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Quantized responses are important tools for understanding and characterizing the universal
features of topological phases of matter. In this work, we show that three-dimensional (3D) insulators
with Cn rotation symmetry along a fixed axis can possess a mixed geometry-charge response, in
which disclination lines of the 3D lattice carry electric polarization. These disclinations bind a
fractional charge at the gapped surfaces of the insulator because of the surface-charge-polarization
theorem. This response is accompanied by a dual response that binds fractional angular momentum
to magnetic monopoles in the bulk (analogously to the Witten effect) and to magnetic fluxes
on gapped surfaces. We show that these responses are described by a 3D topological response
term that couples the lattice curvature to the electromagnetic field strength. Additional mirror or
particle-hole symmetry quantizes the mixed geometry-charge responses and defines a new class of
rotation-invariant topological crystalline insulators (rTCIs). Notably, the surface charge bound to
disclinations of the rTCIs is half the minimal amount that can occur in purely two-dimensional
insulators. We construct lattice models of these rTCIs and numerically verify that they exhibit
the mixed geometry-charge responses. We also demonstrate that the particle-hole symmetric rTCI
supports anomalous surface topological order and that the mirror symmetric rTCI can be smoothly
deformed into a higher order octopole insulator with quantized corner charges. Additionally, we
construct symmetry indicators for diagnosing the mirror symmetric rTCIs.

I. INTRODUCTION

In modern condensed matter physics, it has been
well established that for a given symmetry class, there
can be multiple insulating phases of matter that are
topologically distinct from one another[1, 2]. These
topologically inequivalent insulators are denoted as
symmetry protected topological phases (SPTs)[3–8] and
they have been a central area of condensed matter
research for more than a decade. Concretely, SPTs
are defined as symmetric insulators that cannot be
smoothly deformed into a trivial insulator without either
breaking the symmetry or closing the energy gap. SPTs
also display a bulk-boundary correspondence, where the
topologically non-trivial bulk is accompanied by gapless
degrees of freedom on symmetry preserving surfaces[9,
10].

One reason that topological phases of matter have
attracted so much attention is that they can exhibit
quantized responses in the presence of external gauge
fields. These responses arise from the underlying
topology of the SPT and are robust to symmetry
preserving disorder and perturbations. In experimental
contexts, these quantized responses serve as smoking-
gun characteristics of topological insulators[11–15].
The first observed, and most famous, topological
response is the quantized Hall-conductance of 2D (two
spatial dimensions) insulators[16–19]. Similarly, 1D
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insulators with particle hole symmetry (PHS) have a
quantized polarization[20–23], and 3D insulators with
time-reversal symmetry (TRS) display quantized axion
electrodynamics[24–27]. All of these effects have a
topological field theory description that captures the
quantized responses: the integer Hall conductance
corresponds to a Chern-Simons term[18], electric
polarization corresponds to a 1 + 1-d Θ-term/Goldstone-
Wilczek response term[28], and axion electrodynamics
corresponds to a 3 + 1-d Θ-term[25].

More recently, the topological responses of topological
crystalline insulators (TCIs)–SPTs that are protected
by crystalline symmetries–and higher order topological
insulators–SPTs where gapless modes are bound to
corner or hinges–have also gained attention[29–36].
Notably, it has been shown that certain TCIs can
host mixed geometry-charge responses, where charge
fluctuations are driven by lattice effects, e.g., shears,
strains, or defects[37–52]. A well known example of such
a mixed geometry-charge response occurs in 2D, where
charge is bound to disclination defects in TCIs with Cn
lattice rotation symmetry[51, 53–57]. This effect also has
an associated field theory description, i.e., the Wen-Zee
term. This term couples the electromagnetic gauge field
to the spin-connection gauge field, the latter of which
represents the geometric distortions[58–61].

In this work, we consider the mixed geometry-
charge responses of 3D systems with Cn lattice rotation
symmetry around a fixed axis. We show that such
a system can display a novel mixed geometric-charge
response, where line-like disclination defects have an
electric polarization. There is also an accompanying
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dual response, where magnetic monopoles bind angular
momentum. These responses is described by a
topological field theory term that directly couples the
lattice curvature (R) to electromagnetic field strength
(F ). We denote this topological response term as the
R ∧ F -term. The coefficient of the R ∧ F -term is
quantized for systems with either particle-hole symmetry
(PHS) or mirror symmetry along the z-direction. This
quantized response defines a new class of rotation-
invariant topological crystalline insulators (rTCIs).

In the main body of this article, we provide microscopic
lattice models that realize three important classes of
rTCIs. First, a spinless rTCI with PHS and additional
TRS as an illustrative example. Second, a spin-1/2
rTCI with mirror symmetry and additional TRS, which
is closer to a more realistic lattice model. Third, a
spinless rTCI with mirror symmetry and broken TRS.
We relegate similar analysis of the spinless rTCI with
TRS and mirror symmetry and the spin-1/2 rTCI with
TRS and PHS to Appendix F and E respectively.

We analyze these rTCIs using the R ∧ F -field theory
description, microscopic lattice models, continuum
theories and numerics, and show that they display a
number of remarkable topological features. For example,
when the surface of a rTCI with a non-trivial R ∧ F -
term is gapped (without electron-electron interactions),
the resulting gapped surface theory contains a Wen-
Zee response term. This response term indicates
that disclinations on the rTCI surface bind charge
(equivalently, intersections of bulk disclination lines
and the rTCI surface bind charge), and threading
magnetic fluxes through the surface increases the angular
momentum of the system. The coefficient of the surface
Wen-Zee term is half the value that is allowed for
a 2D system with the same symmetries (i.e., surface
disclinations of the rTCI bind half the minimal amount of
charge that can be bound to disclinations of a 2D system
with the same symmetries).

Let us also briefly mention some key features of the
bulk-boundary correspondence for rTCIs with various
symmetries. For non-interacting rTCIs with PHS and
TRS, the surfaces host an even number of Dirac fermions,
which cannot be gapped without breaking PHS. However,
if interactions are included, the rTCI with PHS can
also host a symmetric gapped surface with symmetry-
enriched topological order. This symmetry-enriched
surface topological order is anomalous and cannot be
realized in a purely 2D system with PHS. For rTCIs with
mirror symmetry and TRS, the surfaces also contain an
even number of Dirac fermions. However, in this case, the
surface Dirac fermions can be gapped without breaking
symmetries or adding additional interactions. Such
symmetrically gapped surfaces host quantized corner
charges, indicating that rTCI with mirror symmetry
constitutes a third-order topological insulator with an
octopole configuration of charges[34, 62]. For the spinless
rTCI with mirror symmetry that break TRS, the surface
hosts a single Dirac fermion. This two-dimensional

Dirac fermions can be fully gapped up to a single one-
dimensional chiral mode that circulates in the mirror
invariant plane. Additionally, following the approach
of Ref. 30, we show that a rTCI with PHS or mirror
symmetry can be dimensionally reduced to a 1D insulator
that is in the same topological class as the Su-Schrieffer-
Heeger (SSH) chain [20] with PHS or mirror symmetry,
respectively.

The remainder of this paper is organized as follows.
In Sec. II we present the R ∧ F -response term, discuss
its physical properties, and show that it defines a class of
rTCIs. In Sec. III we analyze a lattice model for a spinless
rTCI with TRS and PHS. We show that the effective
response theory of this rTCI contains a quantized R∧F -
term. In Sec. IV we present a lattice model for a spin-1/2
rTCI with TRS and mirror symmetry, and similarly show
that its effective response theory contains a quantized R∧
F -term. In Sec. V we present a symmetry indicator form
of the topological invariant for rTCIs that have mirror
and inversion symmetry and relate this invariant to the
coefficient of the R ∧ F -term. In Sec. VI we consider
the R ∧ F response of insulators with broken TRS. We
conclude in Sec. VII and discuss possible extensions.
We also provide several appendices that contain technical
details and analyses of related models.

II. RESPONSE THEORY

In this section, we consider the effective field theory
description of a 3D fermionic insulator with U(1) charge
conservation and Cn lattice rotation symmetry along a
fixed axis–which we take to be the z-axis. Here and
throughout we set the electron charge e = 1 as well
as ~ = 1. Our main interest is in the following mixed
geometry-charge response term:

LRF =
Φ

4π2
εµνρκ∂µων∂ρAκ, (1)

where Aµ is the electromagnetic gauge field and ωµ is
the Cn symmetry gauge field, both of which should be
regarded as background probe fields. Physically, fluxes
of ωµ correspond to lattice disclinations with Frank-
vector parallel to the z-axis [63]. Since the rotation
symmetry is discrete, the fluxes of ωµ are quantized
in units of 2π/n (the same quantization of Frank-
angles in a Cn symmetric lattice system). Physically,
the flux quantization arises because the crystal lattice
spontaneously breaks the rotation symmetry of free
space. Fluxes ωµ can also describe disclinations of a
nematic order parameter[64–66], but in this work we
consider only fluxes corresponding to disclinations of a
crystalline lattice.

As we show in the following subsections, the response
term in Eq. 1 describes a coupling between the lattice
curvature (R) and the electromagnetic field strength (F ),
leading us to refer to it as the “R ∧ F -term”. The
R ∧ F -term is a total derivative, but nevertheless leads
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to a number of non-trivial responses. Furthermore, we
show that the coefficient Φ is quantized for insulators
with particle hole symmetry (PHS) or mirror symmetry
along the z-direction (which we simply refer to as “mirror
symmetry” unless otherwise noted).

A. Lattice Geometry in the Continuum Limit

The R ∧ F -term in Eq. 1 is defined in continuous
space-time. Because of this, it is worthwhile to discuss
how lattice effects, which are inherently discrete, can be
described in the continuum limit. Here, for simplicity, we
consider the case of a cubic lattice, although this analysis
applies to general lattices.

To begin, take a cubic lattice embedded in a 3D spatial
manifold of a 3 + 1D spacetime. In the continuum limit
the lattice constant is taken to zero and the lattice points
become a dense set of points on the manifold. The
spatial metric of the manifold, gij (i = x, y, z), should be
consistent with the underlying lattice in the continuum
limit. To this end, we introduce the frame-fields (AKA
vielbeins or tetrads) [67] eAi (A = x, y, z) such that
gij = eAi e

B
j δAB , where δAB is the Kronecker delta,

and the inverse frame-fields EiA, satisfying EiAe
A
j = δij .

The frame-fields and inverses are not constants, and in
general can be functions of space and time. In order
for the metric of the manifold to be consistent with the
lattice, the inverse frame-fields EiA should be identified
with the primitive lattice vector in the A-direction, in
units of the lattice constant[68][69]. For a perfect lattice
that is free of defects, we can take EiA = δiA. In
principle, we can also introduce a fourth time-like frame-
field (and corresponding inverse frame-field), but since
the temporal direction is fixed for lattice systems this
will not be necessary here.

In this work, we are primarily interested in the
continuum interpretation of lattice disclinations with
Frank-vector parallel to the z-axis. In 3D these defects
are line-like fluxes of the Cn lattice rotation symmetry
around the z-axis (n = 4 for the cubic lattice). With
this in mind, consider a lattice where the only defects
are disclinations with Frank-vector parallel to the z-axis
(which we shall refer to simply as disclinations from now
on). Since the disclinations only rotate the lattice vectors
that span the xy-plane, the inverse frame-fields for a
generic lattice with disclinations can be defined as

Eiz = δiz

Eix = cos(ϕ)δix + sin(ϕ)δiy,

Eiy = cos(ϕ)δix − sin(ϕ)δix,

(2)

for some spatially varying angle ϕ. For these inverse
frame-fields, the metric gij is flat everywhere, which is
a consequence of us only considering rotation symmetry
fluxes. It should be noted that if non-trivial disclinations
are present, a global definition of Ex and Ey is not

possible, and it is necessary to work in coordinate patches
where Ex and Ey can be consistently defined.

For the inverse frame-fields defined in Eq. 2 the only
non-vanishing-components of the spin connection [67]
are:

ωµ ≡ ωxyµ = −ωyxµ = exi ∂µE
i
y = −eyi ∂µE

i
x, (3)

For brevity, we refer to ωµ simply as the spin connection.
Physically, ωµ measures how much the lattice vectors
that span the xy-plane rotate as we move along the µ-
direction. The spin connection has a Cn gauge ambiguity,
which corresponds to a local redefinition of the primitive
lattice vectors that span the xy-plane. Under this Cn
gauge symmetry, the frame-fields Ex and Ey transform
as,

Eix → cos(θ)Eix + sin(θ)Eiy,

Eiy → cos(θ)Eiy − sin(θ)Eix,
(4)

where θ is a function that takes on values in
{0, 2π

n ,
4π
n , ....

(n−1)2π
n }. It is straightforward to show that

Cn gauge transformations do not change the metric.
Using Eq. 3, the Cn gauge transformation acts on the
spin connection as

ωµ → ωµ − ∂µθ. (5)

For the theories we consider in the following sections,
this Cn gauge symmetry is actually part of a larger
SO(2)=U(1) gauge symmetry that emerges within the
continuum limit of the lattice model. The U(1)
gauge symmetry transforms the frame-fields and spin
connections as in Eq. 4 and 5 but with θ taking
continuous values in [0, 2π).

