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Anapole superconductivity recently proposed for multiband superconductors [Commun. Phys. 5, 39 (2022)]
is a key feature of time-reversal (T )-symmetry-broken polar superconductors. The anapole moment was shown
to arise from the asymmetric Bogoliubov spectrum, which induces a finite center of mass momenta of Cooper
pairs at the zero magnetic field. In this paper, we show an alternative mechanism of anapole superconductiv-
ity: the quantum geometry induces the anapole moment when the interband pairing and Berry connection are
finite. Thus, the anapole superconductivity is a ubiquitous feature of T -broken multiband polar superconduc-
tors. Applying the theory to a minimal model of UTe2, we demonstrate the quantum-geometry-induced anapole
superconductivity. Furthermore, we show the Bogoliubov Fermi surfaces (BFS) in an anapole superconducting
state and predict an unusual temperature dependence of BFS due to the quantum geometry. Experimental verifi-
cation of these phenomena may clarify the superconducting state in UTe2 and reveal the ubiquitous importance
of quantum geometry in exotic superconductors.

I. INTRODUCTION

Parity-mixed superconductors, in which even- and odd-
parity pairings coexist, are attracting much attention, as the
parity-mixing phenomena are closely related to the space in-
version (P)-symmetry breaking. Stimulated by the discovery
of noncentrosymmetric superconductivity in heavy fermions
and artificial heterostructures, time-reversal (T )-symmetric
parity-mixed pairing states such as the s + p-wave state have
been investigated intensively1,2. For a long time, studies fo-
cused on the crystals lacking the P-symmetry allowing an an-
tisymmetric spin-orbit coupling (ASOC). Consequently, the
Rashba superconductor and the Ising superconductor have be-
come fundamental concepts in condensed matter physics1,2.

On the other hand, centrosymmetric crystals were recently
shown to be an intriguing platform of spontaneously P-
symmetry breaking superconductivity3–5. In the absence of
the ASOC, additional T -symmetry breaking is expected3–5

as the ±π/2 phase difference between even- and odd-parity
pairing potentials, such as the s + ip-wave pairing state, is
energetically favored. As a result, both of the P- and T -
symmetry are broken while the combined PT -symmetry is
preserved. The three-dimensional s + ip-wave pairing state
in single-band superconductors was theoretically studied as a
superconducting analog6–8 of axion insulators9,10. Such a par-
ing state in Sr2RuO4 was theoretically proposed11. Further-
more, recently discovered candidate for spin-triplet supercon-
ductor UTe212,13 is predicted to realize the s+ip-wave pairing
state14, as it is consistent with the experimentally observed
multiple superconducting phases15–21 and multiple magnetic
fluctuations22–27.

Clarification of the PT -symmetric parity-mixed supercon-
ductivity has been awaited to uncover an exotic state of matter.
However, properties of the PT -symmetric parity-mixed su-
perconductivity are almost unresolved. In particular, theoret-
ical studies of multiband superconductors have not been car-
ried out except for Ref. 28, although it is known that intriguing
superconducting phenomena such as the intrinsic polar Kerr
effect29–31 and Bogoliubov Fermi surfaces (BFS)32,33 may ap-
pear from multiband properties. In Ref. 28, the anapole su-

perconductivity was discussed as an exotic feature of the PT -
symmetric parity-mixed pairing state in multiband supercon-
ductors. If some conditions are satisfied, an asymmetric Bo-
goliubov spectrum (BS) arises from the interband pairing28.
When the symmetry of superconductivity has a polar property,
such as in theAg+iB3u pairing state proposed for UTe214, the
asymmetric BS induces an effective anapole moment, which
is defined as the first-order coefficient of the free energy in
terms of the center of mass momenta of Cooper pairs. The
anapole moment characterizes the anapole superconductivity
as it does the anapole order in magnetic materials34–38 and nu-
cleus39.

The anapole moment is a polar and T -odd vector34, which
shares the symmetry as the velocity and momentum. There-
fore, it is not surprising that the effective anapole moment
induces a finite center of mass momenta of Cooper pairs q
even in the absence of the magnetic field. The mechanism
of finite-q pairing is different from the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) superconductivity40,41 and helical su-
perconductivity1,2, which require a finite magnetic field. For
example, helical superconductivity can be stabilized in parity-
mixed s + p-wave pairing states of noncentrosymmetric su-
perconductors1,2,42. However, s + p-wave pairing does not
cause T -symmetry breaking which is needed for helical su-
perconductivity, and therefore, an external magnetic field has
to be applied. In contrast, s + ip-wave pairing intrinsically
breaks P- and T -symmetry and may stabilize finite-q pairing
anapole superconductivity in the field-free condition.

Therefore, in contrast to the FFLO and helical supercon-
ductivity, the anapole superconductivity can be studied with
avoiding experimental difficulties due to vortices induced by
an external magnetic field. For instance, the anapole do-
main switching28, superconducting piezoelectric effect43,44,
and Josephson effect45,46 may uncover intrinsic properties of
anapole superconductivity. Therefore, the anapole supercon-
ductivity may be the key to elucidating the PT -symmetric
parity-mixed pairing state, and it may realize and clarify the
finite-q pairing state which has been searched for a long
time1,2,47.

In this paper, we show that the anapole superconductiv-
ity is a ubiquitous feature more than revealed in the previ-
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ous paper28, considering the quantum geometry extensively
studied in various fields37,38,48–59. Recently, an essential role
of the quantum geometry in the superfluid weight, namely,
the second-order derivative of the free energy, has been re-
vealed60–63. Thus, it is naturally expected that the quantum
geometry may be essential for the anapole superconductivity.

First, we provide a thorough formulation of the anapole mo-
ment based on the Bardeen-Cooper-Schrieffer (BCS) mean-
field theory. The obtained formula contains two terms; one is
the geometric term and the other is the group velocity term.
Only a part of the group velocity term was derived in the pre-
vious literature28. Based on the general two-band model with
Kramers degeneracy, the microscopic origin of the geometric
term is revealed to be the interband pairing and the Berry con-
nection, while the group velocity term is induced by the asym-
metric BS. Then, applying the theory to a model of UTe2, we
demonstrate the quantum-geometry-induced anapole super-
conductivity. Moreover, we show unique features of anapole
superconductivity. When the system has a small gap mini-
mum as expected for UTe213, the anapole moment induces the
BFS. The BFS may show a reappearing behavior as decreas-
ing the temperature, causing anomalies in density of states
(DOS) and thermodynamic quantities.

II. GENERAL FORMULA FOR ANAPOLE MOMENT

An order parameter of the anapole superconductivity is the
anapole moment which is defined by the first-order coeffi-
cient of the free energy with respect to q. In the previous
study28, the anapole moment is derived only when the k-
derivative of normal-state Hamiltonian is proportional to the
identity matrix, namely, ∂µHk ∝ 1. We adopt the notation
∂µ = ∂kµ , and Hk is the matrix representation of the single-
particle Hamiltonian. Below, we formulate the anapole mo-
ment in the general case based on the BCS mean-field theory.

The normal state is assumed to be P- and T -symmetric, and
therefore,Hk = UTH

T
−kU

†
T is satisfied, where UT = iσy⊗1

is the unitary part of the T operator with the Pauli matrix for
the spin space σµ (µ = 0, x, y, z). Thus, the Bogoliubov-de
Gennes (BdG) Hamiltonian for a finite-q pairing state can be
written as (see Appendix A)

ĤBdG =
1

2

∑
k

Ψ̂†
k,qH

BdG
k,q Ψ̂k,q, (1)

HBdG
k,q =

(
Hk+q ∆k

∆†
k −Hk−q

)
, (2)

Ψ̂†
k,q =

(
ĉ†k+q ĉT−k+qU

†
T

)
. (3)

Here, we denote ĉ†k = ( ĉ†↑1k · · · ĉ†↑fk ĉ†↓1k · · · ĉ†↓fk ) ,

where ĉ†σlk is the creation operator for spin σ and the other
internal degree of freedom l. We consider general cases, in-
cluding multi-orbital and multi-sublattice systems, and f is
the total number of degrees of freedom other than spin.

