerical results in the intermediate tem-
perature regime within the framework of kinetic frustration
which has been shown to enhance antiferromagnetism on dop-
ing [33, 39]. We emphasize that there are prominent differ-
ences between low, intermediate and high temperature behav-
iors, this was demonstrated in the context of the t− J model.
We showed that the high temperature limit of the t− J model
gives a trend of CW temperatures with particle density that is
the opposite of the trend observed in the intermediate tempera-
ture regime. We also studied the momentum-dependent struc-
ture factor as a function of temperature to clarify the trends
in the susceptibility (associated with the Γ point) and the 120
degree magnetic ordering (associated with the K points).
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Using a combination of FTLM and DMRG calculations, we
explored the possibility of FM in a regime of fillings where
Θ > 0 was observed in the Cornell experiment. We found ev-
idence in favor of a FM ground state that leaves its signature
at finite temperature, consistent with previous work with com-
plementary techniques [24, 25]. (There appears to be some
disagreement on the precise extent and location of the FM in
existing phase diagrams [24, 25], it would be desirable for
future work to clarify this issue.) The weak spin-spin cor-
relations seen in our calculations offer an explanation of the
smallness of the observed CW temperature. Similar observa-
tions have also been noted in the context of a recent cold atom
experiment [44] which realizes a doped triangular Hubbard
model.

More generally, our work highlights the usefulness of com-
paring the results of many-body calculations with those of
analog simulators, in this case a moire superlattice system
formed by WSe2 and WS2. These simulators give access to a
part of phase space, here intermediate temperatures, that may
not be accessible to conventional materials thereby revealing
new physics beyond the usual low energy, low temperature
regime.
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Appendix A: Finite Clusters for the Exact Diagonalization
Calculations

In the main text and appendices we have presented results
of ED and FTLM calculations. The finite clusters are shown
in Fig. 5, they are frequently referred to as “S-” (square) or

9 sites
12 sites

15 sites

8 sites 10 sites 16 sites

FIG. 5. Finite triangular and square clusters treated with ED or
FTLM in the main text and appendices.
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f = 0.25
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T/t

/t = 0.28

f = 0.375

0 2 4 6
T/t

/t = 0.17

f = 0.5

0 2 4 6
T/t

/t = 0.16

f = 0.625

0 2 4 6
T/t

/t = 0.10

f = 0.75

FIG. 6. Curie-Weiss fits to the inverse susceptibility (using a temper-
ature range similar to that studied in the Cornell experiment [9]) for
the T-12 cluster for various representative fillings.

“T-” (triangular) followed by the number of sites. For exam-
ple, S-10 is the 10 site square cluster, and T-15 is the 15 site
triangular cluster.

Periodic boundary conditions were chosen for all simula-
tions in this work. The momentum points (q) that are al-
lowed by translational symmetry are determined by setting
eiq·R = 1 where R is the lattice vector associated with the
periodicity of the cluster. For example, for the T-12 cluster
we have (in units of the lattice constant) R1 = 2

√
3ŷ and

R2 = 3x̂−
√
3ŷ, which gives,

qx =
(2n+m)π

3
(A1a)

qy =
mπ√
3

(A1b)

where m,n are integers. For the T-15 cluster R1 = − 3
2 x̂ +

3
√
3

2 ŷ and R2 = 9
2 x̂+

√
3
2 ŷ, gives,

qx =
2π

15
(3n−m) (A2a)

qy =
2π

5
√
3
(3m+ n) (A2b)

It follows that the T-12 cluster has both K = ( 4π3 , 0) and
M = (0, 2π√

3
) (and symmetry related) points whereas the T-

15 cluster has only the K points but not the M points in its
first Brillouin zone. Both clusters have the Γ = (0, 0) point.



7

0.2 0.3 0.4 0.5 0.6 0.7 0.8

filling

0.2

0.0

0.2

0.4

0.6

0.8

/t

S-8

S-10

S-16

Cornell

FIG. 7. Curie-Weiss temperature (Θ) versus filling for the square
lattice Hubbard model with U/t = 20 (for three finite sizes) as com-
pared to the Cornell experiment [9].