Based on the gauge transformation defined in Eq. 5,
we define the gauge invariant lattice curvature tensor
Rµν = ∂µων − ∂νωµ. This curvature is related to the full
curvature tensor of the 3D spacetime as Rµν ≡ Rxµνy [67].
The R ∧ F -term in Eq. 1 therefore describes a coupling
between the effective lattice curvature Rµν and the dual
electromagnetic field strength F ∗µν = 1

2ε
µνρκFρκ. We

note that, in principle, it is also possible to define torsion
for the lattice system. However, for the frame-fields in
Eq. 2 the torsion vanishes. At the level of the lattice,
the absence of torsion is the result of the assumption
that the lattice only has disclinations and is free of
dislocations [70].

Disclinations of the underlying lattice correspond to
fluxes of ωµ and are singular points of the curvature
R. For example, consider a disclination line on the
z-axis located at x = y = 0 with Frank angle ΘF .
Away from the disclination core, the lattice vectors that
span the xy-plane are rotated by ΘF upon encircling
the disclination. Using our previous identification of the
inverse frame-fields with the lattice vectors, we find that
such a disclination corresponds to the inverse frame-fields
defined in Eq. 2, where ϕ winds by ΘF on any loop
that encircles x = y = 0. To be explicit, we choose
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ϕ(x, y) = ΘF
2π tan−1(x/y). Then, using Eq. 3 we find

ωµ = ∂µϕ, and
∮
ω = −ΘF , where the loop integral is

defined on a loop that encircles the disclination line. This
confirms that fluxes of the spin connection correspond
to lattice disclinations. For lattice systems with Cn
symmetry, the Frank angles are necessarily multiples of
2π/n, and the physical fluxes of ωµ are quantized in
multiples of 2π/n.

B. Physical Implications of the Response Theory

1. Review of the Θ-term

To set the stage for a discussion of the physical
implications of the R∧F -term in Eq. 1 it is useful to first
discuss a related response term, the (axion) Θ-term [71–
73],

LΘ =
Θ

8π2
εµνρκ∂µAν∂ρAκ, (6)

that describes time-reversal invariant fermionic
topological insulators when Θ = π [25], and bosonic
topological insulators when Θ = 2π [74–77]. We show
below that many features of the Θ-term have direct
analogs in the R∧F -term. For a more detailed discussion
of the Θ-term in the context of fermionic and bosonic
topological phases of matter, see Ref. 25 and 74.

The first feature of note is that non-vanishing values
of Θ indicate that magnetic monopoles carry charge
−Θ/2π. This is known as the Witten effect [78].
Second, the Θ-term imparts magnetic flux tubes with
non-trivial braiding statistics, e.g., linking a pair of 2π
(he ) electromagnetic vortices produces a phase of eiΘ

relative to the unlinked configuration. Third, at domain
walls where the value of Θ changes by ∆Θ, there is a 2D
Chern-Simons term of the form

LCS-DW =
∆Θ

8π2
εµνρAµ∂νAρ. (7)

It is also important to note that Θ is periodic. For
fermionic systems, the period of Θ is 2π. This is easily
demonstrated by considering a domain wall where Θ
changes by ∆Θ. According to Eq. 7 this leads to
a 2D domain wall Chern-Simons term with coefficient
∆Θ/8π2. For a purely 2D fermionic system without
topological order, the Chern-Simons coefficient must be
an integer multiple of 1/4π [79]. So, when ∆Θ is an
integer multiple of 2π, the domain wall physics can be
trivialized by adding a purely 2D system, indicating that
the value of Θ in Eq. 6 is only meaningfully defined
modulo 2π in fermionic systems. The periodicity of Θ
in bosonic systems can be found using the same logic:
for 2D bosonic systems without topological order, the
Chern-Simons coefficient must be an integer multiple of
1/2π [80]. Because of this, Θ is defined modulo 4π in
bosonic systems.

2. The R ∧ F -term

Having discussed the essential features of the Θ-term
in Eq. 6, we will now describe the analogous features of
the R ∧ F -term in Eq. 1. We assume that the R ∧ F -
term describes an insulator and that the disclination
defects we discuss do not close the bulk gap (these
assumptions will be satisfied in the models we consider
below). Since the R∧F -term couples the electromagnetic
gauge field Aµ and the spin connection ωµ, it gives rise
to mixed geometric-charge effects. As is well known, the
U(1) charge conservation symmetry implies a conserved
electromagnetic charge 4-current jµ = δS/δAµ, where
S is the minimally coupled action. The total angular
momentum is given by l =

∫
d3x δS

δωµ
, and is defined

modulo n. Since the rotation symmetry is discrete, there
is no local angular momentum 4-current.

We first note that the R ∧ F -term describes a
mixed Witten effect where magnetic monopoles carry
angular momentum −Φ/2π. We can also define a
2π/n “disclination monopole” where a 2π/n disclination
line terminates in the bulk of the insulator. Such a
disclination monopole will likely have a high energy cost
in an actual crystalline solid, but they are still useful
to consider as a theoretical tool. The mixed Witten
effect indicates that a 2π/n disclination monopole carries
electromagnetic charge Φ/2πn. Since the disclination
monopoles can be viewed as the ends of a 1D disclination
line, the surface charge theorem for electric polarization
indicates that the R ∧ F -term binds polarization Φ/2πn
to 2π/n disclination lines. This can also be seen from the
fact that inserting a configuration of ω harboring a 2π/n
disclination line into Eq. 1 generates a 1D Goldstone-
Wilczek response term [25, 28] with coefficient Φ/2πn.

The R ∧ F -term also indicates that electromagnetic
flux lines and disclination lines have non-trivial braiding
statistics. Linking a 2π electromagnetic flux line with
a 2π/n disclination line produces a phase of eiΦ/n

compared to the unlinked configuration. The R∧F -term
does not affect the self-statistics of the flux or disclination
lines.

Finally, we can consider domain walls where the value
of Φ changes by ∆Φ. For a domain wall that preserves
Cn symmetry, i.e., a domain wall normal to the z-axis,
there is a 2D Wen-Zee term of the form [58]:

LWZ-DW =
∆Φ

4π2
εµνρωµ∂νAρ, (8)

where µ, ν, ρ run over t, x, y for the 2D surface.
The coefficient of this surface Wen-Zee term, known as
the “discrete shift”, is S = ∆Φ/2π (the full numeric
prefactor of the Wen-Zee term is S/2π) is not quantized
without additional symmetry. At this domain wall, the
electromagnetic 3-current is

jµ = −∆Φ

4π2
εµνρ∂νωρ, (9)

indicating that a 2π/n disclination at the domain
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wall binds charge −∆Φ/2πn. This effect is shown
schematically in Fig. 1. Similarly, the contribution to
the angular momentum from a domain wall is

l =

∫
d2x

∆Φ

4π2
[∂xAy − ∂yAx]. (10)

A 2π magnetic flux on the surface therefore carries
angular momentum ∆Φ/2π. Recall that only the total
angular momentum of the full system is well a defined
quantity. Here, the total angular momentum will be
the sum of all domain wall contributions, as well as any
angular momentum bound to magnetic monopoles.

The R∧F -term also indicates that surfaces parallel to
the z-direction host response terms of the same form as
Eq. 8. The charge response on these surfaces (the analog
of Eq. 9) can be understood as follows: charge is bound
to the point where a disclination-line with Frank-vector
parallel to the z-direction intersects a surface parallel
to the z-direction. Such a configuration is difficult to
realize in crystalline lattices and so we will omit further
discussion of this side-surface response, but we note that
this response may be relevant to systems where fluxes of
ω are disclinations of a nematic order parameter. The
angular momentum response on the side surfaces (the
analog of Eq. 10) has the same interpretation as before;
threading flux through surfaces parallel to the z-direction
increases the total angular momentum.

The value of the Φ coefficient of the R∧F -term is also
periodic. However, the period depends on the presence
of time-reversal symmetry (TRS), and on the spin of
the particles. Here and throughout, we are primarily
interested in systems with time-reversal symmetry, as it
simplifies our discussions and makes it more applicable
to realistic materials. We provide a discussion of
the periodicity of Φ in systems without time-reversal
symmetry in Sec. VI.

Similar to our discussion above for Θ, the period
of Φ can be determined by finding the value of ∆Φ
such that the domain-wall Wen-Zee term in Eq. 8 can
be realized in a purely 2D system without topological
order. For spinless fermions with time-reversal symmetry
(T̂ 2 = +1), the minimal disclination charge is 1/n [51].
This response corresponds to a Wen-Zee term with
discrete shift, S = 1. This indicates that Φ has
period 2π. For spin-1/2 fermions where T̂ 2 = −1,
the minimal disclination charge is 2/n due to Kramers’
degeneracy [51]. This response corresponds to a Wen-Zee
term with discrete shift, S = 2. Therefore, for spin-1/2
fermions with TRS, Φ has period 4π.

Here, and in the coming sections, we assume that
all defects carry trivial quantum numbers in a Φ = 0
insulator. However, this is not always true, as the
quantum numbers of a 1D defect can be locally changed
by embedding a 1D insulator with non-trivial quantum
numbers at the defect core. This embedding does not
change the 3D bulk of the insulator. The polarization
of defects in an insulator with non-vanishing Φ should
therefore be implicitly understood as the difference in

(a)

(b)

FIG. 1. (a) A schematic of a surface where the coefficient of
Eq. 1 changes by ∆Φ. This surface hosts a Wen-Zee term
with discrete shift S = ∆Φ/2π. (b) A 2π/n disinclination,
shown here for n = 4, and the surface charge bound to the
disclination, QDisclination = ∆Φ/2πn, depicted in red.

polarization compared to that of the same defect in
an insulator with Φ = 0 (see Appendix A for further
discussion).

C. Symmetry Quantization of the R ∧ F -term

In this subsection we discuss how the coefficient
of the R ∧ F -term, Φ, is quantized by time-reversal
symmetry (TRS), particle-hole symmetry (PHS), and
mirror symmetry along the z-direction. For these
symmetries, a non-zero quantized value of Φ describes
a rotation-invariant topological crystalline insulator
(rTCI). The essential features of the rTCIs in different
symmetry classes are summarized in table I.
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System and symmetries Value of Φ Surface Disclination Charge Symmetry Preserving Surfaces

Spinless rTCI with Cn symmetry,
TRS, and PHS

Φ = π 1/2n mod(1/n)
Gapless or gapped with

anomalous topological order

Spin-1/2 rTCI with Cn symmetry,
TRS, and PHS

Φ = 2π 1/n mod(2/n)
Gapless or gapped with

anomalous topological order

Spinless rTCI with Cn symmetry,
TRS, and mirror symmetry

Φ = π 1/2n mod(1/n) Gapped with a filling anomaly

Spin-1/2 rTCI with Cn symmetry,
TRS, and mirror symmetry

Φ = 2π 1/n mod(2/n) Gapped with a filling anomaly

Spinless rTCI with Cn symmetry
and mirror symmetry

Φ = π/2 1/4n mod(1/2n)
Gapped up to a single

one-dimensional chiral surface mode

TABLE I. Summary of the properties and quantized responses of the systems in this paper. The first column lists the system
and symmetries. The second column lists the coefficient of the R ∧ F -term (Eq. 1) that describes the system. The third
column lists the charge that is bound to 2π/n disclinations of surfaces that preserve Cn symmetry (i.e. surfaces normal to the
±z-direction). The fourth column lists the properties of symmetry-preserving states on surfaces normal to the ±z-direction.

1. Quantization for Insulators with Particle-Hole and
Time-Reversal Symmetry

It is well known that the coefficient of the Θ-term in
Eq. 6 is quantized by TRS [25]. This can be seen by
noting that Eq. 6 is odd under TRS, such that Θ = −Θ
for a time-reversal invariant insulator. Recalling the
periodicity of Θ, we find that Θ = −Θ has solutions
0 and π(2π) for fermions (bosons). In both cases,
the former corresponds to a trivial insulator, while the
latter corresponds to a time-reversal invariant topological
insulator.

Similarly, the Φ coefficient of the R ∧ F -term is
quantized by particle-hole-symmetry (PHS). Here, we
will restrict our attention to systems with additional
time-reversal symmetry. Since the R ∧ F -term is odd
under PHS, (C : Aµ → −Aµ, and ωµ → ωµ), the
R∧F -term of a particle-hole symmetric insulator satisfies
Φ = −Φ (we take angular momentum to be even under
PHS). As noted previously, Φ is 2π periodic for spinless
insulators with TRS, indicating that Φ = 0 or π in
spinless insulators with PHS and TRS. For spin-1/2
insulators with TRS, Φ is 4π periodic and the R ∧ F -
term has Φ = 0 or 2π. A non-zero value of Φ indicates
that the insulator is an rTCI protected by TRS and PHS.
Since Φ can take only one of two quantized values, both
the spinless and spin-1/2 rTCIs have a Z2 classification.

As discussed in the previous subsection, 2π/n
disclinations of the rTCI carry polarization 1/2n. For
the spinless rTCIs (with PHS and TRS), a domain wall
where the value of Φ changes from Φ = π (rTCI) to Φ = 0
(trivial) corresponds to a surface where PHS is explicitly
broken. Such a domain wall is shown in Fig. 2. Based on
Eq. 8, this PHS breaking surface hosts a Wen-Zee term
with discrete shift S = 1/2+m (m ∈ Z), where the value
of m is determined from purely 2D surface effects. The

coefficient of this Wen-Zee term is exactly half of what
is allowed for a purely 2D system of spinless fermions
with TRS and without topological order. The surface
disclination charge modulo 1/n is therefore a quantized
signature of the bulk topology of the spinless rTCI.

