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Candidate materials for the Kitaev spin liquid generically have residual interactions beyond the Kitaev cou-

pling. It therefore becomes necessary to understand how signatures of the quantum spin liquid, e.g., fraction-

alization of the spin excitations, are affected by the presence of these interactions. Recently it was shown that

phonon dynamics is an indirect but effective probe to study fractionalized excitations in the Kitaev spin liquid.

Ultrasound experiments can measure sound attenuation, which should show characteristic temperature and an-

gular dependence of the sound attenuation coefficient if the scattering of phonons happens predominantly on

Majorana fermions. So far the computation of the sound attenuation was only done in the pure spin-phonon

coupled Kitaev model, without taking into account residual interactions. In order to understand experimental

signatures, here we present a mean-field study of the sound attenuation in the generalized J-K-Γ model, which

is relevant to candidate materials. Our findings show that as long as the system is in the spin liquid phase,

characteristic features of the sound attenuation remain observable even in the presence of residual interactions.

I. INTRODUCTION

Quantum spin liquids (QSLs) are fascinating magnetic
states characterized by exotic properties such as long-range
entanglement, topological order, emergent gauge theories and
spin fractionalization. Over the last decades QSLs have been
the subject of intense research efforts from pure scientific cu-
riosity of their exotic properties [1–7] as well as from a tech-
nology viewpoint as potential platforms for topological quan-
tum computation [3, 8]. QSLs are usually ensured by frustra-
tion, either from a particular geometry of the lattice structure
or from competing spin interactions, making identification of
a QSL a major challenge.

A plethora of works in QSL research [9–12] was spurred
by the exactly solvable Kitaev honeycomb model, which hosts
a QSL ground state where the spin fractionalizes into itiner-
ant Majorrana fermions and localized Z2 fluxes [3]. Remark-
ably, it was proposed that the bond-dependent form of spin
interactions in the Kitaev model can be realized in materials
consisting of heavy transition metal ions with large spin-orbit
coupling in 4d and 5d groups [11–16]. The candidate Kitaev
materials include the honeycomb iridates Na2IrO3 [17–22],
α-Li3IrO3 [23, 24], H3LiIr2O6 [25], and the ruthenium com-
pound α-RuCl3 [26–34]. In these materials, a lot of effort was
spent to obtain combined evidence of fractionalization from
various types of dynamical probes, such as inelastic neutron
scattering, Raman scattering, resonant inelastic x-ray scatter-
ing, scanning tunneling microscopy, ultrafast spectroscopy,

terahertz non-linear coherent spectroscopy and phonon dy-
namics [27, 31–33, 35–41]. The possibility to compute the
corresponding response functions analytically in the Kitaev
model provides a unique opportunity to explore the character-
istic fingerprints of the QSL physics in the dynamical probes
on a more quantitative level [42–59].

While the dominance of Kitaev interaction is well estab-
lished in most of the Kitaev materials [11, 12, 60], they
generically have other symmetry allowed interactions beyond
the Kitaev coupling, such as the nearest neighbor symmet-
ric off-diagonal interaction Γ and the Heisenberg interaction
J [24, 61–64]. Extensive studies of the J-K-Γ model using
a wide range of techniques, including exact diagonalization
[14, 61, 65–67], density matrix renormalization group [68–
70], tensor-network method [71, 72], parton mean field theo-
ries [73–75] and variational Monte Carlo approaches [76, 77]
have shown that the QSL state has a finite region of stability
even in the presence of finite J and Γ interactions. In real life,
additional interactions compete with the Kitaev coupling and
often result in a long-range order below some temperature TN

which has the same energy scale as these subdominant inter-
actions (the magnon excitation frequencies also have the same
energy scale) [52]. Thus, the observation of the features of the
QSL is possible at temperatures and frequencies above the en-
ergy scale of the subdominant interactions, and it is therefore
important to understand the experimental signatures of frac-
tionalization in the generalized J-K-Γ QSL.
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FIG. 1. (a) The honeycomb structure, with black and white sites

indicating the two sub-lattices. Red, green, and blue bonds show X-,

Y-, Z-bonds respectively. The bond directions are Mx = (
√
3

2
, 1
2
),

My = (−
√
3

2
, 1
2
), and Mz = (0,−1), and the unit cell is defined

by n1 = (
√
3
2
, 3
2
), n2 = (−

√
3

2
, 3
2
). (b) The two processes that

contribute to the phonon polarization bubble: particle-hole (ph) on

the top, and particle-particle (pp) at the bottom.

Here we analyze the phonon dynamics as a dynamical
probe in the generalized J-K-Γ QSL. Our study is motivated
by several experiments in α-RuCl3 [40, 78–82] and recent
theoretical studies [56–59, 83, 84] that indicated that phonon
dynamics might be a useful probe for signatures of fraction-
alization. In Kitaev materials, like α-RuCl3 as well as oth-
ers, the strong spin-orbit coupling ties the spin degrees of
freedom to the lattice and subsequently to its vibrations, thus
the study of phonon dynamics presents an avenue for probing
spin fractionalization in the QSL state. Specifically, the sound
attenuation - how lattice vibrations diminish while traveling
through a material - may be measured by ultrasound experi-
ments [82, 85–90].

So far, the studies of phonon dynamics have been limited
to the pure Kitaev model, without taking into account resid-
ual interactions relevant to real materials. They revealed that
the Majorana fermion-phonon scattering has a particular an-
gular dependence and a linear in temperature dependence at
low enough T when the sound velocity vs is smaller than the
Fermi velocity vF characterizing the low-energy Dirac-like
spectrum of Majorana fermions [56, 57, 81]. The effect of
the Z2 flux excitations at finite temperatures was also calcu-
lated [58]. It is important to answer whether these features of
phonon dynamics found for the pure Kitaev model survive in
the presence of the residual interactions.

In this work we answer this question by studying the sound
attenuation in the generic J-K-Γ model using self-consistent

slave fermion mean-field (MF) framework [2, 73–75]. The
sound attenuation coefficient αs(q) is then calculated from
the imaginary part of the diagonal components of the phonon
self-energy Π(q,Ω) [56]:

αµ
s (q) ∝ − 1

v2sq
Im[Πµµ(q,Ω)]Ω=vsq, (1)

where µ is the phonon polarization component, and q and
Ω = vsq are the phonon’s momentum and frequency. We find
that in the J-K-Γ spin liquid the six-fold angular symmetry of
the sound attenuation survives both for vs < vF and vs > vF ,
and its linear in temperature (∼ T ) dependence still holds at
small temperatures for vs < vF . Moreover, as we move away
from the pure Kitaev point, the static Z2 fluxes start dispers-
ing, providing more low energy states for the phonon to scatter
on and resulting in higher values of the sound attenuation co-
efficient for non-zero J and Γ. We show that this increase in
intensity is intricately linked to the change in the fermionic
spectrum. We also see that processes that are forbidden for
the pure Kitaev model due to kinematic constraints become
allowed in the generic J-K-Γ model, which again happens
due to the change in fermionic spectrum.

The rest of the paper is organized as follows: In Sec. II we
describe the full model, with details of the MF spin Hamilto-
nian, the phonon Hamiltonian and the spin-phonon coupling
Hamiltonian presented in Sec. II A, Sec. II B, and Sec. II C
respectively. In Sec. II D, we present the calculation of the
one-loop phonon polarization bubble. Then, in Sec. III A we
describe the kinematic constraints for the phonon dynamics.
In Sec.IV, we present a short summary and discuss the possi-
bility for the spin fractionalization to be seen in the sound at-
tenuation measurements by the ultrasound experiments. Some
of the technical details and auxiliary information are relegated
to the Appendices A-D.

II. SPIN-PHONON J-K-Γ MODEL

The Hamiltonian is composed of the spin, phonon and the
spin-phonon interaction terms:

H = Hs +Hph +Hc. (2)

The first term Hs is the generalized J-K-Γ model, the sec-
ond term is the phonon Hamiltonian Hph leading to 2D free
phonons, and the third term is the magnetoelstic coupling Hc.
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A. Spin Hamiltonian fermionic Mean field

The generic J-K-Γ spin Hamiltonian on the honeycomb
lattice is

Hs =
∑
⟨ij⟩α,
β ̸=γ ̸=α

Kσα
i σ

α
j + Jσi · σj + Γ(σβ

i σ
γ
j + σγ

i σ
β
j ), (3)

where σ = (σx, σy, σz) are the Pauli matricies, α = x, y, z

is the spin component that follows from the X-, Y-, or Z-bond
type respectively, and β, γ are the two remaining spin com-
ponents on the bond (see Fig. 1 (a)). The spin model can be
decomposed into Majorana fermions by

σα
i = ibαi ci. (4)

Keeping all terms, and proceeding with a MF decomposition,
we get

HMF
s =−

∑
⟨ij⟩α

{
(J +K)

[
καα
α (icicj) + κ0

α(ib
α
i b

α
j )− καα

α κ0
α

]
+ J

∑
β ̸=α

[
κββ
α (icicj) + κ0

α(ib
β
i b

β
j )− κββ

α κ0
α

]
+ Γ

∑
β ̸=γ ̸=α

[
κβγ
α (icicj) + κ0

α(ib
β
i b

γ
j )− κβγ

α κ0
α

]}
,

(5)

where the MF bond parameters

κ0
α = ⟨icicj⟩, κβγ

α = ⟨ibβi b
γ
j ⟩, (6)

with i ∈ sublattice A and j ∈ sublattice B. In principle, the
magnetic channels, mα

i = ⟨ibαi ci⟩, and cross Majorana bond
terms ⟨ibαi cj⟩ are also present but are found to be zero in the
spin liquid regime. So, they are omitted here for simplicity.