Appendix B: Curie-Weiss fits for the triangular lattice

In Fig. 6 we show representative Curie-Weiss (CW) fits to
the inverse magnetic susceptibility (per site) for the T-12 clus-
ter.

Appendix C: Curie-Weiss temperature for the Square Lattice
Hubbard Model

In Section II we discussed the CW temperature Θ for the
triangular lattice Hubbard model with nearest-neighbor hop-
pings as a function of (hole) filling. Interestingly, this simple
model admits a positive CW temperature, corresponding to
FM, consistent with findings of CE [9]. To provide a com-
parative check, we carried out numerical calculations for the
square lattice case.

Figure 7 shows results for the CW temperature for S-8, S-
10 and S-16 with U/t = 20. The CW fits were performed in
a temperature range 0.8 < T/t < 5.5, similar to the range
chosen in CE. We find that Θ < 0 for all fillings, correspond-
ing to effective antiferromagnetic (AFM) interactions. The
exception is 8 sites, where Θ > 0 for two fillings (related by
particle-hole symmetry of the square lattice Hubbard model);
for larger system sizes, this tendency goes away. Additionally,
for our largest size (S-16) the magnitude of the increase of the
CW temperature on going from half filling towards lower fill-
ing is smaller than that observed in CE.

Appendix D: Comparison of t− J and Hubbard models

In Section III we developed insights based on the t − J
model. Here we comment further on the relation between the
Hubbard and t− J models.

The overall susceptibility of the two models, see Fig. 8(a),
match in the intermediate and low temperature regimes, with
expected deviations at higher temperature (a scale which is

0 1 2 3 4 5 6
T/t

0

10

20

30

40

1/

f=
0.3

f=
0.4

f =
0.5

Hubbard (T-15)
t J (T-15)

(a)

0 2 4 6
T/t

0.00

0.05

0.10

0.15

0.20

n
n

/f2

f = 0.21
f = 0.25
f = 0.34
f = 0.41
f = 0.5

; (b)

FIG. 8. (a) Inverse susceptibility (1/χ) versus temperature (T , in
units of t) for the T-15 cluster for representative f for both the Hub-
bard and t−J models using U/t = 20 and J/t = 0.20 respectively.
(b) Normalized on-site double occupancy correlator ⟨ni,↑ni,↓⟩ for
the T-12 Hubbard model using the same parameters as in (a).

filling dependent). In Fig. 8(b) we identify this scale by moni-
toring the temperature dependence of the on-site double occu-
pancy correlator, ⟨ni,↑ni,↓⟩ (on an arbitrary site i), normalized
with respect to its expected value for the non-interacting case
(f2) to facilitate comparison between different densities. At
low temperatures, the double occupancy correlator is small
across all densities, however there is a shallow (but promi-
nent) dip in its value as the temperature is increased. This
observation has been recently made elsewhere as well, where
it was attributed to a Pomeranchuk effect associated with the
high entropy of states at intermediate temperatures [30].

On increasing the temperature further, the double occu-
pancy correlator becomes appreciably large at a temperature
that is a small fraction of U (i.e., well below 20t). This tem-
perature is strongly dependent on the filling: the susceptibility
for f = 1/2 deviates from the t-J model at lower T compared
to the f < 1/2 case. This is because at small f the increased
phase space for the motion of the holes of opposite spin types
means that they can more effectively avoid each other, thereby
circumventing the large Hubbard energy cost. This makes the
t-J approximation valid with respect to the Hubbard model
for a larger temperature range. Once doublon (spin-0) forma-
tion becomes increasingly entropically favorable at intermedi-
ate and high temperatures in the Hubbard model, it leads to a
reduction in magnetic susceptibility (i.e, increase in 1/χ) with
respect to the t-J model.