FIG. 2. The value of Φ near a PHS-breaking domain wall
located at z = zDW. The domain wall separates a spinless
rTCI with Φ = π (z < zDW), and a trivial insulator with
Φ = 0 (z > zDW).

Similarly for the spin-1/2 rTCIs, 2π/n disclinations
carry charge 1/n and domain walls where the value of
Φ changes from Φ = 2π (rTCI) to Φ = 0 (trivial)
correspond to PHS broken surfaces and host Wen-Zee
terms with discrete shift 1 + 2m. A 2π/n surface
disclination on this type of surface binds charge 1/n +
2m/n. So for spin-1/2 rTCIs, the surface disclination
bound charge modulo 2/n is a quantized signature of the
bulk topology. As before, the coefficient of the surface
Wen-Zee term is half of what is allowed in a purely
2D system of spin-1/2 fermions with TRS and without
topological order.
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2. Quantization for Insulators with Mirror and
Time-Reversal Symmetry

In addition to PHS, the R ∧ F -term is also
quantized by mirror symmetry along the z-
direction. As before, this arises from the fact that
the R ∧ F -term is odd under mirror symmetry
(Mz : (A0, Ax, Ay, Az) → (A0, Ax, Ay,−Az), and
(ω0, ωx, ωy, ωz)→ (ω0, ωx, ωy,−ωz)). Hence, for spinless
insulators with TRS and mirror symmetry, Φ = 0 or
π, and, for spin-1/2 insulators with TRS and mirror
symmetry, Φ = 0 or 2π. Again, the non-trivial values
of Φ correspond to a non-trivial rTCI with mirror
symmetry, and the rTCIs with mirror symmetry have
a Z2 classification. These insulators have both Cn
symmetry and mirror symmetry, leading to the total
spatial symmetry group of Cnh. However, since we only
gauge the Cn symmetry, we will refer to the mirror and
rotation symmetries separately throughout this work.

The bulk physics is much the same for rTCIs with
PHS and rTCIs with mirror symmetry. However, these
two classes of rTCIs have different surface physics, since
PHS is an on-site symmetry, while mirror symmetry is a
spatial symmetry that exchanges surfaces. In particular,
a non-trivial R ∧ F -term does not necessarily lead to
symmetry protected surface modes for mirror symmetric
insulators. To see this, we note that if Φ is a function of
the z coordinate, mirror symmetry requires that Φ(z) =
−Φ(−z), while PHS requires that Φ(z) = −Φ(z).

With this in mind, consider a spinless insulator with
mirror symmetry, TRS, and a Φ = π R ∧ F -term that
is separated from two trivial insulators (Φ = 0 mod(2π))
by two domain walls. These domain walls can be gapped
while preserving mirror symmetry and TRS if Φ winds
by π+2πq (q ∈ Z) at both domain walls. A pair of mirror
symmetry preserving domain walls is shown in Fig. 3a.
Similarly, for a spin-1/2 insulator with a Φ = 2π R ∧ F -
term, mirror symmetry is preserved when Φ winds by
2π + 4πq at both domain walls. For both the spinless
and spin-1/2 insulators, domain wall configurations that
do not satisfy Φ(z) = −Φ(−z) correspond to mirror
symmetry breaking surfaces, as shown in Fig. 3b.

For the mirror symmetry preserving surfaces, each
surface theory consists of a Wen-Zee term with the same
coefficient, and a disclination binds the same amount
of charge on both mirror related surfaces. A 2π/n
disclination line that connects two mirror symmetry
preserving surfaces therefore carries a net charge 1/n +
2q/n for spinless fermions (2/n + 4q/n for spin-1/2
fermions), with half the charge localized on each end of
the disclination line.

For mirror symmetry breaking surfaces, each surface
consists of a Wen-Zee term with opposite coefficients
(modulo local surface terms). Disclinations of the two
mirror symmetry breaking surfaces will bind opposite
amounts of charge, up to local contributions.

The above analysis also indicates the coefficient of
the R ∧ F -term is quantized by inversion symmetry.

However, since inversion symmetry is the product of
mirror symmetry and a C2 rotation, we primarily focus
on mirror symmetry here.

3. Quantization for Insulators with Broken Time-Reversal
Symmetry

For insulators with broken TRS, the coefficient of the
R ∧ F -term, Φ, can still take on symmetry-quantized
values. However, these quantized values are, in general,
different from those found in insulators with TRS. Here
we briefly go over the quantization of Φ in systems with
broken TRS. More details are provided in Sec. VI.

For spin-1/2 insulators with broken TRS, Φ has
period 2π (see Sec. VI B). Therefore, Φ = 0 or π for
insulators with either PHS or mirror symmetry. As noted
previously, spinless insulators with TRS and either PHS
or mirror symmetry also have Φ = 0 or π. This indicates
that spin-1/2 insulators with either mirror symmetry
or PHS can, at most, realize the same geometry-charge
responses as spinless insulators with additional TRS.

For spinless insulators with broken TRS, Φ does not
have a well-defined periodicity. Rather, Φ and the
coefficient of the Θ-term have a shared periodicity, where
(see Sec. VI B)

(Φ,Θ) ≡ (Φ + π,Θ + 2π) ≡ (Φ + π,Θ− 2π). (11)

Since Φ and Θ have a shared periodicity, a quantized Φ
must be accompanied by a quantized Θ (we shall discuss
this in more detail in Sec. VI). As a result, only mirror
symmetry, not PHS, can quantize Φ (and Θ) in spinless
insulators with TRS.

Under mirror symmetry, (Φ,Θ) → (−Φ,−Θ), and a
mirror symmetric spinless insulator can therefore have
(Φ,Θ) = (0, 0), (π/2,±π), (π, 0) or (0, 2π). The (Φ,Θ) =
(0, 0) insulator is clearly a trivial insulator. The (Φ,Θ) =
(π/2,±π) insulators are a new class of rTCI that has
both a non-trivial R ∧ F -term and s non-trivial Θ-term
(the Θ = +π and −π insulators are related by time-
reversal and do not need to be considered separately).
The (Φ,Θ) = (π, 0) and (0, 2π) insulators are simply
the sum and difference of (Φ,Θ) = (π/2,±π) insulators,
respectively. Based on our previous discussion, insulators
with TRS cannot realize a Φ = π/2 R∧F -term. Breaking
TRS in mirror symmetric insulators can therefore lead to
new geometry-charge responses that are not observed in
insulators with TRS.

III. ROTATION-INVARIANT TOPOLOGICAL
CRYSTALLINE INSULATORS WITH

PARTICLE-HOLE SYMMETRY

In this section we will analyze time-reversal invariant
rTCIs that have an R ∧ F -term that is quantized by
PHS. We restrict our attention to spinless fermions here,
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(a)

(b)

FIG. 3. The value of Φ near a pair of (a) mirror symmetry
preserving and (b) mirror symmetry breaking domain walls
located at z = ±zDW. The domain walls separate the spinless
rTCI with Φ = π (−zDW < z < zdwDW) from two trivial
insulators with Φ = 0 mod(2π) (z < −zDW and z > zDW).

for which the rTCIs is described by R ∧ F -terms with
Φ = π. We extend this analysis to spin-1/2 fermions in
Appendix E.

It is worth noting that PHS does not occur as an
exact symmetry in realistic electronic insulators [81].
Nevertheless, it is useful to discuss rTCIs with PHS
as theoretical constructions to better understand the
physical consequences of the R∧F -term. The rTCIs with
PHS also serve as a primer for our discussion of rTCIs
with mirror symmetry in Sec. IV. Since mirror symmetry
is common in electronic insulators, the mirror symmetric
rTCIs are more likely to be realized in real materials.
However, the mirror symmetric rTCIs have a more
complex theoretical structure, since mirror symmetry is
also a spatial symmetry. For these reasons, we consider
rTCIs with PHS first to gain intuition about the mixed
geometry-charge responses that are described by the
R∧F -term. Furthermore, there exist materials for which
PHS is approximately obeyed near the Fermi-level, as
well as large classes of engineered metamaterials, e.g.,
photonic or acoustic crystals, that can have approximate
PHS symmetry.

A. Lattice Model with Spinless Fermions

In this subsection we present a lattice model for the
spinless rTCI with TRS and PHS. To be concrete, we

construct a model with C4 rotation symmetry. The
minimal model for the rTCI is an 8-band model with
Bloch Hamiltonian

H(k) = sin(kx)Γxσ0 + sin(ky)Γyσ0 + sin(kz)Γ
zσ0

+ sin(kx) sin(kz)Γ
0σx + sin(ky) sin(kz)Γ

0σy

+ (M + cos(kx) + cos(ky) + cos(kz))Γ
0σz,

(12)

where σx,y,z,0 are the Pauli matrices and the 2 × 2
identity, and the 4× 4 Γ matrices are defined as

Γx = σxσ0, Γy = σyσ0, Γz = σzσz,

Γ0 = σzσx, Γ5 = σzσy.
(13)

Here and throughout, the Kronecker products are
implicit in our definitions.

The model in Eq. 12 has U(1) charge conservation and
is invariant under TRS, PHS, and C4 rotation symmetry.
The on-site TRS and PHS operators are

T̂ = ΓyσyK = σyσ0σyK,
Ĉ = Γ5yσyK = σxσyσyK,

(14)

where Γab ≡ −iΓaΓb (a, b = 0, x, y, z, 5) and K is complex

conjugation. Since the fermions are spinless, T̂ 2 = +1.
The model also possesses chiral symmetry, defined as Π̂ =
T̂ Ĉ. The C4 symmetry operation is

Û4 = exp
(
i
π

4
[Γyxσ0 + Iσz]

)
, (15)

and the Hamiltonian satisfies the relation Û−1
4 H(k)Û4 =

H(Rz4k), where Rz4 rotates the lattice momentum by π/2
around the z-axis. Since we are considering spinless
fermions, (Û4)4 = +1. Without C4 symmetry this model
is in symmetry class BDI, which is trivial in 3D [1, 2].

The bulk spectrum of Eq. 12 has four-fold degeneracy
with energy bands

E±(k) = ±
[
sin2(kx) + sin2(ky) + sin2(kz)

+ sin2(kx) sin2(kz) + sin2(ky) sin2(kz)

+ (M + cos(kx) + cos(ky) + cos(kz))
2
]1/2

.

(16)

The bulk spectrum for M = 2 is plotted in Fig. 4.
The spectrum has a bulk gap unless |M | = 1, 3. For
|M | > 3, the lattice model is a trivial insulator, and is
adiabatically connected to the atomic limit (M → ±∞).
In the following subsection we show that the lattice model
is an rTCI that exhibits an R ∧ F -term where Φ = π for
1 < |M | < 3, and the R ∧ F -term vanishes again for
|M | < 1.

B. Response Theory

Here we calculate the R ∧ F -term (Eq. 1) in the
response theory of the lattice model (Eq. 12) for different
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FIG. 4. The band structure of the Hamiltonian in Eq. 12
along high-symmetry lines with M = 2.

values of the parameter M . To determine the coefficient
of the R ∧ F -term, Φ, our strategy is to first determine
the change induced in Φ by the band crossings that occur
at |M | = 1, 3. Combining this information with the fact
that Φ is quantized for gapped insulators with PHS and
TRS, and that Φ = 0 for a trivial insulator, we determine
the value of Φ as a function of M .

With this in mind, we consider Eq. 12 close to the
band crossing at M = −3 where two 4-component Dirac
fermions form at k = (0, 0, 0). To proceed, we need to
consider only the low-energy physics of the lattice model.
Expanding to leading order around k = (0, 0, 0) we arrive
at the continuum Dirac Hamiltonian

Ĥ = Ψ†HΨ

H = Γxσ0i∂x + Γyσ0i∂y + Γzσ0i∂z +mΓ0σz,
(17)

where m ∼ M + 3, and Ψ is an 8-component spinor.
Eq. 17 describes the lattice model when M ∼ −3. The
mass term m controls the transition between the trivial
phase of the lattice model with M < −3, and the regime
where −3 < M < −1. As we show below, this transition
generates an R ∧ F -term with Φ = π in the effective
response theory, indicating that the lattice model is an
rTCI when −3 < M < −1.