In the momentum space, the MF Hamiltonian reads

HMF
s =

∑
k

AT
−kH

MF
s (k)Ak, (7)

with the Majorana fermion basis ordered as

AT
k =

[
ck,A bxk,A byk,A bzk,A ck,B bxk,B byk,B bzk,B

]
.

(8)
By changing into complex fermions

fk,A(B),↑ = 1
2 (ck,A(B) − ibzk,A(B)),

fk,A(B),↓ = 1
2 (b

y
k,A(B) − ibxk,A(B)),

(9)

and diagonalizing in every momentum block we arrive at

HMF
s,diag(k) =B(k)†U(k)†(V HMF

s (k)V †)U(k)B(k)

=B(k)†D(k)B(k),
(10)

Γ M K Γ
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FIG. 2. The MF fermionic spectrum for different values of (Γ, J)

with K = −1, fixed. The central (e) plot corresponds to the pure

Kitaev point, with J = Γ = 0. Γ increases in steps of 0.2 along

the x-axis and J increases in steps of 0.2 along the y-axis. ∗The

spectrum in panel (c) corresponds to (Γ, J) = (0.19, 0.19), which is

right at the edge of gap closing for the flux bands.

where V matrix is defined by the Eq. (9) mapping,
U(k) is the unitary diagonalizing matrix, D(k) is the
diagonalized MF Hamiltonian at the momentum k, and
BT

k =
[
β†
−k,1 β†

−k,2 β†
−k,3 β†

−k,4 βk,1 βk,2 βk,3 βk,4

]
represents the Boqoliubov fermion eigenstates βk,i, arranged
in ascending order in eigenvalues. The explicit Hamiltonian
matrix forms as well as details on self-consistent procedure
can be found in App. A.

In Fig. 2 we present the MF fermionic spectrum, which we
obtain for various parameters J and Γ, while keeping K = −1

fixed. When J = Γ = 0 (panel Fig. 2 (e)), the spin model re-
duces to the original Kitaev model [3], and we see the charac-
teristic dispersing mode owing to the free Majaoranas hopping
on the lattice, with Dirac cones at the K-points of the Brillouin
zone (BZ) and the flat bands corresponding to the static flux
operators Wp = σx

1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 (see Fig. 1 (a)). Moving

away from the the exactly solvable point but staying within
the spin liquid state, the flux bands acquire a small disper-
sion. The original dispersing mode remains pronounced and
the Dirac cones remain at the K-points, however, the Fermi
velocity on the cone changes. In addition, for the positive
value of J (upper row in Fig. 2), more low-energy states ap-
pear near the Γ-point of the BZ. As we will see later, the mod-
ified structure of the fermionic spectrum, will be essential for
understanding of the sound attenuation in the generalized J-
K-Γ QSL.
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B. The phonon Hamiltonian

The Hph term in Eq. (2) is the Hamiltonian for acoustic
phonons on the honeycomb lattice and is given by,

Hph = Hkinetic
ph +Helastic

ph . (11)

Here, Hkinetic
ph =

∑
q

p−qpq
2ρδV

, with pq = ρδtuq, ρ is the mass
density of the lattice ion, uq = {ux, uy} is the lattice dis-
placement vector and δV is the area enclosed in one unit
cell. The elastic energy is comprised of the strain tensor,
ϵαβ = 1

2 (∂αuβ + ∂βuα). The combinations ϵxx + ϵyy and
{ϵxx − ϵyy, 2ϵxy} form the basis of the point group D3d ir-
reducible representations (irreps) Aph

1g and Eph
g , respectively.

The longitudinal and transverse components of the acous-
tic phonon spectrum and the polarization vectors (defined
through uq =

∑
ν êνq ũν

q , ν =∥,⊥ labels the polarization) are

Ω
∥
q =v∥sq, ê∥q = {cos θq, sin θq},

Ω⊥
q =v⊥s q, ê⊥q = {− sin θq, cos θq},

(12)

with q =
√
q2x + q2y and θq is the angle made by q with the

x-axis.

C. The spin-phonon coupling Hamiltonian

The coupling term in Eq. (2) is the magnetoelastic coupling,
which arises from the change in the coupling constants J , K,
Γ due to the lattice vibrations. We assume that the coupling
constants depend only on the distance between the atoms and
that the positions of the spins deviate slightly from their equi-
librium positions. The spin-phonon coupling Hamiltonian can
then be decomposed into the A1g and Eg symmetry channels
as

Hc = HA1g
c +HEg

c , (13)

with

HA1g
c =λA1g

∑
r

(ϵxx + ϵyy)
{
(J +K)f

A1g

K

+ Jf
A1g

J + Γf
A1g

Γ },
(14)

HEg
c =λEg

∑
r

{
(ϵxx − ϵyy)

(
(J +K)f

Eg,1

K

+ Jf
Eg,1

J + Γf
Eg,1

Γ

)
+ 2ϵxy

(
(J +K)f

Eg,2

K

+ Jf
Eg,2

J + Γf
Eg,2

Γ

)}
.

(15)

Here λA1g
, λEg

are the two unknown independent constants
that characterize the spin-phonon coupling that might be dif-
ferent but of similar strength. The functions fA1g

K , fEg,i

K , etc.,
are the basis functions for the irreps of the D3d point group in
the spin space given in the Tab. I and II of App. B.

Next, we rewrite the spin-phonon coupling Hamiltonian in
the MF framework. We first use the Majorana representation
of spin defined in (4), and then Fourier transform the coupling
Hamiltonian. We obtain

Hc = HA1g
c +HEg

c , (16)

with

HA1g
c =

λA1g

2

∑
q

∑
k

(iqxux,q + iqyuy,q)

× (AT
−k−qH

A1g
c (q,k)Ak),

(17)

HEg
c =

λEg

2

∑
q

∑
k

[
(iqxux,q − iqyuy,q)

× (AT
−k−qH

Eg,1
c (q,k)Ak)

+ (iqxuy,q + iqyux,q)(AT
−k−qH

Eg,2
c (q,k)Ak)

]
.

(18)

The matrix H
A1g
c (q,k) has the form

H
A1g
c (q,k) =

[
0 iMA1g (k)

−i[MA1g (q + k)]† 0

]
, (19)

and matrices H
Eg,1
c (q,k), HEg,2

c (q,k) have the same struc-
ture as HA1g

c (q,k) with MA1g
replaced by MEg,1

, MEg,2
, re-

spectively. The detailed form of these matrices are given in
App. B.

To obtain the spin-phonon coupling vertices, we express the
phonon modes in terms of the longitudinal and and transverse
eigenmodes. This gives

H∥
q,k =ũq,∥AT

−k−qλ̂
∥
q,kAk,

H⊥
q,k =ũq,⊥AT

−k−qλ̂
⊥
q,kAk,

(20)

where the spin-phonon coupling vertices are

λ̂
∥
q,k =

λA1g

2
qH

A1g
c (q,k)

+
λEg

2
q
[
cos 2θqH

Eg,1
c (q,k) + sin 2θqH

Eg,2
c (q,k)

]
,

(21)

λ̂⊥
q,k =

λEg

2
q
[
− sin 2θqH

Eg,1
c (q,k) + cos 2θqH

Eg,2
c (q,k)

]
.

(22)
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For the purpose of calculating the phonon polarization bubble,
we write the coupling Hamiltonian in the basis of the Bogoli-
ubov quasiparticles of Eq. (10):

Hµ
q,k = ũq,µB†

k+qλ̃
µ
q,kBk,

λ̃µ
q,k = U(k + q)†[V λµ

q,kV
†]U(k).

(23)

where µ =∥, ⊥ and the coupling vertices are divided into four
blocks according to the division into creation and annihilation
sectors:

λ̃µ
q,k =

[
λ̃µ

q,k,11 λ̃µ
q,k,12

λ̃µ
q,k,21 λ̃µ

q,k,22

]
. (24)

D. The phonon polarization bubble

To see the effects of the spin-phonon coupling on phonon
dynamics, we calculate the one-loop phonon self-energy,
which in the leading order is given by the polarization bub-
ble Πµν

ph (q,Ω). In the Matsubara formalism, it can be written
as [56, 58]:

Πµν(q, τ) =⟨Tτ

(
B†

k+q,l[λ̃
µ
q,k]lmBk,m

)
(τ)

×
(
B†

k,m[λ̃ν
−q,k+q]mlBk+q,l

)
(0)⟩.

(25)

where ⟨Ô⟩ωn =
∫ β

0
dτeiωnτ ⟨Ô(τ)⟩, and Tτ is imaginary time

ordering operator. Using Wick’s theorem, the polarization
bubble can be written explicitly as

Πµν(q, τ) =⟨TτB†
k+q,l(τ)Bk+q,l(0)⟩⟨Bk,m(τ)B†

k,m(0)⟩

× [λ̃µ
q,k]lm[λ̃ν

−q,k+q]ml, l,m = 1, 2, ..., 8.