The off-diagonal part ∆k = ∆g
k + ∆u

k is the gap func-
tion in the matrix representation, where ∆

g(u)
k is the P-even

(odd) component of the pair potential. Coexistence of Cooper
pairs with different parities, i.e. parity-mixed state, leads to
broken P-symmetry. Furthermore, the T -symmetry break-
ing is theoretically predicted3–5, when the normal state pre-
serves the P-symmetry, Thus, we assume the ±π/2 phase dif-
ference between ∆g

k and ∆u
k, consistent with the theoretical

prediction3–5. As a result the P- and T -symmetry are broken
by the parity-mixed gap function while the PT -symmetry is
preserved. In addition, to make the anapole moment finite,
throughout the paper, we assume the gap function ∆k belongs
to polar irreducible representation.

Expanding the free energy by q as Fq = T · q + · · · , we
obtain the anapole moment as,

Tµ =
1

2

∑
k

∑
a

f(Eak) ⟨ψak| ∂µH+
k |ψak⟩ , (4)

H+
k =

(
Hk 0
0 Hk

)
. (5)

Here, we use the eigenvalue equation HBdG
k |ψak⟩ =

Eak |ψak⟩ with HBdG
k ≡ HBdG

k,0 and the Fermi-distribution
function f(E). The derivation of Eq. (4) is shown in Ap-
pendix A. When the anapole moment in superconductors Tµ
is finite, a superconducting state due to Cooper pairs with fi-
nite center of mass momenta becomes most stable.

To obtain further insights, using the Bloch wave function
which follows Hk |unχk⟩ = ϵnk |unχk⟩, we expand |ψa(k)⟩
as |ψak⟩ =

( ∑
n,χ ϕ

a+
nχk |unχk⟩

∑
n,χ ϕ

a−
nχk |unχk⟩

)T
.

Because of Kramers degeneracy, we distinguish two degen-
erate bands by the helicity χ =↑↓. Here, ϕa±nχk is the matrix
element of the unitary matrix which diagonalizes the band rep-
resentation of the BdG Hamiltonian. After calculations, the
anapole moment Eq. (4) is divided into two parts,

Tµ = T velo
µ + T geom

µ , (6)

where

T velo
µ =

∑
k

∑
n,χ

Cnχnχk∂µϵnk, (7)

T geom
µ =

∑
k

∑
n ̸=m,χχ′

Cnχmχ′k

× (ϵmk − ϵnk) ⟨unχk|∂µumχ′k⟩ , (8)

Cnχmχ′k =
1

2

∑
a

f(Eak)
(
ϕa+∗
nχkϕ

a+
mχ′k + ϕa−∗

nχkϕ
a−
mχ′k

)
.

(9)

T velo
µ in Eq. (7) is called the group velocity term as it con-

tains the group velocity ∂µϵnk. In the next section, using
the general two-band model, we show that this term arises
from the asymmetric BS. Equation (8) for T geom

µ is named
the geometric term because it contains the Berry connection
⟨unχk|∂µumχ′k⟩. Through the Berry connection in the geo-
metric term, the geometric properties of Bloch electrons may
contribute to the anapole moment. Some conditions have to
be satisfied for a finite group velocity term, which vanishes in
simple models28. On the other hand, the geometric term has
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been overlooked in the previous study. Owing to the geomet-
ric term, the anapole superconductivity becomes recognized
as a ubiquitous feature of the PT -symmetric mixed-parity
pairing state in multiband superconductors.

Before going to the next section, we give an intuitive under-
standing of the origin of anapole superconductivity based on
the group velocity and geometric terms. From the viewpoint
of symmetry, the anapole moment should arise from an odd
structure in the wave-number space. Since the group veloc-
ity term comes from k-space structure of the band dispersion,
i.e. ∂µϵn(k), this term arises from the odd structure of BS,
namely, asymmetric BS. In contrast, the geometric term arises
from the k-space geometric properties of Bloch wave func-
tions, i.e. ⟨unχ(k)|∂µumχ′(k)⟩. Therefore, the odd structure
which does not appear in BS can induce the anapole moment
through the geometric term. These intuitive understandings
will be justified in the next section. However, readers who
are not interested in the detailed discussion about the origin
of anapole superconductivity can skip the next section and di-
rectly go to Sec. IV, where the anapole superconductivity is
demonstrated in the minimal model of UTe2.

III. ORIGIN OF ANAPOLE SUPERCONDUCTIVITY

A. General discussion

Before demonstrating the anapole superconductivity due to
quantum geometry, we discuss the physical origin and the mi-
croscopic process of the anapole moment using the Ginzburg-
Landau (GL) theory. We also discuss their relation to the
group velocity and geometric terms. Up to the second-order
of the gap function ∆k, the anapole moment is given by,

TGL
µ =

1

β

∑
kωn

tr
[
Gp
kωn

∂µHkGp
kωn

∆g
kG

h
kωn

∆u†
k

− Gp
kωn

∂µHkGp
kωn

∆u†
k Gh

kωn
∆g

k

]
+ (g ↔ u),(10)

where tr represents the trace over normal state degrees of free-
dom. Here, Gp(h)

kωn
= (iωn ∓Hk)

−1 is the Green function for
the particle (hole) part. The derivation of the formula (10) is
shown in Appendix B. From this formula, we see that P- and
T -symmetry breaking is needed for the anapole superconduc-
tivity (see also Appendix B).

We can rewrite the formula in the Bloch band basis,

TGL
µ =

1

β

∑
kωn

∑
nmp

∑
χnχmχp

CGL
nmpkωn

tr [Pnχnk∂µHkPmχmk

×
(
∆g

kPpχpk∆
u†
k −∆u†

k Ppχpk∆
g
k

)]
+ (g ↔ u),

(11)

where CGL
nmpkωn

= (iωn − ϵnk)
−1(iωn − ϵmk)

−1(iωn +

ϵpk)
−1, and Pnχnk = |unχnk⟩ ⟨unχnk| is the projection op-

erator. For n = m = p, the summand of Eq. (11) vanishes
(see Appendix C for details). Therefore, at least two pairs of
n, m and p must be nonequivalent for a finite contribution to

the anapole moment. In other words, two interband processes
are necessary for the anapole superconductivity.

The above necessary condition for n, m and p can be sat-
isfied in three cases. The first case, n = m ̸= p, corresponds
to the group velocity term, and the odd- and even-parity in-
terband pairings play the role of two interband processes. In
the following subsection, it is shown that the group velocity
term is closely related to the asymmetric BS. The effect of
asymmetric BS on the group velocity term is also discussed in
Appendix D.

The remaining two cases correspond to the geometric term
since the Berry connection is necessary. In the second case,
n ̸= m and n = p (or m = p), the Berry connection of
Bloch electrons and either odd-parity or even-parity interband
pairing play the role of two interband processes. Finally, in
the third case, n ̸= m ̸= p ̸= n, all of the even-parity in-
terband pairing, odd-parity interband pairing, and the Berry
connection appear in the contribution to the anapole moment.
In both cases, via the Berry connection, the Bloch electrons
undergo an interband transition from the initial band to the
different band, which is coupled to the initial band through
the interband Cooper pairs. Thus, the two or more interband
processes, due to the Berry connection and interband Cooper
pairs, induce the anapole moment. which is a physical picture
of quantum-geometry-induced anapole superconductivity.

B. General two-band model

Next, for a more transparent understanding, we derive the
anapole moment in general two-band superconductors with
Kramers degeneracy. Although we here adopt a two-band
model, the following results can be applied to any multi-
band model with multiple bands near the Fermi surface. The
normal-state Hamiltonian is written as,

Hk = h0k1+ hk · γ, (12)

by using the 4 × 4 gamma matrices γ = ( γ1 · · · γ5 )
that anti-commute each other. Here, h0k and hk =
( h1k · · · h5k ) depend on the details of the model. The en-
ergy dispersion is given by ϵ±,k = h0k ± |hk|. Note that
the 4 by 4 normal-state Hamiltonian has two bands due to the
Kramers degeneracy.

