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Abstract

By applying auxiliary-field quantum Monte Carlo, we calculate the equation of state (EOS) and

B1-B2 phase transition of magnesium oxide (MgO) up to 1 TPa. The results agree with avail-

able experimental data at low pressures and are used to benchmark the performance of various

exchange-correlation functionals in density functional theory calculations. We determine PBEsol is

an optimal choice for the exchange-correlation functional and perform extensive phonon and quan-

tum molecular-dynamics calculations to obtain the thermal EOS. Our results provide a preliminary

reference for the EOS and B1-B2 phase boundary of MgO from zero up to 10,500 K.

I. INTRODUCTION

Materials structures and behaviors under very high pressure (∼100 GPa to 1 TPa) are an

important topic in high-energy-density sciences and earth and planetary sciences. At such

conditions, materials are strongly compressed, which can lead to transitions into phases with

different structures (by lowering the thermodynamic energies) and chemistry (by modify-

ing the bonding). The past two decades have seen advances in computing and compres-

sion technologies that have added important knowledge to this subject by unveiling new

structures (e.g., MgSiO3 post-perovskite [1–3]) or chemical stoichiometry (such as H4O [4]

and Xe-FeO2 [5]) with notable changes to properties of chemical systems (particularly the

insulator-metal transition [6, 7] and high-temperature superconductivity [8]). However, ac-

curate determination of phase transitions at such extreme conditions remains challenging.

Experimentally, static compression experiments based on diamond-anvil cells (DACs) [9,

10] are limited by sample sizes and diagnostics, while dynamic compression experiments are

limited by the time scale and regime of the thermodynamic paths that can be achieved [11–

13].

Theoretically, state-of-art investigations often rely on calculations based on Kohn–Sham

density functional theory (DFT) [14]. Despite the tremendous success of DFT in predicting

many structures and properties to moderately high pressures, errors associated with the

single-particle approximation and exchange-correlation (xc) functionals render DFT predic-

tions dubious where precise experimental constraints do not exist.
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Recent studies have shown quantum Monte Carlo (QMC) methods to be able to bench-

mark solid-state equation of state (EOS) and phase transitions [15–17] by directly solving

the many-electron Schrödinger equation. Auxiliary-field quantum Monte Carlo (AFQMC)

is one such QMC method that has shown great promise with flexibility and scalability for

simulating both real and model many-body systems with high accuracy [15, 18–24].

In this work we apply the phaseless AFQMC [25, 26] method, in combination with opti-

mized periodic Gaussian basis sets [15, 18, 27], to investigate high-pressure EOS and phase

transition in solid-state materials by using magnesium oxide (MgO) as an example. This

provides theoretically accurate cold-curve results for MgO, which we then use to benchmark

against various predictions by DFT calculations. We then use DFT-based lattice dynamics

and molecular dynamics with one of the best xc functionals to calculate the thermal contribu-

tions to the EOS. Finally, we combined the thermal with the cold-curve results to determine

the finite-temperature EOS and B1-B2 phase boundary for MgO to eV temperatures.

MgO is a prototype rock-forming mineral in planets, a pressure calibrator in DAC exper-

iments, and a window material in shock experiments. From ambient pressure up to about

500 GPa, MgO is stabilized in the sodium chloride (NaCl, or B1) structure. Beyond that, it

transforms into the cesium chloride (CsCl, or B2) structure, which is characterized by smaller

coordination and lower viscosity that may be associated with mantle convection and layer-

ing in super-Earths different from those in the Earth. A benchmark of the EOS and phase

transition of MgO would be important for modeling the interior dynamics and evolution of

super-Earths, testing the degree of validity of various theoretical EOS or models at extreme

conditions, as well as elucidating materials physics at extreme conditions by answering such

questions as: is thermodynamic equilibrium reached in the experiments, or to what degree

are the phase transformations subject to kinetic effects, chemistry/composition changes, or

a combination of them, leading to various observations in experiments? This problem of

the B1-B2 transition in MgO has been studied for over 40 years but remains uncertain in

experiments [12, 28] and there is a discrepancy of ∼20% between state-of-the-art DFT cal-

culations [29]. In addition to the debates over phase relations near the triple point near

500 GPa [11, 29–40], recent double-shock experiments also suggest an inconsistency exists

between theoretical predictions and experiments of the melting curve at TPa pressures [41].

The main goal of this work is to provide an accurate EOS and phase diagram for MgO to

TPa pressures and eV temperatures by jointly combining an accurate many-body electronic

3



structure approach (AFQMC) and finite-temperature quantum molecular dynamics (QMD)

based on DFT to fully address various details of physics (electronic correlation, anharmonic

vibration, EOS models, finite sizes of the simulation cell, and Born effective charge) that

can affect the thermal EOS results.

This paper is organized as follows: Section II outlines the methodologies used in this

study, including those for zero-K and finite-temperature calculations; Sec. III presents the

cold curve, thermal EOS, and phase boundary results for MgO, and discusses the errors and

their sources; finally, Sec. IV concludes the paper.

II. METHODS

In the following, we present descriptions and settings of the computational approaches

used in this study, including AFQMC, Hartree–Fock (HF), and DFT for the zero-K internal-

energy calculations, and quantum molecular dynamics (QMD) and thermodynamic integra-

tion (TDI) for the thermodynamic free energies at nonzero temperatures.

A. Zero-K static lattice calculations

For the internal energy-volume E(V ) relations at 0 K (often called the “cold curve”),

we perform static lattice calculations for MgO in the B1 and B2 structures at a series of

volumes by using a combination of AFQMC, HF, and DFT with various xc functionals.

AFQMC is a zero-temperature quantum Monte Carlo approach. It is based on the

stochastic propagation of wavefunctions in imaginary time using an ensemble of walkers in

the space of non-orthogonal Slater determinants. It uses the Hubbard–Stratonovich trans-

formation [42] to rewrite the expensive two-body part of the propagator into an integral over

auxiliary fields coupled to one-body propagators, which are then integrated with Monte Carlo

techniques. Like other QMC methods, AFQMC also faces an obstacle for fermionic systems,

namely the “phase (or sign) problem” which arises because the fields led by Coulomb in-

teraction are complex. Control of the sign problem can be achieved using constraints based

on trial wavefunctions, like the fixed-node approximation in diffusion MC (DMC) [43] or,

in the case of AFQMC, the constrained-path [44] and phaseless approximation [25]. When

combined with appropriate trial wavefunctions, these methods have been shown to provide
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benchmark-quality results across a range of electronic structure problems including atoms,

molecules, solids, and correlated model Hamiltonians, including cases with strong electronic

correlations [20, 22, 45], known to be challenging to alternative approaches like Kohn–Sham

DFT. Recent advances in the development of accurate and flexible trial wavefunctions in-

clude the use of multi-determinant expansions [46–48] and generalized HF [49, 50]. In this

work, we use the phaseless AFQMC (ph-AFQMC) method [25, 26] to calculate the ground

state properties of bulk MgO.