Appendix E: Finite Temperature static spin structure factor

In this section we discuss some aspects of the SSF that fa-
cilitate further interpretation of our observations.

For the Γ point, the SSF is Szz(q = (0, 0), T ) = 1
N ⟨S2

z ⟩th,
thus for a FM ground state the SSF scales as N . In case of
a FM ground state, multiple Sz sectors are degenerate, i.e.,
the ED spectrum shows a ground state multiplet with total
spin S ̸= 0. Strictly speaking, long-range FM can occur
only at T = 0 since the Hohenberg-Mermin-Wagner theo-
rem rules out true long range order at finite temperature in a
two (or lower) dimensional system with continuous symmetry
[40, 41].
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FIG. 9. Static structure factor with a high temperature subtrac-
tion Szz(q, T ) − Szz(q, 5t), for the triangular Hubbard model
(U/t = 20) across various fillings f for the T-12 cluster for T/t =
0.1, 0.5, 1. The red hexagon in each panel marks the Brillouin zone
boundary, and prominent momentum points (Γ,K,M) are marked.
M = 150 Krylov vectors were used in the FTLM with R = 500
random seeds for f = 0.417 and f = 0.5 and R = 1500 for the
other fillings.

In Section IV we presented calculations for the SSF, after
subtracting out the high temperature (T/t = 5) signal, for the
nearest-neighbor Hubbard model with U/t = 20 on the trian-
gular T-15 cluster for various representative fillings. In Fig. 9
we show the analogous calculation for the T-12 cluster. Many
qualitative conclusions persist, including (1) the weakening of
correlations at the K points on doping (i.e. going to lower f
starting from f = 1/2) at low temperature and (2) the occur-
rence of FM in the high density regime. Curiously though, a
FM ground state was seen at f = 1/3 which we address in
Appendix G.

We motivate the reason for plotting the subtracted SSF. Ac-
cording to the Curie-Weiss theory, χ = C

T−Θ . Assuming
this holds at two temperatures, one “low” (Tl) and one “high”
(Th), and using χT = Szz(q = Γ, T ), we get,

Szz(Γ, Tl)(1−Θ/Tl) = Szz(Γ, Th)(1−Θ/Th) (E1)

Ignoring the Θ/Th term, a reasonable assumption for Θ ≪
Th, we get,

Θ =
Szz(Γ, Tl)− Szz(Γ, Th)

Szz(Γ, Tl)/Tl
(E2)

Thus the subtracted SSF at the Γ point, but divided by
Szz(Γ, Tl)/Tl, is precisely the CW temperature. However
it must be noted, as was highlighted in the main text, Θ it-
self is temperature-dependent in the intermediate temperature
regime because 1/χ is not perfectly linear with T .

Appendix F: Ground state DMRG static spin structure factor

Generalizing the SSF to other channels and taking the limit
of zero temperature, we have,

Sαα(q) ≡ Sαα(q, T → 0) ≡ 1

N

∑
i,j

e−iq·(ri−rj)⟨ψ0|Sα
i S

α
j |ψ0⟩

(F1)

where α = x, y, z and |ψ0⟩ is the ground state of the sys-
tem. (For the case of degenerate states, one must sum over
all distinct ground states). For a rotationally symmetric (sin-
glet) ground state, which is the case for the triangular Hubbard
model for most (but not all) fillings, Szz(q) = Sxx(q) =
Syy(q). For degenerate ground states, as is the case for a FM,
choosing a single state from the degenerate multiplet and then
computing the expectation values with it does not satisfy this
condition.