The PT -symmetric parity-mixed pair potential is ex-
pressed as28,

∆k = ∆g
k +∆u

k, (13)

∆g
k = η0k1+ ηk · γ, ∆u

k = i
2

∑
ij η̃ijkγiγj , (14)

where η0k, ηk = ( η1k · · · η5k ) and η̃ijk = −η̃jik are
the complex valued order parameters for even- and odd-parity
pairing channels. Here, taking appropriate U(1) gauge, η0k
and ηik are real while η̃ijk becomes pure imaginary.

Because of the Kramers degeneracy, the particle Green
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function can be projected to the two degenerate bands as64

Gp
kωn

= akωn
1+ bkωn

H̃k, (15)

akωn
=

1

2

∑
±

(iωn − h0k ± |hk|)−1, (16)

bkωn =
1

2

∑
±

∓(iωn − h0k ± |hk|)−1, (17)

with H̃k = (hk · γ)/|hk| = ĥk · γ. The hole Green function
is also given by,

Gh
kωn

= ckωn
1+ dkωn

H̃k, (18)

where akωn = −ck−ωn and bkωn = −dk−ωn . Hereafter, we
omit the (k, ωn) dependence for simplicity. Inserting these
expressions of Green functions into Eq. (10), we get

TGL
µ =

1

β

∑
k

∑
ωn

(
a2ctr

[
∂HM

(1)
−

]
+ a2dtr

[
∂HM

(2)
−

]
+abctr

[{
∂H, H̃

}
M

(1)
−

]
+ abdtr

[{
∂H, H̃

}
M

(2)
−

]
+b2ctr

[
H̃∂HH̃M

(1)
−

]
+ b2dtr

[
H̃∂HH̃M

(2)
−

])
. (19)

Here, we introduce the P- and T -odd bilinear prod-
ucts28,33,64,65,

M
(1)
− =

[
∆g,∆u†]+ (g ↔ u), (20)

M
(2)
− =

[
∆gH̃∆u† −∆u†H̃∆g

]
+ (g ↔ u). (21)

According to Eq. (19), the presence of finite bilinear products
is a necessary condition for the anapole superconductivity.

One of the bilinear products M (1)
− is obtained as,

M
(1)
− = m1 · γ, (22)

[m1]j = −4
∑
i( ̸=j)

Im
[
ηiη̃

∗
ij

]
. (23)

It has been shown that M (1)
− is needed for the asymmetric

BS28, and thus, m1 represents the role of the asymmetric BS.
More specifically, the necessary condition of the asymmetric
BS is given by m1 · ĥ ̸= 028. To elucidate the origin and
physical meaning of another bilinear product M (2)

− , we in-
troduce the interband and intraband superconducting fitness
(SCF)66,67, FC

g(u) and FA
g(u), which are defined by

FC
g(u) =

[
H̃,∆g(u)

]
, FA

g(u) =
{
H̃,∆g(u)

}
. (24)

Using this, we can rewrite M (2)
− as,

M
(2)
− =

1

4

([
FA
g ,∆

u†]+ [FA
u ,∆

g†]
−
{
FC
g ,∆

u†}− {FC
u ,∆

g†})+ h.c. (25)

This means that both interband and intraband pairings lead
to a finite bilinear product M (2)

− . Each term in Eq. (25) is
calculated as,[

FA
g ,∆

u†]+ h.c. = 2m2 · γ, (26)[
FA
u ,∆

g†]+ h.c. = 2m3 · γ, (27){
FC
g ,∆

u†}+ h.c. = −2m3 · γ + 2(m1 · ĥ)1, (28){
FC
u ,∆

g†}+ h.c. = −2m2 · γ + 2(m1 · ĥ)1, (29)

where,

[m2]j = −4
∑
i( ̸=j)

ĥiIm
[
η0η̃

∗
ij

]
, (30)

[m3]j = −2
∑

i1i2i3i4

εi1i2i3i4j ĥi1Im
[
ηi2 η̃

∗
i3i4

]
. (31)

Here, we use the relationship,

γj =
−1

4!

∑
i1i2i3i4

ϵji1i2i3i4γi1γi2γi3γi4 , (32)

with the Levi-Civita tensor ϵi1i2i3i4i5 . Inserting these expres-
sions into Eq. (25), we obtain,

M
(2)
− = −(m1 · ĥ)1+ (m2 +m3) · γ. (33)

The first term comes from the asymmetric BS, which origi-
nates from the interband SCF. On the other hand, the second
and third terms arise from either the intraband SCF and inter-
band SCF. To be more precise, the term m2 ·γ (m3 ·γ) needs
the P-even (P-odd) intraband SCF or the P-odd (P-even) in-
terband SCF. This implies that m2 (m3) contains information
of even-parity (odd-parity) intraband pairing and odd-parity
(even-parity) interband pairing. Thus, introducing the SCF
helps understand the role of P-even and P-odd interband par-
ings in the anapole superconductivity.

After a tedious but straightforward calculation we can get
the group velocity term and geometric term in the GL theory,

TGL = TGL:velo + TGL:geom, (34)

TGL:velo =
4

β

∑
kωn

[(
2abc− a2d− b2d

)
∂h0

−
(
2abd− a2c− b2c

)
∂|h|

]
m1 · ĥ, (35)

TGL:geom =
4

β

∑
kωn

(a2 − b2)|h|∂ĥ · [cm1 +d (m2 +m3)] .

(36)

It should be noticed that the group velocity term contains a
factor m1 · ĥ, which is closely related to the asymmetric BS.
Therefore, we conclude that the asymmetric BS is an origin
of the group velocity term (see also Appendix D for a simple
case).

On the other hand, the Berry connection is essential for
the geometric term, as Eq. (36) contains ∂ĥ which makes
the Berry connection finite. More specifically, the geometric
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term arises from various contributions, which are understood
by Eq. (36). For the frist term of Eq. (36), in addition to the
Berry connection, asymmetric BS is also essential in this con-
tribution. In contrast, the second (third) term of Eq. (11) can
be finite without even- (odd)-parity interband pairing. Thus,
either odd-parity or even-parity interband pairing causes the
anapole superconductivity owing to the quantum geometry,
although the group velocity term needs both odd-parity and
even-parity interband pairing. In other words, whenever the
group velocity term is finite, finite Berry connection ensures
the presence of the geometric term. Moreover, even when the
group velocity term is absent, the geometric term can be finite
due to m2 and m1. Therefore, necessary conditions for the
anapole superconductivity are relaxed by appropriately con-
sidering the quantum geometric effect, which was neglected
in Ref. 28. Later, we will also show that the anapole moment
is dominated by the geometric term at low temperatures.

IV. QUANTUM-GEOMETRY-INDUCED ANAPOLE
SUPERCONDUCTIVITY IN UTE2

In this section, we first show a general theory for anapole
superconductivity in locally noncentrosymmetric supercon-
ductors (Sec. IV A) and next focus on UTe2 (Secs. IV B and
IV C).

A. Locally noncentrosymmetric superconductors

Many exotic superconductors of recent interest have multi-
ple sublattices which do not lie on the inversion center. UTe213

and CeRh2As268 are examples of such locally noncentrosym-
metric superconductors, and a part of materials is listed in a re-
view article69. Before demonstrating the quantum-geometry-
induced anapole superconductivity in UTe2, we show that the
locally noncentrosymmetric superconductors are generically
the platform of anapole superconductivity and clarify the con-
ditions for it. While the following discussions in this sub-
section are based on the GL expansion, the BCS theory re-
produces the results for the anapole moment quantitatively, as
shown in Sec. IV C.