In our ph-AFQMC calculations, the trial wavefunction is constructed from a Slater de-

terminant of HF orbitals (the HF solution for each MgO structure at every density), which

were found to yield accurate energy results. We use QUANTUM ESPRESSO (QE) [51, 52] for

the calculation of the trial wavefunction and for the generation of the one- and two-electron

integrals. The modified Cholesky decomposition [53–56] is used to avoid the O(M4) cost

of storing the two-electron repulsion integrals. All QE simulations were performed using

optimized norm-conserving Vanderbilt (ONCV) pseudopotentials [57], constructed with the

Perdew–Burke–Ernzerhof (PBE) [58] xc functional. We used the recently developed opti-

mized Gaussian basis sets [27] in all AFQMC calculations. The calculations were based on

primitive unit cells and performed using Γ-centered 2×2×2, 3×3×3, and 4×4×4 k grids to

extrapolate to the thermodynamic limit at each density. Results from multiple basis sets

were used, in combination with corrections based on periodic second-order Møller–Plesset

perturbation theory (MP2) calculations, to obtain results extrapolated to the complete basis

set (CBS) limit (see Appendix A for more details). This was shown to be a successful ap-

proach to removing basis and finite size errors in previous studies, to which we refer readers

for additional details [27]. All AFQMC calculations were performed using the open-source

QMCPACK software package [59]. We used ∼1000 walkers and a time step of 0.005 Ha−1,

which we found sufficient to control any potential population and finite time-step biases,

respectively.

Kohn–Sham DFT [60] follows the Hohenberg–Kohn theorem [61] and simplifies the many-

body problem into a single-particle mean-field equation that can be solved self-consistently

via iteration over the electron density. The real complicated electron-electron interactions

are simplified into the xc functional term. Since the accurate QMC solution for the uniform

electron gas [43], there have been developments of many forms of xc functionals for various

applications, which form a “Jacob’s ladder” with different rungs [local density approximation
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(LDA), generalized gradient approximation (GGA), meta-GGA, etc.] that lead to chemical

accuracy at the expense of increasing computational cost.

Our DFT calculations of the cold curve are performed with Vienna Ab initio Simulation

Package (VASP) [62]. In our VASP simulations, we use a two-atom unit cell, Γ-centered

16×16×16 Monkhorst–Pack k mesh, a plane-wave basis with cutoff of 1200 eV, and conver-

gence criteria of 10−7 eV/cell for the self-consistent iteration. The simulations use the projec-

tor augmented wave (PAW) [63] method with pseudopotentials labeled with “sv GW” and

“h”, 1.75 and 1.1-Bohr core radii, and treating the outermost 10 and 6 electrons as valence

for Mg and O, respectively. We consider five different xc functionals: LDA [64], PBE [65],

PBEsol [66], strongly constrained and appropriately normed meta-GGA (SCAN) [67], and

the Heyd–Scuseria–Ernzerhof-type HF/DFT hybrid functional (HSE06) [68].

The DFT calculations also produce pressures that are not directly available from our

AFQMC calculations because of the difficulties in QMC to calculate forces. For consistency

in data comparison between different approaches and determination of the B1-B2 transition,

we fitted the E(V ) data to EOS models that are widely used in high-pressure studies. It has

long been known that high-order elastic moduli may be required to parameterize materials

EOS under extreme (e.g., near 2-fold) compression [69]. Therefore, we have considered

multiple EOS models and cross-checked them with a numerical (spline fitting) approach to

ensure the accuracy of the EOS and phase-transition results.

We have considered two different analytical EOS models: one is the Vinet model [70],

which follows

E(V ) = E(V0) +

∫ V0

V

P (V )dV, (1)

with

P (V ) = 3B0
1− x

x2
e1.5(B

′
0−1)(1−x), (2)

where x = ( V
V0
)1/3 and V0 and B′

0 are, respectively, the volume and first-order pressure

derivative of the bulk modulus at zero pressure; the other is the Birch–Murnaghan model [71]

to the fourth order, which follows

E(V ) = E0 + 9B0V0(f
2/2 + a1f

3/3 + a2f
4/4), (3)

where f = [(V0

V
)2/3 − 1]/2 is the Eulerian finite strain, a1 = 1.5(B′

0 − 4), and a2 is another

parameter. We have also tested the third-order Birch–Murnaghan model, which does not
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include the a2 term in Eq. 3, for comparison with the other models in selected cases (see

Appendix B).

B. Finite-temperature thermodynamic calculations

Thermodynamic calculations at nonzero temperatures are performed in two different

ways: one is from lattice dynamics by using the quasiharmonic approximation (QHA), and

the other is based on QMD.

Within QHA, lattice vibrations are considered to be dependent on volume but indepen-

dent of temperature. In practice, one can use the small-displacement approach or density

functional perturbation theory (DFPT) to calculate phonons at 0 K and then compute the

thermodynamic energies analytically from quantum statistics. Despite its wide usage and

success in giving improved thermodynamic properties over the fully harmonic approxima-

tion for materials at relatively low temperatures, the applicability of QHA is questionable at

high temperatures and for systems with light elements at low temperatures. In comparison,

QMD simulations significantly improve the description of lattice dynamics by naturally in-

cluding all anharmonic vibrations. By employing a TDI approach, the free energies can also

be accurately calculated, which makes it possible to chart the phase-transition boundaries

at finite temperatures.

We use the PHONOPY program [72, 73] and VASP to calculate the phonons of MgO at 0

K with DFPT and under QHA. We have tested the effects of including the Born effective

charge (which is necessary to correctly account for the splitting between longitudinal and

transverse optical modes) and different xc functionals on the phonon band structures and

vibrational energies (see Appendices C and D). The calculation is performed at a series

of volumes V . This allows estimation of the ion thermal contributions Fi−th(V, T ), at any

temperature T , to be added to the free energies F (V, T ) via

FQHA(V, T ) = EQHA(V, T )− TSQHA(V, T )

= kBT
∑
q,s

ln [2 sinh (ℏωq,s/2kBT )] , (4)

where EQHA(V, T ) =
∑

q,s (ñ+ 1/2) ℏωq,s is the vibrational internal energy, ñ = 1/
(
eℏωq,s/kBT − 1

)
is the effective number of the phonon mode with frequency q and index s, and SQHA(V, T ) =

kB
∑

q,s [(ñ+ 1) ln (ñ+ 1)− ñ ln ñ] is the vibrational entropy. Each calculation employed a
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54-atom supercell and was performed using a Γ-centered 4×4×4 k mesh (for both B1 and

B2 phases).

In QMD calculations, we use the Mermin–Kohn–Sham DFT approach [74] with the

PBEsol xc functional. Ion temperatures are controlled by using the Nosé–Hoover ther-

mostat [75], while electron temperatures are defined by the Fermi–Dirac distribution via a

smearing approach. NV T ensembles are generated that consist of 4000 to 10,000 MD steps

with time step of 0.5 fs. Mg sv GW and O h potentials are used, the same as the DFT cal-

culations at 0 K. The energy cutoff is 1000 eV, which defines the size of the plane-wave basis

set. It requires large enough cells in combination with proper/fine k meshes to ensure the

accuracy of the DFT calculations (see Appendix E). In our simulations, we use cubic cells

with 64 and 54 atoms that are sampled by a special k point (1/4, 1/4, 1/4) and Γ-centered

2×2×2 k mesh for B1 and B2 phases, respectively, in order to obtain results reasonably close

to the converged setting while computational cost is relatively low. Structure snapshots have

been uniformly sampled from each QMD trajectory and recalculated with denser k meshes

of 2×2×2 (for B1) and 3×3×3 (for B2) to improve the accuracy of the thermal EOS and

their volume dependence and reduce the error in the calculation of the phase transition.