In the main text we presented results of DMRG calcula-
tions on XC-6 cylinders (36 and 72 sites) using a bond dimen-
sion of 16000 targeting the ground state in the Sz = 0 sector
and computed real space spin-spin correlation functions with
respect to a reference chosen site. In Fig. 10, we comple-
ment the real space pictures by plotting the SSF for repre-
sentative cases on length 6 XC-6 cylinders. As expected, for
f = 1/2 the (Bragg) peaks are at the K point of the Brillouin
zone, consistent with 120 degree spiral order (Note that the
xx, yy and zz channels are identical for the singlet ground
state and are summed to yield Stot(q)). In comparison, the
weight at the K points is clearly diminished for f = 1/3. For
f ≈ 0.806, the xx(yy) and zz channels are clearly different.
For the xx(yy) channel there is a peak at q = Γ consistent
with FM. In the zz channel there is no intensity associated
with the Γ point, this is a consequence of the sum rule corre-
sponding to total Sz = 0.

We check for finite size effects to build further confidence
in our findings. For example, Fig. 11 shows our results for
the case of the FM at f ≈ 0.833 on length 6 and 12 XC-6
cylinders. The SSF is visually similar, however, on increasing
the size the weight at the Γ point is found to increase. For
length 6, ⟨S2⟩ associated with the ground state is found to be
≈ 20, (corresponding to S = 4) and for length 12 it is ≈ 56
(corresponding to S = 7). This is consistent with a Bragg
peak, signalling long-ranged FM, although larger system sizes
would be required to establish this definitively.

Appendix G: Ground state for f = 1/3

The T-12 and T-15 clusters have a FM ground state for
f = 1/3. Even the T-9 cluster shows a low energy multiplet
in close competition with singlets in the spectrum. Fig. 12
shows the gap of the FM to other states decreasing by a factor
of ≈ 8 on going from T-12 to T-15 revealing multiple com-
peting states. This required us to further investigate larger
clusters with DMRG. Our DMRG results suggest the ground
state is not a FM, but one which displays short range AFM
correlations, which can be seen prominently in Fig. 4(b).
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FIG. 10. Static spin structure factor from DMRG for the Sz = 0 ground state of the length 6 XC-6 cylinder (36 sites). The plots in (a) and (b)
show the sum Stot(q) over all three channels (xx, yy, zz, which are individually identical) and correspond to fillings (a) f = 1/3, 12 up and
12 down electrons and (b) f = 1/2, 18 up and 18 down electrons. (c) corresponds to the case of f ≈ 0.806, 29 up and 29 down electrons, and
where the zz and xx (yy) channels are shown separately. The yellow dashed hexagon in each panel marks the Brillouin zone boundary.

−1.0 −0.5 0.0 0.5 1.0

qx/2π

−1.0

−0.5

0.0

0.5

1.0

q y
/2
π

Szz(q)

−1.0 −0.5 0.0 0.5 1.0

qx/2π

Sxx(q)
0.000 0.060 0.118 0.070 0.170 0.278

(a)

−1.0 −0.5 0.0 0.5 1.0

qx/2π

−1.0

−0.5

0.0

0.5

1.0

q y
/2
π

Szz(q)

−1.0 −0.5 0.0 0.5 1.0

qx/2π

Sxx(q)
0.000 0.050 0.098 0.070 0.230 0.388

(b)

FIG. 11. Static spin structure factor from DMRG (for zz and xx channels) at filling f ≈ 0.833 on the XC-6 cylinder of (a) length 6 (36 sites)
and (b) length 12 (72 sites).
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FIG. 12. Exact diagonalization spectra for the (a) T-9, (b) T-12 and (c) T-15 clusters for f = 1/3. The lower panels highlight the multiplet
structure of the ground state. Note the small scale of the energy gaps, which required further analysis on a bigger system with DMRG.
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bands,” Nature Physics 16, 725–733 (2020).

[11] Jian Kang and Oskar Vafek, “Symmetry, maximally local-
ized wannier states, and a low-energy model for twisted bi-
layer graphene narrow bands,” Physical Review X 8 (2018),
10.1103/physrevx.8.031088.

[12] Fengcheng Wu, Timothy Lovorn, Emanuel Tutuc, and A. H.
MacDonald, “Hubbard model physics in transition metal
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moiré superlattices,” (2022).