(26)

Performing the Fourier transform, we can write

Πµν(q,Ω) =
∑

k

∑
l,m

{
P gḡ
lm(k + q,k)[λ̃µ

q,k,11]lm[λ̃ν
−q,k+q,11]ml

+ P ḡg
lm(k + q,k)[λ̃µ

q,k,22]lm[λ̃ν
−q,k+q,22]ml

+ P gg
lm(k + q,k)[λ̃µ

q,k,12]lm[λ̃ν
−q,k+q,21]ml

+ P ḡḡ
lm(k + q,k)[λ̃µ

q,k,21]lm[λ̃ν
−q,k+q,12]ml

}
.

(27)

Here P gḡ
lm(k + q,k), P ḡg

lm(k + q,k), P gg
lm(k + q,k), P ḡḡ

lm(k +

q,k) are convolutions of the Matsubara Green’s functions
of the free fermions βi of the diagonalized MF spin Hamil-
tonian, and l,m refer to the fermion flavors corresponding
to the four bands of the spectrum. The first two terms in
Eq. (27) contribute to the particle-hole (ph) channel, while
the last two contribute to the particle-particle (pp) channel.
Furthermore, it is worth noting that the intensity of the Ma-
jorana fermion-phonon scattering depends on the temperature
and the fermionic spectrum, which are encoded in the terms
P gḡ
lm(k + q,k), P ḡg

lm(k + q,k), P gg
lm(k + q,k), P ḡḡ

lm(k + q,k)
through the Fermi distribution functions, while the angular de-
pendence of the Majorana fermion-phonon scattering is con-
tained in the matrix elements of the coupling vertices [λµ

q,k]lm,
describing the coupling between the fermion eigenmodes of
flavor l, m and momentum k+q and k to the acoustic phonon
with momentum q and polarization µ. Further details of the
terms in Eq. (27) are relegated to Appx. C.

III. RESULTS

A. The kinematic constraints in phonon dynamics

Before we present numerical results of the sound attenua-
tion coefficient, we look at the kinematic constraints for the
scattering of the phonons on Majorana fermions, which play
a key role in the polarization bubble calculation.

In our MF calculations, we consider a translationally in-
variant system, and the Majorana fermion-phonon scattering
is constrained by both energy and momentum conservation,
which makes the phonon scattering on Majoarana fermions
strongly velocity dependent. It can happen through two dis-
tinct channels – the ph- and pp-channels, seen in the one loop

bubbles in Fig 1(b).

In the ph-process, a phonon mode with momentum q and
energy Ωq = vs|q| scatters a fermion with momentum k to a
fermion with momentum k + q, with a corresponding energy
constraint ϵk+q,m − ϵk,l = Ωq, with m, l labeling fermionic
flavors. The predominant way to satisfy these constrains in
the ph-process is for both momenta k and k + q to be in the
vicinity of the same Dirac point K (or −K) with energies on
the same Dirac cone.

For the pp-process, a phonon with energy Ωq decays into
two fermions with positive energy, one momentum −k and
k + q, and the energy constraint reads ϵ−k,m + ϵk+q,l = Ωq.
Opposite to the ph-process case, the predominant way to sat-
isfy these constrains in the pp-process involves two cones,
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T=0.05 T=0.10

FIG. 3. The longitudinal component of the sound attenuation coefficient α∥
s(q) for vs < vF , for different values of (Γ,J) with K = −1, fixed.

We show plots for T = 0.05 on the left, and for T = 0.1 on the right, with temperature, T , in units of the Kitaev interaction strength K. The

pp-contribution for vS < vF is vanishingly small (except for J = 0.2, Γ = 0.2). Here we plot only the ph-contribution coming from the Eg

irrep. The phonon momentum q belongs to the region (qx, qy) ∈ [−0.12π, 0.12π]2. We used vs = 0.3 with vF = 3, determined from the

slope of the Dirac cone of the Kitaev spectrum. The imaginary energy broadening was taken to be δ = 0.2.

with one fermion of momentum −k in the vicinity of the Dirac
point K and the other fermion with momentum k + q in the
vicinity the other Dirac point −K, and both Dirac cones are
needed to satisfy these constrains. Beyond the Dirac-like dis-
persion at the K-points, there is another way to satisfy the
pp-process, namely to keep both momenta −k and k+ q near
zero, in the vicinity of the BZ center. This becomes relevant
with many states become significantly lowered in energy at
the Γ-point.

From the above we can see that the energy spectra of the
fermions and phonons form the phase space for these con-
straints and define the relative contribution of the ph- and pp-
processes to the phonon scattering. In the earlier studies of the
phonon dynamics in the pure Kitaev model (analytically in the
zero-flux sector [56] and numerically for the random fluxes
[57, 58]), it was shown that only the low-energy states on the
Dirac cones, characterized by Fermi velocity vF , are relevant
for the scattering of acoustic phonons with small q. There,
whether the ph- or pp-constraints were satisfied, they could
be interpreted geometrically by considering intersections be-
tween the fermionic Dirac cone and the phonon energy cone
Ω = vsq. From this geometric intersection of cones, it fol-
lowed that ph-processes are possible only for vs < vF and
pp-processes are possible only for vs ≥ vF . Differently from

[56, 58], here the flux degrees of freedom are captured in
the flat bands, which acquire a small dispersion when mov-
ing away from the pure Kitaev point, as seen in Fig. 2. Also,
J and Γ interactions modify the Fermi velocity vF . As a re-
sult we get more low-energy states in addition to those on the
Dirac cones. Altogether, this leads to the change in the contri-
bution from the ph- and pp-processes to the phonon scattering,
and makes it possible to get ph-processes even for vs > vF

and vice versa. We indeed see this from our numerical calcula-
tions. In general, the overall intensity of the phonon scattering
will be increased due to the presence of J and Γ.

B. Numerical results for the sound attenuation

The contribution to the phonon self energy coming from the
A1g irrep is small compared to the contribution from the Eg

symmetry channel. While we still show the numerical results
for A1g channel in Appx. D, in the following we focus only on
the results from the Eg contribution to the sound attenuation.
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T=0.05

FIG. 4. The longitudinal component of the sound attenuation co-

efficient α
∥
s(q) for vs > vF , for different values of (Γ,J) with

K = −1, fixed. We show plots for T = 0.05 in units of the

Kitaev interaction K. The ph-contribution for vs > vF is vanish-

ingly small. Therefore, we only plot the pp-contribution coming

from the Eg irrep. The phonon momentum q belongs to the region

(qx, qy) ∈ [−0.12π, 0.12π]2. We used vs = 3.5 with vF = 3, de-

termined from the slope of the Dirac cone of the Kitaev spectrum.

The imaginary energy broadening was taken to be δ = 0.2.

1. Sound attenuation for vs < vF

When vs < vF , the major contribution to the sound atten-
uation comes from the ph-processes. We find an enhanced
magnitude of the sound attenuation for J > 0 (see Fig. 3
(a)-(c) and (j)-(l)), and a slightly diminished magnitude for
J < 0 (see Fig. 3 (g)-(i) and (p)-(r)). The Γ term affects the
magnitude of the sound attenuation only marginally at small
temperature, with enhanced magnitude for Γ < 0 and dimin-
ished magnitude for Γ > 0. The combination of these two
effects renders Fig. 3 (a), with J > 0,Γ < 0, the brightest.
The six-fold symmetry of the sound attenuation is preserved
for all values of J and Γ. As the temperature increases we
see the flower shape of the sound attenuation spreading out
with increasing magnitude. At T ∼ 0.3, we see essentially
equal magnitudes of the sound attenuation for J > 0 and
J < 0. The six-fold symmetry of the sound attenuation is
still preserved, however, the pattern changes slightly from the
flower shape. We also find pp-contributions for the case of
J > 0,Γ > 0, which has a six-fold symmetry and decreases
in magnitude with increasing temperature.

2. Sound attenuation for vs > vF

For vs > vF , the major contribution comes from the pp-
processes. The sound attenuation (shown in Fig. 4) again has
the six-fold angular symmetry. Its magnitude is almost inde-
pendent on the temperature, so we only show our results at
T = 0.05. As we can see, the sound attenuation has the max-
imum magnitude for J > 0 (see Fig. 4 (a)-(c)) and minimum
for J < 0 (see Fig. 4 (g)-(i)). The Γ term has no significant
effect on the magnitude of the sound attenuation. As temper-
ature increases the sound attenuation due to the pp-processes
decreases as 1/T with increasing temperature.

3. Temperature evolution of the sound attenuation

Our numerical calculations show that the sound attenuation
increases linearly in temperature T from the ph-processes,
and decreases as 1/T with increasing temperature from pp-
processes. In Fig. 5 we see this characteristic behavior in
the attenuation coefficient of the longitudinal acoustic phonon
computed in the generic J-K-Γ model with subdominant J
and Γ. The ph-processes linear behaviour is in agreement with
recent studies in the pure Kitaev model [56, 57, 81], which
would only allow for ph-processes when vs < vF . Since J

and Γ modify the Fermi velocity, and also lower the energy of
the states near the center of the BZ, it allows for the simultane-
ous contributions from both the ph- and pp-processes. We see,
however, that for this set of parameters, the pp-contribution re-
mains subdominant. Note also that the phonon momentum for
this calculation was taken to be |q| = 0.008π, with θq = π/6,
which corresponds to the direction of the maximum of atten-
uation in the six-fold symmetric petal structure of the attenu-
ation coefficient of the longitudinal mode [56].

