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1Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907 USA
2Department of Physics, Cornell University, Ithaca, New York 14850 USA

(Dated: May 25, 2023)

The recent observations of the superconducting diode effect pose the challenge to fully understand
the necessary ingredients for non-reciprocal phenomena in superconductors. In this theoretical work,
we focus on the non-reciprocity of the critical current in a quasi-one-dimensional superconductor.
We define the critical current as the value of the supercurrent at which the quasiparticle excitation
gap closes (depairing). Once the critical current is exceeded, the quasiparticles can exchange en-
ergy with the superconducting condensate, giving rise to dissipation. Our minimal model can be
microscopically derived as a low-energy limit of a Rashba spin-orbit coupled superconductor in a
Zeeman field. Within the proposed model, we explore the nature of the non-reciprocal effects of the
critical current both analytically and numerically. Our results quantify how system parameters such
as spin-orbit coupling and quantum confinement affect the strength of the superconducting diode
effect. Our theory provides a complementary description to Ginzburg-Landau theories of the effect.

Introduction. Since their discovery, diodes have
played an important role in the development of new tech-
nologies. Recently, the observation of non-reciprocity
in the critical current of superconductors, known as the
superconducting diode effect (SDE),1–3 has brought at-
tention to this phenomenon for its potential to achieve
dissipationless electronics. Following the initial observa-
tions, extensive work has been done to show the signa-
ture of SDE in different bulk materials.4–8 This diode ef-
fect was also observed and thoroughly studied in Joseph-
son junctions9–16 (first in the context of the anomalous
Josephson effect17–22) and even in the absence of an ap-
plied magnetic field.23–27

In general, non-reciprocity of the critical current oc-
curs due to a broken inversion symmetry, which can be
accomplished by an extrinsic or intrinsic mechanism. The
first refers to the geometry of the system, the canoni-
cal example being an asymmetric superconducting ring
threaded by a magnetic flux.7,28 The SDE can also oc-
cur due to an intrinsic mechanism, for example, when
one breaks the inversion of symmetry with spin-orbit
coupling (SOC).29–34 However, experimentally it can be
a challenge to determine whether the non-reciprocity
comes strictly from the intrinsic features of the system.7

Even theoretically, the exact minimal requirements for an
intrinsic SDE remain unclear.35,36 Most previous theoret-
ical studies of intrinsic SDE have focused on using phe-
nomenological Ginzburg-Landau theory (GL),29,32,37–39

which is valid near the critical temperature T ≈ Tc.
While microscopic studies of the phenomenon have been
conducted on 2D and 3D systems ,29–34,38 a description of
1D or quasi-1D systems has received less attention. The
relative simplicity of 1D systems allows us to develop an-
alytical understanding of the problem.

In this work, we present a Bogoliubov-de Gennes model
that describes the main mechanisms to achieve the in-
trinsic diode effect in uniform 1D superconductors. In 1D
single-band regime, time-reversal invariant electronic sys-
tems can be generally described by a Hamiltonian of two
helical bands with opposite helicities. We show that un-

equal Fermi velocities of the two helical bands generically
leads to the SDE, see Fig. 1a. Microscopically, we show
that this happens in Rashba systems under quantum con-
finement or applied perpendicular magnetic field. Gener-
ally, an applied supercurrent can be written as IS = ρsℏq
where ρs = en/2m is the superfluid stiffness (in terms of
the 1D superfluid density n and mass m) and ℏq is the
Cooper pair momentum.40,41 At low temperatures, when
the superfluid density does not get appreciably modified
by supercurrent, the study of non-reciprocity of the criti-
cal current Ic = ρsqc can be accomplished by calculating
the critical momentum qc by using the Cooper pair de-
pairing condition38,40–42 (we set ℏ = kB = 1 hereon).
Focusing here on s-wave pairing, each helical band (la-
beled by i) can be treated independently and has a su-
perconducting gap ∆i at the Fermi level. Qualitatively,
Landau’s criteria43 in the absence of magnetic field gives
qci = ∆i/vFi for the i-th helical band; the critical mo-
mentum of the system is then qc = mini{qci}. For two
bands with opposite helicities, applying a magnetic field
Bz along the spin quantization axis will lower one qci
while increasing the other [see Eq. (4)]. Even with equal
gaps, ∆1 = ∆2, if the two bands have unequal Fermi
velocities vF1 ̸= vF2, their critical momenta will become
equal at a non-zero magnetic field Bz = Bz,0, leading
to non-reciprocity. This behavior is shown in Fig. 1b,c.
For pairing ∆i = ∆, the non-reciprocal behavior of the
critical current, determined by the critical momentum, is
fully explained by the difference of Fermi velocities, which
carries information about inversion symmetry breaking.
Low-energy model. To investigate the mecha-

