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We investigate the ground state and critical temperature (Tc) phase diagrams of the classical
and quantum S = 1

2
pyrochlore lattice with nearest-neighbor Heisenberg and Dzyaloshinskii-Moriya

interactions (DMI). We consider ferromagnetic and antiferromagnetic Heisenberg exchange inter-
action as well as direct and indirect DMI. At the classical level, three ground states are found:
all-in/all-out, ferromagnetic and a locally ordered XY phase, known as Γ5, which displays an ac-
cidental classical U(1) degeneracy at the mean-field level. Quantum zero-point energy fluctuations
computed to order 1/S are found to lift the classical ground state degeneracy and select the so-
called ψ3 state out of the degenerate manifold in most parts of the Γ5 regime. Likewise, thermal
fluctuations treated classically at the Gaussian level entropically select the ψ3 state at T = 0+.
In contrast to this low-temperature state-selection behavior, classical Monte Carlo simulations find
that the system orders at Tc in the non-coplanar ψ2 state of Γ5 for antiferromagnetic Heisenberg
exchange and indirect DMI with a transition from ψ2 to ψ3 at a temperature TΓ5 < Tc. The same
method finds that the system orders via a single transition at Tc directly into the ψ3 state for most
of the region with ferromagnetic Heisenberg exchange and indirect DMI. Such ordering behavior
at Tc for the S = 1/2 quantum model is corroborated by high-temperature series expansion. To
investigate the T = 0 quantum ground state of the model, we apply the pseudo-fermion functional
renormalization group (PFFRG). The quantum paramagnetic phase of the pure antiferromagnetic
S = 1/2 Heisenberg model is found to persist over a finite region in the phase diagram for both direct
or indirect DMI. Interestingly, we find that a combined ferromagnetic Heisenberg and indirect DMI,
near the boundary of ferromagnetism and Γ5 antiferromagnetism, may potentially realize a T = 0
quantum ground state lacking conventional magnetic order. Otherwise, for the largest portion of
the phase diagram, PFFRG finds the same long-range ordered phases (all-in/all-out, ferromagnetic
and Γ5) as in the classical model.

I. INTRODUCTION

A. Background & motivation

Spin fluctuations, being either of quantum or ther-
mal nature, play a fundamental role in shaping the mag-
netic properties of frustrated magnetic systems [1, 2]. In
the simplest scenario, when fluctuations act on a sys-
tem with conventional long-range magnetic order, the
static dipolar magnetic order parameter is reduced or
even completely suppressed, resulting in a lesser or-
dered state. However, the opposite and, at first sight,
counter intuitive situation also occurs where fluctuations
are the very reason for the existence of long-range order, a
phenomenon known as “order-by-disorder” (ObD) [3–6].

∗ These authors contributed equally to the project.

Order-by-disorder takes place when a classical (S →∞)
spin system displays an accidental degeneracy of ground
states that is not the result of global symmetries but,
instead, of fine-tuned spin-spin interactions. Such a
system then becomes highly susceptible to fluctuation-
driven selection effects within the degenerate manifold
of classical ground states. These effects can either arise
through quantum fluctuations [4], most straightforwardly
described by the harmonic zero-point energy of spin
waves as described in a semiclassical 1/S approximation,
or via an entropic selection coming from the thermal fluc-
tuations about the classically degenerate states [3, 5, 6].
Independently of the precise selection mechanism, the
free-energy scale(s) associated with ObD are typically
small compared to the bare spin-spin coupling terms in
the Hamiltonian. As a result, the manifestation of ObD
may be more prominently observed in parameter regimes
where two different phases are strongly competing with
their free-energy difference small. The smallness of the
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free-energy difference of competing phases combined with
the possibility of ObD can give rise to rich phase dia-
grams driven by the complex interplay of subleading or
perturbative energetic terms in the Hamiltonian and fluc-
tuation effects, resulting in many cases in unconvention-
ally ordered magnetic regimes. Additional complexity
can arise when quantum and thermal fluctuations do not
cooperate but select different states [7]. Given all these
subtleties, the simplest and most common, but also some-
what incomplete way to theoretically tackle ObD, has
often been to treat only one source or mechanism of fluc-
tuations (thermal or quantum) while omitting the other.
This perspective is manifestly inadequate, for example,
when ObD is either responsible for the finite tempera-
ture phase transition to long-range magnetic order itself
or, perhaps less dramatic but nonetheless of importance,
when it selects at the critical temperature a subset of all
the states that are accidentally degenerate within a man-
ifold of the critical states such as would be predicted in
a mean-field theory treatment [8–11].

The investigation of pyrochlore spin systems has over
the past thirty years or so developed into a fruitful re-
search enterprise that has provided a superb material-
relevant context for exploring the rich physics of ObD [8,
9, 12–17]. On the one hand, the research has been fu-
eled by an abundance of material realizations of the py-
rochlores lattice [18–20]. From a more theoretical per-
spective, pyrochlore systems and, more specifically, spin
ices [2, 18, 21, 22], harbor a variety of interesting physical
phenomena, such as effective magnetic monopoles [23],
dipolar spin correlations [24, 25] and emergent gauge
theories [26]. Indeed, many of these phenomena result
from the fact that the simplest possible pyrochlore spin
models – nearest-neighbor Heisenberg and Ising models
– exhibit an exponentially large classical ground state
degeneracy [23, 27–30], thus providing, at least naively,
an ideal starting point for investigating ObD. It turns
out, however, that the exponential degeneracy (i.e. ex-
tensive zero-temperature entropy) of these two models
is too large and too robust for enabling dominant ObD
effects. More precisely, these systems are known to be im-
mune against thermal ObD effects [31–33] thus realizing a
zero temperature cooperative paramagnet [28] with finite
residual entropy [27], referred to as a classical spin liq-
uid [26, 30–33]. Similarly, harmonic and higher order 1/S
expansions do not select a unique quantum ground state
in the pure nearest-neighbor pyrochlore Heisenberg anti-
ferromagnet [34–41]. In other words, pronounced man-
ifestations of ObD in the nearest-neighbor Heisenberg
pyrochlore antiferromagnet only occur when perturbing
interactions already partially lift the extensive classical
ground state degeneracy of that model [8–10, 12–15, 42–
45].

In this work, we study in detail the physics of the
above partial degeneracy-lifting effects by considering
as perturbation to the nearest-neighbor Heisenberg ex-
change interactions the Dzyaloshinskii-Moriya (DM) in-
teraction [46–48] – a symmetry-allowed coupling that is
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FIG. 1: Illustration of the DM vectors and sublattice
labels. The DM vectors shown in the “up” tetrahedron
(rightmost tetrahedron) correspond toD0µ Dν1 andD32

where µ ∈ {1, 2, 3} and ν ∈ {3, 2} are sublattice indices,
whereas the DM vectors shown in the “down” tetrahe-
dron (middle tetrahedron) correspond to Dµ0 D1ν and
D23 where µ ∈ {1, 2, 3} and ν ∈ {3, 2}. The DM vectors
shown correspond to the direct DM interaction where
D > 0.

inevitably present in real pyrochlore materials [45, 49].
In particular, we investigate the classical and quantum
(S = 1/2) phase diagrams of a pyrochlore model with
nearest-neighbor Heisenberg and Dzyaloshinskii-Moriya
(DM) interactions and resolve the subtle interplay be-
tween thermal and quantum ObD in the cases where it
arises. We discuss in Section II A a perspective as per
the pertinence and relationship of this model with real
pyrochlore materials.

The Hamiltonian for the Heisenberg antiferromagnet
plus DM interactions is

H =
∑
〈ij〉

JSi · Sj +
∑
〈ij〉

Dij · (Si × Sj). (1)

Here, 〈ij〉 are pairs of nearest-neighbor sites on the py-
rochlore lattice and Dij are the so-called Moriya vec-
tors. According to the system’s symmetries and follow-
ing Moriya’s rules [47–49], these vectors are defined as
shown in Fig. 1 where Dij = ±D(−1, 1, 0) for a bond
〈ij〉 along the [110] cubic direction while the direction
of all other vectors Dij follow by applying lattice sym-
metries. As we will discuss below, positive and negative
D lead to distinctly different models realizing different
magnetic phases. We adopt the previous convention of
denoting D > 0 as direct and D < 0 as indirect DM in-
teraction (DMI) [49]. Furthermore, we parametrize the
J and D couplings via

J ≡ cos(θ) and D ≡ sin(θ), (2)

which implies that J2 + D2 = 1 such that from now
on all energy scales are given in units of

√
J2 +D2 and

the temperature scale is in units of
√
J2 +D2/kB. We

investigate the full range of angles θ ∈ [0, 2π) where J
and D can both be either positive or negative. In the
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FIG. 2: (a)-(d) Magnetic q = 0 orders for the Hamiltonian in Eq. (1), illustrated for one “up” tetrahedron, where
the turquoise (purple) rings in panels (b)-(d) indicate spin rotations about axes in the local (global) coordinate frame
to construct the spin states defined by the Γ5 manifold (coplanar manifold). Note that only one out of three coplanar
manifolds is shown by the purple rings which is, in the present case, obtained by rotating an x-y-coplanar ψ3 spin state
[red arrows in panel (d)] or a T1⊥ spin state [red arrows in panel (b)] about the perpendicular global ẑ (cubic [001])
axis. In a similar way, the other two coplanar manifolds are defined in the global x-z and y-z planes, respectively. In
panels (b)-(d), the two rings corresponding to the Γ5 (turquoise) and coplanar (purple) manifolds illustrate how these
two manifolds only intersect at a ψ3 spin configuration. This already suggests the importance that ψ3 states will play,
through thermal and quantum fluctuations, in systems defined by interaction parameters that put them in a regime
of competing Γ5 and T1⊥ orders. (e) Phase diagram of the S = 1

2 Hamiltonian in Eq. (1) parameterized by θ with
J = cos(θ) and D = sin(θ). Here, the outermost ring illustrates the T = 0+ order as observed in classical Monte Carlo
(S → ∞), the middle ring represents the selected state at T = Tc for the classical model (S → ∞), and the inner
circle represents the T = 0 quantum phase diagram as obtained by the pseudo-fermion functional renormalization
group (PFFRG, S = 1/2). This phase diagram constitutes the main result of our work, whose details are elaborated
upon in Sections II-IV.

following two subsections, we give a brief and general
overview of our work and key results.

B. Classical ground states and ordered phases

The ground state phase diagram of the Heisenberg-DM
model of Eq. (1) shows an interesting interplay of phases
already at the classical level. Besides the more conven-
tional all-in-all-out (AIAO) [44, 49, 50] and globally uni-
form ferromagnetic (FM) orders [51] for θ ∈ (0◦, 135◦)
and θ ∈ [135◦, 243◦), respectively. A large part of the
classical ground state phase diagram for indirect DM in-
teraction, i.e., for θ ∈ (243◦, 360◦), is occupied by a phase
with an unusual degenerate ground state manifold that
consists of two subsets of states which we now describe.

First, a U(1) subset of the degenerate ground states
is given by the so-called Γ5 manifold characterized by a

q = 0 propagation vector. That is, a spin configuration
that is identical for every primitive tetrahedron basis cell
and where the spins order “uniformly” in such a man-
ner that each lies in its local x-y plane that is normal
to the axis piercing through that site and connecting the
centers of the two adjoining tetrahedra (see Appendix A
for the definition of the local coordinate frame). Inciden-
tally, these axes correspond to the directions in which
the spins point in the AIAO phase [see Fig. 2(a)], and
which correspond to the ordered phases of FeF3 [52, 53],
Cd2Os2O7 [54], Na3Co(CO3)2Cl [55], Nd2Zr2O7 [56] and
the pyrochlore iridates [57, 58]. Remarkably, the two dis-
crete sets of so-called ψ2 and ψ3 states that span the
Γ5 manifold [see Fig. 2(c), (d)] remain energetically de-
generate at the classical level for all symmetry-allowed
nearest-neighbor couplings [14]. These have been exten-
sively studied as possible ground states of pyrochlore ma-
terials [8, 13–15, 17, 43, 59] and are also the key competi-
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tors in our investigation of ObD in the Heisenberg-DM
model. Second, the remaining subset of degenerate states
within the ground state manifold for the θ ∈ (243◦, 360◦)
indirect DM range is given by three q = 0 coplanar U(1)
manifolds with spins lying in the global x-y, x-z, or y-z
planes [49, 60] which traces its origin to the previously
noted degeneracy between the Γ5 and a splayed ferro-
magnetic state [43]. The aforementioned ψ3 states can
be thought of as lying at the intersections of the Γ5 and
coplanar manifolds, see Fig. 2 for details. This property
already suggests that the ψ3 state will play an important
role in the selection effects from thermal and quantum
fluctuations. The fact that the full ground state man-
ifold is a composition of the Γ5 and coplanar states is,
indeed, a characteristic property of our model that oc-
curs when only indirect DM interactions, and no other
nearest-neighbor anisotropic bilinear exchange interac-
tions, perturb the Heisenberg model [44]. In the follow-
ing, we shall denote this composition of Γ5 and copla-
nar manifolds as “Γ5/copl” and the corresponding regime
θ ∈ (243◦, 360◦) in the classical ground state phase dia-
gram where it is realized as the “Γ5/copl regime”. Due
to this unusual classical ground state degeneracy, the rel-
ative simplicity of the model, but also the relevance for
real materials [53, 61–64], the Heisenberg-DM model on
the pyrochlore lattice represents an intriguing system for
studying ObD from thermal and quantum fluctuations as
well as their combined, cooperating or competing, effects.
We return to the materials perspective of the model con-
sidered in this work, Eq. (1), in Sec. II A.