C. Discussion

As we briefly discussed above, the overall intensity of the
sound attenuation is determined by the combined effect of the
density of low-energy fermionic states, their population which
follows the Fermi-Dirac statistics, and the strength of the cou-
pling vertices. Subdominant Heisenberg interaction J and off-
diagonal symmetric coupling Γ modify both the energy and
the structure of the low-energy states, and they do it in a dis-
tinct way. From Fig. 2 we see that the slope of the Dirac’s
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cone, characterized by vF , decreases for J > 0 and increases
for J < 0 compared to the pure Kitaev case, thus changing
the ratio between vF and vs. In principle, this means that
subdominant interactions can change the nature of the phonon
scattering processes (from pp- to ph-, or vice versa), but for
our choice of vs it does not happen. The Γ interaction does
not affect vF significantly but it is very effective in adding dis-
persion and fully splitting the degeneracy of the three “flux”
bands. Moreover, J > 0 leads to the lowering of states near
the center of the BZ (Γ-point) since the system is approaching
the transition to the stripy phase [14, 74] and Γ < 0 leads to
the lowering of states near the M-point of the BZ, as the sys-
tem approaches the zigzag ordered state [66]. These lowered
states will contribute to the sound attenuation at low tempera-
tures, possibly through both pp- and ph-processes, as is seen
in Fig. 3.

The contribution from the pp-processes is maximum at
T = 0, when all low-energy states are unoccupied. We can
see that the sound attenuation is the ”brightest” for J > 0

(see Fig. 4). As temperature increases, the low-energy states
start getting populated, and the phonons can no longer decay
into these filled states. We, therefore, see a decrease in the
sound attenuation with increasing temperature from the pp-
processes in Fig. 5 (c). Eventually, at higher temperatures, ph-
contribution also decreases with increasing temperature, since
unoccupied states become unreachable due to the kinematic
constraints.

Finally, let us compare our findings with recent ultrasound
measurements in α−RuCl3 [82]. The reported velocity of the
in-plane longitudinal acoustic phonons vLs,exp ∼ 16 meVÅ,
and for the in-plane transverse phonons vTs,exp ∼ 20 meVÅ.
The estimate of the Fermi velocity of the Majorana fermions
reported in the literature is about vF,exp ∼ 18 meVÅ [40, 81,
91]. This puts α−RuCl3 in the regime vTs < vF < vLs , and
magically allows to study both sound attenuation channels in
the same compound. Indeed, it was found that phonon scatter-
ing depends sensitively on the value of the phonon velocity:
while in-plane transverse modes show linear in T behavior of
the sound attenuation consistent with the character of the dom-
inant ph-process, in-plane longitudinal mode shows almost T
independent decay for not too high temperatures. This behav-
ior is consistent with the idea that the phonon attenuation is
mostly occurring from scattering off the low-energy fermionic
excitations, which describe the spin dynamics of the underly-
ing Kitaev magnet.

Although the actual value of K in α−RuCl3 has varying
predictions, with a recent Table summary found in Ref. [92],
assuming an approximate value of K ∼ −6.0meV, would
make our vF = 3 in units of K correspond to 18meV Å.
While our choice for the larger vs = 3.5 → 21meVÅ, where
sound attenuation is dominated by the pp-process, is very
close to the actual value of vTs,exp, our choice for the smaller
vs = 0.3 → 1.8meVÅ, where sound attenuation is domi-
nated by the ph-process, is significantly smaller than the actual
value of vLs,exp. To have a better comparison with α−RuCl3, in
App. D we provide additional plots of sound attenuation with
vs =2, 2.25, and 2.5 (12, 13.5, and 15 meVÅ respectively).
There, we can see some modifications of the pattern of the
sound attenuation in the momentum space. This happens be-
cause for larger sound velocity the scattering processes are not
confined anymore within the low-energy cone’s states but also
involve the states in the BZ originated primarily from“vison”
branches. These modifications are particularly visible for en-
hanced temperatures.

IV. CONCLUSION

In this work, we studied the phonon dynamics in the QSL
phase of the extended J-K-Γ model and showed that the
signatures of the spin fractionalization in the Kitaev candi-
date materials can be seen in the sound attenuation of acous-
tic phonons measured by ultrasound experiments [82]. We
computed the sound attenuation coefficient by relating it to
the imaginary part of the phonon polarization bubble and ex-
plored how it changes in the presence of residual interactions.
Since generic J-K-Γ QSL is not exactly solvable, we utilized
a conventional mean-field fermionic parton approach. We find
that similarly to the phonon attenuation in the pure Kitaev
spin liquid, the low-temperature scattering between acoustic
phonons of velocity vs and Majorana fermions of velocity
vF is controlled by the relative magnitude of these veloci-
ties, which at low-energies defines the kinematic constraints.
When the sound velocity vs is smaller than the Fermi velocity
vF , the sound attenuation at low temperatures is dominated
by the microscopic processes in which a fermion is excited to
a higher energy state (dubbed as ph-processes), with the at-
tenuation rate linear in temperature. When the sound velocity
vs is larger than the Fermi velocity vF , the phonon attenua-
tion happens mostly through the microscopic processes when



9

× 10−2

Pure Kitaev model

J , = 0.2 Γ = 0.2
ph-contribution

pp-contribution

(a)

(b)

(c)

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0.0

0.1

0.2

0.3

α∥,Eg

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.0

0.1

0.2

0.3

α∥,Eg

▲

▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

0.00 0.05 0.10
0.0

0.5

1.0

1.5

T

α∥,Eg

FIG. 5. The temperature evolution of the sound attenuation coeffi-

cients α∥,Eg from the ph-processes for the pure Kitaev model (a),

from the ph processes for J = 0.2,K = −1,Γ = 0.2, (b) and from

the pp processes for J = 0.2,K = −1,Γ = 0.2, (c). The phonon

momentum for this calculation was taken to be |q| = 0.008π, with

θq = π/6. The imaginary energy broadening was taken to be

δ = 0.02. Note that, for both ph and pp plots, a maxima for α∥,Eg

coincides with a minima for α⊥,Eg at θq = π/6, [56]. Here we omit

the plots for α⊥,Eg for which we get the same temperature depen-

dence along one of its maxima directions (e.g. for θq = 0).

a phonon decays into two fermions (dubbed as pp-processes),
which has the maximum intensity at T = 0 and then decreases
with temperature, which can be interpreted as consequence of
the Pauli exclusion principle. However, contrary to the pure
Kitaev model, in the generic J-K-Γ model both ph- and pp-
processes can contribute simultaneously. We also find that a
distinct six-fold symmetry in the sound attenuation is still pre-
served even in the presence of residual interactions.

As a final remark, we would like to emphasize that in our
computation we made use of the D3d point group symmetry
of the generalized J-K-Γ model. In this group, the magne-
toelastic coupling is reduced to two contributions, the A1g

and Eg . We find that Eg contributions to the sound attenu-

ation to be much larger that A1g , assuming that the couplings
λA1g and λEg are of the same order. Although this is a rea-
sonable assumption for a qualitative understanding, a quanti-
tative comparison with experimental data requires to study the
magnetoelatic couplings and elastic modulus tensor of Kitaev
materials more carefully, e.g., by first principles calculations.
Moreover, to better understand the experimental signatures in
the candidate materials which are magnetically ordered and
only proximate to the QSL state, like α-RuCl3 which is in the
zigzag magnetic phase, an analysis of sound attenuation in the
magnetically ordered states neighboring to the quantum spin
liquid state would also need to be examined.
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Appendix A: Details of the mean field spin Hamiltonian

1. The structure of the MF spin Hamiltonian

The Majorana MF matrix HMF
s (k) in Eq. (7), which is writ-

ten in the Majorana fermion basis Ak in Eq. (8), is found by
performing a Fourier transform of Eq. (5) and has the matrix
form

HMF
s (k) =

[
0 iMA1g

(k)
−i[MA1g

(k)]† 0

]
, (A1)

where MA1g (k) reads

MA1g(k) =


fcc(k) 0 0 0

0 fxx(k) fxy(k) fxz(k)
0 fxy(k) fyy(k) fyz(k)
0 fxz(k) fyz(k) fzz(k)

 . (A2)
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The entries of MA1g
(k) are

fcc(k) =− (J +K)
{
κxx
x eik.n1 + κyy

y eik.n2 + κzz
z

}
− J

{
(κyy

x + κzz
x )eik.n1 + (κxx

y + κzz
y )eik.n2

+ (κxx
z + κyy

z )
}
− Γ

{
(κyz

x + κzy
x )eik.n1

+ (κxz
y + κzx

y )eik.n2 + (κxy
z + κyx

z )
}
,

(A3)

fxx(k) =− (J +K)κ0
xe

ik.n1 − J(κ0
ye

ik.n2 + κ0
z),

fyy(k) =− (J +K)κ0
ye

ik.n2 − J(κ0
xe

ik.n1 + κ0
z),

fzz(k) =− (J +K)κ0
z − J(κ0

xe
ik.n1 + κ0

ye
ik.n2),

(A4)

fyz(k) =− Γκ0
xe

ik.n1 ,

fxz(k) =− Γκ0
ye

ik.n2 ,

fxy(k) =− Γκ0
z,

(A5)

where n1 and n2 are unit vectors defined in Fig. 1.