We consider the locally noncentrosymmetric two-sublattice
model28, which is adopted as a minimal model for UTe2 later,

H = ξσ0 ⊗ τ0 + wxσ0 ⊗ τx + wyσ0 ⊗ τy + g · σ ⊗ τz,

(37)

∆g = ∆g

[ ∑
µ=0,x,y

ϕµgσ0 ⊗ τµ + dz
g · σ ⊗ τz

]
, (38)

∆u = ∆u

[ ∑
µ=0,x,y

dµ
u · σ ⊗ τµ + ϕzuσ0 ⊗ τz

]
. (39)

Here, σµ and τµ are the Pauli matrices for the spin and
sublattice spaces, ξ is the single-particle kinetic energy, and
g = (gx, gy, gz) is the staggered-type ASOC due to the local
P-symmetry breaking at atomic sites. For example, in UTe2,

TABLE I. Correspondence between Pauli and Dirac matrices.

Pauli Dirac

σ ⊗ τz ( γ1 γ2 γ3 )

σ ⊗ τy ( −iγ1γ4 −iγ2γ4 −iγ3γ4 )

σ ⊗ τx ( iγ1γ5 iγ2γ5 iγ3γ5 )

σ ⊗ τ0 ( −iγ2γ3 iγ1γ3 −iγ1γ2 )

σ0 ⊗ τ ( γ4 γ5 −iγ4γ5 )

U atoms form a ladder structure, which consists of two sub-
lattices lacking the P-symmetry at the atomic sites. The lo-
cal point group descends to C2v from D2h, and therefore, the
Rashba ASOC naturally appears. Since the two sublattices are
related by the global P-symmetry, the Rashba ASOC shows a
staggered form proportional to τz .

The superconducting pair potentials are divided into the
spin-singlet component ϕµg(u) and the spin-triplet compo-
nent dµ

g(u). The local inversion symmetry breaking also
leads to sublattice-dependent parity-mixing of the pair po-
tential. Thus, the sublattice-independent spin-singlet (spin-
triplet) pairing component and the staggered spin-triplet (spin-
singlet) one coexist in the even-parity (odd-parity) pair poten-
tial. To preserve the PT -symmetry while breaking the T -
symmetry, the relative phase between the complex-valued or-
der parameters ∆g and ∆u is assumed to be π/2, and thus,
4Im(∆g∆u∗) ̸= 0.

We show the correspondence between the Pauli matrices
and the Dirac matrices in Table I70, from which the condition
for anapole superconductivity can be derived based on the dis-
cussions in Sec. III. The results are summarized in Table II,
where conditions for the finite group velocity term and the ge-
ometric term are explicitly presented. Here, we define ĝ =

g/|h| and ŵx(y) = wx(y)/|h| with |h| =
√
w2

x + w2
y + |g|2.

Note that all the terms of anapole moment is proportional to
4Im(∆g∆u∗), which is finite by assumption. The geomet-
ric term can be finite in a relatively simple situation. For
example, the m2-term gives a finite anapole moment when
ϕ0g(ĝ × d0

u) · ∂ĝ ̸= 0. This condition is satisfied in the pres-
ence of an usual spin-singlet pairing component ϕ0g and an
interband pairing component ĝ × d0

u when the corresponding
Berry connection is finite. If the s + ip-wave pairing state is
realized in UTe2 as proposed14, the even-parity s-wave com-
ponent, ϕ0g, and the odd-parity p-wave component, d0

u, natu-
rally exist, and the Berry connection arises from the staggered
Rashba ASOC. Thus, the anapole superconductivity is likely
to occur in UTe2 owing to the quantum geometry when the
s+ ip-wave state is stabilized.

B. Symmetry classification in the D2h point group

Here, we show the classification of parity-mixed supercon-
ducting states assuming the crystals of D2h point group sym-
metry with UTe2 in mind. Combination of the four even-
parity irreducible representations (Ag, B1g, B2g, B3g) and
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TABLE II. Conditions for the anapole superconductivity in locally
noncentrosymmetric systems. The corresponding SCF is also shown.
We assume 4Im(∆g∆u∗) ̸= 0, which is satisfied in the parity-mixed
T -symmetry breaking superconductors. When an inequality listed in
the table is satisfied, (a) the group velocity term and (b) the geometric
term are finite.

(a) Group velocity term

Condition (Dirac) Condition (Pauli) SCF

∂ϵ±m1 · ĥ ̸= 0

∂ϵ±d
z
g · d

y(x)
u ŵx(y) ̸= 0

∂ϵ±ϕ
y(x)
g ϕz

uŵx(y) ̸= 0

∂ϵ±ϕ
y(x)
g d

x(y)
u · ĝ ̸= 0

∂ϵ±
(
dz
g × d0

u

)
· ĝ ̸= 0

FC
g , F

C
u ̸= 0

(b) Geometric term

Condition (Dirac) Condition (Pauli) SCF

m1 · ∂ĥ ̸= 0

dz
g · d

y(x)
u ∂ŵx(y) ̸= 0

ϕ
y(x)
g ϕz

u∂ŵx(y) ̸= 0

ϕ
y(x)
g d

x(y)
u · ∂ĝ ̸= 0(

dz
g × d0

u

)
· ∂ĝ ̸= 0

FC
g , F

C
u ̸= 0

m2 · ∂ĥ ̸= 0

ϕ0
gĝ · dy(x)

u ∂ŵx(y) ̸= 0

ϕ0
gŵy(x)ϕ

z
u∂ŵx(y) ̸= 0

ϕ0
gŵy(x)d

x(y)
u · ∂ĝ ̸= 0

ϕ0
g

(
ĝ × d0

u

)
· ∂ĝ ̸= 0

FA
g , F

C
u ̸= 0

m3 · ∂ĥ ̸= 0

ĝ · (dz
g × d

y(x)
u )∂ŵy(x) ̸= 0

ŵx(y)d
z
g · d0

u∂ŵy(x) ̸= 0

ĝ · (ϕx(y)
g d0

u)∂ŵy(x) ̸= 0

ŵx(y)(d
z
g × d

x(y)
u ) · ∂ĝ ̸= 0

ŵx(y)ϕ
y(x)
g d0

u · ∂ĝ ̸= 0

(ĝ × (ϕ
x(y)
g d

x(y)
u )) · ∂ĝ ̸= 0

(ĝ × dz
gϕ

z
u) · ∂ĝ ̸= 0

FC
g , F

A
u ̸= 0

odd-parity ones (Au, B1u, B2u, B3u) gives 4×4 = 16 classes
of parity-mixed pairing states. They are classified into either
the anapole superconductivity or monopole superconductivity.

The anapole superconducting state has the polarity and
shares the symmetry with the magnetic toroidal ordered state,
while the monopole superconducting state is an superconduct-
ing analog of the magnetic monopole state71. In the D2h

point group, the order parameter of anapole superconductivity
breaks the C2 rotation symmetry which flips the polar axis. In
contrast, the C2 rotation symmetry of all directions are pre-
served in the monopole superconducting state, which means
that the anapole moment vanishes and the finite-q pairing
states are prohibited.

Table III shows the finite component of the anapole mo-
ment for the 12 anapole superconducting states, while we de-
note ”monopole” for the monopole superconducting state. For
instance, Ag + iB3u pairing state is a anapole superconduct-
ing state with anapole moment along the x-axis. On the other
hand, Ag + iAu pairing state is a non-polar monopole super-
conducting state, where the anapole moment vanishes.

TABLE III. Classification of parity-mixed superconducting states
in the D2h point group symmetry. Direction of anapole moment
is shown for the anapole superconducting state. The other pair-
ing states are monopole superconducting states and represented as
”monopole”.

Ag B1g B2g B3g

Au monopole Tz Ty Tx

B1u Tz monopole Tx Ty

B2u Ty Tx monopole Tz

B3u Tx Ty Tz monopole

C. Anapole superconductivity in UTe2

In the theoretical calculation which constructs a 24-orbital
model for UTe214, competing ferromagnetic and antiferro-
magnetic fluctuations have been shown, implying the com-
petition between the s-wave and p-wave pairings. Comparing
the theoretical results with the experimentally observed mul-
tiple superconducting phases, the parity-mixed T -symmetry-
broken s+ ip-wave state was proposed for UTe2. Such s+ ip-
wave superconducting state was also discussed in experimen-
tal studies72,73. In this scenario, P- and T -symmetry breaking
necessary for the anapole superconductivity is predicted. To
examine the possible anapole superconductivity in UTe2, we
adopt a model for UTe2 and show unique features which have
microscopic origins beyond the GL theory.