nisms responsible for the appearance of an intrinsic non-
reciprocal behavior of the critical current, we investigate
a low-energy minimal model. We propose a Hamiltonian
of two helical bands,

H =
1

2

∑
k

C†
kHBdGCk, (1)

where Ck is an eight component Nambu spinor
defined by Ck = ( Ck1 Ck2 )T with Cki =



2

( ck+qi↑ ck+qi↓ c†−k+qi↓ −c†−k+qi↑ )T . In this represen-

tation, ↑, ↓ are spins (or pseudo-spins) of our system and
the subscript i is the label for each helical band. The
Bogoliubov-de Gennes (BdG) Hamiltonian is given by
HBdG = diag(Hk1,Hk2) with (χi = −(−1)i) and

Hki=vFi (χikσz−kFi) τz + χivFiqσz+∆iτx+
giµB

2
B⃗ · σ⃗.

(2)

In this effective model, each helical band is allowed to
have in general an independent Fermi velocity vFi, Fermi
momentum kFi, s-wave (intra-band) pairing gap ∆i, and
g-factor gi, while experiencing the same applied magnetic

field B⃗ (µB denotes the Bohr magneton). We have lin-
earized the dispersion, focusing on low energies near the
Fermi surface (see Fig. 1a). The Pauli matrices σx,y,z
and τx,y,z act on the spin and particle-hole spaces respec-
tively. The parameter q is the Cooper pair momentum
of the superconductor and determined by the externally
applied supercurrent. Considering proximity-induced su-
perconductivity at low temperatures, we are able to re-
late the Cooper pair momentum q to the applied super-
current as q ∝ IS in the first approximation. The analysis
of non-reciprocity of the critical current can be performed
by studying the behavior of the critical Cooper pair mo-
mentum qc as a function of applied magnetic field. Al-
though the beyond-mean-field description of a 1D system
would typically involve fluctuations that can alter the be-
havior of physical properties, we consider here the case
of proximity-induced pairing from a high-symmetry 3D
superconductor which effectively suppresses these fluctu-
ations.

From the above Hamiltonian (2), we find the energy
cost Eσi(k) to create an excited above-gap quasiparticle
of spin σ =↑, ↓= +,− and momentum k in the band

i. For an applied magnetic field B⃗ = Bz ẑ, this energy
becomes

Eσi(k)=σ
(giµB

2
Bz + χiqvFi

)
+

√
∆2

i +(k−χiσkFi)
2
v2Fi.

(3)

Assuming for the moment Bz and q such that this en-
ergy cost is positive, the excitation energy of a quasipar-
ticle will be the smallest at the Fermi momentum kFi.
This energy cost can increase or decrease by tuning the
applied magnetic field Bz and momentum q.
The critical momentum qc of the system is the specific

momentum for which Eσi(k = χiσkFi) = 0, i.e., there is
no energy cost to create a quasiparticle excitation.42–44