To determine the response theory of Eq. 17, we
gauge the U(1) and C4 symmetries and introduce the
electromagnetic gauge field Aµ and spin connection
ωµ respectively. As shown in Appendix B, the spin
connection minimally couples to the Dirac fermions in the
continuum limit via a term proportional to the angular
momentum in the covariant derivative:

Dµ = ∂µ − iAµ − i
1

2
ωµ[Γyxσ0 + Iσz]. (18)

The Lagrangian for the minimally coupled Dirac fermions
in curved space is given by [82]

L = Ψ̄[iΓ̄0σzD0 + iEiAΓ̄AσzDi −mIσ0]Ψ, (19)

where EiA are the inverse frame-fields introduced in
Sec. II A, Ψ̄ = Ψ†Γ̄0σz, and the 4 × 4 Γ̄ matrices are
Γ̄x = σyσx, Γ̄y = σxσx, Γ̄z = σ0σy, Γ̄0 = σzσx,
Γ̄5 = σ0σz. Under a C4 gauge transformation, the inverse
frame-fields, spin connection, and continuum fermions
transform as

Eix → cos(θ)Eix + sin(θ)Eiy,

Eiy → cos(θ)Eiy − sin(θ)Eix,

ωµ → ωµ − ∂µθ,

Ψ→ eiθ
1
2 [Γxyσ0+Iσz ]Ψ,

(20)

where θ is a function of xµ that takes values in
{0, π/2, π, 3π/2}. Here, the C4 gauge symmetry is
actually part of a larger SO(2)=U(1) gauge symmetry
that continuously rotates the Dirac fermions. The U(1)
rotation gauge symmetry is defined as in Eq. 20, but with
θ taking continuous values in [0, 2π). The original lattice
model does not have this U(1) rotation gauge symmetry.
Rather, it is a feature that emerges in the continuum
limit.

In addition to the gauge fields, we include an additional
PHS breaking perturbation to Eq. 19,

L′ = Ψ̄m′Γ̄5σ0Ψ, (21)

and set m = −m̄ cos(φ) and m′ = −m̄ sin(φ), where φ
is a background field. We keep m̄ > 0 fixed, and treat
φ as a new parameter for the theory, such that φ = 0
corresponds to m < 0 phase and φ = π corresponds to
the m > 0 phase [25]. Physically, non-constant values
of φ encode either domain walls or adiabatic evolutions
of the Hamiltonian. For example, φ = π

2 [1 − tanh(z/ξ)]
corresponds to a PHS breaking domain wall between the
m < 0 and m > 0 phases that is located near z = 0 and
has width ξ. Similarly, φ = πt/T corresponds to a PHS
breaking adiabatic evolution from the m < 0 phase at
t = 0 to the m > 0 phase at t = T .

Now we are ready to obtain the effective topological
response theory in terms of Aµ, ωµ, and φ by integrating
out the massive fermions via a diagrammatic expansion.
For our purposes, we are only interested in the topological
contributions from the triangle diagrams in Fig 5 [83].
These diagrams evaluate to

Leff =
φ

4π2
εµνρκ∂µων∂ρAκ. (22)

For m < 0 (i.e., φ = 0) the effective response vanishes, in
agreement with the fact that the lattice model is trivial
for M < −3. For m > 0 (i.e., φ = π) the effective
response is

Leff =
1

4π
εµνρκ∂µων∂ρAκ, (23)

which is the R∧F -term from Eq. 1 with Φ = π. We only
considered the low-energy Lagrangian and leading order
diagrams here. However, corrections to the continuum
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Lagrangian and higher-order diagrams will not change
these results since the value of Φ is quantized by PHS
and TRS.

Strictly speaking, we have only confirmed in this
subsection that Φ changes by π at the M = −3 (m = 0)
band crossing. This ambiguity is related to the fact that
the R∧F -term is a total derivative. However, because the
M < −3 phase corresponds to a trivial insulator where Φ
must vanish, we conclude that the −3 < M < −1 phase
is an rTCI with a Φ = π R∧F -term. Similar calculations
show that Φ vanishes for |M | < 1 and |M | > 3, and that
Φ = π for 1 < |M | < 3 as well.

φ

Aµ

ωµ

φ

Aµ

ωµ

FIG. 5. The relevant Feynman diagrams for calculating the
response theory in Eq. 22. The solid lines indicate fermion
propagators.

As a final point, we also note that increasing φ from 0
to 2π, in Eq. 19 is a periodic process that takes the trivial
insulator back to itself. Based on the diagrammatic
calculation in Eq. 22, an R ∧ F -term with Φ = 2π is
generated during this process. This agrees with our
earlier conclusion that Φ is 2π periodic for spinless
fermions with TRS.

C. Surface Theory

In this subsection we analyze the surface theory of the
rTCI. This is accomplished by considering a domain wall
where −3 < M < −1 for z < 0, and M < −3 for z >
0, i.e. a domain wall between the rTCI and a trivial
insulator. This mass configuration generates a pair of
gapless 2-component Dirac fermions that are localized at
the 2D domain wall [84]. The Hamiltonian for the surface

Dirac fermions is

Ĥsurf = ψ†Hsurfψ,

Hsurf = [σxi∂x − σyi∂y]σ0,
(24)

where ψ is a 4-component spinor. The TRS, PHS, and
C4 symmetry act on the surface Hamiltonian as

T̂surf = σyσyK,

Ĉsurf = σxσxK,

Û4−surf = exp
(
i
π

4
[−σzσ0 + σ0σz]

)
.

(25)

Consistent with the bulk theory, T̂ 2
surf = (Û4−surf)

4 =
+1. To show that the surface Dirac cones are symmetry
protected, we note that a mass term for Eq. 24 must be
proportional to σzσ0,x,y,z. All of these terms break one
of the symmetries in Eq. 25. Specifically, the σzσ0 term
breaks TRS, the σzσz term breaks PHS, and the σzσx,y

terms break C4 symmetry. As such, all three symmetries
are required to protect the pair of gapless Dirac cones.

Based on our discussion of the effective field theory
in Sec. II C 1, we now gap the surface by adding a PHS
breaking mass term msσ

zσz. The response theory for the
massive symmetry broken surface is found by coupling
the fermions to the gauge field Aµ and spin connection
ωµ via the covariant derivative,

Dµ = ∂µ − iAµ − i
1

2
ωµ[−σzσ0 + σ0σz], (26)

and integrating out the massive fermions via a
diagrammatic expansion. The resulting response theory
contains a Wen-Zee term,

Lsurf =
sgn(ms)

4π
εµνρωµ∂νAρ, (27)

that corresponds to the one-loop diagram in Fig 6. This
is exactly the anomalous surface term from Eq. 8 with
∆Φ = ±π. Local surface effects can change the discrete
shift of the surface Wen-Zee term by an integer, and, in
general, a π/2 surface disclination binds charge 1

8 + n
4

with n ∈ Z.

Aµωµ

FIG. 6. The relevant Feynman diagram for calculating the
surface Wen-Zee term. The solid lines indicate fermion
propagators.

D. Numerics

In this subsection we numerically verify our previous
analysis. For a lattice with open boundaries along the
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FIG. 7. (a) The spectral function along high-symmetry lines
of the lattice model in Eq. 12 with M = −2, sixteen sites and
open boundary conditions in the z-direction, and symmetry
preserving surfaces hosting midgap states. (b) The same
spectral function with a PHS breaking mass term Eq. 28 with
ms = 0.5 that gaps the surface states.

z-direction, we find mid-gap states with a Dirac-like
dispersion (see Fig. 7a). The midgap states correspond to
the gapless surface states of the rTCI and can be gapped
out by adding an on-site PHS breaking term of the form

Hs = ms

∑
r∈surface

c†(r)Γ5σ0c(r), (28)

where the sum is taken over the sites on the open surfaces
of the lattice and c†(r) is the 8-component fermion
creation operator at site r. The density of states of
the system with the PHS breaking surface perturbation
shows no midgap states (see Fig. 7b).

We now calculate the charge distribution of the rTCI
when PHS symmetry is broken at the surface by Eq. 28.
We include negative background charges at each lattice
site such that the system is charge neutral at half-filling.
Physically, these negative charges correspond to the ions
that form a crystalline solid. The charge distribution
is uniform when the lattice is free of disclinations, as
shown in Fig. 8. To probe the mixed geometry-charge

1 13
z

0.05

0.00

0.05

Q
(z)

1 13
z

0.05

0.00

0.05

Q
(z)

FIG. 8. The charge per layer, Q(z), for the Hamiltonian
in Eq. 12 on a 13 × 13 × 13 lattice with M = −2, a PHS
breaking mass term Eq. 28 with ms = 0.25, and either no
disclination (top) or a π/2 site-centered disclination (bottom).
The background charge of −4 per site is added to obtain
charge neutrality at half-filling.

response of the rTCI with PHS breaking surfaces, we
add a π/2 disclination-line to the lattice (detail of the
disclianted lattice are given in Appendix C). As shown
in Fig. 8, excess charge is localized on the top and bottom
surfaces of the rTCI when there is a disclination. This
excess surface charge is localized around the core of the
disclination (see Fig. 9). Fig 10 shows the net charge
that is localized on the top surface of the disclinated
lattice model for various values of M . The disclination
charge was calculated using a 3D generalization of the
method presented in Ref. 57. It should be noted that
here we have included background ionic charge on each
site, while such background charges were not included in
Ref. 57. When 1 < |M | < 3 the disclinated surface has
surface charge 1

8 (mod 1
4 ) (up to finite size corrections),

indicating that the lattice model is an rTCI with a non-
trivial R ∧ F -term is these regimes. When |M | > 3 and
|M | < 1 the surface charge is 0 (mod 1

4 ), indicating that
the R ∧ F -term is trivial in these regimes. These results
are in full agreement with our previous analysis.

The R∧F -term also predicts that angular momentum
is bound to magnetic fluxes on gapped surfaces. Since
the lattice has discrete rotation symmetry, there is no
local notion of conserved angular momentum and we
have to consider the total angular momentum, i.e., the
angular momentum bound to all surfaces. To this end,
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FIG. 9. The charge density summed over the top half of the
z-layers for the Hamiltonian in Eq. 12 on a 13×13×13 lattice
with M = −2, a PHS breaking mass term Eq. 28 with ms = 1,
and a π/2 disclination. The background charge of −4 per site
is added to obtain charge neutrality at half-filling. The cross
(+) marks the disclination core.
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FIG. 10. The surface charge Q0 bound to a π/2 site-centered
disclination as a function of the parameter M . The charge
is calculated using Eqs. 12 and 28 on a 15 × 15 × 15 lattice
with open boundaries and a PHS breaking mass ms. Here,
ms = min(|M−1|, |M−3|), such that the surface gap is equal
to the bulk gap. We attribute the deviation of the charge from
its quantized value near |M | = 1, 3 (vertical dashed lines) to
finite size effects and the closing of the bulk gap.

we consider a lattice with periodic boundaries in the x
and y-directions, and open boundaries in the z-direction.
To gap the surfaces, we add the following PHS-breaking
mass terms

Hs = ms

∑
r∈+z-surface

c†(r)Γ5σ0c(r)

−ms

∑
r∈-z-surface

c†(r)Γ5σ0c(r),
(29)

where the first sum is over lattice sites on the top
surface, and the second sum is over lattice sites on the
bottom surface. Since the mass terms on the top and
bottom surfaces have opposite signs, the system is mirror

3 1 0 1 3
M

0

1

2

AM

FIG. 11. Total angular momentum AM of a system pierced
by 11 unit of magnetic flux that are uniformly threaded along
the z-direction as a function of the parameter M . The angular
momentum is calculated using Eq. 12 and 29 on an 11×11×11
lattice with open boundaries in the z-direction and periodic
boundaries in the x and y-directions. Here, ms = min(|M −
1|, |M − 3|), such that the surface gap is equal to the bulk
gap.

symmetric along the z-axis (M̂z = Γ5zσ0). The top
and bottom surface therefore contribute equally to any
angular momentum responses [85].

When a magnetic field is applied along the z-direction
such that nflux units of magnetic flux pierce the top and
bottom surfaces, the angular momentum increases by
nflux mod (gcd(2nflux, 4)), when the R ∧ F -term is non-
trivial and 0 mod (gcd(2nflux, 4)) when the R∧F -term is
trivial. The mod (gcd(2nflux, 4)) ambiguity comes from
the fact that the total angular momentum is defined
mod (4) since we are considering 4-fold rotations, and
mod (2nflux) since it is possible to add a pair of 2D
insulators (each with integer discrete shift) to the top
and bottom surfaces while preserving mirror symmetry.

In Fig. 11 we plot the total angular momentum for
the geometry described above with lattice dimensions
11 × 11 × 11 and nflux = 11 as a function of M .
This calculation was done using the method outlined in
Ref. 57. When no magnetic flux is applied, or when
the system has periodic boundaries in the z-direction,
the total angular momentum is 0 mod (4) for all M .
Therefore, the angular momentum in Fig. 11 must arise
from the surface responses. Additionally, because of
mirror symmetry, both the top and bottom surfaces must
contribute equally to the total response. For a system
pierced by nflux = 11 units of magnetic flux, we find that
the angular momentum is 1 mod (2) (0 mod (2)) when
the R∧F -term is non-trivial (trivial), as predicted by the
above theory. We attribute the vanishing of the angular
momentum in the small region 2.7 . |M | < 3 to finite
size effects and the closing of the bulk gap at |M | = 3
(c.f. the finite size deviations near gap closings in Fig.
10).

We also confirm through numerical calculations that
angular momentum is bound to magnetic fluxes that pass
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FIG. 12. An xz cross-section of the “mixed” geometry, where
the top two and bottom two layers have open boundaries in
the x and y-directions, while the middle layers have periodic
boundaries in the x and y-directions (black arrows). The
top and bottom surfaces (red) have sections that are normal
to the z-direction, and sections that are normal to the x
or y-directions. This allows for magnetic fluxes (indicated
schematically in orange) to pierce surfaces normal to either
the x,y, or z-directions.

through boundaries normal to the x and y-directions, not
just boundaries normal to the z-direction. Naively, one
might attempt to verify this by considering a geometry
with periodic boundaries in the z-direction, and open
boundaries in the x and y-directions. However, if
one threads flux through the boundaries of such a
system while preserving C4 symmetry, it is necessary
to introduce bulk magnetic monopoles. The angular
momentum bound to the monopoles by the mixed
Witten effect will be equal and opposite the angular
momentum bound to the boundaries, and the total
angular momentum will therefore not change (modulo
purely surface effects).