Here, one of the purposes is to derive the minimal condition
and universal properties of anapole superconductivity, which
are independent of the detailed band structure. Therefore, we
focus on the sublattice and spin degrees of freedom in UTe2,
giving rise to multiple bands near the Fermi level. Actually,
most of the following results are independent of the details of
band structure, as is also discussed in Sec. V. Thus, we set the
normal-state Hamiltonian Eq. (37) as

wx = wy = 0, (40)
ξ = t

∑
µ cos kµ − µ, (41)

g = α (sin ky,− sin kx, 0) , (42)

with (t, µ, α) = (0.2, 0.4,±0.04). In this model, the en-
ergy dispersion is given by ϵ± = ξ ± |g|. In Table II,
some terms of the anapole moment are first order in g, im-
plying that the anapole moment may depend on the sign of
the ASOC coupling constant α. Thus, we examine the two
cases, α = ±0.04. We will actually show that the properties
of anapole superconductivity depend on the sign of α.

First, we consider the superconducting pair potential,

∆g(T ) = ∆0(T )ϕ
0
gσ0 ⊗ τ0, (43)

∆u(T ) = i∆0(T )d
0
u,zσz ⊗ τ0, (44)

with ϕ0g = 1 and d0u,z = sin ky , which belongs to the
Ag + iB3u irreducible representation of D2h point group.
The temperature dependence is assumed to be ∆0(T ) =

∆max
0 tanh(1.74

√
(Tc − T )/T ), where ∆max

0 = 3.53
2 Tc =

0.02.
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FIG. 1. The temperature dependence of the anapole moment for the
pair potential Eqs. (43) and (44). (a) The orange, blue, and pink
lines show the group velocity term, geometric term, and total anapole
moment, i.e. T velo

x , T geom
x , and Tx, respectively. The blue and pink

lines coincide because T geom
x = Tx in this case. (b) The purple and

red lines show the superfluid weight Ds
xx and the most stable center

of mass momenta of Cooper pairs qc. We also show −Tx/D
s
xx by

the green line, which almost coincides with the red line for qc.

Based on the GL theory, we expect that the group velocity
term vanishes in this case, i.e. m1 · ĥ = 0. However, since
the d vector for the B3u representation is not parallel to the g
vector for the ASOC of C2v point group, odd-parity interband
pairing is always finite in addition to intraband pairing. In
other words, ĝ×d0

u ̸= 0 leads to odd-parity interband pairing.
Therefore, the geometric term is finite because the condition
m2 · ∂ĥ = ϕ0g

(
ĝ × d0

u

)
· ∂ĝ ̸= 0 in Table II(b) is satisfied.

As a result, Ag + iB3u representation of superconductivity in
UTe2 ensures the presence of the quantum-geometry-induced
anapole superconductivity regardless of the size of the inter-
band pairing.

We calculate the anapole moment by Eqs. (6)-(8) and show
the temperature dependence of Tx in Fig. 1(a). Note that
Ty = Tz = 0 owing to the symmetry of Ag + iB3u irre-
ducible representation (Table III). The anapole moment does
not depend on the sign of α in this case. We denote the to-
tal anapole moment as T a

µ in all figures to avoid the confu-
sion with the temperature T . We find that the group velocity
term (orange line) is always zero, revealing that the prediction
based on the GL theory is exact. Therefore, the geometric
term (blue line) determines the anapole moment (pink line).

In Fig. 1(b), we also plot the superfluid weight Ds
xx, defined

as the second-order q-derivative of the free energy at q = 0
(see Appendix E for details). We can evaluate the center of
mass momentum of Cooper pairs in the anapole supercon-
ducting state by −Tx/Ds

xx (see Appendix E). We also directly
calculate the center of mass momentum qc, which minimizes
the free energy, and compare it with −Tx/Ds

xx in Fig. 1(b).
Since −Tx/Ds

xx almost coincides with qc, we confirm that
−Tx/Ds

xx provides a good estimation for qc, indicating that
higher-order q-derivatives can be ignored. Thus, we conclude
that the finite-q pairing state due to the anapole supercon-
ductivity is determined by the anapole moment. We stress
that the asymmetric BS does not appear in this model, and
the anapole superconductivity has a purely quantum geomet-
ric origin. More specifically, the Berry connection of Bloch
electrons and the interband pairing play essential roles.

Next, we consider the superconducting pair potential,

∆g(T ) = ∆0(T )
(
ϕ0gσ0 ⊗ τ0 + dzg,yσy ⊗ τz

)
, (45)

∆u(T ) = i∆0(T )d
0
u,zσz ⊗ τ0, (46)

with dzg,y = sin kx, which also belongs to the Ag + iB3u ir-
reducible representation. Thus, Ty = Tz = 0 is satisfied as
in the previous case. We assume the same temperature depen-
dence of ∆0(T ) as before. In this case, the group velocity
term becomes finite as expected based on the GL theory since
the condition, ∂(h0 ± |h|)m1 · ĥ = ∂ϵ±

(
dz
g × d0

u

)
· ĝ ̸= 0,

in Table II(a) is satisfied. Similarly, the geometric term is also
finite because m1 · ∂ĥ =

(
dz
g × d0

u

)
· ∂ĝ and m2 · ∂ĥ =

ϕ0g
(
ĝ × d0

u

)
· ∂ĝ are finite. As the group velocity term is first

order in α according to the GL theory, we expect that the sign
of the ASOC coupling constant α is essential for the group
velocity term74. In addition, a part of the geometric term due
to m1 ·∂ĥ is the first-order term, and the sign of α also affects
the geometric term.

In Figs. 2(a) and 2(b), we show the temperature dependence
of the anapole moment for α = 0.04 and α = −0.04, respec-
tively. We also show the superfluid weight and qc in Figs. 2(c)
and 2(d). We find that the sign of α drastically changes the
group velocity term, whose sign is opposite between α = 0.04
and α = −0.04. The magnitude is different between the two
cases, provably due to an effect beyond the GL theory. On
the other hand, the sign of the Rashba ASOC α only slightly
changes the geometric term. Note that other physical quanti-
ties also depend on the sign of α since the band representation
of the gap function depends on α, as ϕ0g + dzg,ygy/|g|. Actu-
ally, we see that the superfluid weight depends on the sign of
α.

In both Figs. 2(a) and 2(b), the group velocity term de-
cays in the low temperature regime, which is attributed to
the fact that the group velocity term is induced by the asym-
metric BS. The asymmetric BS, namely, Eak ̸= Ea−k, leads
to non-equivalent distribution of Bogoliubov quasiparticles,
f(Eak) ̸= f(Ea−k). This effect mainly induces the group
velocity term. However, the Fermi distribution function is
reduced to the step function in the low temperature region,
f(Eak) ≃ θ(−Eak), which leads to f(Eak) ≃ f(Ea−k) in
the gapped system and suppresses the group velocity term (see
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FIG. 2. (a) (b) The anapole moment and (c) (d) the superfluid weight and qc for the pair potential Eqs. (45) and (46). We assume α = 0.04 in
the panels (a) and (c), while α = −0.04 in (b) and (d). The lines with colors show the same quantities as in Fig. 1

also Appendix D). Therefore, the anapole moment is mainly
determined by the geometric term in the low temperature re-
gion. On the other hand, the relation θ(Eak) = θ(Ea−k) does
not hold when the BFS are present. Thus, the group velocity
term can be sizable at T = 0 when large BFS appear at q = 0.
This case is shown in Appendix D.