The Majorana fermion basis Ak can be rewritten in the
complex fermion basis Fk as

ck,A

bxk,A
byk,A
bzk,A
ck,B

bxk,B
byk,B
bzk,B


= AT

k
V−→ FT

k =



fk,A,↑

fk,A,↓

f†
−k,A,↑
f†
−k,A,↓
fk,B,↑,

fk,B,↓

f†
−k,B,↑
f†
−k,B,↓


. (A6)

The transformation matrix V follows from Eq. (9) and reads

V =

[
v 0

0 v

]
, v =


1 0 0 −i

0 −i 1 0

1 0 0 i

0 i 1 0

 (A7)

This allows us to transform the MF Hamiltonian from the Ma-
jorana fermions to the complex fermions:

AT
−kH

MF
s (k)Ak = F†

kH
MF
f (k)Fk. (A8)

The matrix HMF
f (k) (written in the basis of the complex

fermions) can be diagonalized by a unitary transformation for
a given set of the MF parameters, resulting in the spectrum,
presented in Fig 2.

2. The self-consistent MF solution

The solution of the MF spin Hamiltonian is calculated us-
ing the iterative self-consistent method. This consists of three
steps. Step 1: for a set of mean field values, evaluate eigen-
values and eigenvectors of HMF

f (k) at every momentum point.
Step 2: recalculate the MF values from the self-consistent
equations. Step 3: check the fermionic constrains and sub-
stitute the MF values back into the MF Hamiltonian. Repeat
steps 1 through 3 until conversion.

We start with step 1. The first step 1 is performed by sub-
stituting a good guess for the values of the MF parameters in
the complex fermion Hamiltonian HMF

s,f (k). This Hamiltonian
is then diagonalized at every momentum point

F†
kH

MF
f (k)Fk = B†

kD(k)Bk (A9)

with Fk = U(k)B(k), U(k) being the diagonalizing ma-
trix and B(k) being the Bogolyubov eigenstates BT

k =[
β†
−k,1 β†

−k,2 β†
−k,3 β†

−k,4 βk,1 βk,2 βk,3 βk,4

]
. The

columns of the U(k) matrix consist of eigenvectors of the
Hamiltonian at momentum point k.

To proceed with step 2, we assume that the MF parameters
have a uniform value on the lattice, and calculating them on
average. For example, the bond mean field parameter ⟨icicj⟩x
would be evaluated from the self consistency equation

⟨icicj⟩x =
i

N

∑
⟨ij⟩x,i∈A

⟨cicj⟩

=
i

N

∑
k

⟨ck,Ac−k,B⟩e−ik.n1

=
i

N

∑
k

⟨(fk,A,↑f−k,B,↑ + fk,A,↑f
†
k,B,↑)

× (f†
−k,A,↑f−k,B,↑+ + f†

−k,A,↑f
†
k,B,↑+)⟩e

−ik.n1 .

(A10)

We can evaluate the variours terms in (A10) by using the di-
agonalizng matrix

i

N

∑
k

⟨fk,A,↑f
†
k,B,↑⟩e

−ik.n1

=
i

N

∑
k

∑
l,l′

⟨U(k)m,lB(k)lU(k)∗n,l′B(k)
†
l′⟩e

−ik.n1

=
i

N

∑
k

8∑
l=5

U(k)m,lU(k)∗n,le
−ik.n1 .

(A11)
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irrep A1g

K fA1g
K = σx

r σ
x
r+Mx

+ σy
r σ

y
r+My

+ σz
r σ

z
r+Mz

J fA1g
J = σx

r σ
x
r+My,z

+ σy
r σ

y
r+Mx,z

+ σz
r σ

z
r+Mx,y

Γ fA1g
Γ = σy

r σ
z
r+Mx

+ σz
r σ

y
r+Mx

+ σx
r σ

z
r+My

+σz
r σ

x
r+My

+ σx
r σ

y
r+Mz

+ σy
r σ

x
r+Mz

Phonon ϵxx + ϵyy

TABLE I. Basis functions of spins and phonons in the A1g irrep of

the D3d point group. In the expressions for the fJ functions, the

summation over sub-indices of M is assumed.

irrep Eg

K (f
Eg,1

K , f
Eg,2

K ) =
(
σx

r σ
x
r+Mx

+ σy
r σ

y
r+My

− 2σz
r σ

z
r+Mz

,
√
3(σx

r σ
x
r+Mx

− σy
r σ

y
r+My

)
)

J (f
Eg,1

J , f
Eg,2

J ) =
(
σx

r σ
x
r+My,z

+ σy
r σ

y
r+Mx,z

− 2σz
r σ

z
r+Mx,y

,
√
3(σx

r σ
x
r+My,z

− σy
r σ

y
r+Mx,z

)
)

Γ (f
Eg,1

Γ , f
Eg,2

Γ ) =
(
σy

r σ
z
r+Mx

+ σz
r σ

y
r+Mx

+ σx
r σ

z
r+My

+σz
r σ

x
r+My

− 2(σx
r σ

y
r+Mz

+ σy
r σ

x
r+Mz

)
√
3(σy

r σ
z
r+Mx

+ σz
r σ

y
r+Mx

− (σx
r σ

z
rMy

+ σz
r σ

x
rMy

))
)

Phonon
(
ϵxx − ϵyy, 2ϵxy

)
TABLE II. Basis functions of spins and phonons in the Eg irrep of

the D3d point group. In the expressions for the fJ functions, the

summation over sub-indices of M is assumed.

Here m,n correspond to the fermion flavors (k, A, ↑) and
(k, B, ↑) respectively, and we have summed over the unoc-
cupied states corresponding to the part of the eigenvector with
positive eigenvalues. Similarly, we can evaluate other bilin-
ear combinations of the complex fermions to get the updated
values of the MF parameters.

Arriving now at step 3, we substitue these updated values
of the MF parameters back into HMF

f (k). We check that the
fermionic single occupancy constraints are still preserved, by
checking that ⟨f†

i,A(B),↑fi,A(B),↑ + f†
i,A(B),↓fi,A(B),↓⟩ = 1.

This ensures that we are working in the physical space of spin
operators on the MF level. We iterate steps 1 through 3 until
we get a convergence of the MF parameter values.

Appendix B: Details of the spin-phonon coupling Hamiltonian

The basis functions for the A1g and Eg irreps for the spins
and phonon are given in Tab. I and II. Using these functions,
we can explicitly write the symmetry allowed coupling Hamil-
tonian in Eq. (13). Through Fourier transforming and some
algebra we arrive at Eq. (16), where we introduced the com-

pact notation of H
A1g
c , HEg,1

c and H
Eg,2
c matrices. For the

A1g irrep, we get

H
A1g
c (q,k) =

[
0 iMA1g

(k)
−i[MA1g

(q + k)]† 0

]
. (B1)

Matrices H
Eg,1
c and H

Eg,2
c have the same structure as H

A1g
c

with MA1g
replaced by MEg,1

and MEg,2
, respectively. The

form of the M matricies is

Mir(k) =


fcc,ir(k) 0 0 0

0 fxx,ir(k) fxy,ir(k) fxz,ir(k)
0 fxy,ir(k) fyy,ir(k) fyz,ir(k)
0 fxz,ir(k) fyz,ir(k) fzz,ir(k)

 .

(B2)
where index ir=A1g, Eg,1, Eg,2. The MA1g

(k) and
MEg,(1,2)

(k) matrices enter the definition of the coupling ver-
tices in Eqs. (21) and (22). The definitions of all the f func-
tions are given below:

fcc,Eg,1
(k) =− (J +K)

{
κxx
x eik.n1 + κyy

y eik.n2 − 2κzz
z

}
− J

{
(κyy

x + κzz
x )eik.n1 + (κxx

y + κzz
y )eik.n2

− 2(κxx
z + κyy

z )
}
− Γ

{
(κyz

x + κzy
x )eik.n1

+ (κxz
y + κzx

y )eik.n2 − 2(κxy
z + κyx

z )
}
,

(B3)

fxx,Eg,1
(k) =− (J +K)κ0

xe
ik.n1 − J(κ0

ye
ik.n2 − 2κ0

z),

fyy,Eg,1
(k) =− (J +K)κ0

ye
ik.n2 − J(κ0

xe
ik.n1 − 2κ0

z),

fzz,Eg,1
(k) =2(J +K)κ0

z − J(κ0
xe

ik.n1 + κ0
ye

ik.n2),

(B4)

fyz,Eg,1
(k) = −Γκ0

xe
ik.n1 ,

fxz,Eg,1
(k) =− Γκ0

ye
ik.n2 ,

fxy,Eg,1
(k) =2Γκ0

z,

(B5)

fcc,Eg,2(k) =
√
3

{
−(J +K)

{
κxx
x eik.n1 − κyy

y eik.n2
}

− J
{
(κyy

x + κzz
x )eik.n1 − (κxx

y + κzz
y )eik.n2

}
− Γ

{
(κyz

x + κzy
x )eik.n1 − (κxz

y + κzx
y )eik.n2

}}
(B6)

fxx,Eg,2
(k) =

√
3

{
−(J +K)κ0

xe
ik.n1 + Jκ0

ye
ik.n2

}
,

fyy,Eg,2
(k) =

√
3

{
(J +K)κ0

ye
ik.n2 − Jκ0

xe
ik.n1

}
,

fzz,Eg,2(k) =
√
3

{
−J(κ0

xe
ik.n1 − κ0

ye
ik.n2)

}
,

(B7)
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FIG. 6. The A1g contribution to the longitudinal component of the sound attenuation coefficient α∥
s(q) for different values of (Γ,J), and

K = −1 fixed, at T = 0.05 in units of the Kitaev interaction strenght K. The ph-contribution coming from the A1g irrep is shown on the

left, where vs = 0.3 < vF on panels (a)-(i), and the ph-contribution coming from the A1g irrep is shown on the right, where vs = 3.5 > vF

ed panels (j)-(r). The phonon momentum q belongs to the region (qx, qy) ∈ [−0.12π, 0.12π]2, and vF = 3 determined from the slope of the

Dirac cone of the Kitaev spectrum. The imaginary energy broadening was taken to be δ = 0.2.

fyz,Eg,2
(k) =−

√
3Γκ0

xe
ik.n1 ,

fxz,Eg,2
(k) =

√
3Γκ0

ye
ik.n2 ,

fxy,Eg,2
(k) =0.