The QMD calculations are performed at temperatures between 500 and 12,000 K, in steps

of 500 to 1500 K, with more calculations at low to intermediate temperatures to improve

the robustness of the TDI for anharmonic free-energy calculations. Large numbers of 360

and 320 electronic bands are considered, respectively, for B1 and B2 simulations to ensure

the highest-energy states remain unoccupied.

The EOS obtained from the QMD or QHA calculations produces E(V, T ) and P (V, T )

data that allow the calculation of the Hugoniot. The analysis of the QMD EOS data fol-

lows the procedure that was introduced in detail in our recent paper on liquid SiO2 [76].

The Hugoniot is calculated by solving the Rankine–Hugoniot equation using the numerically

interpolated EOS. The different theoretical predictions are then compared to the experimen-

tally measured Hugoniot to benchmark the performance of the computational approaches

and the xc functionals in the corresponding thermodynamic regime.

With the assistance of QHA and QMD, the entire ion thermal contribution to the free

energy can be calculated by

Fi−th(V, T ) = FQHA(V, T ) + Fanharm(V, T ). (5)
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In Eq. 5,

Fanharm(V, T ) = −T

∫ T

Tref

Eanharm(V, T )

T 2
dT (6)

denotes the anharmonic term as calculated by TDI, where Eanharm = EQMD − Ecold+QHA,

EQMD is the internal energy from QMD simulations, and Tref is a reference temperature.

We note that QMD misses the quantum zero-point motion of ions while QHA does not.

This leads to increased discrepancy between QMD and QHA internal energies as temperature

drops near zero, associated with decreasing heat capacity CV of the real system (from ∼

3kB/atom to zero, as captured by QHA, whereas QMD gives CV = 3kB) since fewer lattice

vibration modes can be excited. In order to eliminate the resultant artificial exaggeration

of the integrand, we have replaced Ecold+QHA with Ecold + 3kBT in our calculations of Eq. 6

(see Appendix F). This effectively treats the ions classically in the evaluation of Fanharm at

temperatures higher than Tref, which we believe is a reasonable approximation for phonon

interactions (the anharmonic term).

Our calculated results for Eanharm as a function of temperature are then fitted to high-

order polynomials (to the sixth-order for B1 and eighth-order for B2) to compute the nu-

merical integration in Eq. 6. The functionality of TDI also requires choosing the proper

reference point Tref . In this work, we consider Tref to be low by following the idea that

QHA is valid and other anharmonic contributions (beyond the volume-dependence vibra-

tion changes as have been included in QHA) are zero for MgO at low temperatures. For

consistency among different isochores, we make the choice of Tref such that the heat capacity

is 10% of 3kB. The corresponding Tref is 100 to 200 K. We have also tested other choices of

Tref and examined their effects on Fanharm and the B1-B2 phase boundary. The results are

summarized in Appendix F.

We note that when analyzing the QMD trajectory to calculate the EOS, we disregarded

the beginning part (20%) of each MD trajectory to ensure the reported EOS represents

that under thermodynamic equilibrium. Ion kinetic contributions to the EOS are manually

included by following an ideal gas formula (i.e., internal energy Eion kin. = 3NkBT/2 and

pressure Pion kin. = NkBT/V , where N is the total number of atoms in the simulation cell and

kB is the Boltzmann constant). Although MgO is an insulating solid with a wide electronic

band gap in all conditions considered in this study, we have still carefully considered the

effect of electron thermal effects in the free-energy calculations (see Fig. 14(b)). By following

the idea of Vinet [70], we consider the EOS at each temperature and fit the Helmholtz free
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energy-volume data F (V ) to various EOS models, including the Vinet and fourth-order

Birch–Murnaghan model as introduced in the previous Sec. IIA, as well as a numerical

approach using cubic splines. The B1-B2 transition pressures and volumes of the two phases

upon transition can then be determined by the common tangents of F (V ) of the two phases

(see Appendix B).

III. RESULTS

A. Cold-curve equation of state

The cold-curve EOS of B1 and B2 MgO based on static-lattice HF and AFQMC calcula-

tions are listed in Table I. The data for each phase at every volume is based on calculations

using basis sets and simulation cells with finite sizes, which have then been extrapolated to

the thermodynamic and CBS limits. The results show that, for both B1 and B2 phases, the

energy minimum locates at 17.0 to 18.7 Å3 when the calculation takes into account only

exchange interactions of the electrons (EHF), the correlation energy is about −0.60 Ha (1

Ha=27.211386 eV) at above 10.5 Å3 and decreases to −0.63 eV as the cell volume shrinks

to ∼7 Å3, and the standard errors of the AFQMC data are small (∼0.1 mHa).

The energy-volume curves E(V ) are obtained by fitting the AFQMC static lattice data

to EOS models, which gives rise to the equilibrium volume V0 and bulk modulus B0 of each

phase. The results are summarized in Table II and compared to those from HF and DFT

simulations in order to investigate the importance of the xc functionals. We then calculated

the B1-B2 transition pressure Ptr and volumes of the two phases upon transition Vtr from the

common tangent of the E(V ) curves. This is equivalent to another common approach for

determining the transition pressure using the enthalpy-pressure relation (see Appendix B).

Our results show that DFT predictions vary by up to ∼7% in V0, ∼15% in B0, ∼7% in Ptr,

and ∼10% in volume change upon B1-B2 transition, due to usage of different xc functionals.

To directly compare theoretical EOS with DAC experiments, corrections to the static-

lattice results are needed to account for the differences due to lattice vibration and thermal

contributions. We have added ion thermal contributions to the cold curve EOS via lattice

vibration calculations under QHA, which is generally considered a good approximation for

MgO under room temperature. The cold-curve EOS is re-evaluated by fitting the corrected
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TABLE I. Hartree–Fock (EHF) and correlation (Ecorrelation = EAFQMC −EHF) energies of MgO in

B1 and B2 phases at a series of volumes. The data are in the thermodynamic and CBS limits. σ

denotes the standard error of the AFQMC energy. Numbers are in units per Mg-O pair.