In the model adopted in this section, while the BFS do not
exist at q = 0, they appear in the anapole superconducting
state as a result of the center of mass momentum of Cooper
pairs. In Figs. 3(a) and 3(b), we show the BS in the stable state
q = qcx̂ for α = 0.04 and α = −0.04, respectively. In the
figures, the inset shows the presence of BFS. In our model for
q = 0, the spin-triplet pairing component of the pair potential
gives rise to the anisotropic gap structure. Therefore, Bogoli-
ubov quasiparticles with almost zero energy are present. As
a result, when the anapole moment tilts the BS along the di-
rection of q = qcx̂, the BFS appear near the gap minimum.
Therefore, the anapole superconductivity can be verified by
measuring the BFS.

Finally, we show an intriguing phenomenon originating
from the competition of the group velocity and geometric
terms in the anapole moment. In Figs. 2(a) and 2(c), the
anapole moment as well as qc change the sign as the temper-
ature decreases. This is because the geometric term has the
opposite sign of the group velocity term and the group veloc-
ity term vanishes at the zero temperature. As we mentioned
above, the BFS are absent when the anapole moment is small
Tx ≃ 0, while they appear for large Tx. Therefore, the BFS

appear below T = Tc, disappear in the intermediate temper-
ature region, and reappear in the low temperature region by
following the non-monotonic temperature dependence of the
anapole moment. This is confirmed by the temperature de-
pendence of DOS in Fig. 4. The DOS at the Fermi level is
zero around T = 0.0085 since the anapole moment is small.
On the other hand, the DOS is finite in the high and low tem-
perature regions where the magnitude of the anapole moment
is sizable. This behavior is consistent with the reappearance
of BFS, which is a characteristic feature of the anapole super-
conducting state with competing group velocity and geomet-
ric terms. Thus, the role of quantum geometry on anapole su-
perconductivity can be studied by measuring the zero energy
DOS.

V. DISCUSSION

In this paper, we showed some unique features of quantum-
geometry-induced anapole superconductivity. A candidate
material is UTe2 and our result may pave the way for clarify-
ing the symmetry of superconductivity in UTe2. Thus, toward
the experimental verification of anapole superconductivity in
UTe2, we give some discussions in this section.

A concern which is not limited to UTe2 is the stabil-
ity of finite-q pairing against the quantum fluctuation. For
the s-wave superconductivity in the isotropic and continuum
model, the mean-field solution of the FFLO superconductiv-
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FIG. 3. BS in the anapole superconducting state with q = qcx̂ for the pair potential Eqs. (45) and (46). Here, we plot Eak,q which follows
the eigenvalue equation HBdG

k,q |ψak,q⟩ = Eak,q |ψak,q⟩. (a) BS on the line (ky, kz) = (−0.0713998, 0) for α = 0.04 and T = 0.002. (b)
BS on the line (ky, kz) = (0.499799, 0) for α = −0.04 and T = 0.01. The inset shows the enlarged view, which underlines the presence of
BFS.
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FIG. 4. The temperature dependence of the DOS at the Fermi level
calculated by
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2 + E2
ak,qc

) with δ = 1 × 10−6. We
assume the same parameters as Figs. 2(a) and 2(c)

ity is known to be unstable due to the quantum fluctuation75,76.
This is attributed to the infinite degeneracy of finite-q pairing
states ensured by the isotropic symmetry. In contrast, in the
anapole superconductivity, the stable momentum of Cooper
pairs q is restricted to only one direction, and additional de-
generacy does not occur. Therefore, it is expected that anapole
superconductivity is stable against quantum fluctuation. The
argument is also supported by the fact that the finite-q pairing
state is stable in the anisotropic three-dimensional system76.
Our main target is the anisotropic three-dimensional systems,
the case of UTe2.

Then, we give some comments and remarks on the results
relating to UTe2, which include (1) the justification of the re-
sults obtained by the simplified model, (2) future issues, (3)
methods for observing the anapole superconductivity, and (4)
the relationship between our results and the recent experi-
ments.

(1) In this paper, we dealt with a simplified model for UTe2,
where the orbital degree of freedom, electron correlation ef-

fect, detailed band structure, and so on are neglected for sim-
plicity. Therefore, we discuss the situations in which our re-
sults are adaptable. First, to derive the quantum-geometry-
induced anapole superconductivity in UTe2, we only assumed
the presence of the ASOC due to the locally noncentrosym-
metric structure as characteristic normal state property. Since
the presence of the ASOC is universal for the crystal struc-
ture of UTe2, we conclude that quantum-geometry-induced
anapole superconductivity is also realized in more compli-
cated models for UTe2. Also, the decay of the group velocity
term is universal when the BFS is absent for the zero center of
mass momenta of Cooper pairs. Therefore, these results are
adaptable for a wide range of the models for UTe2.

Next, we comment on the BFS induced by the anapole mo-
ment and the sign change of the center of mass momenta,
which are model-dependent. For the BFS to appear from the
anapole moment, there must be gap minimum or node which
depends on the Fermi surface and the order parameters. Such
gap minimum or node is realistic and often obtained in mi-
croscopic calculations. Especially, we would like to note that
highly anisotropic momentum dependence in both even-parity
and odd-parity pair potentials have been obtained based on the
periodic Anderson model for UTe214. As for the sign change,
competition between the geometric and group velocity terms
is needed, which also depends on the band structure and order
parameters. In addition, in our model the presence or absence
of the sign change depends also on the ASOC, which is hard
to be predicted. As a result, the sign change of the center of
mass momenta and the associated reentrant BFS depends on
the model. Thus, the BFS is likely to appear if the anapole
superconductivity is realized in UTe2, but the reappearing be-
havior of the BFS is not universal and should be verified by
further calculations.

(2) From the above discussion, it is desired to study a more
realistic model for UTe2, as we have carried out for FeSe
based on the first-principles calculation59,63. In a model taking
account of various degrees of freedom, we may obtain signif-
icant contributions from the quantum geometry. Our previous
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study63 has shown that the band degeneracy near the Fermi
surfaces induces a large geometric contribution to the super-
fluid weight, implying that the band degeneracy may also be
advantageous for the quantum-geometry-induced anapole su-
perconductivity.

It is also desired to solve multiple gap equations self-
consistently, determining the amplitude and temperature de-
pendence of two-component gap functions. While the neces-
sary condition of the anapole superconductivity does not de-
pend on such details, the self-consistent calculation of realistic
models may enable quantitative estimation of the anapole mo-
ment, which, in turn, predicts the presence/absence of the sign
change of the anapole moment. Such quantitative studies are
beyond the scope of this paper and are left for future works.

(3) The anapole superconductivity can also be verified by
other methods. For example, the Josephson junction exper-
iment, which was proposed to detect the helical supercon-
ductivity45,46, can apply to observe the anapole superconduc-
tivity. In addition, a part of the authors proposed a unique
vortex structure on anapole domains, current-induced anapole
domain switching28, and nonreciprocal optical and Meissner
responses77,78. Recently, we also showed the superconducting
piezoelectric effect43 and intrinsic superconducting diode ef-
fect79 in the anapole superconductors, which will be presented
in another publication44.

(4) We would like to stress that the symmetry of supercon-
ductivity in UTe2 is unsettled. One of unresolved issues is the
T -symmetry breaking in the superconducting state, reported
by the STM80 and the polar Kerr effect81. Here we comment
on the unidirectional property observed in the STM. It may be
related to the anapole superconductivity, which is a unidirec-
tional superconducting state in the bulk. Further studies are
desired and ongoing to elucidate the exotic superconductivity
in UTe2.

While we focused on the superconducting state at the zero
magnetic field in this paper, an anapole superconducting state
with finite-q pairing may also appear at finite magnetic fields.
The observation of the double superconducting transitions in
UTe2 under the magnetic field along the b-axis implies the
superconducting phases with distinct symmetry72,73. If the
superconducting state around Hb ≃ 15T is the s + ip-wave
pairing state as discussed72, it is either finite-q anapole su-
perconductivity or monopole superconductivity. Although the
PT -symmetry is broken by the magnetic field in this phase,
it does not suppress the finite-q pairing. The possibility of
anapole superconductivity under the magnetic field is also dis-
cussed in Ref. 73.