However, it is possible to verify that angular
momentum is bound to fluxes on boundaries normal
to the x or y-directions utilizing a geometry with both
open and periodic boundary conditions in the x and y-
directions on different layers. Specifically, this geometry
is composed of Lz layers in the z-direction, such that the
top L′z and bottom L′z layers have open boundaries in
the x and y-directions and the middle Lz − 2L′z layers
have periodic boundaries in the x and y-directions. A
schematic cross-section of this geometry, which we refer
to as the “mixed” geometry, is shown in Fig. 12. The
top and bottom surfaces of the mixed geometry contain
regions that are normal to the z-direction as well as
regions that are normal to the x and y-directions. This
makes it possible to thread flux through surfaces normal
to the x, y, and z-directions simultaneously. Similar to
before, the surfaces can be made massive while preserving
mirror symmetry, such that the top and bottom surfaces
contribute equally to any angular momentum responses.

We repeat our previous angular momentum calculation
using a L′z = 2 mixed geometry with dimensions 11 ×
11 × 11 and a total of nflux = 11 units of magnetic
flux piercing the top and bottom surfaces. Here the

surface mass terms in Eq. 29 are extended to cover all
open boundaries of the top and bottom surfaces, not just
those normal to the z-direction. When the magnetic field
pierces the regions of the surfaces that are only normal
the z-direction, the total angular momentum is the same
as in Fig. 11. Additionally, if we configure the magnetic
field such that an arbitrary portion of the magnetic field
pierces the regions of the surface that are normal the
x and y-directions, the angular momentum is again the
same as in Fig. 11. We therefore conclude that angular
momentum is bound to magnetic fluxes on all surfaces,
as predicted by the R ∧ F -term.

E. Dimensional reduction to a 1+1D SPT

In Ref. 30, Song et al. showed that a TCI protected
by a crystalline symmetry is adiabatically connected
to a lower-dimensional SPT and that the crystalline
symmetry of the higher-dimensional TCI becomes an
on-site symmetry of the lower-dimensional SPT. In this
subsection we use this logic to dimensionally reduce the
3D rTCI to a 1D SPT with an on-site U(1) symmetry,
PHS, TRS, and Z4 symmetry, the latter of which is
inherited from the C4 rotation symmetry of the rTCI.
This 1D SPT is equivalent to the topological phase of the
well known Su-Schrieffer-Heeger (SSH) [20] chain with an
additional trivial Z4 symmetry.

This connection is established as follows. Using the
rTCI surface theory from Sec. III C, we show that there
exists a symmetry preserving deformation that trivializes
the entire rTCI surface, except for the C4 rotation center
of the surface. Since the rotation center of the surface
is single point, this deformation reduces the effective
dimension of the surface from 2D to 0D. Treated as a
0D system, the rotation center of the deformed surface
has a zero-energy mode that is protected by PHS, and has
a net half-integer of charge. These are exactly the same
topological features that are found at the 0D edge of a 1D
SSH chain. The equivalence of the deformed rTCI and
the SSH chain therefore follows from the bulk-boundary
correspondence.

To this end, we consider the surface theory for a single
domain wall oriented normal to the z-direction in Eq. 24.
We add the following generic mass deformation term to
the surface Hamiltonian,

Hsurf-mass = mxσ
zσx +myσ

zσy +mzσ
zσz. (30)

Here we set mz = 0 and mx+imy = ms(r) exp(iθ), where
(r, θ) are polar coordinates on the surface and ms(r) ≥ 0
is a function of the radial coordinate that vanishes at
r = 0 and goes to a non-zero constant m̄s as r → ∞.
Due to the dependence on the radial angle θ, this term
is invariant under C4 rotations as well as PHS and TRS.
The single particle spectrum of the surface theory can
be explicitly solved. In Appendix D we show that the
deformed surface has a single zero-energy mode ψ0 that
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is localized at the rotation center, r = 0. This mode
is protected by PHS, and transforms trivially under C4

rotations.
Additionally, a net half-integer of charge is localized

at r = 0. To show this, we take the zero-energy mode
to be empty, and integrate out the remaining massive
fermions. The effective theory for the massive fermions
can be written in terms of the fluctuations of the mass
terms mx,y,z [86, 87],

Lsurf-mass =
εµνρ

8π
n · (∂µn× ∂νn)Aρ

+
nz
4π
εµνρωµ∂νAρ,

n =
m

|m|
, m = (mx,my,mz).

(31)

The first term Lsurf-mass arises from fluctuations of the
mass terms, while the second term is the half-quantized
Wen-Zee term that occurs on PHS breaking surfaces.
Note that for the constant PHS breaking mass term
mx = my = 0, mz 6= 0, Eq. 31 reduces to Eq. 27, while
for PHS preserving surfaces mass terms with mz = 0 the
Wen-Zee term vanishes.

Using Eq. 31, we find that charge Q = − 1
2 is localized

at r = 0 for the mass configuration mz = 0, mx + imy =
ms(r) exp(iθ) [88]. Due to the aforementioned zero-
energy mode, this charge is only meaningfully defined
modulo 1.

In total, we find that the surface of the rTCI can
be symmetrically gapped except for a single zero-energy
mode that is localized at the rotation center and
protected by PHS. The rotation center also binds charge
1
2 mod (1). Treated as a 0D system, the topological
features of the rotation center match those of the 0D
surface of a 1D SSH chain with additional trivial Z4

symmetry. Since the surface physics of the deformed
rTCI and SSH chain are equivalent, the bulks of the
two systems are also equivalent due to the bulk-boundary
correspondence. We can also understand the disclination
bound charge from this picture. For example, a π/2
disclination will remove one quarter of the 1/2 charge,
i.e., it removes 1

4 ·
1
2 = 1

8 charge at the rotation
center leaving 3/8. However, this would paradoxically
imply the existence of a 1D insulator with PHS and a
charge polarization 3/8. The resolution to this is that
the disclination itself must also bind an additional 1/8
charge. The total charge therefore remains as 1/2, as
expected for a 1D insulator with PHS.

F. Surface Topological Order

If interactions are not present, the spinless rTCI does
not support a fully gapped symmetric surface. Here
we show that if interactions are included, the rTCI
can support a fully gapped symmetric surface with
topological order. This is similar to the topological

orders that can be found on the surfaces of time-reversal
invariant topological insulators [74, 89–91].

We show here that the rTCI surface
topological order is Abelian with anyon content
{1, e, e2, e3,m,m2,m3, eamb} × {1, f} for a, b = 1, 2, 3.
The f particle is a fermion and the e and m anyons
are self-bosons with π/2 mutual statistics. The
surface topological order is enriched by C4 rotation
symmetry [92] such that the anyons carry both charge
and angular momentum. Specifically, the e anyon has
charge 1

2 and angular momentum 0 and the m anyon has

charge 0 and angular momentum 1
4 . This topological

order is anomalous for 2D systems with PHS but can be
realized on the surface of the 3D rTCI with PHS.

We use a vortex proliferation argument to construct
this topologically ordered surface state [89]. The first
step of this argument is to gap out the surface fermions
by adding superconducting terms that break U(1) charge
conservation, C4, rotation symmetry, TRS, PHS, and
chiral symmetry. To accomplish this it is useful to
rewrite the 4-component surface spinor ψ from Eq. 24
as ψ = (ψ1, ψ2), where ψ1,2 are two-component Dirac
spinors. In terms of these spinors, the superconducting
terms are

ĤSC = i∆1ψ1σ
yψ1 + i∆2ψ2σ

yψ2 + H.c. (32)

Under the U(1) and C4 symmetries, ∆1,2 transform as

U(1) : (∆1,∆2)→ (∆1e
i2θ,∆2e

i2θ)

C4 : (∆1,∆2)→ (∆1e
iπ/2,∆2e

−iπ/2).
(33)

The surface superconductivity therefore consists of a
condensate of Cooper pairs with charge 2 and angular
momentum ±1. TRS and PHS act as T : ∆1,2 → ∆∗2,1,
and C : ∆1,2 → −∆∗2,1.

To restore the surface symmetries, we follow the
procedure of vortex proliferation and disorder the
superconducting terms, (〈∆i〉 = 0). There are two
types of vortices that we must consider. First are
vortices where ∆1 and ∆2 both wind by 2πn (n ∈ Z).
Preempting our later identification of these vortices with
the m anyons of the theory, we refer to them as 2πn
m-vortices. Second, are vortices where ∆1 winds by
−2πn and ∆2 winds by 2πn, which we refer to as
2πn e-vortices. To understand why we must consider
both m- and e-vortices, we note that if we proliferate
only m-vortices the composite operator ∆1∆∗2 is not
disordered (see Eq. 33). This composite operator breaks
C4 symmetry, so the resulting surface would have U(1)
symmetry but not C4 symmetry. A similar argument
shows that only proliferating the e-vortices results in a
surface state with unbroken C4 symmetry and broken
U(1) charge conservation.

With this in mind, we now ask what vortices can be
condensed to restore the surface symmetry. Following the
usual logic, the condensable vortices must be commuting
bosons with vanishing quantum numbers. Additionally,
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in order for the resulting surface to be gapped, the
condensed vortices must not have any protected zero-
modes. To determine the quantum numbers and
statistics of the e and m-vortices, we first note that
due to the symmetry transformations in Eq. 33, a 2π
m-vortex is created by a π U(1) flux [93], and a 2π
e-vortex is generated by a −2π disclination. Let us
now imagine tunneling an electromagnetic monopole into
the bulk of the rTCI. This process leaves behind a 2π
U(1) flux on the surface, equivalent to a 4π m-vortex.
Based on our discussion of the RF term in Sec. II B
a magnetic monopole in the bulk of the spinless rTCI
carries angular momentum − 1

2 . From conservation of
angular momentum, the 4π m-vortex must have angular
momentum 1

2 , and the 2π m-vortex must have angular

momentum 1
4 . Similarly, a −2π disclination monopole in

the bulk carries charge 1
2 , and so a 2π e-vortex has charge

1
2 . Additionally, from the bulk braiding statistics of the
flux and disclination lines, we conclude that both types
of vortices are self-bosons and that a 2π e-vortex and a
2π m-vortex have π/2 mutual statistics.

We will now determine the fate of the zero modes of
the vortices. The 2π e and the 2π m-vortices both host a
single complex fermion zero-mode. This comes from the
fact that a 2π m-vortex is a combination of a 2π vortex
of ∆1 and a 2π vortex of ∆2, each of which host a single
Majorana zero mode [94]. This complex zero-mode is
protected from acquiring a gap by PHS. The same logic
indicates that a 2π e-vortex also has a complex zero-mode
that is protected by PHS.

Based on these observations, the surface symmetry can
be restored by simultaneously condensing the following
two combinations of vortices: first, the combination
of an −8π e-vortex, an −8π m-vortex, and a Cooper
pair with charge 2 and angular momentum 1, and
second, the combination of an −8π e-vortex, a 8π m-
vortex, and a Cooper pair with charge 2 and angular
momentum −1. Both of these combinations have
vanishing charge, vanishing angular momentum, and
trivial mutual statistics. Additionally, both vortex
combinations have a total of 8 complex fermions, and
these fermions can be gapped out while preserving PHS.
Under the first combination of vortices, ∆1 winds by 16π,
while ∆2 winds by 0, and under the second combination
∆1 winds by 0, while ∆2 winds by 16π. Condensing
both combinations of vortices therefore disorders ∆1, ∆2,
and any composite operator descendants. The resulting
surface state is therefore both gapped and symmetry-
preserving.

The resulting surface has several non-trivial deconfined
excitations (anyons). First, there are the fermionic
excitations that are the remnant of the gapped complex
fermion zero modes. We label these excitations as f . The
rest of the anyons correspond to vortices that have trivial
statistics with the condensed vortex combinations. Here,
both 2πn e-vortices and 2πn m-vortices (as well as the
fusions of the two) are deconfined. We label the 2π e-
vortex with an unoccupied complex zero-mode as the e

anyon (the 2π e-vortex with an occupied complex zero-
mode as e×f). Similarly, we label the 2π m-vortex with
an unoccupied zero-mode as the m anyon. Based on our
earlier observations, the e and m anyons are self-bosons
with π/2 mutual statistics. The e particle has charge
1
2 and angular momentum 0, while the m particle has

charge 0 and angular momentum 1
4 . Since the e4 and m4

anyons have trivial statistics with all other anyons and
have non-fractionalized quantum numbers, they should
be regarded as local particles and do not enter into the
anyonic data of the theory.