V (Å3) EHF (Ha) Ecorrelation (Ha) σ (Ha)

B1

7.2559 -69.17120 -0.62318 0.00014

8.1877 -69.37202 -0.61553 0.00012

9.1961 -69.51994 -0.60913 0.00012

10.2840 -69.62762 -0.60393 0.00013

11.4546 -69.70457 -0.59993 0.00013

12.7107 -69.75801 -0.59671 0.00012

14.0555 -69.79346 -0.59415 0.00027

15.4919 -69.81513 -0.59388 0.00032

17.0231 -69.82624 -0.59213 0.00015

18.6519 -69.82929 -0.59054 0.00014

20.3814 -69.82618 -0.59089 0.00019

22.2147 -69.81840 -0.59072 0.00017

B2

6.3976 -68.99477 -0.63091 0.00011

7.2559 -69.22190 -0.62235 0.00011

8.1877 -69.39028 -0.61602 0.00011

9.1961 -69.51385 -0.61053 0.00012

10.2840 -69.60320 -0.60677 0.00012

11.4546 -69.66637 -0.60334 0.00015

12.7107 -69.70948 -0.60184 0.00015

14.0555 -69.73719 -0.59967 0.00016

15.4919 -69.75310 -0.59856 0.00014

17.0231 -69.75998 -0.59841 0.00015

18.6519 -69.75994 -0.59909 0.00019

20.3814 -69.75465 -0.60084 0.00030

22.2147 -69.74539 -0.60147 0.00028

300-K data for each phase to the EOS models. The equilibrium volume and the pressure-

volume results from theoretical calculations (AFQMC, DFT, and HF) are shown in Fig. 1

and compared to experimental results. It shows remarkable agreement between AFQMC and

experimental results for both the equilibrium volume and compression curve. In contrast,

the HF and DFT results scatter around the experimental values and vary significantly.

Explicitly, DFT results exhibit a strong dependence on the choice of the xc functional, with

HSE06, SCAN, and PBEsol performing better than PBE and LDA when compared with

the experimental data.

11



TABLE II. Equilibrium volume (V0), bulk modulus (B0), and volumes of transition (Vtr) of MgO

in B1 and B2 phases, and the transition pressure (Ptr), determined from the fitting of the E(V )

data from static lattice calculations using HF, DFT with different xc functionals, and AFQMC.

Fittings are based on the fourth-order Birch–Murnaghan EOS model unless specified. Volumes are

in units per Mg-O pair. Also listed for comparison are results from the latest DMC calculations,

which agree with our AFQMC predictions, and experimental values of Ptr, which are not precise

enough to constrain theoretical predictions.

V B1
0 (Å3) BB1

0 (GPa) V B2
0 (Å3) BB2

0 (GPa) V B1
tr (Å3) V B2

tr (Å3) Ptr (GPa)

LDA 18.054 172.1 17.676 158.8 8.849 8.445 531.7

PBE 19.266 149.0 19.000 133.7 9.076 8.669 523.4

PBEsol 18.737 157.4 18.366 145.1 9.013 8.609 517.5

SCAN 18.469 166.2 19.720 75.3 8.914 8.483 546.5

SCAN a 18.474 150.8 16.910 177.9 8.918 8.470 549.8

HSE06 18.564 166.7 18.130 153.9 8.983 8.568 530.6

HF b 18.565 179.1 17.795 176.4 9.141 8.669 535.1

AFQMC b 18.407 175.7 17.940 154.6 9.201 8.739 499.2

DMC c 18.788 ± 0.093 153.8 ± 4.5 – – – – 493 ± 8 (503 ± 8 d)

Expt. e – – – – – – 429–562 (439–572 f)

Expt. g – – – – – – 410–600

a E(V ) fitted to Vinet EOS.
b A different grid of (high-density only) data points is used for the B2 phase.
c Diffusion Monte Carlo data (plus zero-point energy) fitted to a Vinet EOS by L. Shulenburger et al. [38]
d Corrected to static lattice at 0 K.
e Double-stage DAC measurements at room temperature by N. Dubrovinskaia et al. [77]
f Corrected to static lattice at 0 K.
g Laser-driven ramp compression at 2000–6000 K by F. Coppari et al. [12]

Figure 2 compares the AFQMC cold curve of MgO at higher densities (near the B1-B2

transition) with those calculated using HF and DFT with various xc functionals. It shows

HF, LDA and PBE demonstrate large deviations (approximately ±0.5 to 1 eV/MgO in en-

ergy and 0 to 40 GPa in pressure, depending on the phase and the density) for the cold curves,

while PBEsol, SCAN, and HSE06 show significantly improved agreements, in comparison to

the AFQMC results. These findings are overall consistent with normal expectations based

on Jacob’s ladder (precision relation: hybrid>meta-GGA>GGA/LDA>HF).

Figure 3 summarizes the B1-B2 phase transition pressures (red) and volume changes

upon the phase transition (black) of MgO calculated using HF and DFT with various XC

functionals in comparison to AFQMC. Due to the reconciliation of the EOS errors for the
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FIG. 1. AFQMC, various DFT, and HF predictions of (a) the internal energy-volume relation

and equilibrium volume V0 (colored triangles) and (b) compression curve of B1 MgO at 300 K,

benchmarked against experimental values (gray symbols) from Refs. 78–80. In (a), all energy

curves are plotted relative to their respective minimum values.

B1 and B2 phases in the calculation of the B1-B2 transition, the proximity of HF and DFT

to AFQMC results no longer follows expectations of Jacob’s ladder. The AFQMC predicted

transition pressure is lower and volumes upon transition are larger than all other methods.

PBEsol prediction of the transition pressure is closer to AFQMC than HF or other DFT xc

functionals, with a difference of 20 GPa.

B. High-temperature EOS

High-temperature EOS of solid-state MgO is obtained from QMD and QHA calculations.

The QHA results are based on a combination of phonon and cold-curve EOS, where the cold

curves are obtained by static DFT calculations using four different xc functionals (LDA,

PBE, PBEsol, and SCAN), while phonon calculations are performed by using the DFPT

approach, PBEsol xc functional, Mg sv GW and O h pseudopotentials, and including the

Born effective charge. Tests show negligible differences in vibrational energies if the phonon

calculations are done by using other xc functionals or ignoring the splitting between longi-

tudinal and transverse optical modes (see Appendices C and D).

We first used the EOS to calculate the principal Hugoniot and compared them with exper-

iments. Figure 4 shows comparisons of the Hugoniots in pressure–density and temperature–
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FIG. 2. Comparison between AFQMC and various DFT or HF predictions of (a) energies and

(b) pressures from static-lattice calculations of MgO around the B1-B2 transition. Top: direct

comparisons; bottom: differences relative to AFQMC. Solid and dashed lines denote results for the

B1 and B2 structures, respectively.

pressure spaces. Similar to previous QMD calculations that used the Armiento–Mattsson

(AM05) xc functional [38], our present QMD results based on the PBEsol functional show

excellent agreement with experimental Hugoniots in stability regimes of both B1 and B2

in the pressure-density relation, as well as for B1 in the temperature profile. In compari-

son, QHA results show consistency with experiments at low pressures but give increasingly

higher density at high pressures along the Hugoniot, more so for the B2 than the B1 phase.