(B8)

Appendix C: Matsubara frequency sums

The Matsubara Green functions involved in Eq. (27) are
given below (we also explicitly show the intermediate step of
the Matsubara summation using the residue method [93]):

P gḡ
l,m = T

∑
iωn

gl(k + q, iωn)ḡm(k, iΩ− iωn)

= T
∑
iωn

1

iωn − ϵk+q,l

1

(iΩ− iωn) + ϵk,m

=
nF (ϵk+q,l)− nF (ϵk,m)

iΩ− ϵk+q,l + ϵk,m
,

(C1)

P ḡg
l,m = T

∑
iωn

ḡl(k + q, iωn)gm(k, iΩ− iωn)

= T
∑
iωn

1

iωn + ϵk+q,l

1

(iΩ− iωn)− ϵk,m

=
nF (−ϵk+q,l)− nF (−ϵk,m)

iΩ+ ϵk+q,l − ϵk,m
,

(C2)

P gg
l,m = T

∑
iωn

gl(k + q, iωn)gm(k, iΩ− iωn)

= T
∑
iωn

1

iωn − ϵk+q,l

1

(iΩ− iωn)− ϵk,m

=
nF (ϵk+q,l)− nF (−ϵk,m)

iΩ− ϵk+q,l − ϵk,m
,

(C3)

P ḡḡ
l,m = T

∑
iωn

ḡl(k + q, iωn)ḡm(k, iΩ− iωn)

= T
∑
iωn

1

iωn + ϵk+q,l

1

(iΩ− iωn) + ϵk,m

=
nF (−ϵk+q,l)− nF (ϵk,m)

iΩ+ ϵk+q,l + ϵk,m
.

(C4)

Here we have used the imaginary time free fermion propaga-
tors of the spin Hamiltonian, defined as

gi(k, iωn) =− ⟨Tτβk,i(τ)β
†
k,i(0)⟩ωn

=
1

iωn − ϵk,i
,

ḡi(k, iωn) =− ⟨Tτβ
†
k,i(τ)βk,i(0)⟩ωn =

1

iωn + ϵk,i
,

(C5)

and nF is the Fermi-Dirac distribution function.

Appendix D: Additional numerical results for the sound
attenuation

In Fig. 6 we show the A1g contribution to the sound atten-
uation coefficient for the longitudinal phonon mode, α∥

s(q),
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FIG. 7. Partitioned contributions to the sound attenuation for fixed

parameters (Γ, J,K)=(0.2,0.2,-1), vs = 0.3, and T = 0.05: Pan-

els (a) and (d) show the contribution from momenta centred around

Γ-point, panels (b) and (e) from momenta centred around Dirac K-

points, and panels (c) and (f) is the full summation from the entire

BZ. The BZ sectors involve restricting momenta to a disk centered

around the desired Γ-, K-, and K’-point, the radius of each disk being

1/2 the distance from Γ-point to K-point, i.e., the maximum disk ra-

dius such that disk sectors do not overlap. The top row (a,b,c) shows

the sound attenuation arising from the ph-channel processes, and the

bottom row (d,e,f) from the pp-channel processes. The phonon mo-

mentum q belongs to the region (qx, qy) ∈ [−0.12π, 0.12π]2.

FIG. 8. The Eg contribution from the ph-processes, to the lon-

gitudinal sound attenuation coefficient α
∥
s(q). We set T = 0.1

and (Γ, J,K) = (0.2, 0.2,−1) for the top row and (Γ, J,K) =

(−0.2, 0.2,−1) for the bottom row. Panels (a,d),(b,e), and (c,f) show

α
∥
s(q) for vs = 2, 2.25 and 2.5 respectively. The phonon momentum

q belongs to the region (qx, qy) ∈ [−0.12π, 0.12π]2.

for both vs < vF and vs > vF , computed for different val-
ues of (Γ, J) and K = −1. We clearly see that the inten-
sity of the phonon attenuation in the A1g symmetry channel
is smaller than that in the Eg symmetry channel (see Figs. 3
and 4). While in the Kitaev limit (J = Γ = 0), the contribu-

tion from the A1g symmetry channel seems to be symmetric,
it still posses weak six-fold angular dependence, which be-
comes more apparent in the presence of finite J and Γ.

Further, as we see a significant lowering of the energy states
near the center of the BZ for the parameters (Γ, J,K) =

(−0.2, 0.2,−1) and (Γ, J,K) = (0.2, 0.2,−1) (see Fig.2 (a)
and (c), respectively), it is reasonable to assume that these
states give non-negligible contributions into the scattering
processes leading to the sound attenuation and, perhaps, are
responsible for qualitative changes in the sound attenuation
patterns and intensities (compare different panels of Fig. 3 and
4 of the main text). To see this explicitly for one set of param-
eters (Γ, J,K) = (0.2, 0.2,−1), vs = 0.3, and T = 0.05, in
Fig. 7 we plot separately the contributions to the sound atten-
uation from the states located near the center of the BZ (Fig.7
(a,d)), from the states near the Dirac K-points (Fig.7 (b,e))
and from the entire BZ (Fig.7 (c,f)). The top row (a,b,c) shows
the sound attenuation arising from the ph-process, and the bot-
tom row (d,e,f) from the pp-process. While conventionally pp-
process is not allowed for vs < vF from the K-point centered
Dirac cones, leading to (e) being identically zero, the lowering
of the vison bands at the Γ-point (see Fig.2(c)) leads to the sig-
nificant pp-process contributions (see very large value for the
attenuation in the panel (d)) for this parameter case. More-
over, the almost circular like shape of the sound-attenuation
pattern is because the vison bands have very little dispersion,
i.e., are still almost flat, Also note that unlike (e), the ph-
processes near the Γ-point shown in panel (a) are not forbid-
den, and have a very small but non-zero contribution to the
sound attenuation (we can see exceedingly faint blue colored
intensity on the edges of the plot).

In Fig. 8, we plot the sound attenuation coefficient com-
puted for (Γ, J,K) = (0.2, 0.2,−1) (top row, panels (a)-(c))
and (Γ, J,K) = (−0.2, 0.2,−1) (bottom row, panels (d)-(f))
for progressively increased sound velocity vs from 2 to 2.5.
While the features seen in the main text still generally persist,
new behaviour appears as a result of new accessible states and
kinematic constrains. First note that, vF = 3 holds true only
in the case J = Γ = 0. As we can see from the spectra in
Fig 2, for the top row with J = 0.2 the cones at the BZ K-
points are more obtuse, leading to an effectively smaller vF ,
while for the bottom row, with J = −0.2, the cones are more
acute, leading to an effectively larger vF . When J = 0.2,
and as vs increases, the character of the attenuation processes
changes from the ph-like to the pp-like, and this reflected in



14

the change of the sound attenuation pattern.

[1] P. W. Anderson, Materials Research Bulletin 8, 153 (1973).

[2] X.-G. Wen, Phys. Rev. B 65, 165113 (2002).

[3] A. Kitaev, Annals of Physics 321, 2 (2006).

[4] L. Balents, Nature 464, 199 (2010).

[5] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502 (2017).

[6] J. Knolle and R. Moessner, Annual Review of Condensed Mat-

ter Physics 10, 451 (2019).

[7] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. No-

cera, M. R. Norman, and T. Senthil, Science 367 (2020),

10.1126/science.aay0668.

[8] A. Kitaev, Annals of Physics 303, 2 (2003).

[9] M. Hermanns, I. Kimchi, and J. Knolle, Annual Review of

Condensed Matter Physics 9, 17 (2018).

[10] Y. Motome and J. Nasu, J. Phys. Soc. Jpn 89, 012002 (2020).

[11] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E.

Nagler, Nat. Rev. Phys. 1, 264 (2019).

[12] S. Trebst and C. Hickey, Physics Reports 950, 1 (2022).

[13] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205

(2009).

[14] J. c. v. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev.

Lett. 105, 027204 (2010).

[15] Y. Kubota, H. Tanaka, T. Ono, Y. Narumi, and K. Kindo, Phys.

Rev. B 91, 094422 (2015).

[16] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Annual Review of

Condensed Matter Physics 7, 195 (2016).

[17] Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412 (2010).

[18] X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Y.-J. Kim,

H. Gretarsson, Y. Singh, P. Gegenwart, and J. P. Hill, Phys.

Rev. B 83, 220403 (2011).

[19] S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster, I. I.

Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh, P. Gegenwart,

K. R. Choi, S.-W. Cheong, P. J. Baker, C. Stock, and J. Taylor,

Phys. Rev. Lett. 108, 127204 (2012).

[20] F. Ye, S. Chi, H. Cao, B. C. Chakoumakos, J. A. Fernandez-

Baca, R. Custelcean, T. F. Qi, O. B. Korneta, and G. Cao, Phys.

Rev. B 85, 180403 (2012).

[21] R. Comin, G. Levy, B. Ludbrook, Z.-H. Zhu, C. N. Veenstra,

J. A. Rosen, Y. Singh, P. Gegenwart, D. Stricker, J. N. Hancock,

D. van der Marel, I. S. Elfimov, and A. Damascelli, Phys. Rev.

Lett. 109, 266406 (2012).