Having established the existence of the surface
topological order, we will now show that this surface
topological order is anomalous with respect to PHS.
First, consider a purely 2D theory with the same anyon
content as the surface topological order we constructed.
The bosonic part of the topological order can be
represented in the K-matrix formalism as [58, 95]

L2D-top = KIJ
εµνρ

4π
aIµ∂νa

J
ρ +

εµνρ

4π
qIa

I
µ∂νAρ

+
εµνρ

4π
sIa

I
µ∂νωρ,

(34)

where K = 4σx, qI = (2, 0), and sI = (0, 1). This 2D
theory is not consistent with PHS, as can be seen from
the fact that integrating out the dynamic gauge fields aIµ
produces a Wen-Zee term

L2D-top =
εµνρ

4π
ωµ∂νAρ, (35)

which breaks PHS.
For an alternative perspective, let us assume that there

is a purely 2D lattice system with the same topological
order as the gapped rTCI surface. For such a system,
we can consider the instanton process where a 2π U(1)
flux is adiabatically inserted in a local region [91]. This
instanton event is a local process for lattice systems.
However, the e anyons have charge 1

2 and hence pick
up an Aharonov-Bohm phase of −1 upon encircling the
flux. The resolution to this seeming paradox is that
the instanton event must bind an anyon that has π
mutual statistics with the e anyon. This anyon must
be the m2 anyon. However, the m2 anyon has angular
momentum 1

2 . If angular momentum is conserved,
the instanton event must therefore be accompanied
by a flow of angular momentum current. The fact
that inserting an electromagnetic flux drives an angular
momentum current indicates that the 2D lattice system
must necessarily break PHS (e.g., this is exactly what
the Wen-Zee term would generate).

Now, consider the same instanton event when the
topological order is defined on the surface of the rTCI.
Here, the flux insertion on the surface is accompanied
by a monopole tunneling event in the bulk of the rTCI.
As before, the flux insertion on the surface binds the m2

anyon, which has angular momentum 1
2 . Additionally,

due to the mixed Witten effect in the bulk of the rTCI,
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the monopole has angular momentum − 1
2 . So, the

angular momentum of the full 3D system is conserved
during the instanton event and there is no need for
an accompanying angular momentum current on the
surface. The topological order is therefore consistent
with PHS when placed on the surface of the rTCI.

IV. ROTATION-INVARIANT TOPOLOGICAL
CRYSTALLINE INSULATORS WITH MIRROR

SYMMETRY

In this section, we discuss time-reversal invariant
rTCIs where the R ∧ F -term is quantized by mirror
symmetry instead of PHS. Much of the bulk physics of
the rTCIs with mirror symmetry is the same as that
of the rTCIs with particle-hole symmetry, which we
discussed in detail in Sec. III. However, as noted in
Sec. II C 2, unlike the rTCI with PHS, the surfaces of
the rTCI with mirror symmetry can be gapped while
preserving mirror symmetry, and without introducing
surface topological order. However, these symmetric
gapped surfaces still carry an anomaly, as a 2π/n surface
disclination binds charge 1/2n in spinless systems, and
charge 1/n in spin-1/2 systems (half the amount that is
allowed in purely 2D systems). In this section, we will
only consider spin-1/2 insulators, since they are more
relevant to real materials. We include the analysis for
spinless fermions with mirror symmetry in Appendix F.

Before we begin, we note that rTCIs with mirror
symmetry along the z-axis and C2 rotation symmetry
along the z-axis also have inversion symmetry.
However, the models we study are trivial in terms
of the classification of inversion symmetric topological
insulators[12] and higher order topological insulators
with hinge modes[33, 34, 96]. This is because the
topological properties of these systems are due to the
rotation and mirror symmetries separately, not inversion
symmetry. In addition to the analysis of a specific
model, in Sec. V we construct appropriate topological
invariants for more generic mirror symmetric rTCIs.

A. Lattice Model with Spin-1/2 Fermions

In this subsection we present a lattice model for
the spin-1/2 rTCI with TRS and mirror symmetry C4

rotation symmetry. The spin-1/2 rTCI is realized by the
following a 16-band model (8-bands per spin):

H(k) =
[
sin(kx)Γxσ0 + sin(ky)Γyσ0 + sin(kz)Γ

zσ0

+ sin(kx) sin(kz)Γ
0σx + sin(ky) sin(kz)Γ

0σy

+ (M + cos(kx) + cos(ky) + cos(kz))Γ
0σz
]
σ0.

(36)

The spin of the fermions is given by Sz = 1
2 Iσ0σz. Eq. 36

conserves charge and is invariant under TRS, mirror

symmetry and C4 rotation symmetry. The TRS operator
is given by

T̂ = iΓyσyσyK, (37)

mirror reflection is defined as

M̂z = iΓ5zσ0σz, (38)

where M̂−1
z H(kx, ky, kz)M̂z = H(kx, ky,−kz), and C4

rotation is defined as

Û4 = exp
(
i
π

4
[Γyxσ0σ0 + Iσzσ0 + Iσ0σz]

)
. (39)

Here, T̂ 2 = (M̂z)
2 = (Û4)4 = −1, since the fermions

have spin-1/2.
The lattice model in Eq. 36 also has PHS given by

Ĉ = Γ5yσyσyK. (40)

However, this PHS is not relevant to our discussion and
should be regarded as an “accidental” symmetry of the
lattice model.

The spectrum of the spin-1/2 lattice model is 8-fold
degenerate but otherwise the same as in Eq. 16, and
hence is gapped for |M | 6= 1, 3. Below we show that
this lattice model realizes a spin-1/2 rTCI with a Φ = 2π
R ∧ F -term for 1 < |M | < 3.

B. Response Theory

To derive the response theory for the spin-1/2 model,
we follow the methodology used in Sec. III B and consider
the system close to the band crossing at M = −3. Near
this point in the phase diagram the low-energy degrees
of freedom have a Dirac-like form:

H =
[
Γxσ0i∂x + Γyσ0i∂y + Γzσ0i∂z +mΓ0σz

]
σ0, (41)

where m ∼ M + 3 controls the transition between
the M < −3 trivial phase, and the −3 < M < −1
phase of the lattice model. To determine the effective
response theory, we gauge the U(1)-charge and C4-
rotation symmetries and couple the fermions to the
gauge field Aµ and spin connection ωµ via the covariant
derivative (see Appendix B):

Dµ = ∂µ − iAµ

− i1
2
ωµ[Γxyσ0σ0 + Iσzσ0 + Iσ0σz].

(42)

Similar to before, the C4 rotation symmetry of Eq. 41
is actually part of an enlarged U(1) rotation symmetry.
In addition to the gauge fields, we also include a
perturbation

H′ = m′Γ5σ0σ0, (43)
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and set m = −m̄ cos(φ), and m′ = −m̄ sin(φ), with m̄ >
0, such that m < 0 when φ = 0, and m > 0 when φ = π.
If φ is promoted to be a function of z, mirror symmetry
is preserved only if φ(z) = −φ(−z) mod(2π). If φ is
constant (as it should be in the interior of an insulator)
mirror symmetry requires that φ = 0, or π.

The effective response theory is obtained by a
diagrammatic expansion in terms of Aµ, ωµ, and φ, and
we are again primarily interested in the triangle diagrams
depicted in Fig. 5. The contribution from the triangle
diagrams is

Leff =
φ

2π2
εµνρκ∂µων∂ρAκ, (44)

which differs by a factor of 2 from the effective response of
the spinless lattice model, Eq. 22. For φ = π (constant),
the effective response is,

Leff =
1

2π
εµνρκ∂µων∂ρAκ, (45)

which is exactly the R ∧ F -term in Eq. 1 with Φ = 2π.
Following the same logic from Sec. II, the R ∧ F -term
vanishes for M < −3 and the coefficient of the R∧F -term
is Φ = 2π, for −3 < M < −1. Repeating this procedure
for the band crossing at M = ±1, 3 we conclude that
Φ = 2π for 1 < |M | < 3 and vanishes otherwise.

As noted before, when the coefficient of the R ∧ F -
term is non-constant, mirror symmetry requires that
Φ(z) = −Φ(−z) mod(4π). Because of this, it is
possible to have mirror symmetry preserving domain
walls between the rTCI and a trivial insulator, as we
show in the next subsection. We also note that for Eq. 41
and 43, increasing φ from 0 to 2π is a periodic process.
During this process a Φ = 4π R ∧ F -term is generated,
which agrees with our earlier conclusion that for spin-1/2
systems with TRS, Φ is 4π periodic.

C. Surface Theory

To analyze the surface theory of the rTCI with mirror
symmetry, we will use a pair of domain walls that are
related to one another by mirror symmetry. Specifically,
consider a geometry where −3 < M < 1 for |z| < zdw

and M < −3 for |z| > zdw, which corresponds to a pair
of symmetry related domain walls at z = ±zdw (zdw is
taken to be large compared to the correlation length of
the insulators). The Hamiltonian for the two surfaces is

Ht = [σxi∂x − σyi∂y]σ0σ0,

Hb = [σxi∂x − σyi∂y]σ0σ0,
(46)

or, equivalently,

Ht-b = [σxi∂x − σyi∂y]σ0σ0σ0, (47)

where the two domain walls are indexed by σ0σ0σ0σz.
The mirror symmetry acts on Eq. 47 as

M̂z−surf = σ0σ0σzσx, (48)

while TRS and C4 symmetry act on Eq. 47 as

T̂surf = σyσyσyσ0K,

Û4−surf = exp
[
i
π

4

(
−σzσ0σ0 + σ0σzσ0 + σ0σ0σz

)]
σ0.

(49)

Eq. 47 has two surface mass terms of note: (i) a
mass term proportional to σzσzσ0σz that preserves TRS
and breaks mirror symmetry, and (ii) a mass term
proportional to σzσzσ0σ0 that preserves TRS and mirror
symmetry. Hence, in agreement with our discussion from
Sec. II C 2, we find that the surface Dirac fermions are not
protected by mirror symmetry since they can be gapped
with the second mass term while preserving mirror.

The response theory of the gapped surfaces is found
by coupling the surface Dirac fermions to the U(1) gauge
field Aµ and spin connection ωµ, and then integrating out
the massive fermions using a diagrammatic expansion.
The expansion contains a topological Wen-Zee term,
which corresponds to the one-loop diagram in Fig. 6. For
the mirror symmetry breaking surface mass, one surface
hosts a Wen-Zee term with discrete shift S = 1 and the
other hosts a Wen-Zee term having coefficient S = −1.
A π/2 disclination of the rTCI with mirror symmetry
therefore binds charge 1

4 on one surface, and charge − 1
4

on the other surface (modulo local contributions).

For the mirror symmetry preserving surface mass, both
surfaces host a Wen-Zee term with the same discrete
shift S = ±1, and a π/2 disclination binds charge ± 1

4
on both surfaces. Mirror symmetry preserving surface
effects can change the discrete shift of both surface Wen-
Zee term by the same integer. Fractional charges are
therefore bound to disclinations of the massive surfaces
of the rTCI regardless of whether the surfaces break or
preserve mirror symmetry, and the charge bound to the
surface disclination is half the amount that is allowed in
purely 2D systems. Hence, the fractional charge bound to
surface disclinations is a robust indicator of the topology
of the rTCI with TRS and mirror symmetry, even in the
absence of symmetry protected surface states.

It should be noted that since the rTCI with mirror
symmetry hosts symmetric, non-interacting gapped
surfaces, it is not necessary to include additional
interactions to generate gapped topologically ordered
surfaces, as we did in Sec. III F.

D. Numerics

In this subsection we numerically analyze the lattice
model of the spin-1/2 rTCI with mirror symmetry. As
noted previously, the mirror symmetric rTCI admits
a mirror symmetry preserving gapped surface. For a
lattice model with periodic boundaries along the x and
y-directions and open boundaries along the z-direction,
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the mirror symmetric mass terms are

Hs =
∑

r∈+z surface

msc
†(r)Γ5σ0σ0c(r)

−
∑

r∈-z surface

msc
†(r)Γ5σ0σ0c(r).

(50)

Here, c†(r) is the 8-component fermion creation operator
at site r, and the first (second) sum is over sites on
the top (bottom) surface of the lattice. The density of
states of the system with the mirror symmetric surface
perturbation shows no midgap states, and is the same as
the density of states in shown Fig. 7b, up to a factor
of 2 because of the spin of fermions. As we discuss
in Sec. IV F, when the lattice has open boundaries in
all directions, the mirror symmetric gapped surface has
corner-vertex charges and a filling anomaly [97, 98].

It is also possible to have gapped surfaces without
a filling anomaly if we instead use a mirror symmetry
breaking surface mass term of the form.

Hs = ms

∑
r∈surface

c†(r)Γ5σ0σ0c(r), (51)

where ms is constant, and the sum is taken over all
boundaries of the system. This surface mass term
produces a system with an identical spectrum to that
of Eq. 50.

We now turn our attention to the charge that is
bound to the gapped surfaces of the spin-1/2 rTCI
with a disclination. As discussed, the spin-1/2 rTCI
admits both mirror symmetry preserving and mirror
symmetry breaking gapped surfaces. However, the
mirror symmetry preserving gapped surfaces lead to a
filling anomaly[97] such that the insulator is not charge
neutral (including the negative ionic contribution) when
the chemical potential is in the gap. In contrast, when
mirror symmetry is broken at the surface, the insulator
can be charge neutral and free from the filling anomaly
when the chemical potential is in the gap. Since we are
only interested in charges that arise from disclinations,
it is convenient to use mirror symmetry breaking surface
mass terms here.