For clarity sake, it is worth emphasizing that ObD in
our model may be discussed from different perspectives.
First, when restricting to the classical version (1/S → 0)
of the model (1), the entropic selection that takes place
at infinitely small temperatures T = 0+ may differ from
the selection at the nonzero transition temperature, Tc.
We indeed find this to be the case in parts of the phase
diagram [compare the two outermost rings in the phase
diagram of Fig. 2(e) in the θ ∈ (265◦, 360◦) indirect DM
range]. Second, at T = 0, the selection via quantum
fluctuations in the semi-classical regime (1/S � 1) may
differ with the extreme quantum case of S = 1/2, which
may likewise differ from the ObD effects operating at
T = Tc. In particular, the question of the nature of the
ordering at Tc for the S = 1/2 system represents a rather
challenging case. Our work aims at disentangling all
these perspectives on ObD and maps out detailed classi-
cal and quantum phase diagrams of the Heisenberg+DM
model. Particularly, by considering both signs of the two
(J and D) couplings, our study includes the previously
unexplored parameter regime of ferromagnetic Heisen-
berg interactions. In order to tackle all the aforemen-
tioned tasks, we apply an effective combination of sev-
eral analytical and numerical approaches including clas-
sical Monte Carlo, classical low-temperature expansion,
1/S spin-wave theory, pseudo-fermion functional renor-
malization group (PFFRG) and high-temperature series
expansion (HTSE). This work is also one of only very few

studies which treat an anisotropic three-dimensional spin
system via PFFRG [65]. More specifically, pyrochlore
models with anisotropic bilinear spin-spin interactions
have, to the best of our knowledge, not previously been
tackled using PFFRG.

C. Summary of results

The main results and structure of the paper are: Af-
ter providing a description of the model in Sec. II and
a brief discussion in Sec. III of the methods employed,
we present our results in Sec. IV. We start with the clas-
sical model at T = 0+ where thermal ObD selects the
ψ3 state in the entire Γ5/copl region (243◦ . θ < 360◦).
A complete picture of ObD in the classical model is then
provided by classical Monte Carlo simulations (Sec. IV A)
which indicates that in the fourth quadrant and in a small
part of the third quadrant of the phase diagram, i.e., for
θ ∈ [265◦, 360◦), the selection at T = Tc differs from the
one at T = 0+ in that the ψ2 states are chosen at Tc [8, 9]
[c.f. middle ring in Fig. 2(e)]. We construct a full phase
diagram of the classical model in θ-T space, specifying
the regions where either ψ2 or ψ3 states are selected by
thermal fluctuations. We continue discussing the quan-
tum model in Secs. IV B, IV C, and IV D. Within the
semiclassical spin-wave theory, we find that in most of the
Γ5/copl region, the ψ3 order undergoes the largest reduc-
tion of the ground state energy from zero-point contribu-
tions, indicating the same ψ3 selection as for the classical
model at T = 0+. We then proceed with the study of
the spin-1/2 quantum model which is first treated within
PFFRG. This method exposes an absence of any type of
magnetic instability in a regime −9◦ . θ . 8◦ around the
pure Heisenberg antiferromagnet (θ = 0). Similarly, we
find indications for a second, narrow non-magnetic phase
at 237◦ . θ . 241.5◦, driven by the competition between
the Γ5, coplanar, and ferromagnetic states. Concerning
ObD in the Γ5/copl region, the PFFRG method finds
that fluctuations in the Γ5 manifold clearly dominate
over fluctuations in the aforementioned coplanar mani-
fold (which is also found in the classical model via Monte
Carlo). Due to intrinsic methodological limitations in its
current implementation, PFFRG is incapable of differen-
tiating whether ψ2 or ψ3 ground state order is selected.
Towards addressing this limitation of PFFRG, we em-
ploy HTSE which provides indications that the S = 1/2
quantum model exhibits a very similar selection at Tc
as in the classical model, i.e., with ψ2 states chosen for
θ ∈ [265◦, 360◦) and ψ3 states chosen for θ ∈ (243◦, 265◦),
see Fig. 2(e). Overall, one may conclude that in both
the classical and quantum models, the ObD effects at
T = 0+ and T = Tc are distinctly different (at least in
the fourth quadrant with antiferromagnetic Heisenberg
exchange, J > 0, and indirect DMI, D < 0), selecting
ψ3 and ψ2 states, respectively. On the other hand, for
most of the phase diagram, selection effects of the clas-
sical and quantum models resemble each other both at
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T = 0+ and T = Tc.

II. MATERIALS PERSPECTIVE, MODEL &
IRREDUCIBLE REPRESENTATIONS

A. Materials perspective

As mentioned in the Introduction, the anisotropic
DM spin-spin interaction of magnitude D [46–48] is
symmetry-allowed and expected to be nonzero in real
pyrochlore materials [45, 49]. The DM interaction orig-
inates from spin-orbit interactions and can be obtained
by extending the Anderson theory of superexchange to
include spin-orbit coupling [47]. It can also be obtained
starting from a Hubbard model [66, 67]. More gener-
ally, spin-orbit interaction will also lead to anisotropic
exchange beyond the DM interactions, such as symmet-
ric pseudo-dipolar couplings, but weaker than the DM
interaction, as originally derived by Moriya [47]. For
the pyrochlore lattice, there are four symmetry allowed
nearest-neighbor bilinear anisotropic spin-spin couplings

of the form Jij;αβS
α
i S

β
j [44, 68–70]. Most commonly,

these Jij;αβ are expressed either using a global Carte-
sian frame [44] or a local quantization frame [68, 70].
However, they can also be written in a form that exposes
isotropic Heisenberg exchange J , DM coupling D, a sym-
metric pseudo-dipolar coupling, and an Ising coupling
between the local Ising (cubic 〈111〉) directions [68, 69].

In this paper, we focus on the Heisenberg+DM in-
teractions, and ignore the other two anisotropic bilin-
ear couplings allowed by symmetry. From a real mate-
rials perspective, one would then contend that we are
de facto focusing on 3d transition metal ions where the
spin-orbit interaction can be treated perturbatively with
the DM interaction being the leading anisotropic bilin-
ear coupling [47], with D/J . O(10−1). This situation
may be relevant to compounds such as FeF3, Lu2V2O7,
and NaCaNi2F7, each with 3d magnetic ions (Fe3+, Ni2+,
V4+, respectively) residing on a pyrochlore lattice. This
expectation is corroborated by density-functional the-
ory (DFT) calculations for FeF3 [53] and Lu2V2O7 [63],
as well as inelastic neutron scattering measurements for
the latter [62], and fits to diffuse neutron scattering for
NaCaNi2F7 [64].

Let us briefly comment on the pertinence of our work
for each of the above three materials. First, note that
S = 5/2 for Fe3+ in FeF3, S = 1 for Ni2+ in NaCaNi2F7,
both with antiferromagnetic nearest-neighbor Heisenberg
exchange (J > 0), while S = 1/2 for the Lu2V2O7

ferromagnet (J < 0). For such 3d systems, one ex-
pects, very roughly, |θ| . 10◦ for antiferromagnets and
θ . 180◦± 10◦ for ferromagnets. In this case, the S =
1/2 Lu2V2O7 compound is predicted to sit robustly in
the ferromagnetic phase of the inner S = 1/2 circle of
the phase diagram in Fig. 2(e) and far removed from the
strongly frustrated regime at 237◦ . θ . 241.5◦. In
this work, we consider only the classical S = ∞ or the

S = 1/2 cases. As such, we shall not be able to com-
ment on the specific location of the S = 5/2 FeF3 and
S = 1 NaCaNi2F7 antiferromagnets in the phase dia-
gram of Fig. 2(e). However, one may speculate that with
S = 5/2, FeF3 would be well approximated by a classical
model. Within such a description, the DM interaction for
FeF3 is predicted to be direct (D > 0) [53] and responsi-
ble for the all-in/all-out (AIAO) ordered phase found ex-
perimentally [52]. However, the situation is presumably
more complicated due to non-negligible bi-quadratic ex-
change of the form B(Si ·Sj)2 in this compound [53]. For
the S = 1 NaCaNi2F7 antiferromagnet, one may antici-
pate that whether it falls within a regime lacking long-
range order or not would depend rather precisely on the
magnitude of the various nearest-neighbor anisotropic
spin-spin couplings, including the DM interaction [64],
as well as exchange beyond nearest neighbors [41]. It
would be interesting to incorporate all these aspects of
the spin model of NaCaNi2F7 in a future study and in-
vestigate how close the resulting model is to a quantum
disordered (spin liquid) phase. However, we note that
the Na/Ca site disorder in NaCaNi2F7 will generate ran-
dom exchange, which is presumably at the origin of the
spin-freezing observed in this material [64], hence com-
plicating comparison between experiments and theory.

Finally, we note that there is a paucity of S = 1/2
transition metal ion pyrochlore antiferromagnets. One
notable example is Lu2Mo2O5N2 in which the magnetic
Mo5+ S = 1/2 ions reside on a pyrochlore lattice [71].
Density functional theory calculations provide an esti-
mate of the Heisenberg exchange couplings up to third
nearest neighbors for this material as well as pointed to
the presence of an indirect DM (D < 0) coupling with
an estimated magnitude |D|/J ∼ 10% [72]. Consider-
ing only this estimate of |D|/J would, on the basis of
the PFFRG calculations reported later in the paper, put
Lu2Mo2O5N2 in the non-magnetic (white) region of the
phase diagram in Fig. 2(e). In contrast, previous PFFRG
calculations [72] that did not incorporate DM interac-
tions found that, while exchange beyond nearest neigh-
bors was not sufficiently strong to drive long-range order,
those induced significant highly-structured “gearwheel”
like correlations in the paramagnetic phase. This sug-
gests either a proximity of the system to an instability
towards a long-range ordered phase or could be reflective
of a valence-bond-crystal stabilized by quantum melting
of the parent classical spiral order, an observation made
on other lattices [73, 74]. How DM interactions of order
|D|/J ∼ 10% compete or cooperate with exchanges be-
yond nearest neighbor to still allow for a disordered phase
or, instead, lead to a long-range ordered phase is an inter-
esting question that goes beyond the scope of the present
paper but would be worthwhile to investigate. We note,
however, single crystals of Lu2Mo2O5N2 remain to this
day unavailable. Definite progress in understanding the
properties of Lu2Mo2O5N2 and quantitative comparison
with theory must await the synthesis of high-quality sin-
gle crystals of that compound.
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To summarize, consideration of the model defined by
Eq. (1) is, naively, more physically pertinent for systems
with 3d transition metal ions where the spin-orbit inter-
actions give a leading perturbative DM interaction [47].
In such a situation, one might naively expect θ to be
within ±10◦ about θ = 0◦ for antiferromagnets (J > 0),
and about θ = 180◦ for ferromagnets (J < 0), and
thus far away from the interesting (seemingly) magneti-
cally disordered white sector separating the FM and Γ5

phase in the phase diagram of Fig. 2(e). On the other
hand, from an entirely different perspective, rare-earth
pyrochlore systems such as R2(Ti, Sn, Hf, Zr, Ge)2O7,
with R a 4f transition metal ion (R =Ce, Sm, Er,
Yb, etc), are described by effective pseudospin-1/2 de-
grees of freedom interacting via the aforementioned four
symmetry-allowed bilinear couplings Jij;αβ [20, 44, 70],
which are generically of similar magnitude [14, 17], and
not solely the J-D couplings of Eq. (1). However, rather
interestingly, effective spin-1/2 models with dominant
Heisenberg exchange and DM interactions in rare-earth
ytterbium-based (breathing) pyrochlore magnets are also
possible and quantitatively relevant [75–77]. Consider-
ing S = 1/2 systems, the present study is an important
bridge between the strictly isotropic pyrochlore systems
studied before [41, 72] and the more general models with
effective S = 1/2 pseudospins with general anisotropic
nearest-neighbor Jij;αβ couplings [20, 44, 70]. More prag-
matically, our work constitutes a detailed study of sys-
tems that reside on or near a “hyperplane cut” of the
phase diagram in this four-dimensional Jij;αβ parameter
space, one which varies the Heisenberg exchange J , and
the DM interaction D, but sets to zero both the bilinear
Ising coupling and the pseudo-dipolar coupling. From
previous works [43, 44], we already know that there ex-
ists interesting phase competition and phase boundaries
in that hyperplane, but the details of order-by-disorder
and of the competing phases, the latter in particular for
the quantum S = 1/2 case, have not been investigated
in much detail. This is the key motivation for our work
which we report below, and henceforth not claiming any
(current) direct relevance to any specific real materials.