For an applied current larger than the critical one, we
expect the system to be in the normal phase (N) instead
of the superconducting one (SC). Therefore, we focus our
description for q ≤ qc. From the dispersion (3) we find
that the critical momentum for each helical band is a
linear function of the magnetic field

q±ci =
−χi

1
2giµBBz ±∆i

vFi
, (4)

Figure 1. (a) top: Linearized energy spectrum in the normal
state, showing two helical bands with unequal Fermi veloc-
ities and opposite helicities. The linearized model captures
the Fermi level physics of quasi-1D and 1D Rashba models
(bottom). In the quasi-1D case, hybridization between the
lower (solid) and upper (dashed) Rashba bands leads to un-
equal Fermi velocities. In the purely 1D case the same can
be achieved by applying a magnetic field Bx along the wire.
(b) Phase diagram of superconducting (SC) and normal state
(N) determined by the critical momentum qc as a function of
the magnetic field Bz. The values of the magnetic field Bz,0

and Bz,1 delimit three different regions of the phase diagram.
(c) Quality factor δ versus magnetic field Bz for the phase
diagram shown in (b). The three regions of the phase dia-
gram results in three different behaviors for the quality factor
function.

where, the superscript ± labels the direction of the ap-
plied supercurrent. The critical momentum of the two-
band system is then, q±c = ±mini=1,2 |q±ci|.
The non-reciprocal behavior occurs when, for a fixed

magnetic field, the absolute value of the critical current is
different in the positive and negative directions. In terms
of the critical momentum the non-reciprocity condition
translates to |q+c | ̸= |q−c |. To better understand how the
physical parameters contribute to the superconducting
diode effect, we can define a quality factor of the critical
current as

δ =
|q+c | − |q−c |
|q+c |+ |q−c |

. (5)

The phase diagram in Fig. 1b shows the phase separation
between normal and superconducting phase determined
by the four components of the critical momentum (4).
We define by Bz,0 (−Bz,0) the magnetic field in which the
critical momentum of different helical bands first cross,
i.e, q+c1 = q+c2 (q−c1 = q−c2). Another characteristic value is
the magnetic field Bz,1 in which the critical momentum
q−ci changes sign. Without loss of generality, we assume
∆2/vF2 < ∆1/vF1. For this choice of parameters, the
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explicit forms of Bz,0 and Bz,1 are found to be

Bz,0 =
∆̄1v̄F2 − ∆̄2v̄F1

v̄F1 + v̄F2
, Bz,1 = min{∆̄1, ∆̄2}, (6)

where we define v̄Fi = vFi/(
1
2giµB), ∆̄i = ∆i/(

1
2giµB).

In Fig. 1c we show the behavior of the quality factor as a
function of the magnetic field when 0 < Bz,0 < Bz,1. In
general, we have a linear increase in the quality factor for
small magnetic field, i.e., δ = Bz/Bz,1 for |Bz| < |Bz,0|.
For a larger magnetic field, the behavior of the quality
factor is dependent on the particular choice of param-
eters. For the particular case shown in Fig. 1c, where
Bz,0/Bz,1 ≪ 1 the quality factor can be approximated
by

δ ≈ Bz

|Bz|
Bz,0

−|Bz|+Bz,0 +Bz,1
, (Bz,0 < |Bz| < Bz,1),

(7)
reaching its maximum value 1 at Bz,1 when |q−c | = 0.
The critical current becomes reciprocal and diode effect
disappears in the limit Bz,0 → 0. In this limit, the quality
factor (5) becomes ill-defined at the critical field Bz =
Bz,1, but for any Bz < Bz,1 such that |Bz,1−Bz| ≫ Bz,0,
Eq. (7) yields a quality factor that vanishes as δ ∝ Bz,0

in the reciprocal limit. The ratio Bz,0/Bz,1, when small,
is a characteristic measure for weak diode effect.