The surface charge of the spin-1/2 lattice model with
a π/2 disclination and mirror symmetry breaking surface
mass term (Eq. 51) is shown in Fig. 13. When 1 < |M | <
3, the disclinated surface has an extra 1

4 mod (1
2 ) surface

charge (up to finite size corrections), indicating that the
lattice model is a spin-1/2 rTCI with a non-trivial R∧F -
term in this regime. When |M | > 3 and |M | < 1, the
surface charge is 0 (mod 1

2 ), indicating that the R ∧ F -
term is trivial in these regimes.

We can also consider the angular momentum bound
to magnetic flux using the same procedure discussed in
Sec. IV D. For mirror preserving mass terms in Eq.
50, threading nflux magnetic fluxes along the z-direction
increases the total angular momentum by 2nflux mod (4)
if the R ∧ F -term is non-trivial, and by 0 mod (4) if
the R ∧ F -term is trivial. Since the spin-1/2 model is

3 1 0 1 3
M

0.25
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0

FIG. 13. The surface charge Q0 bound to a π/2 site-centered
disclination as a function of the mass M . The charge is
calculated using the Hamiltonian in Eq. 36 and 51 on a
15 × 15 × 15 lattice with open boundaries and a mirror
symmetry breaking mass ms = min(|M − 1|, |M − 3|). As
in the spinless case, the deviations of the charge from the
quantized values around the gap closing points |M | = 1, 3
arise from finite size effects.

equivalent to two copies of the spinless model from Sec.
III (one for Sz = +1/2, one for Sz = −1/2), the angular
momentum bound to an odd number of magnetic fluxes
is simply twice that found in Fig. 11. Similarly, the
results of Sec. III indicate that magnetic fluxes threaded
through boundaries normal to the x and y-directions also
bind angular momentum in this system. These results are
in full agreement with our previous analysis.

E. Dimensional Reduction to 1D SPT

The spin-1/2 rTCI with mirror symmetry can be
dimensionally reduced to a 1D spin-1/2 SSH chain
protected by mirror symmetry and an on-site Z4 spin
rotation symmetry. The boundaries of the spin-1/2 SSH
chain host a Kramers pair of zero energy modes, and have
charge −1 (+1) when both of the zero modes are empty
(filled)[99]. Filling only one of the zero modes results in
a boundary with spin ±1/2 and charge 0. For a pair of
mirror symmetry related boundaries, it is possible to have
TRS and mirror symmetry preserving gapped boundaries
where the zero energy modes at each boundary are all
empty or all filled. The gapped boundaries carry the
same charge ±1, and spin 0.

To show this, we again take the two surface
Hamiltonians in Eq. 46, and add mass perturbations of
the form

Ht-mass = [mx,tσ
zσx +my,tσ

zσy +mz,tσ
zσz]σ0,

Hb-mass = [mx,bσ
zσx +my,bσ

zσy +mz,bσ
zσz]σ0.

(52)

Under mirror symmetry, mi,t → mi,b, for i = x, y, z.
Following our discussion in Sec. III E, the spin-1/2 rTCI
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can be dimensionally reduced to an SSH chain with
gapless edge modes by setting mz,t = mz,b = 0 and
mx,t +imy,t = mx,b +imy,b = ms(r) exp(iθ), where (r, θ)
are polar coordinates on the surface and ms(r) ≥ 0 is a
function of the radial coordinate that vanishes at r = 0
and goes to a non-zero constant m̄s, as r → ∞. This
mass configuration preserves TRS, mirror symmetry, and
C4 rotation symmetry.

With this mass configuration there are two localized
zero-energy modes, ψ0↑,t/b, and ψ0↓,t/b , at the rotation
center of each surface (see Appendix D). The zero-energy
modes of each surface form a Kramers pair with spin
±1/2. The zero-energy subspace is acted upon with the
symmetries as:

T : (ψ0↑,t/b, ψ0↓,t/b)→ (ψ0↓,t/b,−ψ0↑,t/b)

C4 : (ψ0↑,t/b, ψ0↓,t/b)→ (ψ0↑,t/be
iπ4 , ψ0↓,t/be

−iπ4 ).
(53)

Interestingly, it is possible to gap out the edge modes
of the SSH chain by instead setting mz,t = mz,b =√
m̄2
s −ms(r)2, such that mz,t and mz,b take on the

same non-quantized value near r = 0. This perturbation
preserves all symmetries of the spin-1/2 rTCI and gaps
out the zero modes located at r = 0 on each surface.

To determine the charge that is bound at r = 0,
we integrate out the massive fermions, leading to the
effective response theory

Leff-t =
εµνρ

4π
nt · (∂µnt × ∂νnt)Aρ +

nz,t
4π

εµνρωµ∂νAρ,

Leff-b =
εµνρ

4π
nb · (∂µnb × ∂νnb)Aρ +

nz,b
4π

εµνρωµ∂νAρ,

nt/b =
mt/b

|mt/b|
, mt/b = (mx,t/b,my,t/b,mz,t/b).

(54)

For the mass configurations discussed above, the response
theory indicates that charge −1 is localized near r = 0
on both the top and bottom surfaces. It is also possible
to have a gapped surface with charge +1 localized near
r = 0 by changing the signs of mz,t and mz,b. Viewed
as two 0D systems, the rotation centers of the top and
bottom surfaces each have a Kramers pair of unprotected
modes, and carry charge −1 (+1) when the zero modes
are empty (filled). These are exactly the characteristic
features of the 0D surfaces of the spin-1/2 SSH chain
with mirror symmetry, and, using the bulk-boundary
correspondence, we conclude that the spin-1/2 rTCI and
spin-1/2 SSH chain with mirror symmetry are equivalent.
We can understand the bound disclination charge from
this picture as well. For example, a π/2 disclination
will remove one quarter of the −1 charge leaving a total
charge of − 3

4 . Since such a 1D chain should have an
integer charge polarization we expect the disclination
itself to carry the compensating − 1

4 charge.
Since the mirror preserving gapped surfaces both carry

charge ±1, the net charge of the rTCI with mirror
symmetry preserving gapped surfaces is ±2. The fact
that the symmetrically gapped surface has a net charge

indicates that the rTCI with mirror symmetry has a
filling anomaly[97]. This filling anomaly also occurs for
the spin-1/2 SSH chain with mirror symmetry [98].

The spin-1/2 SSH chain with mirror symmetry can also
be further dimensionally reduced to a non-trivial 0D spin-
1/2 system with on-site Z2 symmetry, which is inherited
from the mirror symmetry [98]. By extension, the spin-
1/2 rTCI can also be further dimensionally reduced to
the same 0D system, with an on-site Z4 spin rotation
symmetry.

F. Octopole Insulator

Interestingly, the rTCI with mirror symmetry can
host a pattern of gapped surfaces that generate corner
charges. This surface mass configuration turns the rTCI
into an octopole insulator [62]. Heuristically, we can
see this by considering the rTCI defined on a lattice
with open boundaries in all directions. Based on our
previous discussion, this system admits a surface mass
configuration that fully gaps each surface and that binds
the same charge ±1 to the rotation center on the +z
and -z surfaces. To create an octopole insulator, we
fractionalize the ±1 on each surface charge into four
charges of +1/4 or four charges of −1/4 and then we
move the charges to the vertices of the cubic lattice
surface. This can be done smoothly and without breaking
any symmetries. The resulting system is an octopole
insulator with the same corner charge of either all +1/4
or all −1/4 located at each vertex of the surface. The
resulting insulator has net charge ±2 which matches
the previously mentioned filling anomaly that is present
when mirror-symmetry is preserved.

In terms of the microscopic model, the octopole
insulator is found by adding the following terms to the
surfaces of the rTCI with mirror symmetry,

Hs =
∑

r∈±z surface

±msc
†(r)Γ5σ0σ0c(r)

+
∑

r∈±x surface

±msc
†(r)Γ0σxσ0c(r)

+
∑

r∈±y surface

±msc
†(r)Γ0σyσ0c(r),

(55)

where the sum is taken such that +ms is used for the
fermions on the +x,+y,+z surfaces and −ms is used for
the fermions on the −x,−y,−z surfaces. As shown in
Fig. 14 these surface mass terms lead to the octopole
insulator with charge −1/4 localized on each vertex of the
cubic lattice when ms > 0. The charge at each vertex
is +1/4 when ms < 0. It should be noted that these
quantized charges are not fixed to the vertices by the
rotation and mirror symmetry alone. For example, it
is possible to move the charges such that charge ±1 is
localized at the points where the rotation axis intersects
the surface of the rTCI (as in Sec. IV E). Equivalently, it
is possible to move the charges such that charge ±1/2 is
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FIG. 14. The surface charge configuration for the lattice
Hamiltonian in Eq. 36 with mirror symmetry preserving
surface mass terms in Eq. 55 on a 10 × 10 × 10 lattice with
M = −2, ms = 1. A background charge of −8 per site is
added such that the bulk of the insulator is charge neutral.
A fractional charge −1/4 is bound to each corner.

localized at the corners where the mirror plane intersects
the hinges of the surface of the rTCI.

V. SYMMETRY EIGENVALUE FORMULAS
FOR rTCI INVARIANTS

In Sec. IV and Appendix F we determine the coefficient
of the R ∧ F -term, Φ, using linear response theory for
lattice models with C4 symmetry, mirror symmetry, and
TRS. In this section we construct a symmetry indicated
version of this topological invariant that distinguishes the
topological (Φ 6= 0) and trivial phases (Φ = 0) phases
of mirror symmetric rTCIs with additional inversion
symmetry. We consider two generic classes of insulators
in the following sections:

1. Spinless insulators with TRS, Cn symmetry, mirror
symmetry, and inversion symmetry.

2. Spin-1/2 insulators with conserved spin, TRS,
Cn symmetry, mirror symmetry and inversion
symmetry.

Notably, this list excludes spin-1/2 insulators with spin-
orbit coupling. Determining an analogous formula for
such systems remains an open question. It should be
noted that the combination of mirror and inversion
symmetry leads to C2 symmetry around the same axis
as the Cn symmetry. This C2 symmetry is redundant for
n = 2, 4, 6, but enlarges the C3 rotation symmetry to C6.
So, the above classes effectively consider Cn rotations
with only n = 2, 4, 6.

A. Spinless fermions

Here we construct an invariant for spinless insulators
with TRS (T 2 = 1), Cn symmetry, mirror symmetry,
and inversion symmetry. As noted previously, these
insulators necessarily have a C2 rotation subgroup.
The invariant is constructed in terms of the symmetry
eigenvalues of the occupied bands at the time-reversal
invariant momenta (TRIM) of the Brillouin zone, i.e.,
lattice momenta k such that k = −k modulo a reciprocal
lattice vector. Since the TRIM are invariant under C2

rotations, we consider only C2 rotations in this section,
with the implicit understanding that the C2 rotations
may be part of a larger rotation group. In Appendix G we
discuss why it is sufficient to only consider C2 rotations
when considering Cn rTCIs with n = 4 or 6.

Before we define the invariant, it is necessary to go over
some preliminary details. Take a generic insulator with
the above symmetries. When restricted to the mirror
invariant plane kz = 0 or kz = π, the occupied bands
have an M̂z eigenvalue that is independent of the kx-
and ky- components of the momentum. We can define
the Chern number parity of a band restricted to a mirror
invariant plane as[100]

(−1)Ci[kz ] = χi(0, 0, kz)χi(0, π, kz)χi(π, 0, kz)χi(π, π, kz)

= ζi(0, 0, kz)ζi(0, π, kz)ζi(π, 0, kz)ζi(π, π, kz)

(56)

where kz = 0 or π, i is a band index, and χi = ±1, ζi =
±1 are the C2 and inversion eigenvalues, respectively, of
the i-th band at a given high-symmetry point. We can
therefore label each band by its mirror eigenvalue and
Chern number parity at each mirror invariant plane.

If we restrict our attention to the kz = 0 (kz =
π) slice of the Hamiltonian, bands with (−1)Ci[0] =
−1 ((−1)Ci[π] = −1) must come in TRS related
pairs. Since mirror symmetry eigenvalues are real for
spinless fermions, these pairs must also share the same
mirror symmetry eigenvalue at the mirror invariant
plane. Additionally, for such a pair of TRS-related
bands, the Chern number parity of each band at the
mirror invariant plane is separately conserved (only the
total Chern number is conserved without C2/inversion
symmetry) [100]. This follows from Eq. 56 and the fact

that the Ĉ2 and inversion eigenvalues of a pair of TRS-
related bands must be the same at high symmetry points.
For example, take the following 4-band model for a pair
of 2D insulators with Chern number ±1,

H(kx, ky) = (m+ cos(kx) + cos(ky))σzσz

+ sin(kx)σxσ0 + sin(ky)σyσ0,
(57)

with time reversal symmetry T̂ = σyσyK and C2

symmetry Ĉ2 = σzσz. At half filling, this model has
two TRS related bands with Chern number ±1 for 0 <
|m| < 2 and two bands with Chern number 0 for 2 < |m|.
Without C2 symmetry, it is possible to adiabatically
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transition between these two phases by adding a second
mass term, e.g., σzσx or σzσy.