B. Model

Having discussed the relevance of our work for real ma-
terials, from now on we consider the pyrochlore lattice
with nearest-neighbor Heisenberg and DM interaction as
given by the Hamiltonian in Eq. (1). The pyrochlore lat-
tice, shown in Fig. 1, is a face-centered cubic (fcc) space
lattice with a four-site basis. Basis sites are positioned at
the origin of the unit cell and the midpoints of the fcc lat-
tice primitive vectors which we specify as a1 = 1

2 (0, 1, 1),

a2 = 1
2 (1, 0, 1) and a3 = 1

2 (1, 1, 0). Nearest-neighbor
bonds build up the lattice from corner-sharing tetrahe-
dra. This structure leads to high geometrical frustration
for nearest-neighbor antiferromagnetic Heisenberg inter-
actions [28, 29, 33]. Enforcing the Hamiltonian to be in-

variant under lattice symmetries specifies the orientation
of Dij for each nearest-neighbor bond. This allows us to
adopt the parametrization given by Eq. (2) with the DM
vector D for the pair of sublattices 0 and 1 illustrated
in Fig. 1 and having the orientation D01 = D(0,−1, 1).
The DM vectors for all other nearest-neighbor bonds
within one tetrahedron are shown in Fig. 1 as well. The
restricted DM vector orientation stems from its micro-
scopic origin. The DMI is a bilinear spin interaction that
is antisymmetric under the exchange of site arguments
and originates from spin-orbit coupling [47] and, as a re-
sult, the interaction is anisotropic in spin space. We now
briefly discuss in the next three paragraphs the symmetry
properties of Dij .

Depending on the underlying states of a magnetic
ion on which an effective spin is defined, it can trans-
form differently under the application of lattice symme-
tries [78]. One can consider the general case that the
spins transform under the application of a lattice sym-
metry as Si → USi. In a lattice Hamiltonian consisting
of general bilinear spin interaction terms STi MijSj , with
3 × 3 interaction matrices Mij , the spin transformation
associated with a lattice symmetry can also be recast
as a transformation of the interaction matrices. A term
with an antisymmetric Mij can be written in the form
of the DM interaction term in Eq. (1). Lattice symme-
tries then transform the DM vector Dij , restricting the
allowed DMI. That is, for a DMI to be non-vanishing,
the antisymmetric form of the DM interaction requires
that the center of the corresponding bond is not a center
of lattice inversion symmetry [47].

In the pyrochlore lattice, we can transform each of
the six nearest-neighbor bonds of an up tetrahedron (see
Fig. 1), inequivalent by pure lattice translation symme-
tries, onto each other by applying lattice symmetries of
a C3 rotation about the [111] axis and inversion symme-
try. Consequently, and as stated above, the DMI of each
nearest-neighbor bond is uniquely specified after speci-
fying it for one single bond. As we assume the spin to
transform as a magnetic dipole, it is invariant under in-
version and the C3 rotation permutes spin components
cyclically.

By employing the inversion and C2 rotation symmetry
about the [01̄1] axis passing through the origin in Fig. 1,
one finds that the 01-bond maps onto itself. The spin
components Sy and Sz permute under this operation.
Restricting to antisymmetric bilinear interactions that
are invariant under such a permutation, the DM vector
orientation on this bond is fixed as D01 = D(0,−1, 1)
with the magnitude and sign of D unconstrained.

C. States classification

The possible q = 0 orders allowed by Kramers ions
for a nearest-neighbor pyrochlore quadratic Hamilto-
nian have been widely studied and classified accord-
ing to their transformation under the tetrahedral group
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Td [44, 68, 79]. This classification is most readily mani-
fested by rewriting the quadratic Hamiltonian as a sum
of separate interaction terms contributed by each (“up”
and “down”) tetrahedron

H =
∑
�

H� =
∑
�

∑
i,j∈�

STi MijSj . (3)

Here, H� is referred to as the single tetrahedron Hamil-
tonian and Mij corresponds to the spin-spin interaction
matrix. This matrix is invariant under the action of any
transformation in Td and can therefore be decomposed
according to the irreducible representations (irreps) of
this group. For the Hamiltonian (1), the irreps for Td are
labeled as A2, E, T1‖, T1⊥ and T2, describing subspaces
of dimension 1, 2, 3, 3 and 3, respectively. Using the ir-
reps decomposition, the single tetrahedron Hamiltonian
in Eq. (3) can be expressed in the following way:

H� =
1

2

[
aA2

(
m�
A2

)2

+ aE

(
m�
E

)2

+ aT2

(
m�
T2

)2

+aT1‖

(
m�
T1‖

)2

+ aT1⊥

(
m�
T1⊥

)2 ]
, (4)

where the {aI} interaction parameters are linear func-
tions of J and D and are defined by the J and D depen-
dence of the elements of Mij (see Appendix B for more
details). These parameters correspond to the energy of
a spin configuration defined by the Ith irrep, and m�

I is
the local (irrep) order parameter for tetrahedron � trans-
forming under the Ith irrep. Within this formalism, the
A2 irrep corresponds to an all-in-all-out (AIAO) state,
the E irrep corresponds to Γ5 (separated into the ψ2 and
ψ3 states, or local x and y basis vectors [80]), the T2

irrep describes the Palmer-Chalker (PC) state [81], the
T1‖ corresponds to a simple colinear ferromagnet, and
the T1⊥ to certain types of coplanar states, which we de-
note as T1⊥ states, and discuss them further below. See
Fig. 2(a-d) for an illustration of the spin configurations
for the AIAO, T1⊥, ψ2 and ψ3 states. A PC state can
be visualized by flipping one of the two pairs of anti-
aligned spins of ψ3. The E irrep, of particular interest in
our work, defines a two dimensional manifold parameter-
ized by the rotation of each spin around its local z axis
resulting in states which can be decomposed as a nor-
malized linear combination of the ψ2 and ψ3 states, see
the turquoise circles in Fig. 2. For a further description
of the states in terms of the individual spin components,
we refer the reader to Appendix A.

Following the irrep decomposition, the irrep with the
lowest energy (i.e. the smallest aI) is expected to de-
scribe the classical ground state of the system [44]. More-
over, within a Ginzburg-Landau theory, the coefficient of
the quadratic term in the expansion of the free energy
in terms of the irreps as (competing) order parameters
is proportional to (3T + aI), where T is the tempera-
ture [29, 82]. As such, a smaller (more negative) aI re-
sults in a higher mean-field second order transition tem-
perature (i.e. when 3T + aI = 0) into the corresponding

long-range ordered irrep state. We henceforth refer to a
given aI as an irrep energy parameter, or IEP. Using the
parametrization in Eq. (2), the five IEPs, and hence the
corresponding spin configuration energy per tetrahedron,
are plotted as a function of θ in Fig. 3; for further details,
we refer the reader to Appendix B.

FIG. 3: Irreducible representation’s energy parameter
(IEP), aI as a function of θ. Note that the critical angles
θ = 135◦, 243◦ for the phase boundaries between the all-
in/all-out (AIAO) and the colinear ferromagnet (FM),
and the latter with the Γ5 phase, correspond to the ra-
tios D/J = −1 and 2, respectively. Note also that the aI
for the E and T1⊥ irreps are degenerate for all values of
θ (purple dots and blue line overlapping).

The identification of the minimum IEP reveals three
distinct regions in parameter space: two regions de-
fined by θ ∈ (0◦, 135◦) and θ ∈ (135◦, 243◦) where the
lowest energy configuration is specified by a single ir-
rep (the A2 and T1‖, respectively). A third region de-
fined by θ ∈ (243◦, 360◦), where two irreps (E and T1⊥)
have identical aI (see overlapping aE and aT1⊥ IEPs in
Fig. 3), corresponds to a previous observation [43] that
the Hamiltonian in Eq. (1) resides on the phase boundary
between the Γ5 phase and a splayed FM phase. Fur-
thermore, from an analysis of the resulting quadratic
Ginzburg-Landau theory expressed in terms of the ir-
reps, identical order parameter susceptibilities for the
E and T1⊥ irreps are expected at high temperatures,
i.e. limT→∞ χE = limT→∞ χT1⊥ . This equivalence is
explored in Secs. IV A and IV C for the classical and
quantum cases, respectively, and further illustrated in
Appendix C with a HTSE to order β2. Additionally, as
discussed in Section I B, the degenerate E and T1⊥ irreps
combine to form the so-called coplanar manifold [60].
The spin configurations in this manifold, illustrated in
Fig. 2 by the purple circles, are a superposition of ψ3

and T1⊥ states. More specifically, for ψ3 and T1⊥ spin
configurations residing within the same crystallographic
plane of the conventional cubic unit cell, the µ-th spin of
a state in the coplanar manifold is defined by

Scoplanar
µ (γ) = cos(γ)Sψ3

µ + sin(γ)ST1⊥
µ . (5)

Here, Sψ3
µ and ST1⊥

µ denote the spin orientations on sub-
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ψ3ψ2

x
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z
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FIG. 4: ψ2 (left) and ψ3 (right) where the local moments
point along the local x and y axes for ψ2 and ψ3, re-
spectively. Consider this figure along with Fig. 2(c) and
(d).

lattice µ in each of the respective two types of irrep order.
The angle γ parametrizes the coplanar manifold and de-
notes a rotation about the global cubic axis perpendicular
to the corresponding cubic plane where the ψ3 and T1⊥
orders are defined. In Fig. 2(b), this corresponds to the
displayed purple circles perpendicular to the global cubic
[001] direction (not shown). The realization of this man-
ifold is only possible because a ψ3 state can be continu-
ously converted into a T1⊥ state in a way that preserves
the energy of the resulting states, as described by Eq. (5)
with no other irreps involved.

III. METHODS

In this section, we discuss the various methods we
used to explore the classical and quantum properties of
the Heisenberg+DM model of Eq. (1) at zero and finite-
temperature. The reader mostly interested in the results
can jump directly to Sec. IV.

A. Classical Monte Carlo

To investigate the finite temperature behavior of the
classical version of the model Hamiltonian in Eq. (1),
we carried out classical Monte Carlo simulations with
three-component (Heisenberg) spins of unit length |Si| =
1. Calculations were performed on a periodic system of
N = 4L3 spins with a simple Metropolis single-spin-flip
algorithm supplemented with an over-relaxation update
[15, 83] where we used about 105 sweeps to thermalize the
system and 2×105 sweeps to measure the thermodynamic
quantities discussed in this subsection. Furthermore, to
ensure good statistics leading to a smooth behavior in all
the thermodynamic quantities measured [84], the various
sampled thermodynamic data were averaged over 20 to
100 independent Monte Carlo simulations (runs).