Self-consistent gap. So far we focused the analy-
sis of the transition between superconducting to normal
phase only on the critical Cooper pair momentum qc.
One could argue that |q| > |qc| is not a sufficient con-
dition to ensure that the system is in the normal phase,
i.e., that superconductivity could survive even in a gap-
less system. To study the practicability of such gapless
superconductivity, we calculate the pairing potential self-
consistently.45 We note that in a self-consistent study of
the proximity between a wire and a 3D superconductor,
fluctuations have a negligible impact, which justifies the
BdG approach to our system. This calculation also al-
lows us to extend the low-energy model described to finite
temperature. For one helical band, i.e., choosing subsys-
tem i of (2), the self-consistency consists of solving for
∆i ≡ ∆i(q, T ) the equation

1=Vi

ˆ kD

−kD

dk

2π

1− f [E↑i(k)]− f [E↓i(−k)]
2
√
∆2

i (q, T ) + (k − χikFi)2v2Fi

, (8)

where f [Eσi(k)] is the Fermi-Dirac distribution, Eσi(k)
is the dispersion (3) calculated at Bz = 0, Vi/vFi is the
dimensioneless pairing interaction strength and kD is the
Debye wave vector, providing a UV cutoff.

In Fig. 2 we show ∆(q, T ) versus Cooper pair momen-
tum q plot for different values of temperature, obtained
by solving Eq. (8) numerically. For T = 0 we find that
∆(q, 0) is constant for Cooper pair momentum q below
the critical one. For q > qc, Eq. (8) has no solution,
showing that the critical momentum found, Eq. (4), is
the correct threshold to determine SC to N transition in

Figure 2. Self-consistently calculated gap ∆(q, T ) [in units
of ∆(0, T )] versus Cooper pair momentum q [in units
of ∆(0, T )/vF ]. Inset: The critical Cooper pair momen-
tum qc(T ) versus the temperature T normalized by Tc =
∆(0, 0)/(1.76kB). Here, qc(T ) is defined as the smallest q
such that ∆(q, T ) = 0. This shows that at non-zero tempera-
ture, Eq. (4) can be approximately used with a temperature-
dependent gap ∆(T ) multiplied by a weakly temperature-
dependent coefficient qc(T )/∆(0, T ). The shown results are
with Bz = 0; a non-zero Bz adds linearly to q, see Eq. (4).

our 1D helical model. A non-zero Bz will only shift qci
linearly, as described by Eqs. (3)-(4).

Microscopic models. Up to now, we have described
an effective low-energy model that shows non-reciprocal
phenomena and the mechanisms that allow the existence
of the SDE. To complete our discussion, it is important to
understand microscopically how to achieve unequal Fermi
velocities between two helical bands. Here we describe
two Rashba systems that, in the low-energy limit, can be
well described by our minimal model46.

Quasi-1D Rashba wire. We start by considering a
quasi-1D Rashba nanowire in the presence of a Zeeman
field, described by the normal-state Hamiltonian,47

H =

ˆ
dxΨ̂†(x) (H0 +HR +HZ)Ψ̂(x), (9)

with H0 = − 1
2m∂

2
x − µ+ E0Σz and

HR= −iα∂xσz + ησxΣy , HZ=
1

2
gµBB⃗ · σ⃗, (10)

where Ψ̂(x) =
(
ψ̂1↑(x) ψ̂1↓(x) ψ̂2↑(x) ψ̂2↓(x)

)T
and

Σx,y,z are Pauli matrices that act on the transverse de-
gree of freedom. Here, we consider the two lowest-energy
transverse modes labeled by i = 1, 2. The Hamiltonian
H0 describes the kinetic energy and confinement gap
2E0 ∝ 1/W 2 between transverse bands. The Rashba
Hamiltonian HR is written in terms of α and η ∝ 1/W
denoting the spin-orbit couplings respectively along and
perpendicular to the wire. The parameters η and E0 de-
pend on the width W of the wire and the specific confin-
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ing potential, see Ref..48 Our analysis, however, is com-
pletely independent regarding the specific forms of these
parameters.