[22] S. Hwan Chun, J.-W. Kim, J. Kim, H. Zheng, C. C. Stoumpos,

C. D. Malliakas, J. F. Mitchell, K. Mehlawat, Y. Singh, Y. Choi,

T. Gog, A. Al-Zein, M. M. Sala, M. Krisch, J. Chaloupka,

G. Jackeli, G. Khaliullin, and B. J. Kim, Nature Physics 11,

462 (2015).

[23] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku,

S. Trebst, and P. Gegenwart, Phys. Rev. Lett. 108, 127203

(2012).

[24] S. C. Williams, R. D. Johnson, F. Freund, S. Choi, A. Jesche,

I. Kimchi, S. Manni, A. Bombardi, P. Manuel, P. Gegenwart,

and R. Coldea, Phys. Rev. B 93, 195158 (2016).

[25] K. Kitagawa, T. Takayama, Y. Matsumoto, A. Kato, R. Takano,

Y. Kishimoto, S. Bette, R. Dinnebier, G. Jackeli, and H. Takagi,

Nature 554, 341 (2018).

[26] K. W. Plumb, J. P. Clancy, L. J. Sandilands, V. V. Shankar, Y. F.

Hu, K. S. Burch, H.-Y. Kee, and Y.-J. Kim, Phys. Rev. B 90,

041112 (2014).

[27] L. J. Sandilands, Y. Tian, K. W. Plumb, Y.-J. Kim, and K. S.

Burch, Phys. Rev. Lett. 114, 147201 (2015).

[28] J. A. Sears, M. Songvilay, K. W. Plumb, J. P. Clancy, Y. Qiu,

Y. Zhao, D. Parshall, and Y.-J. Kim, Phys. Rev. B 91, 144420

(2015).

[29] M. Majumder, M. Schmidt, H. Rosner, A. A. Tsirlin, H. Ya-

suoka, and M. Baenitz, Phys. Rev. B 91, 180401 (2015).

[30] R. D. Johnson, S. C. Williams, A. A. Haghighirad, J. Singleton,

V. Zapf, P. Manuel, I. I. Mazin, Y. Li, H. O. Jeschke, R. Valentı́,

and R. Coldea, Phys. Rev. B 92, 235119 (2015).

[31] L. J. Sandilands, Y. Tian, A. A. Reijnders, H.-S. Kim, K. W.

Plumb, Y.-J. Kim, H.-Y. Kee, and K. S. Burch, Phys. Rev. B

93, 075144 (2016).

[32] A. Banerjee, C. A. Bridges, J.-Q. Yan, A. A. Aczel, L. Li,

M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J. Knolle,

S. Bhattacharjee, D. L. Kovrizhin, R. Moessner, D. A. Ten-

nant, M. D. G., and S. E. Nagler, Nature materials (2016),

10.1038/nmat4604.

[33] A. Banerjee, J. Yan, J. Knolle, C. A. Bridges, M. B. Stone,

M. D. Lumsden, D. G. Mandrus, D. A. Tennant, R. Moessner,

and S. E. Nagler, Science 356, 1055 (2017).

[34] S.-H. Do, S.-Y. Park, J. Yoshitake, J. Nasu, Y. Motome, Y. S.

Kwon, D. T. Adroja, D. J. Voneshen, K. Kim, T. H. Jang, J. H.

Park, K.-Y. Choi, and S. Ji, Nature Physics 13, 1079 (2017).

[35] L. Wu, A. Little, E. E. Aldape, D. Rees, E. Thewalt, P. Lampen-

Kelley, A. Banerjee, C. A. Bridges, J.-Q. Yan, D. Boone,

S. Patankar, D. Goldhaber-Gordon, D. Mandrus, S. E. Nagler,

E. Altman, and J. Orenstein, Phys. Rev. B 98, 094425 (2018).

[36] D. Wulferding, Y. Choi, S.-H. Do, C. H. Lee, P. Lemmens,

C. Faugeras, and K.-Y. Gallais, Yann andChoi, Nat. Commun.

11, 1603 (2020).

[37] A. Ruiz, N. P. Breznay, M. Li, I. Rousochatzakis, A. Allen,

I. Zinda, V. Nagarajan, G. Lopez, Z. Islam, M. H. Upton,

http://dx.doi.org/10.1103/PhysRevB.65.165113
https://doi.org/10.1016/j.aop.2005.10.005
http://stacks.iop.org/0034-4885/80/i=1/a=016502
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013401
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013401
http://dx.doi.org/ 10.1126/science.aay0668
http://dx.doi.org/ 10.1126/science.aay0668
http://dx.doi.org/http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1146/annurev-conmatphys-033117-053934
http://dx.doi.org/10.1146/annurev-conmatphys-033117-053934
http://dx.doi.org/10.7566/JPSJ.89.012002
http://dx.doi.org/ 10.1038/s42254-019-0038-2
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2021.11.003
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/ 10.1103/PhysRevB.91.094422
http://dx.doi.org/ 10.1103/PhysRevB.91.094422
http://dx.doi.org/10.1146/annurev-conmatphys-031115-011319
http://dx.doi.org/10.1146/annurev-conmatphys-031115-011319
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://dx.doi.org/10.1103/PhysRevB.83.220403
http://dx.doi.org/10.1103/PhysRevB.83.220403
http://dx.doi.org/ 10.1103/PhysRevLett.108.127204
http://dx.doi.org/10.1103/PhysRevB.85.180403
http://dx.doi.org/10.1103/PhysRevB.85.180403
http://dx.doi.org/10.1103/PhysRevLett.109.266406
http://dx.doi.org/10.1103/PhysRevLett.109.266406
http://dx.doi.org/ 10.1038/nphys3322
http://dx.doi.org/ 10.1038/nphys3322
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevB.93.195158
http://dx.doi.org/10.1038/nature25482
http://dx.doi.org/ 10.1103/PhysRevB.90.041112
http://dx.doi.org/ 10.1103/PhysRevB.90.041112
http://dx.doi.org/ 10.1103/PhysRevLett.114.147201
http://dx.doi.org/10.1103/PhysRevB.91.144420
http://dx.doi.org/10.1103/PhysRevB.91.144420
http://dx.doi.org/ 10.1103/PhysRevB.91.180401
http://dx.doi.org/10.1103/PhysRevB.92.235119
http://dx.doi.org/10.1103/PhysRevB.93.075144
http://dx.doi.org/10.1103/PhysRevB.93.075144
http://dx.doi.org/10.1038/nmat4604
http://dx.doi.org/10.1038/nmat4604
http://dx.doi.org/ 10.1126/science.aah6015
http://dx.doi.org/ 10.1038/nphys4264
http://dx.doi.org/ 10.1103/PhysRevB.98.094425
http://dx.doi.org/10.1038/s41467-020-15370-1
http://dx.doi.org/10.1038/s41467-020-15370-1


15

J. Kim, A. H. Said, X.-R. Huang, T. Gog, D. Casa, R. J. Birge-

neau, J. D. Koralek, J. G. Analytis, N. B. Perkins, and A. Frano,

Phys. Rev. B 103, 184404 (2021).

[38] T. Halloran, Y. Wang, M. Li, I. Rousochatzakis, P. Chauhan,

M. B. Stone, T. Takayama, H. Takagi, N. P. Armitage, N. B.

Perkins, and C. Broholm, Phys. Rev. B 106, 064423 (2022).

[39] Y. Yang, Y. Wang, I. Rousochatzakis, A. Ruiz, J. G. Analytis,

K. S. Burch, and N. B. Perkins, Phys. Rev. B 105, L241101

(2022).

[40] H. Li, T. T. Zhang, A. Said, G. Fabbris, D. G. Mazzone, J. Q.

Yan, D. Mandrus, G. B. Halasz, S. Okamoto, S. Murakami,

M. P. M. Dean, H. N. Lee, and H. Miao, Nature Communi-

cations 12, 3513 (2021).

[41] S. Mu, K. D. Dixit, X. Wang, D. L. Abernathy, H. Cao, S. E.

Nagler, J. Yan, P. Lampen-Kelley, D. Mandrus, C. A. Polanco,

L. Liang, G. B. Halász, Y. Cheng, A. Banerjee, and T. Berlijn,

Phys. Rev. Res. 4, 013067 (2022).

[42] J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner,

Phys. Rev. Lett. 112, 207203 (2014).

[43] J. Knolle, G.-W. Chern, D. L. Kovrizhin, R. Moessner, and

N. B. Perkins, Phys. Rev. Lett. 113, 187201 (2014).

[44] J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner,

Phys. Rev. B 92, 115127 (2015).

[45] J. Nasu, M. Udagawa, and Y. Motome, Physical review letters

113, 197205 (2014).

[46] J. Nasu, J. Knolle, D. L. Kovrizhin, Y. Motome, and R. Moess-

ner, Nature Physics 12, 912 (2016).

[47] B. Perreault, J. Knolle, N. B. Perkins, and F. J. Burnell, Phys.

Rev. B 92, 094439 (2015).

[48] B. Perreault, J. Knolle, N. B. Perkins, and F. J. Burnell, Phys.

Rev. B 94, 104427 (2016).

[49] G. B. Halász, N. B. Perkins, and J. van den Brink, Phys. Rev.

Lett. 117, 127203 (2016).