To expose the onset of the anticipated q = 0 orders,
we compute global instantaneous system-averaged mI,av

for different irreps I. To do so, we define an average over

local irrep modes m�
I on all tetrahedra labeled by �,

mI,av ≡
4

N

∑
�

m�
I [{S}], (6)

where N is the number of pyrochlore sites, and m�
I [{S}]

represents the numerical value of the m�
I irrep mode

on a tetrahedron associated with a Monte Carlo mea-
sured configuration {S}. We refer the reader to Ap-
pendix A for further details regarding the definition of
m�
I . Particularly relevant for the θ ∈ (243◦, 360◦)

range is the investigation of possible state selection (or-
dering) within the Γ5 manifold, for which the corre-
sponding global two-dimensional irrep mode has the form
mE,av = (mx

E,av,m
y
E,av) with

mx
E,av =

1

N

∑
i

Sxi , (7)

my
E,av =

1

N

∑
i

Syi . (8)

Here, Sxi and Syi are the local x and y components of
a spin Si at site i (see Fig. 4). Upon averaging over
different independent system configurations (i.e. Monte
Carlo runs), henceforth indicated by 〈· · · 〉, we obtain the
Monte-Carlo order parameter mE defined by

mE = 〈|mE,av|〉. (9)

Below, mE will serve as a diagnostic quantity to probe
whether the system orders in the Γ5 manifold in the first
place. However, since mE cannot distinguish between
the ψ2 and ψ3 states, we also compute the angles of the
spin orientations in the local x-y plane [15, 43, 85] for
individual Monte Carlo configurations

φ = arctan
(
my
E,av/m

x
E,av

)
, (10)

along with the order parameter

mE6 = 〈|mE,av| cos(6φ)〉. (11)

With this parameter, we use a simple approach for la-
beling the ψ2 and ψ3 orders in the phase diagram of
Fig. 7 below, by assigning ψ2 order (ψ3 order) to those
regions in the phase diagram where mE6 > 0 (mE6 < 0).
This approach, which is in line with the one employed
in Refs. [45, 85], has a potential caveat as a full char-
acterization of the ordering within the Γ5 manifold re-
quires the probability distribution function P (φ) of angle
φ for the sampled Monte Carlo configurations. The P (φ)
distribution signals a ψ2 order (ψ3 order) if it exhibits
sharp maxima at φ = nπ/3 (φ = nπ/3 + π/6), where
n ∈ {0, 1, 2, 3, 4, 5} [44, 85]. Previous work [85] noted
that the first term in a free energy theory which differ-
entiates the Γ5 states (i.e. the mE6 term) is dangerously
irrelevant, resulting in an emergent length scale λ(T ) for
which a robust (rigid) ObD selection only takes place
when the system size L � λ. Consequently, because of
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computing limitations in terms of accessible system size
and adequate statistics, this type of analysis becomes in-
creasingly difficult near phase boundaries where the prob-
ability distribution P (φ) is rough and less well-peaked
due to enhanced thermal fluctuations. As an example,
we illustrate and discuss a histogram representation for
P (φ) for θ = 300◦ (D/J = −

√
3) in Appendix D where

we discuss how P (φ) evolves as a function of temperature
and how this function is affected by the system size used
in our simulations.

Furthermore, to elucidate the aforementioned compe-
tition between the E and the T1⊥ irreps (Γ5 and T1⊥
ordering, respectively), we calculate the order parameter
susceptibilities associated with each of these two states,
employing the standard form used in Monte Carlo sim-
ulations of finite-size classical three-component spin sys-
tems [86]:

χI =
〈m2

I,av〉 − 〈|mI,av|〉2

T
, (12)

where, I is the irrep label of interest, I = E or T1⊥.

B. Classical low temperature expansion

To study the ObD selection within the Γ5 manifold
arising from thermal fluctuations at temperatures much
lower than the critical temperature Tc, we study the en-
tropic weight of the spin fluctuations about the ψ2 and
ψ3 configurations [42, 44]. To this end, we consider the
Hamiltonian in Eq. (1) and express the spin orientation in
terms of quadratic fluctuations about the reference spin
configuration as

Sµ '

(
δSx̃µ, δS

ỹ
µ, S −

(δSx̃µ)2

2S
−

(δSỹµ)2

2S

)
, (13)

where the subindex µ = 0, 1, 2, 3 labels the different sub-
lattices (see Fig. 1), the local z̃ component is defined
along the ordered spin direction, and δSα with α ∈ {x̃, ỹ}
are the (local) transverse spin fluctuations. Inserting
Eq. (13) into the Hamiltonian (1) leads to an effective
Hamiltonian for the spin fluctuations

Heff = E0 +
1

2

∑
µ,ν

∑
α,β

∑
q

δSαµ (−q)Hαβ
µν (q)δSβν (q), (14)

where E0 is the classical energy associated with the or-
dered configuration, and Hαβ

µν is the Hessian matrix that
results from the second derivatives of the classical ener-
gies of the ψ2 and ψ3 states with respect to the trans-
verse spin fluctuations. With the above effective Hamil-
tonian, the entropic weight associated with the fluctua-
tions about the chosen configuration is

S(ψ) = constant− 1

2

∑
q

ln (detH(q)) , (15)

where ψ labels the ordered configuration from which the
fluctuations are studied. The entropic selection within
the Γ5 manifold between the ψ2 and ψ3 states can be
exposed by computing the entropy difference, ∆S ≡
S(ψ3)−S(ψ2), where ∆S > 0 signals a ψ3 selection while
∆S < 0 signals a ψ2 selection.

C. Quantum 1/S spin waves

To resolve the ground state configuration chosen by
quantum ObD at T = 0 within the Γ5 manifold, we
perform a linear spin-wave calculation to determine the
zero-point energy correction about both the ψ2 and ψ3

classical spin configurations [14]. In this formalism, the
spin operators are rotated into the local ordering di-
rections and expressed in terms of Holstein-Primakoff
bosons [43, 44, 70, 87]

ŜzRµ = S − ĉ†RµĉRµ, (16)

Ŝ+
Rµ = (2S − ĉ†RµĉRµ)1/2ĉRµ '

√
2SĉRµ, (17)

Ŝ−Rµ = ĉ†Rµ(2S − ĉ†RµĉRµ)1/2 '
√

2Sĉ†Rµ, (18)

where ŜzRµ is the rotated spin operator into the local or-
dering direction of the spin on sublattice µ in the tetra-
hedron centered at the fcc lattice vector R. Introducing
this transformation in Eq. (1) results in the linear spin
wave Hamiltonian

HLSW = E0
(

1 +
1

S

)
+ S

∑
q

∑
µ

ωµ(q)

[
n̂µ(q) +

1

2

]
,

(19)
where {ωµ(q)} are magnon frequencies with ~ set to one,
and n̂µ(q) is the boson occupation number of the corre-
sponding spin wave mode. Based on these magnon fre-
quencies, we compute the zero-point energies for the ψ2

and ψ3 configurations via

E0(ψ) =
S

2

∑
q

∑
µ

ωµ(q). (20)

To determine the ground state configuration chosen by
quantum ObD, the zero-point energy difference ∆E0 =
E0(ψ3) − E0(ψ2) is computed. Consequently, ∆E0 < 0
signals ψ3 order while ∆E0 > 0 signals ψ2 order. For
non-vanishing temperatures, consideration of the ObD
selection demands the inclusion of the magnon occupa-
tion via a Bose-Einstein distribution factor in addition
to the above zero-point energy in Eq. (20). Both of these
effects are contained in the free energy

F (ψ) = S
∑
q

∑
µ

[
ωµ(q)

2
+ T ln

(
1− e−

ωµ(q)

T

)]
,(21)

where the first term corresponds to the zero-point energy,
Eq. (20), while the second term incorporates the magnon
thermal population effects [7].
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D. PFFRG

To investigate the properties of the quantum S = 1/2
model, we apply the standard one-loop (plus Katanin)
PFFRG approach [88]. This method yields static T =
0 spin-spin correlations and, upon Fourier-transform,
static spin susceptibilities as a function of a renormaliza-
tion group frequency cut-off parameter Λ. We implement
Λ as a sharp frequency cutoff with Λ = 0 corresponding
to the physical, cutoff-free limit. The central PFFRG
flow equations are solved using Euler’s method, where
one integration step corresponds to a reduction of Λ by
a factor of 0.98. To capture the system’s dynamics, the
vertex functions are described on a frequency grid with
Nω = 64 mesh points for each frequency variable. Fur-
thermore, as a real-space approximation, spin-spin corre-
lations are only computed up to distances of five nearest-
neighbor lattice spacings, such that each site is correlated
with 380 lattice sites around it, and longer correlations
are treated as zero.

The numerical solution procedure of the flow equations
begins in the limit of infinite cutoff Λ → ∞ where only
the bare couplings enter as initial conditions [88]. Con-
tinuing the solutions towards smaller Λ can then be un-
derstood as gradually taking into account more of the
system’s low energy dynamics. A more intuitive picture
of the renormalization group flow is obtained when as-
sociating Λ with the temperature T [89]. Even though
there is no exact correspondence between both quanti-
ties, they share various conceptual similarities. Particu-
larly, like Λ, the temperature T can be understood as a
frequency cutoff (this becomes most obvious in a Mat-
subara framework where a finite temperature implies the
existence of a minimal non-vanishing discrete fermionic
Matsubara frequency). This means that even though the
PFFRG approach is implemented at T = 0, the flow to-
wards small Λ bears similarities with a cooling protocol.

For example, in a magnetically ordered system, the
flow of the maximum susceptibility in momentum space,
χΛ

max, is expected to diverge at a finite critical cutoff
scale, Λ = Λc, as we lower Λ, in similarity to divergen-
cies at a critical temperature Tc [90]. However, due to
the aforementioned numerical approximations concern-
ing frequency resolution and direct space cut-off of the
spin-spin correlations, these divergences are often sup-
pressed and only manifest in finite peaks or kinks during
the numerically-computed renormalization group flow.
On the other hand, a featureless renormalization group
flow without peaks or kinks indicates a system that fails
to develop conventional (dipolar) magnetic order sig-
nalled by magnetic Bragg peaks.

In most previous applications, the PFFRG has been
used to study spin-isotropic Heisenberg models (see
Refs. [41, 74, 89, 91–109] for a selection of recent ap-
plications of the PFFRG). For our investigation of the
Heisenberg-DM model, however, a recent extension needs
to be implemented [110, 111]. The latter is capable
of treating general two-body spin interactions including

off-diagonal spin couplings Sαi S
β
j with α, β ∈ {x, y, z},

α 6= β, in the absence of any continuous spin rotation
symmetries. While this generalization increases the com-
putational effort by a non-negligible factor of 32, the
numerical implementation of the flow equations still re-
mains feasible.

Within PFFRG, the foremost magnetic properties of
interest are probed via the static spin-spin correlations

χ̄αβij =

∫ ∞
0

dτ〈Ŝαi (τ))Ŝβj (0))〉, (22)

where τ is the imaginary time. Fourier transforming the

site dependence of χ̄αβij yields the static spin susceptibility

χ̄αβ(q) as a function of momentum,

χ̄αβ(q) =
1

N

∑
ij

eiq(ri−rj)χ̄αβij , (23)

where ri is the position of the pyrochlore site i. Here, the
notation χ̄ is used to distinguish a static (zero frequency)
response from an equal-time response χ as in Eq. (12).
Note that in the general spin-anisotropic case, these sus-
ceptibilities are 3×3 tensors. However, as a result of the
symmetries of our Heisenberg plus DM model, the diag-
onal components χ̄αα(q) with α ∈ {x, y, z} in the global
coordinate frame are related by rotations in momentum
space and similarly for the off-diagonal components. Be-
low, we will focus our discussions on the diagonal entries
and, without loss of generality, consider the χ̄zz(q) com-
ponent. Since the magnetic orders relevant for this work
are all q = 0 orders, it is impossible to distinguish them
from their peak positions in χ̄zz(q). However, in anal-
ogy to Eq. (12), a refined characterization is possible by
computing the following susceptibilities

χ̄ψ =
1

N

∑
ij

∑
αβ

nαi χ̄
αβ
ij n

β
j , (24)

where nαi is the α-component of a normalized vector ni
which corresponds to the orientation of a spin on site i
in the specific spin configuration ψ. Later, the ψ label
will be assigned to ψ2, ψ3 or T1⊥ orders to probe the
system’s tendency to order into these states. Note that
the susceptibility χI in Eq. (12) becomes χ̄ψ in Eq. (24)
if one switches from an equal-time formulation to a static
one, which amounts to the replacement

〈m�1

I ·m
�2

I 〉 →
∫ ∞

0

dτ〈m�1

I (τ) ·m�2

I (0)〉 (25)

in each contribution from two tetrahedra �1 and �2 in
the first term of Eq. (12). Note that the second term
of Eq. (12) vanishes in the case of unbroken symmetries,
i.e., it also does not contribute to order parameter sus-
ceptibilities calculated with PFFRG, since this method,
by construction, can only treat symmetry-unbroken sys-
tems.
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E. High-temperature series expansion

Our primary goal of the high-temperature expansion is
to study the selection within the Γ5 manifold between ψ2

and ψ3 orders in the quantum model upon approaching
the critical transition temperature Tc, coming from the
paramagnetic side. For ψ2 and ψ3 long-range order, the
spins orient along the local x and y axes, respectively.
To probe this ordering, we add weak local fields hx and
hy to our Hamiltonian of Eq. (1) along the local x and y
axes (see Fig. 4), described by the following perturbative
field Hamiltonian term

Hf = −hx
∑
i

Ŝxi − hy
∑
i

Ŝyi . (26)

Here, Ŝxi and Ŝyi are the spin S = 1/2 operators at site i
along the local x (cubic 〈112〉) and y (cubic 〈110〉) axes,
respectively. The order parameter susceptibilities for the
two cases (α = x, y) are defined as

χα =
−1

β

∂2

∂h2
α

lnZ(hx, hy)
∣∣
hx=0,hy=0

. (27)

High-temperature expansions are developed for the or-
der parameter susceptibilities in powers of β using the
linked-cluster method [8, 112]. The series expansion co-
efficients for χx and χy are found to be identical term by
term in powers of β ≡ 1/T , showing that the degeneracy
within the Γ5 manifold is not lifted at the level of the lin-
ear (response to Hf ) susceptibility. In fact, we prove in
Appendix F that the C3 symmetry of the model restricts
the order parameter susceptibility for any long-range spin
ordering within the Γ5 manifold to be the same.