We first analyse H0+HR for the range of energy where
only the lowest energy transverse channel is occupied.
This Hamiltonian commutes with the pseudo-spin oper-
ator σzΣz, therefore it is convenient to label the energies
with σzΣz eigenvalues ±1. The dispersion of the lowest
transverse mode is given by

ϵ±(k) =
k2

2m
− µ−

√
(E0 ± αk)2 + η2. (11)

From the dispersion, we find two positive Fermi mo-
menta, kF1,2, where kFi obeys ϵ±(kFi) = 0. We also
find the Fermi velocities

vFi =
kFi

m
− α(αkFi ± E0)√

(αkFi ± E0)2 + η2
, (12)

around kF1 (-) and kF2 (+).
In order to study the effects of weak magnetic field

and proximity-induced superconductivity near the Fermi
momenta, we linearize the dispersion by writing the field
operator Ψ̂(x) as a superposition of left and right-movers
for each pseudo-spin subbands,

Ψ̂(x)=
[
ψ̂R↑(x)σxe

ikF1x+ψ̂L↓(x)e
−ikF1x

]
ϕ1

+
[
ψ̂R↓(x)e

ikF2x+ψ̂L↑(x)σxe
−ikF2x

]
ϕ2, (13)

where ϕi =
(
i sin θi

2 0 0 cos θi
2

)T
and θi =

arccos[±α−1 (vFi − kFi/m)] with +,− for i = 1, 2, re-
spectively. We apply (13) to the Hamiltonian (9) for

B⃗ = Bz ẑ to obtain an effective model for the quasi-1D
nanowire in a perpendicular magnetic field. To obtain
the low-energy description near the Fermi points, we as-
sume that the components ψR(L)σ(x) vary slowly in space

allowing us to neglect terms ∂2xψR(L)σ(x). Likewise, fast

oscillating terms ∝ e±i(kFi+kFj)x are also neglected.49 We
find the linearized dispersion of the nanowire in the nor-
mal phase,

ϵσi(k)=σvFi (k − σχikFi) + σ
giµB

2
Bz, (14)

where gi = g cos θi. Finally, we include proximity-
induced superconductivity with intrachannel pairing

∆e−2iqx
∑2

i=1 ψ̂i↑ψ̂i↓ with Cooper pair momentum q.
Linearizing the pairing term by substituting (13) into
it, we are able to write the quasi-1D Rashba system us-
ing our minimal model Hamiltonian (2). Here we find
induced gaps ∆1 = ∆2 = ∆ at the two Fermi momenta
kF1,2, respectively.

To understand the behavior of the quality factor δ in
the quasi-1D case, we consider the limit E0 ≫ α2m, η, µ.
In this regime, the energy difference between transverse
bands is large, so the upper bands are unoccupied, but
the hybridization η of the bands will change the Fermi

velocities vF1,2 by a small factor. To show the effects of
small transverse coupling we expand the velocities vFi

and g-factor gi in powers of η. Plugging this expansion
into the expression for Bz,0 given by Eq. (6), we find
Bz,0 ≈ 2(mα2η2/E3

0)(α/vF )Bz,1 and Bz,1 ≈ ∆/( 12gµB),

where vF =
√
2E0/m. Thus, non-reciprocity arises in

high order in spin-orbit coupling, stemming from weak
hybridization of the transverse modes.46

Purely 1D Rashba wire with Bx. As seen above,
in the purely 1D model (W → 0, E0 → ∞), the critical
current becomes reciprocal (Bz,0 → 0). However, even
in this case we can induce non-reciprocity by applying a
transverse magnetic field which will lead to unequal ve-
locities of the inner and outer Rashba modes, see Fig. 1a.