[50] G. B. Halász, B. Perreault, and N. B. Perkins, Phys. Rev. Lett.

119, 097202 (2017).

[51] G. B. Halász, S. Kourtis, J. Knolle, and N. B. Perkins, Phys.

Rev. B 99, 184417 (2019).

[52] I. Rousochatzakis, S. Kourtis, J. Knolle, R. Moessner, and

N. B. Perkins, Phys. Rev. B 100, 045117 (2019).

[53] M. Udagawa, S. Takayoshi, and T. Oka, Phys. Rev. Lett. 126,

127201 (2021).

[54] Y. Wan and N. P. Armitage, Phys. Rev. Lett. 122, 257401

(2019).

[55] W. Choi, K. H. Lee, and Y. B. Kim, Phys. Rev. Lett. 124,

117205 (2020).

[56] M. Ye, R. M. Fernandes, and N. B. Perkins, Phys. Rev. Re-

search 2, 033180 (2020).

[57] A. Metavitsiadis and W. Brenig, Phys. Rev. B 101, 035103

(2020).

[58] K. Feng, M. Ye, and N. B. Perkins, Phys. Rev. B 103, 214416

(2021).

[59] K. Feng, A. Shiralieva, and N. B. Perkins, Phys. Rev. B 106,

144424 (2022).

[60] S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink,

Y. Singh, P. Gegenwart, and R. ValentÃ, J. Phys.: Condens.
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Phys. Rev. Lett. 120, 117204 (2018).

[79] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, S. Ma,

K. Sugii, N. Kurita, H. Tanaka, J. Nasu, Y. Motome,

http://dx.doi.org/10.1103/PhysRevB.103.184404
http://dx.doi.org/10.1103/PhysRevB.106.064423
http://dx.doi.org/ 10.1103/PhysRevB.105.L241101
http://dx.doi.org/ 10.1103/PhysRevB.105.L241101
http://dx.doi.org/ 10.1038/s41467-021-23826-1
http://dx.doi.org/ 10.1038/s41467-021-23826-1
http://dx.doi.org/ 10.1103/PhysRevResearch.4.013067
http://dx.doi.org/10.1103/PhysRevLett.112.207203
http://dx.doi.org/ 10.1103/PhysRevLett.113.187201
http://dx.doi.org/10.1103/PhysRevB.92.115127
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.197205
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.197205
http://dx.doi.org/10.1103/PhysRevB.92.094439
http://dx.doi.org/10.1103/PhysRevB.92.094439
http://dx.doi.org/10.1103/PhysRevB.94.104427
http://dx.doi.org/10.1103/PhysRevB.94.104427
http://dx.doi.org/10.1103/PhysRevLett.117.127203
http://dx.doi.org/10.1103/PhysRevLett.117.127203
http://dx.doi.org/10.1103/PhysRevLett.119.097202
http://dx.doi.org/10.1103/PhysRevLett.119.097202
http://dx.doi.org/ 10.1103/PhysRevB.99.184417
http://dx.doi.org/ 10.1103/PhysRevB.99.184417
http://dx.doi.org/10.1103/PhysRevB.100.045117
http://dx.doi.org/10.1103/PhysRevLett.126.127201
http://dx.doi.org/10.1103/PhysRevLett.126.127201
http://dx.doi.org/10.1103/PhysRevLett.122.257401
http://dx.doi.org/10.1103/PhysRevLett.122.257401
http://dx.doi.org/10.1103/PhysRevLett.124.117205
http://dx.doi.org/10.1103/PhysRevLett.124.117205
http://dx.doi.org/10.1103/PhysRevResearch.2.033180
http://dx.doi.org/10.1103/PhysRevResearch.2.033180
http://dx.doi.org/10.1103/PhysRevB.101.035103
http://dx.doi.org/10.1103/PhysRevB.101.035103
http://dx.doi.org/10.1103/PhysRevB.103.214416
http://dx.doi.org/10.1103/PhysRevB.103.214416
http://dx.doi.org/10.1103/PhysRevB.106.144424
http://dx.doi.org/10.1103/PhysRevB.106.144424
http://stacks.iop.org/0953-8984/29/i=49/a=493002
http://stacks.iop.org/0953-8984/29/i=49/a=493002
http://dx.doi.org/10.1103/PhysRevLett.112.077204
http://dx.doi.org/10.1103/PhysRevLett.112.077204
http://dx.doi.org/10.1103/PhysRevB.90.155126
http://dx.doi.org/10.1103/PhysRevB.90.155126
http://dx.doi.org/ 10.1103/PhysRevB.96.115103
http://dx.doi.org/ 10.1103/PhysRevB.96.115103
http://dx.doi.org/ 10.1103/PhysRevLett.118.107203
http://dx.doi.org/10.1103/PhysRevLett.110.097204
http://dx.doi.org/10.1103/PhysRevLett.110.097204
http://arxiv.org/abs/1408.4811
http://dx.doi.org/10.1103/PhysRevB.95.024426
http://dx.doi.org/10.1103/PhysRevLett.119.157203
http://dx.doi.org/10.1103/PhysRevLett.119.157203
http://dx.doi.org/ 10.1103/PhysRevB.97.075126
http://dx.doi.org/10.1038/s41467-019-10405-8
http://dx.doi.org/10.1103/PhysRevB.90.195102
http://dx.doi.org/10.1103/PhysRevB.90.195102
http://dx.doi.org/10.1038/s41467-020-15320-x
http://dx.doi.org/10.1038/s41467-020-15320-x
http://dx.doi.org/10.1103/PhysRevB.84.125125
http://dx.doi.org/10.1103/PhysRevB.86.224417
http://dx.doi.org/10.1103/PhysRevB.86.224417
http://dx.doi.org/10.1103/PhysRevB.97.134432
http://dx.doi.org/10.1103/PhysRevB.97.134432
http://dx.doi.org/10.1103/PhysRevLett.123.197201
http://dx.doi.org/10.1103/PhysRevLett.123.197201
http://dx.doi.org/ 10.1103/PhysRevB.104.014411
http://dx.doi.org/ 10.1103/PhysRevB.104.014411
http://dx.doi.org/ 10.1103/PhysRevLett.120.117204


16

T. Shibauchi, and Y. Matsuda, Nature 559, 227 (2018).

[80] S. Pal, A. Seth, P. Sakrikar, A. Ali, S. Bhattacharjee, D. V. S.

Muthu, Y. Singh, and A. K. Sood, arXiv:2011.00606 (2020).

[81] H. Li, A. Said, J. Q. Yan, D. M. Mandrus, H. N. Lee,

S. Okamoto, G. B. Halász, and H. Miao, (2021),

arXiv:2112.02015 [cond-mat.str-el].

[82] A. Hauspurg, S. Zherlitsyn, T. Helm, V. Felea, J. Wosnitza,

V. Tsurkan, K. Y. Choi, S. H. Do, M. Ye, W. Brenig, and N. B.

Perkins, (2023), arXiv:2303.09288 [cond-mat.str-el].

[83] K. Feng, S. Swarup, and N. B. Perkins, Phys. Rev. B 105,

L121108 (2022).

[84] A. Metavitsiadis, W. Natori, J. Knolle, and W. Brenig, Phys.

Rev. B 105, 165151 (2022).

[85] A. Pippard, The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science 46, 1104 (1955).

[86] A. I. Akhiezer, M. I. Kaganov, and G. Y. Lyubarskyi, Sov. Phys.

JETP 5, 685 (1957).

[87] E. I. Blount, Phys. Rev. 114, 418 (1959).

[88] T. Tsuneto, Phys. Rev. 121, 402 (1961).

[89] B. Batlogg, D. Bishop, B. Golding, C. M. Varma, Z. Fisk, J. L.

Smith, and H. R. Ott, Phys. Rev. Lett. 55, 1319 (1985).

[90] H. Won and K. Maki, Phys. Rev. B 49, 1397 (1994).

[91] B. W. Lebert, S. Kim, D. A. Prishchenko, A. A. Tsirlin, A. H.

Said, A. Alatas, and Y.-J. Kim, Phys. Rev. B 106, L041102

(2022).

[92] P. A. Maksimov and A. L. Chernyshev, Phys. Rev. Res. 2,

033011 (2020).

[93] Altland, Alexander and Simons, Ben D.,

Condensed Matter Field Theory, 2nd ed. (Cambridge Uni-

versity Press, 2010).

http://dx.doi.org/10.1038/s41586-018-0274-0
https://arxiv.org/abs/2011.00606
http://arxiv.org/abs/2112.02015
http://arxiv.org/abs/2303.09288
http://dx.doi.org/10.1103/PhysRevB.105.L121108
http://dx.doi.org/10.1103/PhysRevB.105.L121108
http://dx.doi.org/10.1103/PhysRevB.105.165151
http://dx.doi.org/10.1103/PhysRevB.105.165151
http://dx.doi.org/10.1080/14786441008521122
http://dx.doi.org/10.1080/14786441008521122
http://dx.doi.org/10.1103/PhysRev.114.418
http://dx.doi.org/10.1103/PhysRev.121.402
http://dx.doi.org/10.1103/PhysRevLett.55.1319
http://dx.doi.org/10.1103/PhysRevB.49.1397
http://dx.doi.org/ 10.1103/PhysRevB.106.L041102
http://dx.doi.org/ 10.1103/PhysRevB.106.L041102
http://dx.doi.org/10.1103/PhysRevResearch.2.033011
http://dx.doi.org/10.1103/PhysRevResearch.2.033011