To go beyond the linear susceptibility, we compute
high-temperature expansions for higher cumulants for
α = x, y, which we now define. Let,

M̂α ≡
∑
i

Ŝαi . (28)

The cumulants Cn,α are defined as

C2,α ≡ 〈M̂2
α〉, (29)

C4,α ≡ 〈M̂4
α〉 − 3〈M̂2

α〉2, (30)

and

C6,α ≡ 〈M̂6
α〉 − 15〈M̂4

α〉〈M̂2
α〉+ 30〈M̂2

α〉3. (31)

Furthermore, we define Cn(ψ2) ≡ Cn,α=x and
Cn(ψ3) ≡ Cn,α=y, in accordance with the spin orien-
tations of the ψ2 and ψ3 states in the local coordinate
frame shown in Fig. 4. These cumulants have the linked-
cluster property, meaning that the cumulants evaluated
for a disconnected cluster made of a disjoint union of
two sub-clusters equals the sum of the cumulants for the

two sub-clusters. This property ensures that their high-
temperature expansions can be obtained by the linked-
cluster method [8, 112]. As found previously in a study of
thermal order-by-disorder in Er2Ti2O7 [8], we shall find
below in Sec. IV D that the lowest order cumulants that
can discriminate between the ψ2 and ψ3 orders are sixth
order cumulants C6,α. All series expansions reported in
this paper are calculated to order β8. Results are dis-
cussed below in Sec. IV D.

IV. RESULTS

A. Classical Monte Carlo results

Classical Monte Carlo simulations identify three dis-
tinct regions in parameter space consistent with the irrep
analysis (see Sec. II C) illustrated in Fig. 3. In particular,
we find AIAO order for θ ∈ (0◦, 135◦) and colinear ferro-
magnetic order for θ ∈ [135◦, 243◦), as predicted by the
irrep analysis. However, for θ ∈ (243◦, 360◦), where the
irrep analysis suggests a degeneracy between the E and
T1⊥ irreps (see Fig. 3), our simulations find a transition
into a Γ5 phase which is indicated by a dominant sus-
ceptibility associated with the mE order parameter, as
illustrated in Fig. 5. The transition into this symmetry
broken phase is further confirmed by the observation that
mE saturates to one at low temperatures [see Fig. 6(a),
(b)]. Although the E irrep is ultimately selected as the
low-temperature phase, the competition between the E
and T1⊥ irreps caused by their energy degeneracy can be
explicitly observed in the paramagnetic regime by con-
sidering the temperature evolution of the corresponding
susceptibilities χE and χT1⊥ , as illustrated in Figs. 5(a)
and (b) for θ = 250◦ and θ = 300◦, respectively. As
mentioned in Sec. II C, the high-temperature limiting be-
havior of these correlation functions is consistent with
a Ginzburg-Landau theory where the leading quadratic
term evolves proportional to 1/(3T + aI) [29], only de-
parting from each other significantly upon approaching
the transition temperature Tc. A similar behavior for the
χE and χT1⊥ susceptibilities is observed within the entire
θ ∈ (243◦, 360◦) range (not shown). The selection of the
E irrep in the low-temperature phase is a consequence of
the entropic weight associated with the ψ3 states and the
pseudo-Goldstone modes resulting from this configura-
tion. More precisely, and as noted in Ref. [49], both man-
ifolds can be constructed by considering a ψ3 state whose
spin configuration is then continuously rotated along a lo-
cal or a global axis, see Fig. 2(b)-(d) and Eq. (5). These
two continuous degrees of freedom result in the observa-
tion of two pseudo-Goldstone modes associated with the
ψ3 states [113] which, at low temperatures, may favor
these spin configurations.

Having identified Γ5 as the low-temperature phase for
θ ∈ (243◦, 360◦), the mE6 order parameter is computed
to further characterize the ordered configurations real-
ized below Tc. Figures 6(a,b) show the temperature
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(b)

(a)

FIG. 5: Susceptibility χI [see Eq. (12)] for the E and
T1⊥ irreps for θ = 250◦ (a) and θ = 300◦ (b). Both
susceptibilities were obtained for a system with L = 10.

dependence of the mE and mE6 order parameters be-
low Tc for θ = 250◦ and θ = 300◦, respectively. For
243◦ < θ . 265◦, the mE6 order parameter becomes
rapidly negative immediately below Tc, see Fig. 6(a).
This indicates a ψ3 selection from Tc to T = 0+, fol-
lowing the convention made in Sec. III A regarding ψ2

versus ψ3 state labelling at 0 < T < Tc. In contrast,
for 265◦ . θ < 360◦, mE6 now being positive just below
Tc indicates, again in accord with the convention intro-
duced in Sec. III A, a ψ2 selection at T . Tc followed by
a transition from ψ2 order to ψ3 order at a temperature
denoted TΓ5

(TΓ5
< Tc), see Fig. 6(b). Please refer to

Appendix D for further discussion on the topic of the ψ2

to ψ3 transition at 0 < T < Tc, illustrated by the black
line in Fig. 7.

The selection of ψ3 and ψ2 orders at T = 0+ and Tc,
respectively, is illustrated by the outermost and middle
rings of Fig. 2(e), respectively. The phase diagram in
the Γ5/copl regime as a function of temperature and θ
is depicted in Fig. 7. Here, the critical temperature Tc
is obtained by identifying the temperature at which the
specific heat peaks and the ψ2 → ψ3 transition temper-
ature TΓ5

is identified by the change of sign of the mE6

parameter. The calculation of a more refined phase dia-

(a)

(b)

FIG. 6: Evolution of the mE and mE6 order parameters
[see Eq. (11)] for (a) θ = 250◦ and (b) θ = 300◦ as a
function of temperature for different systems sizes.

gram would require a systematic finite-size scaling study
for the identification of the critical temperature Tc as well
as the transition temperature TΓ5

(see the discussion in
Subsection III A and Appendix D regarding the danger-
ously irrelevant nature of the mE6 term [16, 85]), which
is beyond the scope of this work. Interestingly, we find
a local minimum in TΓ5

for θ ≈ 350◦. This reduction
in TΓ5

is connected to the reduced entropy difference ∆S
between the ψ2 and ψ3 states [see Eq. (15)]. We find that
∆S > 0, hence ψ3 order, for all angles in θ ∈ (243◦, 360◦)
with a local ∆S minimum around θ ≈ 350◦, as shown in
Fig. 8(a). We note that a ψ2 selection at intermediate
temperatures followed by a ψ3 selection at lower temper-
ature for J > 0 and D < 0 had previously been reported
for a finite range of |D|/J [45].

The phase diagram in Fig. 7 also reveals the expected
vanishing of Tc in the Heisenberg limit θ = 360◦ where
the system realizes a low-temperature classical spin liq-
uid [26, 30–33]. Interestingly, a rapid drop of Tc is also
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observed at the lower boundary of the Γ5/copl regime
at θ ≈ 243◦ (i.e., at D/J = 2). The critical ordering
temperature into the ferromagnetic phase grows rapidly
for θ . 243◦ (not shown). Like for the pure Heisenberg
model, this behavior at D/J = 2 can be explained by a
large (extensive) ground state degeneracy which warrants
further investigation.

ψ2

ψ3

FIG. 7: Temperature dependent phase diagram for the
Γ5 phase illustrating a selection between the ψ2 and ψ3

ordering as a function of θ. This phase diagram was pro-
duced by considering system sizes L = 10, 12 to identify
TΓ5 as the sign switching of the mE6 order parameter
obtained for both system sizes, as shown in the inset of
Fig. 6(b).

B. Quantum 1/S spin waves results

In this section, we begin extending our model from the
classical to the quantum version, first by investigating the
semiclassical case as realized in linear order in 1/S. To
study the quantum ObD selection between ψ2, ψ3 and
T1⊥ states, the zero-point energy E0(ψ) [see Eq. (20)]
associated with these spin configurations is computed.
As reported by Ref. [60], for indirect DMI and antifer-
romagnetic Heisenberg couplings, the zero-point energy
reveals a selection of the Γ5 manifold over the T1⊥ states
where this selection is prevalent for θ ∈ (243◦, 360◦) (not
shown). Next, to investigate quantum ObD selection
within the Γ5 manifold, we analyze the zero-point en-
ergy selection between the ψ2 and ψ3 configurations, il-
lustrated in Fig. 8(b). This calculation reveals a ψ3 se-
lection for θ ∈ (243◦, 344◦] and θ ∈ [352◦, 360◦). Interest-
ingly, for θ ∈ [344◦, 352◦] the selection oscillates between
ψ2 and ψ3. We have confirmed that these oscillations
are not produced by numerical errors by implementing
different q-space integration schemes. In addition, as
the zero-point energies are obtained from Eq. (20), as a

(a)

(b)

FIG. 8: (a) Entropic selection between the ψ3 and ψ2

orders as a function of θ obtained from a classical low-
temperature expansion [see Eq. (15)], where ∆S > 0 sig-
nals ψ3 selection. The inset illustrates the minimum in
the entropy difference centered around θ ≈ 350◦. (b)
Zero-point energy difference [see Eq. (20)] between the
ψ3 and ψ2 configurations as a function of θ for S = 1/2,
see Eq.(20), where ∆E0 < 0 signals ψ3 selection and
∆E0 > 0 signals ψ2 selection. The inset shows rapid os-
cillations in the zero-point energy as a function of θ for
θ ∈ [344◦, 346◦].

consistency check, we verified the numerical correctness
of the magnon frequencies obtained with the quantum
(1/S) spin wave theory by comparing with the frequen-
cies obtained by a traveling wave solution to the classical
torque equations in the limit of small oscillation [64], find-
ing the two sets of results to be numerically identical to
machine precision. It thus seems that these oscillations
in ∆E0 are genuine to the problem and are not the con-
sequence of computational accuracy. This phenomenon
might be related to the observation of a thin sliver in
the {Jzz, J±, J±±, Jz,±} [114] phase diagram where ψ2
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order is selected [43]. The oscillations observed in ∆E0

might be caused by its dependence on the local exchange
interaction parameters [43]

∆E0 ≈J±
[
c3

(
J±±
J±

)3

+ c2

(
J±±Jz±
J2
±

)2

+c1

(
J±±J

4
z±

J5
±

)
+ c0

(
Jz±
J±

)6 ]
. (32)

Here, the coefficients ci are dimensionless functions of
Jzz/J±[115] and the local interaction parameters are
combinations of trigonometric functions resulting from
the parametrization in Eq. (2) [116]. Although the above
equation looks deceivingly simple when the dependence
on the parametric angle θ is introduced, we note that the
undetermined ci coefficients are also non-trivial oscillat-
ing functions of θ which impact the oscillatory period of
∆E0. A similar non-monotonic (or rapidly varying) be-
havior in the zero-point energy E0 can also be observed
in Fig. (2) of Ref. [14], which considers the selection of
ψ2 versus ψ3 within the Γ5 manifold for the model they
consider, though this was not commented upon therein.
This oscillatory behavior of ∆E0(θ) deserves further at-
tention which we leave for future work. It is worth not-
ing that the zero-point energy selection differs from the
classical entropic selection in the region θ ∈ [344◦, 352◦];
contrast the results of Fig. 8(a) with those of Fig. 8(b).
Furthermore, at slightly non-zero temperature, the quan-
tum ObD magnon free energy in Eq. (21) selects the same
states as those selected by the zero-point energy.