In the 1D limit the energy splitting E0 between trans-
verse bands is large and we can project the Hamilto-
nian Eq. (9) to the states with Σz = −1. Now the
Hamiltonian commutes with σz (eigenvalues σ = ±1)
and the energy dispersion gives equal Fermi velocities
vF =

√
2µ/m+ α2 for the inner and outer Rashba

modes.50 In this case, there is no non-reciprocity51. Next,
we consider an additional component of the magnetic
field in Eq. (10) as Bxσx, that acts in a similar way to the
coupling η by breaking the conservation of spin.52 To un-
derstand how the transverse magnetic field changes the
velocities of the helical bands, we will treat this term
perturbatively in the superconducting phase. First, we
note that in the normal phase, the transverse magnetic
field opens a gap at k = 0, affecting the inner helical
band with smaller Fermi momentum [kF1 = (vF − α)m]
while presenting a negligible effect on the outer helical
band with kF2, as long as 1

2gµBBx ≪ mαvF . In the
presence of proximity-induced superconductivity, the he-
lical band around k = kF1 (and similarly for k = −kF1)
can be described as Hk1 = diag(hk↑, hk↓), where hk↑ =
Bz + qvF1 + ∆τx and hk↓ ≈ −2vF1kF1τz. By find-
ing the eigenstates in the proximity of the Fermi level
±kF1, we can calculate the energy correction due to the
applied perturbation Bx. We find g1 = g + δg and

vF1 = vF + δvF , where
δvF

vF
= δg

g = −
(

1
4
gµBBx

kF1vF

)2

, re-

sulting in vF2 > vF1, g2 > g1 and ∆1 = ∆2, thus lead-
ing to non-reciprocal critical current. In this case, we

find Bz,0 ≈ 1
2

(
1
4
gµBBx

kF1vF

)2

Bz,1 while Bz,1 ≈ ∆/( 12gµB),

which implies the behavior of the quality factor as seen
in Fig. 1c.

Discussion. We showed that helical bands with a
Fermi velocity difference δvF give rise to critical cur-
rent non-reciprocity with the size of the effect quantified
by Bz,0/Bz,1 ≈ δvF /vF [see below Eq. (7)]. This form
shows that the intrinsic superconducting diode effect is
generally small in ordinary metals: the denominator is
the Fermi velocity which increases with electron density
whereas the numerator is the difference of Fermi veloci-
ties and typically (at most) of the order of the spin-orbit
velocity, independent of the density.

In a quasi-1D system of width W , we found that
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δvF ∼ αmα2η2/E3
0 arises from a transverse spin-orbit

coupling η ∼ α/W . Since E0 ∼ 1/(m⊥W
2), we see that

δvF ∝ (W/lα)
4 increases with the width of the system.

Here, we introduced the Rashba length lα = 1/(mα) and
assumed isotropic effective mass m⊥ ≈ m. This quasi-
1D result is valid in the limit of small width, W ≪ lα.
The opposite limit of large W/lα, is for general chemi-
cal potential a complex problem due to multiple bands
and Fermi points. Nevertheless, in the low density case
µ ≪ mα2 there are only two Fermi points, and we ob-
tain a simple result δvF ∼ αE0/(mα

2) ∝ (lα/W )2 by
treating E0 perturbatively. Thus, in low-density, clean,
Rashba wires the non-reciprocity is a non-monotonic
function of the wire width, with a maximum at W of
order the Rashba spin-orbit length, estimated to be of or-
der 100nm.53–56 We emphasize however that this simple
consideration is only valid in the low-density single-band
regime and ignores disorder, Dresselhaus spin-orbit cou-
pling, and mass anisotropies. Recently, in Ref.57 it was
observed that SDE is maximal at intermediate widths,
although it is unclear if the effect stems from the same
mechanism as we have outlined here.

In this work we mostly focused on proximity-induced
superconductivity in a semiconductor nanowire with low
electron density. As a result, the nanowire is expected

to determine the critical current of the entire system,
allowing us to use an effective single-component model.
Future studies of coupled systems could be performed
using bosonization.58 Additional research is needed to
make quantitative predictions for optimizing the strength
of intrinsic non-reciprocity in Rashba systems.
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