VI. SUMMARY

In this paper, we showed that the quantum geometry of
Bloch electrons induces the anapole superconductivity when
the superconducting state breaks the P- and T -symmetry and
has the polar symmetry. Formulating the anapole moment
characterizing the anapole superconductivity thoroughly, we
find the group velocity term and geometric term with different
origins. Based on the theory a model for UTe2 was analyzed,

and characteristic features of anapole superconductivity were
clarified.

We identified microscopic processes for the group veloc-
ity term and geometric term of the anapole moment. At least
two interband processes are necessary. The previous study28

revealed that the asymmetric BS can induce the anapole su-
perconductivity. This mechanism corresponds to the group
velocity term. For the interband processes both even-parity
and odd-parity pair potentials must have interband compo-
nents. In contrast, the normal state Berry connection rep-
resents the interband process and gives rise to the geomet-
ric term. Since quantum geometry arises from the geometric
structure of Bloch wave functions, the geometric term does
not need the asymmetric structure of BS. Even when the odd
structure of Cooper pairs does not affect the BS, the geometric
term can be finite and cause the anapole superconductivity. In
other words, the quantum geometry can extract the odd struc-
ture of Cooper pairs which does not appear in the BS, and
reflect it in the anapole moment. Therefore, the anapole su-
perconductivity may have a quantum geometric origin. This
case requires only either even-parity or odd-parity interband
pair potential.

Furthermore, we clarified the general and unique features
of anapole superconductivity. First, in the low-temperature re-
gion, the anapole superconductivity is purely induced by the
quantum geometry. This is because the group velocity term
is suppressed by the superconducting gap. In other words,
the quantum geometry is needed for the anapole supercon-
ductivity in the ground state. Second, the BFS appears in the
anapole superconducting state, when the gap is sufficiently
anisotropic. Third, when the group velocity term and the ge-
ometric term are competing, the anapole moment changes the
sign as decreasing the temperature. This sign change may lead
to the nonmonotonic evolution of the BFS. A candidate su-
perconductor UTe2 may host an anisotropic superconducting
gap13, and therefore, the appearance of the BFS is expected.
Observation of the BFS and their unique temperature depen-
dence would not only evidence the anapole superconductivity
in UTe2 but also provide a strong constraint on the symmetry
of superconductivity (see Table III for symmetry classification
of parity-mixed superconducting states). Therefore, search for
BFS in UTe2 is desirable.

In conclusion, the quantum geometry ubiquitously in-
duces the anapole superconductivity in the PT -symmetric
parity-mixed pairing state in multiband superconductors. The
anapole superconducting state may show unique phenomena
which can be experimentally tested. Thus, we propose a way
to clarify the superconducting state in UTe2.
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Appendix A: Derivation of anapole moment

In this section, we derive the anapole moment in the super-
conducting state. We start from the BdG Hamiltonian written
as,

ĤBdG =
1

2

∑
k

ˆ̃Ψ†
k,qH̃

BdG
k,q

ˆ̃Ψk,q, (A1)

H̃BdG
k,q =

(
Hk+q ∆kUT

U†
T ∆

†
k −HT

−k+q

)
, (A2)

ˆ̃Ψ†
k,q =

(
ĉ†k+q ĉT−k+q

)
. (A3)

Using the unitary operator,

UThole
=

(
σ0 ⊗ 1 0

0 UT

)
, (A4)

we can rewrite the BdG Hamiltonian as,

ĤBdG =
1

2

∑
k

ˆ̃Ψ†
k,qU

†
Thole

UThole
H̃BdG

k,q U†
Thole

UThole

ˆ̃Ψk,q,

=
1

2

∑
k

Ψ̂†
k,qH

BdG
k,q Ψ̂k,q. (A5)

Thus, we define the Nambu Green function with Mat-

subara frequency ωn as, GBdG
k,q,ωn

=
[
iωn −HBdG

k,q

]−1

.
Using this, the free energy is obtained as Fq =

− 1
2β

∑
kωn

Tr ln[GBdG−1
k,q,ωn

], where Tr represents the trace
over all internal degrees of freedom. The anapole moment
is defined as the first-order coefficient of the superconducting
free energy with respect to q28:

Tµ = lim
q→0

dFq

dqµ
,

= lim
q→0

(
∂qµFq +

∑
l

∂qµ∆l(q)∂∆l(q)F (q)

)
,

= lim
q→0

∂qµFq,

=
1

2β
lim
q→0

∑
kωn

Tr
[
GBdG
k,q,ωn

∂qµH
BdG
k,q

]
,

=
1

2β

∑
kωn

Tr
[
GBdG
k,ωn

∂µH
+
k

]
, (A6)

where GBdG
k,ωn

= GBdG
k,q,ωn

|q=0. Here, we use the relationship
∂∆l(q)F (q) = 0, in which ∆l(q) denotes the k-independent
part of each component of the gap function, since the super-
conducting state is stable. Taking the sum of the Matsubara
frequencies, we get the formula of the anapole moment as,

Tµ =
1

2

∑
k

∑
a

f(Eak) ⟨ψak| ∂µH+
k |ψak⟩ . (A7)

Appendix B: Anapole moment from GL theory

Here, we derive the formula of the anapole moment using
the GL expansion. Since we focus on the superconducting
state, we ignore the free-electron term and rewrite the free
energy as,

Fq = − 1

2β

∑
kωn

Tr ln[GBdG−1
k,q,ωn

],

= − 1

2β

∑
kωn

Tr
[
ln[1− Gk,q,ωnVk] + ln[G−1

k,q,ωn
]
]
,

=
1

2β

∞∑
c=1

∑
kωn

Tr[Gk,q,ωn
VkGk,q,ωn

Vk]
c + · · · , (B1)

where,

Vk =

(
0 ∆k

∆†
k 0

)
, (B2)

G−1
k,q,ωn

= GBdG−1
k,q,ωn

+ Vk. (B3)

Up to the second order of the superconducting order parame-
ter, the free energy can be written as,

FGL
q =

1

2β

∑
kωn

Tr [Gk,q,ωn
VkGk,q,ωn

Vk] ,

=
1

2β

∑
kωn

tr [Gp
k,q,ωn

∆kGh
k,q,ωn

∆†
k

+ Gh
k,q,ωn

∆†
kG

p
k,q,ωn

∆k],

=
1

β

∑
kωn

tr
[
Gp
k,q,ωn

∆kGh
k,q,ωn

∆†
k

]
, (B4)

with Gp(h)−1
k,q,ωn

= iωn ∓Hk±q . Then, expanding Eq. (B4) with
respect to the q up to the first order, we get,

FGL
q =

1

β

∑
kωn

tr[∂µGp
k,ωn

∆kGh
k,ωn

∆†
k

− Gp
k,ωn

∆k∂µGh
k,ωn

∆†
k]qµ + · · · ,

=
1

β

∑
kωn

tr[Gp
k,ωn

∂µHkGp
k,ωn

∆kGh
k,ωn

∆†
k

+ Gp
k,ωn

∆kGh
k,ωn

∂µHkGh
k,ωn

∆†
k]qµ + · · · .

(B5)

Here, we use ∂µGp(h)
k,ωn

= (−)Gp(h)
k,ωn

∂µHkGp(h)
k,ωn

. Using the
relationship, Gp

kωn
= −Gh

k−ωn
, we obtain

TGL
µ =

1

β

∑
kωn

tr
[
Gp
kωn

∂µHkGp
kωn

∆kGh
kωn

∆†
k

− Gp
kωn

∂µHkGp
kωn

∆†
kG

h
kωn

∆k

]
. (B6)

In the remaining part of this section, we discuss the symme-
try constraint on the anapole moment and simplify Eq. (B6).
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We assume that the normal state Hamiltonian is P- and T -
symmetric, i.e, Hk

P−→ UPH−kU
†
P = Hk and Hk

T−→
UTH

∗
−kU

†
T = Hk, where UP is the unitary operator for the

P-symmetry. Here, we require that the T operator commutes
with the P operator, i.e. UT KUP = UT U

∗
PK = UPUT K

with complex conjugate operator K and the P operator is its
own inverse, i.e. U2

P = 1. In addition, the T operator sat-
isfies UT KUT K = UT U

∗
T = −1, since we consider spinful

electron systems.