C. PFFRG results

We now investigate the quantum S = 1/2 model us-
ing the PFFRG approach. The crucial question in this
extreme quantum limit is whether there are parameter
regimes where quantum fluctuations are strong enough to
destroy any type of magnetic long-range order at T = 0.
The PFFRG can address the question whether a spin
system is magnetically ordered or disordered via the be-
havior of the renormalization group flow (Λ flow) of the
maximum of the static susceptibility χ̄zz,Λmax in momen-
tum space, as discussed in Sec. III D. Particularly, peaks
or kinks in the Λ dependence of this susceptibility in-
dicates a magnetically ordered system, while otherwise
a non-magnetic phase is signalled. Figure 9(a) shows
examples for different flow behaviors where the smooth
flows at θ = 0◦ and θ = 238◦ indicate a non-magnetic
phase at T = 0 while the pronounced kinks or diver-
gences in χ̄zz,Λmax at θ = 90◦, 180◦ and 270◦ point towards
magnetic long-range order. Based on this diagnosis, we
can construct the quantum phase diagram in the full θ
range as shown by the inner ring of Fig. 2(e). It needs to
be emphasized, however, that close to quantum critical
points, it is often difficult to distinguish between the two
types of (smooth versus kinked) flow behaviors. This
leads to regions of uncertainty marked by continuous

(a)

PFFRG flows of χ̄zzmax for dif-
ferent θ

(b)

0.5

1.0

1.5

θ = 0◦, antiferromagnetic in-
teraction

(c)
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1.5

θ = 356◦

(d)
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2.0

θ = 4◦
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θ = 90◦, direct DMI

(f)

5

10

15

θ = 180◦, ferromagnetic in-
teraction

(g)
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4

θ = 238◦, ferromagnetic and
indirect DM interaction

(h)

1

2

3

θ = 270◦, indirect DMI

FIG. 9: (a) Selected PFFRG flows of the maximum sus-
ceptibility χ̄zzmax and (b)-(h) examples for momentum re-
solved susceptibilities χ̄zz(q) over the extended Brillouin
zone at the flow breakdown for magnetically ordered
phases [i.e., for (e), (f), (h)] or in the low Λ limit for
non-magnetic flows [i.e., for (b), (c), (d), (g)].

color gradients between magnetic (colorful) phases and
non-magnetic (white) phases. Furthermore, we note that
the small oscillations by which some curves in Fig. 9(a)
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are modulated are a numerical artifact from a combina-
tion of discretizing the frequency arguments of the vertex
functions and a step-like regulator function defining the
RG scale Λ (within more involved numerical implemen-
tations, these oscillations can be suppressed [92, 93]).

To characterize the magnetic properties of the individ-
ual quantum phases, we plot χ̄zz(q) over the extended
Brillouin zone in Fig. 9(b)-(h), either at Λ → 0 for
non-magnetic or at the critical Λc for magnetic phases.
The AIAO and ferromagnetic ordered phases clearly ex-
hibit the expected sharp peaks at the Γ-point and at
q = (0, 0, 4π) (which indicates q = 0 orders) as shown
in Fig. 9(e) and Fig. 9(f), respectively. The order in the
Γ5/copl regime is, likewise, characterized by a sharp peak
at q = (0, 0, 4π), see Fig. 9(h). We will study the quan-
tum competition between the ψ2, ψ3 and T1⊥ states in
the Γ5/copl regime further below.

The PFFRG indicates the existence of two non-
magnetic ground state phases which are signalled by an
absence of any instability in the Λ flow in the regimes
−9◦ . θ . 8◦ and 237◦ . θ . 241.5◦. The first origi-
nates from the pure Heisenberg limit θ = 0 and shows a
broad distribution of signal in χ̄zz(q) that spreads over
large regions in momentum space, see Fig. 9(b). Based
on a variety of powerful numerical methods (including
PFFRG), the broadened remnants of pinch points and
the possibility of a spontaneous breaking of point-group
symmetries in this phase have recently been studied in
Refs. [41, 107, 117, 118]. As shown in Fig. 9(c) and
Fig. 9(d), in parameter regimes where the DM coupling is
non-vanishing but small enough to not induce magnetic
long-range order, the signal still remains distributed over
large parts of momentum space. However, the forma-
tion of broad peaks at q = (0, 0, 4π) already indicates
the proximity to q = 0 long-range ordered phases. Addi-
tional PFFRG data for this non-magnetic phase in differ-
ent planes or line cuts in momentum space are presented
in Appendix E.

Most strikingly, the PFFRG shows indications for a
thin sliver of a second non-magnetic phase in the vicinity
of the classical transition point between the ferromag-
netic phase and the Γ5 regime at θ ≈ 243◦ alluded to in
Sec. IV A. However, the sizeable regions of uncertainty
by which it is flanked complicate an unambiguous detec-
tion of this putative non-magnetic phase. As a result
of its location between the classical ferromagnetic and
Γ5/copl regimes, the momentum resolved susceptibility
χ̄zz(q) displays a smeared signal at and between the cor-
responding wave vectors [Γ-point and q = (0, 0, 4π)], see
Fig. 9(g). We propose a possible connection between this
non-magnetic phase in the quantum S = 1/2 case and
the observation of vanishing Tc in the classical model at
θ ≈ 243◦, see Fig. 7, but leave a more detailed investiga-
tion for future work.

We finally discuss the magnetic order in the Γ5/copl
regime which cannot be fully characterized by the peak
position in χ̄zz(q) alone. A more detailed investigation
is possible with the order parameter susceptibilities χ̄ψ

[Eq. (24)] which we calculate for the ψ2, ψ3 and T1⊥
states, see Fig. 10 for a representative flow behavior at
θ = 270◦. Our results show that χ̄T1⊥ is significantly
smaller than χ̄ψ2

and χ̄ψ3
, indicating that quantum fluc-

tuations select the Γ5 manifold over the T1⊥ states, in
agreement with the low-temperature selection found in
the classical model and presented in Fig. 5.

As discussed in Sec. III D, despite the formulation of
the PFFRG at T = 0, the renormalization group param-
eter Λ shares similarities with the physical temperature
T . Hence, the type of selection which we detect at the
critical Λc should be interpreted as the (combined quan-
tum and thermal) selection at Tc rather than strictly at
T = 0. The order parameter susceptibilities, for the sys-
tem approaching its instability point towards either ψ2

or ψ3 states upon lowering the cut-off scale Λ, i.e., χ̄ψ2

and χ̄ψ3
from Eq. (24), are found to be precisely identical

in Fig. 10. While the ψ2 and ψ3 orders are not related
by symmetry, the equivalence χ̄ψ2

= χ̄ψ3
can nonetheless

be derived from the C3 symmetry of the model, as shown
in Appendix F [119]. This property is also observed in
high-temperature series expansion [see discussion below
Eq. (27)] when temperature approaches the critical tem-
perature Tc from above [8]. A distinction between ψ2 and
ψ3 requires the sixth order cumulant [8] in Eq. (31) which
corresponds to vertex functions that are not incorporated
in existing PFFRG codes and whose calculation would
exceed currently available computational resources. To
conclude, in its current algorithmic implementation, PF-
FRG’s inability to further characterize the nature of the
Γ5-ordered phase for the S = 1/2 version of model (1)
in the range θ & 243◦ necessitates the usage of high-
temperature series expansion, which we present in the
next section.

D. High-temperature series expansion results

In the previous sections, we investigated the zero-
temperature regime in the quantum S = 1/2 model and
the nature of the transition at Tc in the classical variant.
To tie things together, we need to study the transition
at Tc in the quantum model. Because of its underly-
ing sign problem, this frustrated S = 1/2 model (1) is
not amenable to large scale quantum Monte Carlo sim-
ulations. As an alternative to study the θ-dependent
selection at Tc in the most interesting θ ∈ [250◦, 360◦]
region, we use high-temperature series expansion. We
analyze the linear order-parameter susceptibility series
by d-log Padé approximants to obtain estimates of the
critical temperature [112].

We also analyze the difference between the sixth order
ψ2 and ψ3 cumulants by Padé approximants to study the
selection of order within the Γ5 manifold [8]. At high
temperatures T ≈ 10, the approximants change slowly
with temperature and the difference is of order 10−6,
reflecting the leading order difference between the two
series. Upon decreasing T , the difference can become
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FIG. 10: PFFRG flows of the order parameter suscepti-
bility χ̄ψ for ψ2, ψ3 and T1⊥ orders in the pure indirect
DMI limit at θ = 270◦. Note that the curves for χ̄ψ2

and
χ̄ψ3

lie on top of each other, see text for details. The
kink at Λ ≈ 0.4 signals a flow breakdown associated with
magnetic long-range order.

non-monotonic reflecting the competition between differ-
ent order coefficients. We follow the approximants down
in temperature until they begin to grow rapidly in magni-
tude. At this point, the sign of the approximant is taken
as an indication of the selected order. Several Padé ap-
proximants [8, 112] for this difference series as a function
of temperature for angular parameters between 250◦ and
350◦ are shown in Fig. 11. Our main conclusions based
on the analysis are fourfold.

Firstly, the series analysis of the linear susceptibility
defined in Eq. (27) using d-log Padé approximants [8,
112] shows best convergence at θ = 290◦, where Tc is
estimated to be in the range 0.45 − 0.47 and the order
parameter susceptibility exponent γ is roughly consistent
with the three-dimensional XY universality class value of
approximately 1.32 [120].

Secondly, moving progressively away from this param-
eter angle of θ = 290◦, the analysis of the linear suscep-
tibility series becomes ill-behaved in both estimating Tc
and γ, which is an indication that the critical tempera-
ture of the quantum S = 1/2 model goes down rather
rapidly as one moves away from this angle. A similar
peak in Tc is also seen in the classical model at θ = 290◦

(see Fig. 7) and hence the drop in Tc found in these high-
T expansion calculations is not solely due to quantum
effects.

Thirdly, from Fig. 11, we see that ψ3 order is fa-
vored for parameter angles θ = 250◦ and θ = 260◦,
but ψ2 is favored at most other angles as the temper-
ature is lowered towards Tc, coming from the paramag-
netic high-temperature side. Note that in Fig. 11, we re-

strict attention to temperatures well above Tc where the
C6(ψ2)− C6(ψ3) difference series begins to grow rapidly
in magnitude in either positive or negative direction.

Fourthly, in Fig. 11(b), we also see that within the
parameter range where ψ2 is favored, there is a small
window θ ∈ [310◦, 320◦] where some Padé approximants
favor ψ3 order as T → T+

c over ψ2. This may be an indi-
cation of enhanced competition between the two orders in
the middle of the region where ψ2 selection occurs upon
approaching Tc from above. Note that θ ≈ 310◦ appears
to correspond to the angle where the Tc for the transition
from the paramagnetic phase into ψ2 displays a sudden
fast drop in the classical phase diagram of Fig. 7.

The HTSE results are broadly consistent with the
study of the classical model and the phase diagram shown
in Fig. 7. The transition temperature is largest in the
classical model in a small angular range near θ = 300◦.
The quantum and classical models also show similar be-
haviors in that ψ3 order is favored at the paramagnetic
phase boundary only at the smallest angles within the
Γ5/copl regime [i.e. θ = 250◦ and θ = 260◦ within
HTSE, see Fig. 11(a)], whereas ψ2 order is favored over
the rest of this regime. In the quantum model studied via
HTSE, the enhanced uncertainty in the selection of order
at θ ∈ [310◦, 320◦] [see Fig. 11(b)] could simply be due
to the rapid decrease in Tc. The precise angles at which
Tc is maximum or whether there is a local minimum in
the ratio of outer (paramagnetic) Tc and inner TΓ5

tran-
sition temperatures indicating an enhanced competition
between the ψ2 and ψ3 phases (see Fig. 7) may also differ
between the classical and quantum models. Such quanti-
tative differences may in fact be expected as the models
are not quantitatively the same.

Given the uncertainties of the series expansion study
and allowing for some quantitative differences between
the classical and quantum models, these HTSE results
affirm that the basic physics of order and selection in
the classical and quantum models at the paramagnetic
transition at Tc is largely the same.

V. SUMMARY AND OUTLOOK

Our comprehensive Monte Carlo analysis of the clas-
sical model shows that within the parameter regime
θ ∈ (243◦, 360◦) where the Γ5 and T1⊥ states are en-
ergetically degenerate, thermal fluctuations select the Γ5

phase at low temperatures, as revealed from the corre-
sponding susceptibility data. A subsequent analysis of
the mE6 order parameter helps to decipher the precise
nature of ordered configurations stabilized below Tc, re-
vealing a cascade of phase transitions. Indeed, while for
θ ∈ (243◦, 265◦] there occurs a single step ψ3 selection
from Tc down to T = 0+, for θ ∈ (265◦, 360◦) there is a
two-step transition whereby there takes place a ψ2 selec-
tion at Tc followed by a lower temperature ψ3 selection
at TΓ5

. Interestingly, at θ = 350◦, we observe a local
minimum in TΓ5

which can be rationalized within a low-
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FIG. 11: Padé approximants for difference series between
sixth order cumulants of ψ2 and ψ3 orders. A number of
approximants are shown for each value of θ. In (a), we see
that for θ = 250◦ and 260◦, ψ3 order is selected whereas
for θ = 270◦ through 290◦, ψ2 order is selected. In (b), we
show the approximants for angles between 300◦ and 350◦.
While ψ2 order seems to be clearly selected for θ = 300◦

and for 330◦ and higher, for θ = 310◦ and 320◦, some
approximants indicate a selection of ψ2 whereas others
indicate selection of ψ3 order. This may reflect enhanced
competition between the two orders at high temperatures
in this small θ ∈ [310◦, 320◦] angular window.

temperature expansion wherein the behavior of the en-
tropic weight difference ∆S between ψ3 and ψ2 shows an
enhanced competition at θ ≈ 350◦. A suppression of Tc is
observed at the lower boundary of the Γ5/copl regime at
θ ≈ 243◦ (i.e., at D/J = 2). Similar to the pure Heisen-
berg antiferromagnetic model, this behavior at D/J = 2
can be rationalized on the basis of an extensively degen-
erate ground state manifold at this D/J value. We defer
a more detailed investigation of this interesting point to
a forthcoming publication [121].