The breakdown of QHA as shown in the pressure-density results can be attributed to the

anharmonic vibration effect that is naturally included in QMD but missing in QHA and

becomes more significant at higher temperatures. By comparing the thermal EOS along

an isotherm, we found similar energies but higher pressures given by QMD than by QHA;
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FIG. 3. Comparison between AFQMC and various DFT or HF predictions of the volumes of the

B1 and B2 phases upon transition and the transition pressure. Lighter colors denote 300-K results

based on QHA; darker colors denote static-lattice results. The transition occurs at 429 to 562 GPa

according to room-temperature experiments [28].

according to the Rankine–Hugoniot equation, this must be reconciled by less shrinking in

volume, which explains the Hugoniot density relations between QMD and QHA as shown

in Fig. 4(a).

In the temperature-pressure space, QMD and QHA results of the Hugoniot are less dis-

tinct from each other than in the pressure-density space. QHA results based on LDA xc

functional clearly lie below the range of the experimental data for the B1 phase, PBE signif-

icantly improves the agreement with experiments, while PBEsol and SCAN functionals and

AFQMC data fall between LDA and PBE and near the lower bound of the experimental

data. QMD predictions of the temperature are higher and improve over that by QHA using

PBEsol. In addition, QMD predicts smaller differences between the Hugoniot of the B1

and B2 phases than QHA; AFQMC predictions of the B2 Hugoniot show good agreement

with SCAN and LDA under QHA, following the trend of experimental Hugoniot after the

turnover, while the QHA-PBEsol predictions are slightly higher. Our QMD results of the

Hugoniot are overall consistent with previous calculations and align with experiments. More

discussions will be given in the following and in Appendix G regarding the B1–B2 phase
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FIG. 4. Comparison between QMD and QHA Hugoniots of MgO in (a) pressure-density and (b)

temperature-pressure spaces. Different colors denote the different calculation methods. Solid and

dashed curves represent results for B1 and B2 phases, respectively. Also included (in gray) are the

experimental Hugoniot data from Marsh et al. (squares) [81], Vassiliou et al. (up triangles) [82],

Fratanduono et al. (down triangles) [83], Root et al. (circles) [38], Svendsen and Ahrens et al.

(diamonds) [84], McWilliams et al. (ovals) [11], and Bolis et al. (shaded areas, with a horizontal

bar denoting the error in pressure and a cross denoting the condition interpreted as the melting

point) [40], previous DFT-MD predictions based on the Armiento–Mattsson xc functional (line-

crosses) [38], and a thermodynamic EOS model by de Koker and Stixrude (thick dashed lines) [31].

boundary and comparison between our prediction and the experiments.

The agreement with experiments in both the thermal (along the Hugoniot) and the cold-

curve EOS (as shown in the previous Sec. IIIA) validates PBEsol and SCAN as optimal

choices for the xc functional for calculations of MgO at both the ground state and finite

temperatures. In the following, we have added the QHA and QMD-derived (using the

TDI approach) thermal free energies based on DFT-PBEsol calculations to various cold

curves (by AFQMC and DFT-PBEsol/SCAN) to estimate the total free energies of MgO in

both B1 and B2 phases [85]. Based on these results, we charted the B1-B2 transition and

calculate the volumes of the two phases upon transition. The results provide a preliminary

reference for the B1-B2 phase boundary and its uncertainty based on state-of-art theoretical

computations.

Figure 5 shows the volume of MgO collapses by ∼ 4.75(±0.25)% at 0 K [from ∼9.2
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FIG. 5. (a) Volume collapse and (b) pressures of the B1→B2 transition at finite temperatures

with the cold curve calculated using AFQMC and DFT with two optimal xc functionals (PBEsol

and SCAN) and thermal effect (based on QMD and TDI) calculated within DFT using the PBEsol

functional. Results based on QHA (including electron thermal but excluding anharmonic vibra-

tional effects) are shown in lighter-colored curves (with circle symbols) for comparison.

Å3/MgO for B1 to ∼8.7 Å3/MgO for B2 (error associated with using different methods

AFQMC, PBEsol, and SCAN: ±0.1 Å3/MgO)] and 3.7(±0.2)% at 10,500 K [from ∼9.8

Å3/MgO for B1 to ∼9.4 Å3/MgO for B2 (error: ±0.2 Å3/MgO)] for the B1→B2 transi-

tion, and the transition pressure decreases from ∼ 515(±25) GPa to ∼ 490(±25) GPa as

temperature increases from 0 to 10,500 K. We found the Vtr − T curves are similar between

the three sets of predictions based on AFQMC and DFT-PBEsol/SCAN cold curves, with

the AFQMC predicted volumes and volume collapses larger (and transition pressures lower)

than the DFT predictions. The dT/dP Clapeyron slope of the B1-B2 phase boundary pre-

dicted by the AFQMC data set is similar to DFT-SCAN, both being steeper than that by

DFT-PBEsol (see Table IV that summarizes values of the Clapeyron slope).

Figure 5 also shows QHA predicts a much less steep boundary for the B1-B2 transi-

tion than QMD, reflecting the importance of anharmonic vibrational effects, similar to the

report by previous studies [29, 37]. Our results clearly show the amounts of changes in

volume and volume difference between the two phases of MgO upon transition, as well as

the important role of electronic interactions (many-body in nature versus single-particle ap-

proximation under different xc functionals) in affecting the results. The much less negative
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value in Clapeyron slope (dPtr/dT ) and slightly larger value in volume collapse of the B1–

B2 transition predicted by QMD may cause less significant topography of discontinuity and

lateral variations in deep-mantle mineralogy of super-Earths than previously expected based

on the QHA results, changing expectations on the style of convection in these planets (see

discussions in, e.g., [86]).

Moreover, by predicting a steeper B1–B2 boundary than latest theoretical studies [29, 37],

our AFQMC (and PBEsol) results show excellent consistency with both experiments by

McWilliams et al [11] and Bolis et al [40] (see Appendix G). We note that Bolis et al [40]

interpreted the turnover in their experiments as the melting start of shocked MgO, largely

based on comparisons with theoretical studies by then that underestimated Ptr along the

Hugoniot. Our new results suggest that the turnovers in the experiments are associated with

the B1–B2 transition. It is beyond the scope of this study, however, to decipher the nature

of the subtle differences between experiments by Bolis et al. [40] and McWilliams et al. [11],

as it requires accurate knowledges of the triple point, thermodynamic free energies of the

liquid phase, as well as considerations of the kinetics of the transition to fully understand

the observations.

We have performed additional tests and found the error in transition pressure (associated

with the choices of different Tref and fitting methods in TDI) increases to ∼50 GPa at

T ≈ 104 K (see Appendix F, corresponding changes in the Clapeyron slope are tabulated in

Table IV), while the errors due to other sources (EOS models, data error bars, and the data

grid) are relatively small (e.g., the statistical error of the AFQMC and QMD energies only

leads to a difference in Ptr of 1.5 GPa at 6000 K).