Let us consider the T -symmetry in the superconducting
state. Under the T operation, the pair potential follows
∆kUT

T−→ UT ∆
∗
−kU

∗
T U

T
T . The fermionic anti-symmetry,

∆kUT = −UT
T ∆T

−k, leads to UT ∆
∗
−kU

∗
T U

T
T = −∆†

kU
T
T =

∆†
kUT since UT U

∗
T = −1 is satisfied, which means ∆k

T−→
∆†

k. As a result, when the pair potential is T -symmetric, the
first term of Eq. (B6) cancels out the second term, and there-
fore, the anapole moment vanishes.

Next, we consider the P-symmetry. Since UT U
∗
P = UPUT

and U2
P = 1 lead to UPUT = UT U

T
P , the pair potential fol-

lows ∆kUT
P−→ UP∆−kUT U

T
P = UP∆−kU

†
PUT , which

means ∆k
P−→ U†

P∆−kUP = ∆gk − ∆uk. Therefore,
because of UPGp(h)

−kωn
U†
P = Gp(h)

kωn
and UP∂−µH−kU

†
P =

−∂µHk with ∂−µ = ∂
∂(−kµ)

, the P-even part of the effective
anapole moment,

TGL:even
µ =

1

β

∑
kωn

tr
[
Gp
kωn

∂µHkGp
kωn

∆g
kG

h
kωn

∆g†
k

− Gp
kωn

∂µHkGp
kωn

∆u†
k Gh

kωn
∆u

k

]
+ (g ↔ u)

(B7)

vanishes due to the cancellation between k and −k. Thus,
only the P-odd and T -odd part of the anapole moment be-
comes finite and we arrive at Eq. (10) in the main text.

Appendix C: Interband effect on anapole moment

Here, we show that at least two interband processes are
needed for the anapole moment. We start from Eq. (11)
based on the GL theory and consider the contribution from
the purely intraband process, namely, the case n = m = p.
Below, the k dependence is omitted for simplicity. When
χn = χm = χp is satisfied, the first and second terms of
Eq. (11) obviously cancel out each other. Therefore, we con-
sider the other cases.

First, when we fix the U(1) gauge of the Bloch wave func-
tion, we can define the relationship between the Kramers dou-
blet through the PT symmetry as UPT |u∗n↑⟩ = |un↓⟩ with
UPT = UPUT ; this leads to − |un↑⟩ = UPT |u∗n↓⟩ because
of UPT U

∗
PT = −1. As a result, in the case of χn ̸= χm, the

velocity operator of the normal state vanishes as follows:

⟨unχn | ∂H |unχm⟩ = (⟨unχm | ∂H |unχn⟩)
∗

= ⟨u∗nχm
| ∂H∗ |u∗nχn

⟩

= ⟨u∗nχm
|U†

PT UPT ∂H
∗U†

PT UPT |u∗nχn
⟩

= −⟨unχn
| ∂H |unχm

⟩
= 0, (C1)

since either χn or χm corresponds to the state ↓. Therefore,
the contribution to Eq. (11) vanishes, and we have only to con-
sider the rest case, χn = χm ̸= χp. In this case, contribution
to Eq. (11) from each k and ωn can be written as,

1

β

∑
n,χn ̸=χp

CGL
nnn∂ϵn

(
⟨unχn

|∆g |unχp
⟩ ⟨unχp

|∆u† |unχn
⟩

+ ⟨unχp
|∆g†

k |unχn
⟩ ⟨unχn

|∆u
k |unχp

⟩
)
− (g ↔ u).

(C2)

Because of ∆g = ∆g† and ∆u = −∆u† except for the U(1)-
gauge dependence of Cooper pairs, the first and second terms
of Eq. (C2) cancel out each other. Thus, we found that the
purely intraband process can not produce the anapole moment.
This means that at least two interband effects are needed for
the anapole superconductivity, as we discuss in Sec. III A.

Appendix D: Group velocity term, asymmetric BS, and BFS

In this section, we discuss the group velocity term of
anapole moment. The following discussions are based on the
general two-band model introduced in Sec. III B.

First, we show the close relationship between the group ve-
locity term and asymmetric BS and elucidate the mechanism
of the decay of the group velocity term in the low temperature
region. Assuming h0k ≫ |hk|, we approximate the velocity
operator in the BdG form,

∂µH
+
k = ∂µh0k1. (D1)

When the polar direction is denoted as µ, the anapole moment
is obtained from Eq. (4) as,

Tµ =
1

2

∑
k

∑
a

f(Eak)∂µh0k,

=
1

2

∑
k(kµ>0)

∑
a

(f(Eak)− f(Ea−k)) ∂µh0k,(D2)

which corresponds to the group velocity term since ∂µh0k is
the group velocity. Thus, f(Eak) − f(Ea−k), which repre-
sents the asymmetric structure of BS, induces the group veloc-
ity term. However, the Fermi distribution function is approx-
imated by the step function, f(Eak) ≈ θ(−Eak), in the low
temperature region, and therefore, f(Eak)− f(Ea−k) = 0 at
the zero temperature whenEak andEa−k have the same sign.
Thus, the group velocity term vanishes at T = 0, unless the
BFS are present.
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FIG. 5. BS on the line (ky, kz) = (−0.862398, 0). We assume
α = 0.04 and the pair potential in Eqs. (D3) and (D4). Different
from Fig. 3 in the main text, we set the center of mass momenta
q = 0. The inset illustrates the presence of the BFS.
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FIG. 6. The temperature dependence of the anapole moment for the
pair potential Eqs. (D3) and (D4). All colors show the same quanti-
ties as in Fig. 1(a).

On the other hand, when the system has the BFS, f(Eak)−
f(Ea−k) ̸= 0 even at T = 0. Thus, we expect that the group
velocity term does not completely disappear at T = 0. To
verify this expectation, we consider the superconducting pair

potential,

∆g(T ) =
1

2
∆0(T )ϕ

0
gσ0 ⊗ τ0 +∆0(T )d

z
g,yσy ⊗ τz, (D3)

∆u(T ) = i∆0(T )d
0
u,zσz ⊗ τ0. (D4)

The difference from Eqs. (45) and (46) is only the factor 1/2
in the first term of Eq. (D3). We show the BS for q = 0 in
Fig. 5. Different from the cases discussed in Sec. IV C, the
BFS appear even for q = 0. The temperature dependence of
the anapole moment is shown in Fig. 6, and indeed, we see
that the group velocity term is not completely suppressed at
T = 0. Thus, the presence of the BFS at q = 0 enhances the
group velocity term, consistent with the above expectation. In
this case, the anapole moment at T = 0 is not determined only
by the geometric term. Even in this case, the sign change of
the anapole moment can occur.
Appendix E: Superfluid weight and center of mass momenta of

Cooper pairs

Here, we consider the variation of free energy with respect
to the center of mass momentum of Cooper pairs qµ in a di-
rection along which the anapole moment Tµ is finite. Up to
the second order of qµ, the superconducting free energy is ex-
pressed as,

Fq =
1

2
Ds

µµq
2
µ + Tµqµ + F0. (E1)

The superfluid density Ds
µµ is given by the formula63,

Ds
µµ =

1

2

∑
k

∑
a

f(Eak) ⟨ψak| ∂µ∂µH−
k |ψak⟩

+
1

2

∑
k

∑
ab

f(Eak)− f(Eak)

Eak − Ebk

× ⟨ψak| ∂µH+
k |ψbk⟩ ⟨ψbk| ∂µH+

k |ψak⟩ , (E2)

where,

H−
k =

(
Hk 0

0 −Hk

)
. (E3)

The superconducting free energy is rewritten as,

Fq =
1

2
Ds

µµ

(
qµ + Tµ/D

s
µµ

)2 − T 2
µ/2D

s
µµ + F0. (E4)

Thus, the center of mass momentum qc realizing the minimum
free energy is estimated as −Tµ/Ds

µµ. This formula is valid
when qc is small.
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