At T = 0, an analysis of the ObD due to quantum
fluctuations treated in the semi-classical limit (1/S � 1)
via linear spin wave theory finds the ψ3 state being se-
lected within large portions of the Γ5/copl regime, for

θ ∈ (243◦, 344◦] and θ ∈ [352◦, 360◦), akin to the selec-
tion effect from thermal fluctuations for classical spins,
i.e., 1/S = 0. Interestingly, for θ ∈ (344◦, 352◦), we find
that the energetic selection oscillates between ψ2 and ψ3.
It would be interesting to investigate whether a treat-
ment of anharmonic terms in spin wave expansion could
resolve the subtle selection effects at work within this
region.

For the extreme quantum value of spin S = 1/2, a
high-temperature series expansion analysis provides in-
sights into the selection effects at Tc, which show a qual-
itatively similar behavior compared to that found in the
classical version of the model. In particular, ψ3 order is
favored only at the smallest angles θ within the Γ5/copl
regime, while in the rest of this regime, ψ2 order is se-
lected at Tc. Furthermore, similar to what is found for
classical spins, there exists a sliver in the fourth quadrant
θ ∈ [310◦, 320◦], i.e., in the middle of the region where
ψ2 is selected at Tc, where an enhanced competition be-
tween the ψ2 and ψ3 ordering tendencies is observed for
S = 1/2. These results indicate that selection effects for
classical and S = 1/2 spins are broadly similar at Tc.

A salient finding obtained from the S = 1/2 PF-
FRG analysis is that, upon inclusion of direct and in-
direct DMI in the Heisenberg antiferromagnetic model,
the quantum paramagnetic ground state persists over an
appreciable parameter range. Specifically, no indications
for magnetic instabilities are found for −9◦ . θ . 8◦

(−0.16 . D/J . 0.14). Guided by the PFFRG re-
sults of Ref. [41] for the S = 1 pyrochlore Heisenberg
antiferromagnetic, where a disordered phase is found, we
speculate that it is likely that the non-magnetic phase
survives for S = 1, albeit with a reduced extent in pa-
rameter space and possibly of a different nature. This
regime could be host to novel types of non-magnetic
phases, and it would be important to investigate fur-
ther their microscopic nature. At the pure Heisenberg
point (θ = 0◦), for S = 1/2, various numerical works
provide compelling indications for a ground state with
broken lattice symmetries [107, 117, 118], a valence bond
crystal being a promising candidate. Most recently, this
possibility was further confirmed by the identification
of energetically favorable hard-hexagon crystal tilings
corresponding to translational symmetry broken valence
bond crystal states with large 48-site unit cells [122]. In
the presence of finite DMI beyond the gap size of such
states, however, the ground state scenario can be ex-
pected to change considerably, since the system is no
longer SU(2) spin-symmetric which disfavors singlet for-
mation, possibly driving the formation of another non-
magnetic ground state phase. In particular, it would be
worthwhile exploring the scenario where an exotic chi-
ral spin liquid is potentially induced by a DMI similar
to what has been proposed for the kagomé lattice [123].
The question of the microscopic identification of the na-
ture of the nonmagnetic phase can be addressed within
the PFFRG framework itself by combining it with a self-
consistent Fock-like mean-field scheme to calculate low-
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energy effective theories for emergent spinon excitations
in S = 1/2 systems [107, 124]. One could also perform
Gutzwiller projected variational wave function studies
employing Monte Carlo methods [107, 125] based on a
projective symmetry group classification of ansätze with
different low-energy gauge groups [126, 127] aimed at
identifying the variational ground state, and determine
its spectrum of excitations [128].

Our PFFRG analysis also hints at the existence of a
quantum paramagnetic state in the regime where ferro-
magnetic Heisenberg interactions compete with indirect
DMI, i.e., for 237◦ . θ . 241.5◦ (1.54 . D/J . 1.84).
As this region is proximate to the phase boundary with
FM order, it opens up the exciting possibility of realiz-
ing spin nematic orders [129] on the 3D pyrochlore lattice,
similar to what has been reported on square [95, 130] and
kagome lattices [131].

Taken together, besides the rich magnetic behavior of
the Heisenberg + Dzyaloshinskii-Moriya (DM) model on
the pyrochlore lattice that we have uncovered here, this
system continues to host a multitude of fascinating open
aspects which are worth addressing in future works.
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Appendix A: Irreducible representations in the
global spin basis

The spin modes defined by the different irreps may be
specified by identifying the corresponding spin configu-
ration. To this end, we first define the local basis at the
0th sublattice in the global coordinate frame as

x0 =
1√
6

−1
−1
2

 , y0 =
1√
2

 1
−1
0

 , z0 =
1√
3

1
1
1

 ,

where the local basis for the other sublattices can be ob-
tained by the application of a two-fold rotation symmetry
C2. With these local bases in hand, the irrep mode m�

I
defined for a single tetrahedron � for the different irreps,
labelled I, are given by

m�
A2

=
1

2
√

3

∑
µ

(zµ · Sµ), (A1)

m�
E =

1

2

∑
µ

(
1√
6
xµ · Sµ

1√
2
yµ · Sµ

)
, (A2)

m�
T1‖

=
1

2

∑
µ

SxµSyµ
Szµ

 , (A3)

m�
T1⊥

=
1

2
√

2

∑
µ

zxµvyzµ · Sµzyµv
xz
µ · Syµ

zzµv
xy
µ · Szµ

 , (A4)

m�
T2

=
1

2
√

2

∑
µ

(zµ × Sµ)x

(zµ × Sµ)y

(zµ × Sµ)z

 , (A5)

where zαµ (Sαµ ) is the α component of the local -z direction
(spin S) on sublattice µ expressed in the global Cartesian
frame, and vαβµ are the normalized bond vectors attached
to a sublattice site µ belonging to an up-tetrahedron and
which lie on the cubic α-β plane defined as

vxy0 = −vxy3 =
1√
2

1
1
0

 , vxy2 = −vxy1 =
1√
2

−1
1
0

 ,

vxz0 = −vxz2 =
1√
2

1
0
1

 , vxz3 = −vxz1 =
1√
2

 1
0
−1

 ,

vyz0 = −vyz1 =
1√
2

0
1
1

 , vyz3 = −vyz2 =
1√
2

 0
−1
1

 .
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Appendix B: Irreducible representations parameters

As discussed in Sec. II C, the hierarchy of the inter-
action energy parameters (IEP), and more specifically
the irrep corresponding to the minimum IEP, defines the
classical ground state spin configuration. In terms of the
Heisenberg and DM interaction parameters, J and D,
the IEP are given by

aA2 = −J − 4D, (B1)

aE = −J + 2D, (B2)

aT2 = −J − 2D, (B3)

aT1‖ = 3J, (B4)

aT1⊥ = −J + 2D. (B5)

In particular, note that the aE coincides with the aT1⊥

IEP for all values of J and D, as shown in Fig. 3. With
the above equations, the boundary between different low-
temperature phases can be identified by studying the ra-
tios D/J for which the IEP are degenerate. For example,
for the phase boundaries in the second and third quad-
rant of Fig. 2(e), setting aA2

= aT1‖ results in

− J − 4D = 3J → D

J
= −1, (B6)

which corresponds to an angle θ = 135◦, signaling the
transition between all-in/all-out (AIAO) order and the
colinear ferromagnetic order. Likewise, setting aE = aT1‖

yields

− J − 2D = 3J → D

J
= 2, (B7)

which corresponds to an angle θ ≈ 243◦ and signals the
transition between colinear ferromagnetic order and the
orders in the Γ5/copl manifold.

Finally and for completeness, we provide the IEP in
terms of the θ-parametrization given in Eq. (2):

aA2
= − cos(θ)− 4 sin(θ), (B8)

aE = − cos(θ) + 2 sin(θ), (B9)

aT2
= − cos(θ)− 2 sin(θ), (B10)

aT‖ = 3 cos(θ), (B11)

aT1⊥ = − cos(θ) + 2 sin(θ). (B12)

Appendix C: Curie-Weiss behaviors of Γ5 and T1⊥
susceptibilities

To further illustrate how the energy degeneracy be-
tween the E and the T1⊥ states results in an equality
of the associated irrep susceptibilities χI in their re-
spective Curie-Weiss behavior and their value in a high-
temperature expansion to order β2, we compute these
in a high-temperature series expansion (HTSE) to order

β2. To this end, we first relabel the different terms in the
Hamiltonian of Eq. (1) as

H = J
∑
〈i,j〉

Ŝi · Ŝj︸ ︷︷ ︸
J

+
∑
〈ij〉

Dij · (Ŝi × Ŝj)︸ ︷︷ ︸
D

+
∑
�

h�I m
�
I︸ ︷︷ ︸

M

≡ J + D + M, (C1)

where m�
I is one of the irrep modes defined in Eq. (A1)-

(A5), and h�I is the corresponding conjugate field de-
fined on that tetrahedron [132], for more details we refer
the reader to Sec. III E. For a given irrep mode m�

I , the
HTSE for its associated susceptibility is computed and
gives

χm�
I

=
1

2N

[
β

2

∂2

∂h2
Tr(M2)− β2

3

∂2

∂h2
Tr
(
(J + D)M2

)] ∣∣∣∣
h=0

+O(β3), (C2)

where N is the number of spins. With the above equa-
tion, the susceptibility of the x-y T1⊥ state, i.e. the T1⊥
state where all the spins lie on the cubic x-y plane while
pointing along the nearest-neighbor bonds [illustrated in
Fig. 2(b)], denoted as T xy1⊥, is found to be

χTxy1⊥
=
N�

2N

[
β +

β2

3
(J + 2D)

]
+O(β3),

where N� is the number of tetrahedra. The susceptibil-
ities for the other T1⊥ states defined for the other cubic
planes are found to be equivalent. The same calculation
for the ψxy3 state, i.e., the ψ3 state where all spins lie in
the x-y plane, reveals that the susceptibility associated
with this configuration is, to order O(β2), identical to the
one found for the T xy1⊥ states:

χψxy3 = χTxy1⊥
. (C3)

Finally, since the ψ2 states are described by the same
E irrep as the ψ3 states the associated susceptibility is
again the same. In other words, to order β2, the HTSE
of the susceptibilities for orders defined by the Γ5 and
T1⊥ states are equal.

Appendix D: Distribution of the φ angle in the Γ5

phase

We discussed in Sec. IV A, the nature of the classi-
cal ordered state of the Heisenberg-DM model in the
θ ∈ (243◦, 360◦) Γ5/copl region where the system orders
in the Γ5 phase at Tc; see Figs. 2(e), 5, 6, 7 and 8(a).
Two seemingly clear and robust key results were obtained
in regard to the state selection below Tc: (i) at T = 0+,
thermal fluctuations stabilize a ψ3 state throughout the
θ ∈ (243◦, 360◦) range because of its higher entropy; (ii)
the transition at Tc is into a ψ3 state for θ ∈ (243◦, 265◦)
while it is into a ψ2 state for θ & 265◦ (see Figs. 6 and 7).
The state selection at Tc for the quantum S = 1/2 model
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(a)

(b) (c)

(d) (e)

(f) (g)

T0T1T2

FIG. 12: Polar and 1D histograms of the φ angle as
defined in Eq. (10) for the temperatures marked by the
dashed black lines in panel (a). Panel (a) illustrates the
mE and mE6 parameters measured for θ = 300◦. Panels
(b), (d) and (f) show polar histograms of mE,av. Panels
(c), (e) and (g) show 1D histograms of the angle φ where
the vertical red lines mark multiples of π/6. Here, the
second row [panels (b) and (c)] corresponds to data taken
at T0, the third row [panels (d) and (e)] corresponds to
data taken at T1, and the fourth row [panels (f) and (g)]
corresponds to data taken at T2. All temperatures are
in units of

√
J2 +D2/kB, with T0 = 0.461, T1 = 0.395,

T2 = 0.249.

was discussed in Sec. IV D (see Fig. 11). The results for
the classical system for θ & 265◦ with the noted distinc-
tion between the ψ2 state selection at T = Tc versus the
ψ3 selection at T = 0+ motivates a brief discussion of how
the system evolves from ψ2 to ψ3 as the temperature is
reduced from T . Tc to T = 0+.