IV. CONCLUSIONS

This work exemplifies the first application of the AFQMC approach to benchmark the

cold curve and phase transition in solid-state materials to very high pressures. Our AFQMC

results reproduce the experimental cold curve (equilibrium volume and compressibility at

room temperature) and provide a preliminary reference for the equations of state of MgO at

up to 1 TPa. In comparison, DFT predictions vary by up to 7% to 15% for the equilibrium

properties (V0 and B0) and B1-B2 transition (Ptr and volume collapse upon the transition),

depending on the xc functionals, and the largest differences are observed between the cold
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curves by PBE and LDA. The HSE06, SCAN, PBEsol functionals perform better than PBE,

LDA, and HF in reproducing the E(V ) cold curves by AFQMC. The cold-curve differences

for B1 offset those for B2, leading to the sensitivity of the predicted transition pressure and

volume change to the choice of the xc functional.

Our Hugoniot results based on QMD calculations of the thermal EOS using PBEsol

show excellent agreement with experiments for B1 and B2 in the pressure-density relation,

as well as for B1 in the temperature-pressure profile. In comparison, QHA results of the

pressure-density Hugoniot show consistency with experiments at low pressures but increasing

discrepancy at high pressures, because larger anharmonic effects are expected at higher

temperatures. The good performance of PBEsol in reproducing both the thermal (along

the Hugoniot) and the cold-curve EOS of MgO has motivated us to further calculate the

anharmonic free energies and add them to the cold curves by AFQMC and DFT-PBEsol

or SCAN to calculate the total free energies and evaluate the B1-B2 transition at various

temperatures. Our results show temperature lowers the transition pressure and expands the

volumes upon the B1-B2 transition. Anharmonic vibration increases the transition pressure

Ptr and hinders the transition volumes Vtr from expansion, relative to QHA. AFQMC predicts

a steeper dT/dP phase boundary and a larger volume collapse upon the B1→B2 transition

than DFT-PBEsol, similar to the effect of anharmonicity with respect to QHA.

In addition to providing a preliminary reference for the B1-B2 phase boundary and its

uncertainty based on state-of-art theoretical computations, our results will be useful for

building an accurate multiphase EOS table for MgO for planetary sciences and high energy

density sciences applications, as well as for elucidating the mechanism of phase transforma-

tions (e.g., kinetics effects) in different experimental settings (e.g., compression rates). More

work is desired to clarify the triple point and the melting curve at high temperatures and

pressures to multi-TPa pressures. Looking ahead, finite-temperature AFQMC [87, 88], by

better accounting of the electron thermal effects, and back-propagation for force and stress

estimators in AFQMC [89] can offer additional yet more-accurate options to benchmark the

EOS and phase transitions of solid-state materials at high temperatures and pressures.
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Appendix A: Finite-size and basis sets corrections to AFQMC energies

Our AFQMC calculations were performed for both phases of MgO at all volumes with

various cell sizes and optimized basis sets. These include: (i) 2×2×2 k points (8 MgO units)

with pVDZ, pVTZ, pVQZ, and pV5Z; (ii) 3×3×3 k points (27 MgO units) with pVTZ and

pVQZ; and (iii) 4×4×4 k points (64 MgO units) with pVTZ.

We have then followed three steps to extrapolate the AFQMC results to the thermody-
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FIG. 6. Examples of our AFQMC energies extrapolation: (a) finite-size correction [pVTZ (N=58)];

(b) AFQMC correlation energy measured with respect to the CBS limit; (c-d) uncorrected AFQMC

correlation energies for various basis sets and, as a comparison, basis set corrected AFQMC energies

with the pVTZ basis set; (e-f) the same red curves in panels (c-d) but now measured with respect

to corrected pV5Z basis set results, showing the excellent agreement and efficiency of the basis

set correction. Panels (a-b): 18.65 Å3/MgO; (b-f): NNiO = 8; (a-c) and (e): B1; (d) and (f):

B2. The inset of (a) shows the values of the finite-size corrections at different volumes. In (b),

∆Ecorr denotes uncorrected AFQMC energies, ∆EMP2 represents the MP2 correction, and ∆Escaled
MP2

denotes the scaled MP2 correction. N denotes the number of basis functions.

namic and the complete basis set (CBS) limits:

1. Use all the pVTZ results to calculate finite size corrections for the 3×3×3 calculations;

2. Use all the 3×3×3 calculations to calculate the basis set corrections, combining

AFQMC calculations with MP2 calculations and the “scaled” correction described in Ref. 27;

3. Use the 2×2×2 calculations to check reliability of the basis set corrections in step 2
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and to ensure the basis set corrections were robust.

Our extrapolation procedure is demonstrated in Figure 6. The remarkable consistency

between the pVTZ and pV5Z corrected values (to approximately 1–2 mHa/MgO from cal-

culations with only 2×2×2 k points) suggests our corrections are reliable and robust.

Appendix B: EOS fit and transition pressure determination
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FIG. 7. Determination of the transition pressure (Ptr) by using two different approaches: (a)

common-tangent of the internal energy E(V ) curves and (b) intersect of the enthalpy H(P ) curves.

In this example, the data are from 0-K DFT-PBEsol+QHA calculations; Ptr determined using the

two approaches are 504 and 505 GPa, respectively.

Figure 7 compares the two different ways of calculating the transition pressure: using

internal energies E(V ) and their common tangent (left) or using enthalpies H(P ) and their

crossover point [90]. The two approaches are thermodynamically equivalent, as shown by

the same transition pressure that has been determined (the 1-GPa difference is due to the

numerical fitting of the data). The common-tangent approach is our option in this study
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because the internal energy (or Helmholtz free energy for T ̸= 0 K) is readily calculated

while pressure is not except for the 0-K DFT cases.

FIG. 8. A Monte Carlo approach is used to determine the 1-σ errors of the EOS fitting parameters.

In this example, the AFQMC data and their standard errors (as shown in Table I) are used and

the third-order Birch–Murnaghan EOS model is considered. Two Monte Carlo runs with 1000 or

10000 randomly generates datasets give the same results for V0, B0, and their error bars.

The E(V ) data are fitted to EOS models to determine the equilibrium volume V0 and

bulk modulus B0. Typical errors of these parameters can be calculated using the Monte

Carlo approach and are shown in Fig. 8.

Table III summaries the equilibrium volume V0 and bulk modulus B0 by using differ-

ent EOS models for the PBEsol data. We found the third-order Eulerian EOS (Birch–

Murnaghan) works surprisingly well for MgO up to TPa pressures as long as data at high-

enough pressures are included.

Appendix C: Effect of LO-TO splitting

It is well known that the frequencies of the optical modes parallel and perpendicular to

the electric field split (“LO-TO splitting”) in ionic materials such as MgO. [91] This mode
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TABLE III. Equilibrium volume (V0), bulk modulus (B0) and its pressure derivative (B′
0), and

volumes of transition (Vtr) of MgO in B1 and B2 phases, and the transition pressure (Ptr), de-

termined in different fitting approaches for the E(V ) data from static DFT calculations using the

PBEsol xc functional. Volumes are in units per Mg-O pair.