[20] B. S. Shastry, H. R. Krishnamurthy, and P. W. Anderson, “In-
stability of the nagaoka ferromagnetic state of the u=∞ hubbard
model,” Phys. Rev. B 41, 2375–2379 (1990).

[21] J. Hubbard, “Electron correlations in narrow energy bands,”
Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences 276, 238–257 (1963),
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1963.0204.

[22] Steven R. White, “Density matrix formulation for quan-
tum renormalization groups,” Phys. Rev. Lett. 69, 2863–2866
(1992).

[23] B J Powell and Ross H McKenzie, “Strong electronic correla-
tions in superconducting organic charge transfer salts,” Journal
of Physics: Condensed Matter 18, R827–R866 (2006).

[24] Gang Li, Andrey E. Antipov, Alexey N. Rubtsov, Stefan Kirch-
ner, and Werner Hanke, “Competing phases of the hubbard
model on a triangular lattice: Insights from the entropy,” Phys.
Rev. B 89, 161118 (2014).

[25] J. Merino, B. J. Powell, and Ross H. McKenzie, “Ferromag-
netism, paramagnetism, and a curie-weiss metal in an electron-
doped hubbard model on a triangular lattice,” Phys. Rev. B 73,
235107 (2006).

[26] Tomonori Shirakawa, Takami Tohyama, Jure Kokalj, Sigetoshi
Sota, and Seiji Yunoki, “Ground-state phase diagram of the
triangular lattice hubbard model by the density-matrix renor-
malization group method,” Phys. Rev. B 96, 205130 (2017).

[27] Jordan Venderley and Eun-Ah Kim, “Density matrix renormal-
ization group study of superconductivity in the triangular lattice
hubbard model,” Phys. Rev. B 100, 060506 (2019).

[28] Aaron Szasz, Johannes Motruk, Michael P. Zaletel, and Joel E.
Moore, “Chiral spin liquid phase of the triangular lattice hub-
bard model: A density matrix renormalization group study,”
Phys. Rev. X 10, 021042 (2020).

[29] Bin-Bin Chen, Ziyu Chen, Shou-Shu Gong, D. N. Sheng, Wei
Li, and Andreas Weichselbaum, “Quantum spin liquid with

http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/ 10.1103/PhysRevX.5.041041
http://dx.doi.org/10.1146/annurev-conmatphys-031620-102024
http://dx.doi.org/10.1146/annurev-conmatphys-031620-102024
http://arxiv.org/abs/https://doi.org/10.1146/annurev-conmatphys-031620-102024
http://dx.doi.org/ 10.1146/annurev-conmatphys-090921-033948
http://dx.doi.org/ 10.1146/annurev-conmatphys-090921-033948
http://arxiv.org/abs/https://doi.org/10.1146/annurev-conmatphys-090921-033948
http://arxiv.org/abs/https://doi.org/10.1146/annurev-conmatphys-090921-033948
http://dx.doi.org/10.1103/RevModPhys.88.041002
http://dx.doi.org/10.1103/RevModPhys.88.041002
http://arxiv.org/abs/2010.00584
http://arxiv.org/abs/2010.00584
http://dx.doi.org/10.1038/nature26160
http://dx.doi.org/ 10.1073/pnas.1108174108
http://dx.doi.org/ 10.1073/pnas.1108174108
http://arxiv.org/abs/https://www.pnas.org/content/108/30/12233.full.pdf
http://dx.doi.org/10.1038/s41586-020-2085-3
http://dx.doi.org/10.1038/s41586-020-2085-3
http://dx.doi.org/ 10.1038/s41567-020-0906-9
http://dx.doi.org/10.1103/physrevx.8.031088
http://dx.doi.org/10.1103/physrevx.8.031088
http://dx.doi.org/ 10.1103/PhysRevLett.121.026402
http://dx.doi.org/ 10.1103/PhysRevLett.121.026402
http://dx.doi.org/ 10.1103/PhysRev.147.392
http://dx.doi.org/ 10.1088/0370-1328/86/5/301
http://dx.doi.org/ 10.1088/0370-1328/86/5/301
http://dx.doi.org/ 10.1007/BF00752307
http://dx.doi.org/ 10.1007/BF00752307
http://dx.doi.org/ https://doi.org/10.1002/andp.19955070405
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19955070405
http://dx.doi.org/ 10.1103/PhysRevLett.64.950
http://dx.doi.org/10.1103/PhysRevB.104.075150
http://dx.doi.org/10.1103/PhysRevB.104.075150
http://dx.doi.org/10.48550/ARXIV.2206.01221
http://dx.doi.org/10.48550/ARXIV.2206.01221
http://dx.doi.org/10.48550/ARXIV.2206.01221
http://dx.doi.org/10.1103/PhysRevB.41.2375
http://dx.doi.org/ 10.1098/rspa.1963.0204
http://dx.doi.org/ 10.1098/rspa.1963.0204
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1963.0204
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1088/0953-8984/18/45/r03
http://dx.doi.org/10.1088/0953-8984/18/45/r03
http://dx.doi.org/ 10.1103/PhysRevB.89.161118
http://dx.doi.org/ 10.1103/PhysRevB.89.161118
http://dx.doi.org/10.1103/PhysRevB.73.235107
http://dx.doi.org/10.1103/PhysRevB.73.235107
http://dx.doi.org/ 10.1103/PhysRevB.96.205130
http://dx.doi.org/10.1103/PhysRevB.100.060506
http://dx.doi.org/10.1103/PhysRevX.10.021042