According to a Ginzburg-Landau theory argument [9],
the two simplest scenarios for the ψ2 → ψ3 transition are
(i) a first order transition or (ii) two consecutive Ising
transitions at T+

I and T−I , with T−I < T+
I < Tc. In the

first case, the order parameter mE6 should jump discon-
tinuously from a positive value to a negative value at

TΓ5
for a thermodynamically large system and the in-

ternal energy should exhibit a discontinuity. In the sec-
ond case, the system would be found to have a distri-
bution of the spins (local xy) in-plane projection to be
peaked at φ = nπ/3 in the ψ2 phase, with this distri-
bution continuously starting to shift to an angle φ(T ),
nπ/3 < φ(T ) < (2n + 1)π/6, at T = T+

I . For the sys-
tem size considered, we were unable to detect any sign of
peaks in the specific heat (not shown) that could indicate
either a single first order transition or two second order
transitions. The same difficulty in detecting the ψ2 to
ψ3 transition in a classical Monte Carlo study of a model
of the disordered Er2−xYxTi2O7 rare-earth pyrochlore
compound was reported in Ref. [85]. Similarly to the ap-
proach taken in our work, and with the results presented
in Sec. IV A, the authors of Ref. [85] characterized the
ordered phases below the critical temperature Tc(x) us-
ing the sign of an order parameter akin to our mE6 order
parameter in Eq. (11). In the same vein, Chern in his
study of the Heisenberg-DM pyrochlore model [45] also
characterized the nature of the ordered phase below Tc
through the sign of a quantity ζ6, again analogous to our
mE6 order parameter.

As it stands, because of computational limitations,
a precise quantitative determination of the phase and
phase transition occurring within the Γ5 phase for T < Tc
in the pyrochlore Heisenberg-DM model is still wanting.
We attempted to identify in our Monte Carlo simulations
which of the above two scenarios (one first order transi-
tion or two Ising transitions) is operating by focusing
on θ = 300◦ and considering the histograms of distribu-
tion of the local xy in-plane orientation φ of the spins.
These results are illustrated in Fig. 12. Panel (a) shows
the evolution of mE and mE6 for θ = 300◦. Three rep-
resentative temperatures are considered: T0 < Tc and
in the state labelled ψ2 according to our convention in
Sec. III A; T1 < T0 where mE6 changes sign and signals a
transition from ψ2 to ψ3, and T2, deep at T2 � Tc in the
ψ3 regime. Panels (b),(d),(f) show the distribution of φ,
P (φ), in a polar plot. The average radius of the circles
corresponds to mE , increasing as T decreases from T0 to
T2. In panel (b) for T = T0, the azimuthal distribution
is slightly peaked at angles φ = nπ/3, also illustrated
in a histogram form in panel (c), and which indicates a
ψ2 state. For T = T1, where the system transits from
ψ2 to ψ3 according to our sign-of-mE6 convention, panel
(d) shows that the azimuthal distribution is essentially
unmodulated, as confirmed by the rather flat (though
noisy) histogram in panel (e). Finally, at T2 � T0, the
azimuthal P (φ) distribution in panel (f) is highly mod-
ulated and strongly peaked at φ = (2n + 1)π/6, as also
seen in the histogram of panel (g), and indicating a well
ordered ψ3 state. Note that these histograms were con-
structed using 100 independent Monte Carlo simulations
of the model at θ = 300◦.

Considering the histograms P (φ) for θ = 300◦, we
found that the peaks of P (φ) evolve very rapidly from
being located at φ = nπ/3 values (indicating a ψ2 state)
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at T1 < T0 < Tc, to being located at φ = (2n+ 1)π/6 for
T < T1, indicating a ψ3 state. Moreover, we found no
clear signature that the histograms at T1 < T < Tc dis-
play clear peaks at intermediate angles φ between nπ/3
and (2n + 1)π/6, that might suggest two Ising transi-
tions [9]. These results could tentatively be suggestive of
a first order transition between ψ2 to ψ3, but not read-
ily detectable in the Monte Carlo thermodynamic data.
Clearly, a more systematic study considering much larger
system sizes is needed in order to resolve the question of
the ψ2 to ψ3 transition within the regime of Γ5 ordering
in the Heisenberg-DM model.

Appendix E: Static susceptibility in the
non-magnetic phase around θ = 0 from PFFRG

In Fig. 13, we show the effects of a small DMI on the
ground state static susceptibility χ̄zz(q) for the cutoff-
free system (Λ → 0) in the [hk0] and [hhl] planes. For
the Heisenberg model (θ = 0◦), broadened pinch points
are visible at hkl = 002. For θ = ±4◦, still in the non-
magnetic regime, the weights partially redistribute to-
wards the hkl = 002 positions. This redistribution is
more pronounced for a direct (D > 0) DMI.

An alternative perspective on the effect of a finite DMI
on the pinch point shape is illustrated in Fig. 14, which
shows the PFFRG static susceptibility along [hh2] for
different parameter angles θ.

Appendix F: Proof of equal Γ5 order parameter
susceptibilities

Both high-temperature series expansion and PFFRG
find equal order parameter susceptibilities χψ2 and χψ3

for the ψ2 and ψ3 orders, respectively. In this appendix,
we provide an explanation for this equivalence by demon-
strating that all order parameter susceptibilities associ-
ated with states of the Γ5 manifold are equal due to the
C3 lattice symmetry. To this end, we consider spin corre-
lations between sites i and j expressed as 3× 3 matrices

χij =
〈SiSTj 〉 − 〈Si〉〈STj 〉

T
. (F1)

Here, the matrix structure results from multiplications of
column and row vectors and the entries correspond to the
different spin components. Furthermore, here, we assume
that the components of Si are given in the local coordi-
nate frame, similar to the discussion in Sec. III E. The
susceptibility matrix is obtained via Fourier transform

χ(q) =
1

N

∑
ij

eiq·(ri−rj)χij , (F2)

in which we sum over all pyrochlore lattice sites with
real space positions ri. For the computation of order

FIG. 13: Static zz-susceptibility of the pure and DMI
perturbed Heisenberg antiferromagnet, obtained from
PFFRG in the low cutoff limit. The [hk0] and [hhl]
planes are shown in the left and right columns, respec-
tively.

parameter susceptibilities such as χψ2
or χψ3

whose cor-
responding spin configurations ψ2, ψ3 are ferromagnetic
in the local coordinate frame, we set q = 0 in Eq. (F2)
and define χ as

χ = χ(q = 0) =
1

N

∑
ij

χij . (F3)

Since for ψ2 orders (ψ3 orders) the spins point along the
local x axis (y axis), with these conventions, the two
relevant order parameter susceptibilities χψ2 and χψ3 are
simply given by matrix entries of χ, that is, χψ2 = χ11

and χψ3 = χ22.
Since the correlation function in Eq. (F1) obeys χij =

χTji, and considering Eq. (F3), it follows that χ = χT ,
or, more concretely, χ has the general form

χ =

A D E
D B F
E F C

 , (F4)

with A,B,C,D,E, F ∈ R. Applying a lattice rota-
tion symmetry transformation onto χij changes the site
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FIG. 14: Normalized line shape of the static zz-
susceptibility along [hh2], i.e. across the pinch
point/peak χ̄P at hkl = 002. From left to right, start-
ing from a pure antiferromagnetic Heisenberg model, the
evolution of the line shape with increasing absolute DMI
is shown. The transitions between paramagnetic and or-
dered phases are highlighted by bold vertical lines.

indices (ij → kl) and rotates the spins (via a rota-
tion matrix R) such that, overall, χij transforms as
χij → RTχklR. Since the transformation of the site in-
dices just reshuffles the order of the terms in the sum of
Eq. (F3), the symmetry transformation acts on χ solely
as χ→ RTχR. Now, assuming that this transformation
corresponds to a symmetry of the Hamiltonian in Eq. (1)
that is not spontaneously broken means that χ has to
fulfill

χ = RTχR. (F5)

If one specifically considers the system’s C3 lattice sym-
metry, the matrixR corresponds to a 120◦ rotation about
the local z axis and it follows from Eq. (F4) and Eq. (F5)
that χ is restricted to be of the form

χ =

A 0 0
0 A 0
0 0 C

 . (F6)

This form now makes the equivalence χψ2
= χψ3

= χ11 =
χ22 = A obvious.
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E. Čižmár, T. Fennell, J. S. Gardner, J. Lago, D. F.
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[108] A. Keleş and E. Zhao, Rise and fall of plaquette order
in the Shastry-Sutherland magnet revealed by pseud-
ofermion functional renormalization group, Phys. Rev.
B 105, L041115 (2022).

[109] B. Schneider, D. Kiese, and B. Sbierski, Taming pseud-
ofermion functional renormalization for quantum spins:
Finite temperatures and the Popov-Fedotov trick, Phys.
Rev. B 106, 235113 (2022).

[110] F. L. Buessen, V. Noculak, S. Trebst, and J. Reuther,
Functional renormalization group for frustrated mag-
nets with nondiagonal spin interactions, Phys. Rev. B
100, 125164 (2019).

[111] F. L. Buessen and Y. B. Kim, Functional renormaliza-
tion group study of the Kitaev-Γ model on the hon-
eycomb lattice and emergent incommensurate magnetic
correlations, Phys. Rev. B 103, 184407 (2021).

[112] J. Oitmaa, C. Hamer, and W. Zheng, Series Expansion
Methods for Strongly Interacting Lattice Models (Cam-
bridge University Press, 2006).

[113] G.-W. Chern, R. Moessner, and O. Tchernyshyov, Par-
tial order from disorder in a classical pyrochlore antifer-
romagnet, Phys. Rev. B 78, 144418 (2008).

[114] In terms of Heisenberg and DM couplings the local ex-
change interaction parameters [43, 70] take the form
Jzz = − 1

3
(J + 4D), J± = 1

6
(J − 2D), J±± = 1

3
(J +D)

and Jz± = 1

3
√

2
(2J −D).

[115] This expression was constructed by Ref. [43] through
a power counting argument while only considering
terms up to sixth order in the interaction parameters
{Jzz, J±, J±±, Jz,±}.

[116] Using the parametrization in Eq. (2) the local inter-
action parameters exhibit the following θ dependence

https://doi.org/10.1103/PhysRevB.81.144410
https://doi.org/10.1103/PhysRevB.81.144410
https://doi.org/10.1103/PhysRevB.94.140408
https://doi.org/10.1103/PhysRevB.94.140408
https://doi.org/10.1103/PhysRevB.96.045144
https://doi.org/10.1103/PhysRevB.96.045144
https://doi.org/10.1103/PhysRevB.101.220408
https://doi.org/10.1103/PhysRevB.101.220408
https://doi.org/10.1103/PhysRevResearch.4.023185
https://doi.org/10.1103/PhysRevResearch.4.023185
https://arxiv.org/abs/2011.01268
https://doi.org/10.1103/PhysRevB.92.220404
https://doi.org/10.1103/PhysRevB.94.224403
https://doi.org/10.1103/PhysRevB.94.224403
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1038/nphys3826
https://doi.org/10.1038/nphys3826
https://doi.org/10.1103/PhysRevLett.120.057201
https://doi.org/10.1103/PhysRevB.98.064427
https://doi.org/10.1088/1361-648x/ab4480
https://doi.org/10.1103/PhysRevB.100.014420
https://doi.org/10.1038/s41535-019-0202-z
https://doi.org/10.1038/s41467-020-15594-1
https://doi.org/10.1103/PhysRevLett.127.157204
https://doi.org/10.1103/PhysRevB.104.L220408
https://doi.org/10.1140/epjb/s10051-022-00349-2
https://doi.org/10.1140/epjb/s10051-022-00349-2
https://doi.org/10.1103/PhysRevB.105.054426
https://doi.org/10.1103/PhysRevB.105.054426
https://doi.org/10.1103/PhysRevB.105.L041115
https://doi.org/10.1103/PhysRevB.105.L041115
https://doi.org/10.1103/PhysRevB.106.235113
https://doi.org/10.1103/PhysRevB.106.235113
https://doi.org/10.1103/PhysRevB.100.125164
https://doi.org/10.1103/PhysRevB.100.125164
https://doi.org/10.1103/PhysRevB.103.184407
https://doi.org/10.1017/CBO9780511584398
https://doi.org/10.1017/CBO9780511584398
https://doi.org/10.1103/PhysRevB.78.144418


26

Jzz = − 1
3
(cos(θ) + 4 sin(θ)), J± = 1

6
(cos(θ) − 2 sin(θ)),

J±± = 1
3
(cos(θ) + sin(θ)) and Jz± = 1

3
√

2
(2 cos(θ) −

sin(θ)).
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