V B1
0 (Å3) BB1

0 (GPa) B′B1
0 V B2

0 (Å3) BB2
0 (GPa) B′B2

0 V B1
tr (Å3) V B2

tr (Å3) Ptr (GPa)

BM3 18.720 161.4 4.01 17.797 170.2 3.94 – – –

BM4 18.737 157.4 4.11 18.366 145.1 4.09 9.013 8.609 517.5

Vinet 18.786 137.7 4.91 20.552 68.5 5.56 9.012 8.583 522.7

BM3 a 18.721 160.4 4.02 18.266 151.3 3.99 – – –

BM4 a 18.737 157.3 4.11 18.289 147.6 4.09 9.014 8.610 517.4

Vinet a 18.791 141.1 4.81 18.364 129.2 4.86 9.037 8.639 515.3

spline a – – – – – – 9.001 8.605 518.5

a Different grids of data points (slightly denser for B1 and high-density only for B2) are used.

splitting is missed in regular phonon calculations but can be correctly captured when Born

effective charges, piezoelectric constants, and the ionic contribution to the dielectric tensor

are considered (by switching on LEPSILON in VASP). The effects on the phonon dispersion

relations of B1- and B2-MgO are shown in Fig. 9.
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FIG. 9. Phonon band structures of MgO from DFPT vs DFPT+Born calculations of B1 vs B2

MgO at 6.75 g/cm3.

Figure 10 compares the resultant differences in vibrational energy and entropy of MgO

in different phases and at different densities. The results show that LO-TO splitting only

makes a small difference (<0.7%) at T < 500 K and then quickly drops to zero at higher T;

the effect on the differences between B1 and B2 is also small and negligible.
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FIG. 10. The effects of including LO-TO splitting (BORN) in phonon calculations on the ther-

modynamic properties of B1 and B2 phases of MgO at various densities. (a) Entropy and internal

energy and (b) internal energy changes due to excluding LO-TO splitting; (c) and (d) entropy

differences between B1 and B2 at two densities near the phase transition with and without LO-TO

splitting. The differences in (c) and (d) are relative to E or TS, whichever is larger.

Appendix D: Effects of xc functional on phonon results

Figure 11 shows that different xc functionals produce the same phonon band structure

and vibrational free energies within QHA.

Appendix E: Convergence test

Figure 12 shows large cell sizes in combination with proper/fine k-point meshes are needed

to ensure convergence of the EOS. For example, a 250-atom cell with a single k point is not
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FIG. 11. (a) Phonon band structures and (b) vibrational free energies of MgO from PBEsol vs

PBE calculations.
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FIG. 12. Finite size effects on pressures and internal energies of (a) B1 and (b) B2 structures of

MgO at different densities and electronic temperatures. All calculations are based on DFT-PBEsol

and use 64-atom cells for B1 and 54-atom cells for B2, unless otherwise specified. “Bcar” and

“Brec” denotes using the special k point of (1/4, 1/4, 1/4) in cartesian (wrong “Baldereschi point”

for cubic cell) and reciprocal (correct “Baldereschi point” for cubic cell) coordinates, respectively.

enough for B2 at 6.0 g/cm3. In our QMD simulations, we use a 64-atom cell with the “Brec”

special k point and a 54-atom cell with a Γ-centered 2×2×2 k mesh, respectively, for the

B1 and B2 calculations.

Our additional tests for the phonon calculations show that 8- and 16-atom cells, respec-
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tively, are needed for B1 and B2 to obtain converged Fvib(T ) results rather than using the

primitive 2-atom cells. In this study, we choose 54-atom cells (with a 4×4×4 k mesh) for

both B1 and B2 phonon calculations for better accuracy.

Appendix F: Calculation of anharmonic energies and comparison between different

terms

(a) EQMD or Ecold+QHA

(b) [EQMD - Ecold] or EQHA relative to 3kBT
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FIG. 13. (a) Internal energies along selected isochores of MgO based on QMD (darker solid curves)

or QHA (lighter dashed curves) calculations. (b) Differences of the ion thermal term of the internal

energy from a classical crystal that assumes 3kB/atom for the heat capacity (the Dulong–Petit

law). The structures and densities are represented by different colors and symbols as denoted in

the legend. The solid curves in (b) are polynomial fits to the data. In both panels, Ecold is taken

as the value of EQMD at 0 K.

Figure 13 shows the finite-temperature internal energies of MgO estimated from cold
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calculations under QHA (Ecold+QHA) in comparison with values from direct QMD simulations

(EQMD). Overall, Ecold+QHA and EQMD are similar to each other, with noticeable differences

near zero K, because of the nuclear quantum effects, or at high temperatures, due to increased

anharmonic vibration and electron excitation effects. The differences are more evident when

the ion thermal energies (E − Ecold) are plotted with respect to the classical crystal value

of 3kBT . The mismatch between QMD and QHA near zero K and the proximity of EQHA

to 3kBT at high temperatures have motivated us to define Eanharm = EQMD − Ecold+QHA ≈

EQMD−Ecold−3kBT in the TDI Eq. 6 to calculate the anharmonic free energy Fanharm. Under

this approximation, the total free energy of the system F (V, T ) = Ecold(V )+Fi,QHA(V, T )+

Fi−th,anharm(V, T )+Fe−th(V, T ) ≈ Ecold(V )+F quantum.
ind.ph. (V, T )+F class.

int.ph.(V, T )+Fe−th(V, T ) where

the subindices “ind.” and “int.” denote independent and interacting, “ph.” denotes phonon,

“class.” and “quantum.” represents the nature of the ions as being classical and quantum,

respectively, and “e-th” denotes the electron thermal term. The only difference from an

entirely accurate (“quantum”) description lies in the approximation in the anharmonic term

by using classical ions (as in QMD simulations and the classical-crystal reference for TDI),

whose effect, we believe, is negligible for the purpose of this paper. We have performed

extensive tests and found Eanharm(V, T ) can be isochorically fitted well using sixth- and

eighth-order polynomials for the B1 and B2 phases, respectively. We also note that the

different choices of Tref or fitting EQMD by using cubic splines can affect the value of Fanharm

(see Fig. 14), while lower-order polynomials or exponential fits [2, 92], although they were

found to work for certain materials at ambient densities or relatively low temperatures, break

down for MgO at high densities and temperatures.

In practice, QMD is less efficient and inappropriate for simulating near-zero temperatures.

Therefore we have to choose a finite value for Tref in TDI and assume QHA is valid for any

temperature below Tref. This would technically limit the accuracy of the anharmonic free

energies, as shown in Fig. 14(b) by the different values of Fanharm when choosing different

Tref and fitting approaches. Figure 14 also shows that the contributions by electron thermal

excitation become increasingly significant when the temperature exceeds 8000 K, more at

lower densities. The anharmonic vibration and electron thermal terms are relatively small

in comparison to the lattice vibration as accounted under QHA. However, because of the

similarities between energies of the B1 and B2 phases, the effects of anharmonic vibration

can significantly affect the B1-B2 transition boundary, as shown in Fig. 5.
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FIG. 14. Comparison between different thermodynamic energy terms of MgO, including (a) in-

ternal energy (solid curves) and vibration entropy (dashed curves) terms under QHA calculations,

and (b) anharmonic free energy (dark solid and light dashed curves) and electronic entropy (light

solid curves) terms from TDI and QMD calculations. The anharmonic free energies shown in

(b) are calculated using TDI with different methods: polynomial fit of anharmonic internal en-

ergy (Eanharm = EQMD−Ecold− 3kBT ) with CV (Tref)=10%×3kB/atom (dark solid, corresponding

Tref=100–200 K) or 90%×3kB/atom (light long dashed, corresponding Tref=800–1550 K) or cubic

spline fit of the internal energy (EQMD) with CV (Tref)=50%×3kB/atom (light short dashed, cor-

responding Tref=250–550 K).