11

emergent chiral order in the triangular-lattice hubbard model,”
(2021), arXiv:2102.05560 [cond-mat.str-el].

[30] Alexander Wietek, Riccardo Rossi, Fedor Šimkovic, Marcel
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chemistry: Charge transfer in transition metal dichalcogenide
superlattices,” Phys. Rev. B 102, 201115 (2020).

[38] Jan O. Haerter and B. Sriram Shastry, “Kinetic antiferromag-
netism in the triangular lattice,” Physical Review Letters 95,

087202 (2005).
[39] C. N. Sposetti, B. Bravo, A. E. Trumper, C. J. Gazza, and L. O.

Manuel, “Classical antiferromagnetism in kinetically frustrated
electronic models,” Phys. Rev. Lett. 112, 187204 (2014).

[40] N. D. Mermin and H. Wagner, “Absence of ferromagnetism
or antiferromagnetism in one- or two-dimensional isotropic
heisenberg models,” Phys. Rev. Lett. 17, 1133–1136 (1966).

[41] P. C. Hohenberg, “Existence of long-range order in one and two
dimensions,” Phys. Rev. 158, 383–386 (1967).

[42] Santanu Pal, Prakash Sharma, Hitesh J. Changlani, and Sumi-
ran Pujari, “Colorful points in the xy regime of xxz quantum
magnets,” Phys. Rev. B 103, 144414 (2021).

[43] Yanhao Tang, Kaixiang Su, Lizhong Li, Yang Xu, Song Liu,
Kenji Watanabe, Takashi Taniguchi, James Hone, Chao-Ming
Jian, Cenke Xu, Kin Fai Mak, and Jie Shan, “Frustrated mag-
netic interactions in a Wigner-Mott insulator,” (2022).

[44] Muqing Xu, Lev Haldar Kendrick, Anant Kale, Youqi Gang,
Geoffrey Ji, Richard T. Scalettar, Martin Lebrat, and Markus
Greiner, “Doping a frustrated Fermi-Hubbard magnet,” arXiv
e-prints , arXiv:2212.13983 (2022), arXiv:2212.13983 [cond-
mat.quant-gas].

[45] “HubbardFTLM,” https://github.com/
kyungminlee/HubbardFTLM.

[46] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire,
“The ITensor software library for tensor network calculations,”
(2020), arXiv:2007.14822.

[47] Ivan Morera, Márton Kanász-Nagy, Tomasz Smolenski, Livio
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