Figure 15 summarizes the B1-B2 transition pressure based on free energies calculated

using different approaches. Despite the distinctions between predictions by AFQMC and

DFT-PBEsol or SCAN at zero K, all methods give similar trends of decreasing Ptr (by ∼20

to 40 GPa at 9000 K, relative to the corresponding values at 0 K) and enlarging uncertainty

(by ∼40 to 50 GPa at 9000 K) as temperature increases. The relations in Ptr between the

different approaches AFQMC, DFT-PBEsol, and DFT-SCAN at high temperatures remain

similar to those under QHA, whereas the anharmonic effects clearly steepen the dT/dP

slope and push Ptr to higher values than QHA predictions. With polynomial fits of Eanharm,

the differences between the phase boundaries based on QHA and anharmonic calculations

are smaller if the values of Tref are higher (light long dashed line-squares); in comparison,

cubic spline fits of EQMD using the same Tref tend to produce larger differences than the
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FIG. 15. B1-B2 phase boundary calculated using QHA (light solid line-circles) in comparison to

those including the anharmonic effect calculated with three different methods in TDI: polynomial fit

of Eanharm with CV (Tref)=10%×3kB/atom (dark solid line-squares, corresponding Tref=100–200 K)

or 90%×3kB/atom (light long dashed line-squares, corresponding Tref=800–1550 K) or cubic spline

fit of the internal energy (EQMD) with CV (Tref)=50%×3kB/atom (light short dashed line-squares,

corresponding Tref=250–550 K). The maximum range of difference defined by the three methods

are represented by the shaded area. Black, blue, and red colors denote the calculations that use

different cold curves.

polynomial fits of Eanharm (light short dashed line-squares). We have quantified the phase-

boundary differences by calculating the Clapeyron slope. The results are summarized in

Table IV.

Furthermore, we have tested by employing two different versions of the TDI/temperature-

integration approach to cross-check our above results, including (1) a more direct ap-

proach [95]:

F (V, T )

T
− F (V, Tref)

Tref

=

∫ 1/T

1/Tref

E(V, T )d
1

T
(F1)
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TABLE IV. Clapeyron slope dPtr/dT (in units of MPa/K) of the MgO B1–B2 phase transition

estimated by linear regression of the data calculated using different approaches as shown in Fig. 15.

The calculations for QHA use 1500–4500 K data, while other cases use 1500–6000 K data, for better

linearity and relevance to the super-Earths’ interior conditions. Numbers in boldface correspond

to the solid line squares in Figs. 5(b) and 15. We note that the values of the slope calculated here

are much smaller than previous estimations based on experiments (−390±300 MPa/K) [11], which

were associated with significant uncertainties, and also lower than predictions by an interatomic

model of the B1-B2 transition (∼ 40 MPa/K if taking volume collapse of 3% and entropy increase

of 7 J/K/mol) [93, 94], suggesting the B1-B2 entropy difference and the thermodynamic properties

of MgO are sensitive to pressure and different from the underlying assumptions of the model.

QHA CV (Tref)=10%×3kB/atom CV (Tref)=90%×3kB/atom CV (Tref)=50%×3kB/atom

AFQMC -13.6 ± 0.8 -3.4 ± 0.2 -6.8 ± 0.1 -2.3 ± 0.3

SCAN -13.5 ± 0.8 -3.6 ± 0.2 -7.1 ± 0.1 -2.7 ± 0.3

PBEsol -16.5 ± 1.1 -4.9 ± 0.2 -8.9 ± 0.1 -3.8 ± 0.3

and (2) an indirect approach [by taking the difference of Eq. F1 with respect to a reference

system (e.g., the system under QHA) that also satisfies Eq. F1]:

F (V, T )− Fref(V, T ) = T

∫ 1/T

1/Tref

[E(V, T )− Eref(V, T )]d
1

T
. (F2)

These tests were performed at T =3000, 6000, and 9000 K, with Tref fixed to 500 K for

simplicity. In approach (1), the free energy at Tref is approximated by the corresponding

values under QHA; in approach (2), the QHA system is taken as the reference, which defines

Fref and Eref . In both approaches, an additional term EQC(V, T ) = EQHA(V, T )− 3kBT has

been introduced as quantum correction of the internal energy from QMD, similar to that

in Ref. 96. We note that the quantum correction is crucial to obtain accurate free energies

within the temperature integration approach, which starts from a cold reference state where

the important nuclear quantum effects are included by QHA but missed in QMD. We also

note that, with the quantum correction and with Ecold deducted from all energy terms,

Eq. F2 is equivalent to our method introduced in detail above and in Sec. II B (Eq. 6).

Based on our PBEsol data (cold curve, QHA, and QMD), the free energies calculated

using these two approaches are similar, both producing similar B1–B2 transition pressures:

486 GPa at 3000 K, 462 GPa at 6000 K, and 439 GPa at 9000 K. The excellent consistency
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of the results from the tests with those shown in Fig. 15 (blue shaded area) reconfirms the

methodology and findings of this study.
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FIG. 16. The B1–B2 phase boundary of MgO calculated in this study (same as the black/grey

AFQMC results shown in Fig. 15) in comparison to shock experiments by McWilliams et al. [11]

(green symbols) and Bolis et al. [40, 97] (yellow symbols) and recent theoretical calculations by

Bouchet et al. [29] (temperature-dependent effective potential approach, LDA xc functional, data

represented by blue line-circles) and Soubiran and Militzer [37] (TDI based on MD using effective

potentials tuned between harmonic oscillators and Kohn–Sham DFT, PBE xc functional, data

shown with red crosses). The dark-green circle denotes the condition attributed to the B1–B2

transition by McWilliams et al. [11].

Appendix G: Comparison with experiments

Figure 16 compares our AFQMC results of the B1–B2 transition to shock experiments [11,

40] and recent theoretical calculations [29, 37]. The previous calculations were based on
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LDA/PBE, and their predicted Ptr at 0 K is larger than our AFQMC prediction, consistent

with our findings shown in Fig. 3. The differences get smaller at higher temperatures until

approximately 8000 K, above which the previous calculations show a lower Ptr and thus a

less steep Clapeyron slope than ours. Our estimation of the B1–B2 phase boundary, with

uncertainty, agrees with the wiggled regions in both experiments by McWilliams et al. [11]

and Bolis et al. [40]. This suggests the turnovers in both experiments can be associated

with the B1–B2 transition. To fully unveil the origins of the subtle differences between the

measurements, however, still requires improved experimental diagnostics and theoretical

constraints on the structure, kinetics, and thermodynamic conditions of the samples under

shock compression.
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