With this in mind, we proceed to construct the
invariant for the coefficient of the R ∧ F -term. Consider
the bands with odd Chern number parity for a fixed
mirror invariant plane (kz = 0 or kz = π) . Since the
fermions are spinless, these bands have mirror eigenvalue
±1 when restricted to this mirror plane. By our above
arguments, the bands with odd Chern number parity
come in pairs with the same mirror eigenvalue. We take
the number of occupied bands with mirror eigenvalue
±1 and odd Chern number parity at kz = 0/π to be
Nodd

0/π,±1 ∈ 2Z, and define the following four invariants.

η0,+1 = exp
(
i
π

2
Nodd

0,+1

)
,

ηπ,+1 = exp
(
i
π

2
Nodd
π,+1

)
,

η0,−1 = exp
(
i
π

2
Nodd

0,−1

)
,

ηπ,−1 = exp
(
i
π

2
Nodd
π,+1

)
.

(58)

Since Nodd
0/π,±1 is even, these four invariants all take values

of ±1. We can understand η0/π,±1 as the net Chern
number parity of half of the bands with odd Chern
number parity in the appropriate sector.

The η terms are not meaningful individually, as
a redefinition of the mirror symmetry M̂z → −M̂z

exchanges η0/π,+1 ↔ η0/π,−1, and shifting momentum
kz → kz + π exchanges η0,±1 ↔ ηπ,±1. We therefore first
consider the product of all four η invariants,

(−1)ν = η0,+1ηπ,+1η0,−1ηπ,−1. (59)

Using Eq. 56, we find that ν is actually the same invariant
that describes the quantized axion electrodynamics Θ-
term of 3D inversion symmetric topological insulators
(ν = Θ/π in Eq. 6) [100]. Since spinless fermions with

TRS (T̂ 2 = +1) cannot support a non-trivial quantized
Θ-term in 3D[1], it is necessarily the case that ν = 0 for
the systems we consider here.

Here we show that the spinless rTCI with mirror
symmetry is described by the invariant,

(−1)νRF = η0,+1ηπ,+1 = η0,−1ηπ,−1, (60)

where the second equality follows from ν = 0. In
Appendix F, we construct a lattice model that realizes
the spinless rTCI, and determine the coefficient of the
R ∧ F -term using a linear response formalism analogous
to those in Secs. III B and IV B. For this lattice model,
νRF = 0, when the lattice model is described by a
trivial R ∧ F -term and νRF = 1 when the lattice model
is an rTCI with non-trivial R ∧ F -term. Concisely,
νRF = Φ/π, where the left-hand side is calculated using
the symmetry eigenvalue formula, and the right-hand
side is calculated using linear response. Additionally,
as we show in Appendix G, a linear, Dirac-like band

crossing for a system of spinless fermions with TRS, C2

symmetry and mirror symmetry requires a minimum of
8-bands, and a non-trivial R∧F -term is either generated
or removed during such a band crossing, if and only if the
value of νRF changes as well. More generally, we find that
νRF = Φ/π for all insulators with these symmetries that
have transitions generated by Dirac-like band structures
at TRIM. We conjecture that the relation νRF = Φ/π
holds in general, but additional analysis is required to
confirm this.

The invariant νRF may be written in a Fu-Kane-like
form as follows [29]. For a single TRIM, Λn, there are
Nodd
−1 [Λn] bands that have odd Chern number in the

mirror plane that contains Λn, and have C2 eigenvalue
−1 at Λn. Based on our previous arguments, these bands
come in pairs, and we can order them such that the 2i
and 2i − 1 bands have the same inversion eigenvalue at
Λn, ζ2i[Λn] = ζ2i−1[Λn]. In terms of these bands, νRF is

(−1)νRF =
∏
n

δ−1[Λn],

δ−1[Λn] =

1
2N

odd
−1 [Λn]∏
i=1

ζ2i[Λn],

(61)

where we have used Eq. 56 and the fact that inversion
symmetry is equal to the product of C2 and mirror
symmetries. This leads to an interpretation of νRF as
the Fu-Kane invariant[29] for the non-trivial bands with
C2 eigenvalue −1 at a given TRIM. A similar invariant
can be constructed in terms of the non-trivial bands with
C2 eigenvalue +1 at a given TRIM, and since ν = 0, these
invariants are equal.

We also note that there is a second independent
invariant to consider:

(−1)νWZ,z = η0,+1η0,−1 = ηπ,+1ηπ,−1. (62)

Since νWZ,z only involves a single mirror invariant plane,
it is a weak topological invariant. As we argue here, a
non-zero value of νWZ,z indicates that the insulator is
described by a 3D Wen-Zee term

LWZ,z =
Sz
4π2

Gzε
µνρωµ∂νAρ (63)

where Sz is a constant integer, Gz is the reciprocal lattice
vector in the z-direction, and µ, ν, ρ run over x, y, t. The
coefficient of the 3D Wen-Zee term is related to the
weak invariant as Sz = νWZ,z mod(2). The anisotropic
3D Wen-Zee term indicates that disclinations in an xy-
plane bind charge, or equivalently, disclination lines carry
charge per unit length along the z-direction.

To show the connection between νWZ,z and the 3D
Wen-Zee term, we consider a spinless 2D insulator with
C2 rotation symmetry and TRS. Such an insulator will
have Nodd

2D occupied bands with odd Chern number
parity, and these bands will come in pairs that are related
by TRS with opposite Chern number. In Ref. 55 it
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was shown that for such insulators, a filled pair of TRS
related bands with Chern numbers ±C are described by
a 2D Wen-Zee term

LWZ,2D =
S
2π
εµνρωµ∂νAρ, (64)

with discrete shift S = C. To proceed, we use the fact
that the Chern number parity of the ith band is

(−1)Ci = χi(0, 0)χi(0, π)χi(π, 0)χi(π, π) (65)

where χi is the C2 eigenvalue at a given high symmetry
point [100]. Taking the number of occupied bands with
odd Chern number parity to be Nodd

2D ∈ 2Z (Nodd
2D must

be even due to TRS) we define the following invariant

(−1)νWZ = exp
(
i
π

2
Nodd

2D

)
. (66)

Following our above discussion, the 2D insulator we are
considering here is described by a Wen-Zee term with
discrete shift S = νWZ mod(2), i.e., (−1)νWZ is the parity
of the Wen-Zee term.

Returning to the weak invariant νWZ,z of a 3D
insulator, if we treat the kz = 0 plane as a 2D insulator,
then η0,±1 is the parity of the Wen-Zee term that
describes the Mz = ±1 sector of the kz = 0 plane. The
product η0,+1η0,−1 is therefore the parity of the full Wen-
Zee term of the kz = 0 plane. Since the coefficient of
the Wen-Zee term is quantized, it cannot change as a
function of kz as long as the gap and rotation symmetry
are maintained. Each constant kz plane is therefore
described by the same Wen-Zee term as the kz = 0 plane.
From this, we conclude that Sz = νWZ,z mod(2), i.e.,
(−1)νWZ,z is the parity of the 3D Wen-Zee term.

For the rTCIs from Secs. III and IV, νWZ,z = 0. The
minimal model for νWZ,z = 1 consists of stacking the 2D
Hamiltonian in Eq. 57 along the z-direction. Using linear
response theory, we find that for 2 < |m|, νWZ,z = 0 and
the 3D Wen-Zee response vanishes, while for 0 < |m| < 2,
νWZ,z = 1 and there is a 3D Wen-Zee response with
Sz = sgn(m) (see Appendix H for details of the linear
response calculation).

Our 2D analysis also gives a new perspective on
the “strong” invariant νRF . The invariant η0/π,+1

indicates that the kz = 0/π plane of the Mz = +1
sector is described by a Wen-Zee term (Eq. 64) with
(−1)S = η0/π,+1. We can therefore interpret (−1)νRF =
η0,+1ηπ,+1 as the change in the parity of the Wen-Zee
term between the Mz = +1 sectors of the kz = 0
and kz = π planes. Since the total Wen-Zee term
must be constant as a function of kz, there must be a
compensating change in the parity of the Wen-Zee term
between the Mz = −1 sectors of kz = 0 and kz = π
planes. This is reflected in the second equality in Eq. 60.

B. Spin-1/2 Fermions with Additional Spin
Conservation

Having discussed spinless fermions, we now construct
an analogous invariant for spin-1/2 insulators with

conserved spin, TRS (T 2 = −1), Cn symmetry ((Ĉn)n =

−1), mirror symmetry ((M̂z)
2 = −1), and inversion

symmetry. Again, we only consider the C2 subgroup of
rotations here.

The analysis is simplified by the observation that for
a spin-1/2 insulator with conserved spin, it is possible to
decompose the insulator into two blocks with Sz = ±1/2,
and that each of these blocks can be treated as a spinless
insulator with a spinless TRS and C2 rotation symmetry,
mirror symmetry and inversion symmetry. To show this,
we write the block diagonal Hamiltonian for a spin-1/2
insulator as

H(k) = H′(k)⊗ σ0, (67)

where H is a 2n× 2n Bloch Hamiltonian, H′ is an n× n
matrix, and the fermionic spin is given by Si = 1

2 In ⊗ σi
for i = x, y, z. Here we have made the Kronecker product
explicit for clarity. In general, the TRS, C2 rotation
symmetry, mirror symmetry, and inversion symmetry
operators are

T̂ = T̂ ′ ⊗ σyK,
Ĉ2 = Ĉ ′2 ⊗ iσz,
P̂ = P̂ ′ ⊗ σ0,

M̂z = Ĉ2P̂ = [Ĉ ′2P̂
′]⊗ iσz,

(68)

where P̂ is the inversion symmetry operator, and the
Pauli matrices that act on the spin degrees of freedom are
fixed by the transformation properties of fermionic spin
under the symmetries. The symmetry operators satisfy

T̂ ′H(k)T̂ −1 = H(−k),

Ĉ2H(k)Ĉ−1
2 = H(R2k),

P̂H(k)P̂−1 = H(−k),

M̂zH(k)M̂−1
z = H(−R2k).

(69)

If we consider the Hamiltonian for the Sz = +1/2
block, H′(k), we find that

T̂ ′H′(k)T̂
′−1 = H′∗(−k),

Ĉ ′2H′(k)Ĉ
′−1
2 = H′(R2k),

P̂ ′H′(k)P̂
′−1 = H′(−k),

M̂ ′zH′(k)M̂
′−1
z = H′(−R2k),

(70)

where T̂ ′ = T̂ ′K, and Ĉ ′2, P̂ ′ and M̂ ′z are defined as in
Eq. 68. We therefore find that the Sz = +1/2 block
inherits a TRS, C2, mirror, and inversion symmetry.
Importantly, (T̂ ′)2 = (Ĉ ′2)2 = (M̂′z)2 = +1, and so the
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Sz = +1/2 block can be treated as spinless fermions
with appropriate TRS, C2 symmetry, mirror symmetry
and inversion symmetry. Physically, Ĉ ′2 is generated by
the orbital angular momentum of the fermions. Similar
logic also holds for the Sz = −1/2 block.

We now consider the invariant constructed in Sec. V A
for the Sz = +1/2 block, νRF↑. As discussed previously,
if we restrict the system to a single mirror invariant plane,
bands with odd Chern number parity come in pairs with
the same mirror eigenvalue. We take the number of bands
with Sz = +1/2, and M̂′z eigenvalue ±1 and odd Chern

number in the kz = 0/π plane to be Nodd,↑
0/π,±1 ∈ 2Z and

define the following invariants

η↑0,+1 = exp
(
i
π

2
Nodd,↑

0,+1

)
,

η↑π,+1 = exp
(
i
π

2
Nodd,↑
π,+1

)
,

η↑0,−1 = exp
(
i
π

2
Nodd,↑

0,−1

)
, ,

η↑π,−1 = exp
(
i
π

2
Nodd,↑
π,−1

)
, .

(71)

We can understand η0/π,±1 = ±1 as the net Chern
number parity of half of the Sz = +1/2 bands with odd
Chern number parity and mirror eigenvalue ±1 at kz = 0
or kz = π. The η↓ invariants for the Sz = −1/2 fermions
are constructed analogously.

Since the Sz = ±1/2 sector can be mapped onto a
system of spinless fermions, all results pertaining to η↑

follow those established in Sec. V A. In particular,

1 = η↑0,+1η
↑
π,+1η

↑
0,−1η

↑
π,−1. (72)

The invariant νRF↑ is defined as

(−1)νRF↑ = η↑0,+1η
↑
π,+1 = η↑0,−1η

↑
π,−1. (73)

The corresponding invariant for the Sz = −1/2 fermions,
νRF↓, is related to νRF↑ by TRS, and as such νRF↑ =
νRF↓. For the spin-1/2 lattice model in Sec. IV, we
calculate νRF↑ and find that νRF↑ = 1 for 1 < |M | < 3,
and νRF↑ = 0 otherwise. Hence, νRF↑ = 1 correctly
differentiates the spin-1/2 rTCI from the trivial states,
and νRF↑ = Φ/2π. In Appendix G we also show that
νRF↑ = Φ/2π generically for Hamiltonians that have a
Dirac-like band structure at TRIM. We again conjecture
that νRF↑ = Φ/2π for the class of insulators considered
here, but an analysis for general lattice bandstructures is
required.

We can put Eq. 73 into a form similar to Eq. 61 as
follows. For a single TRIM Λn, there are Nodd

−i,↑[Λn] bands

that have Sz = +1/2, odd Chern number in the mirror
plane that contains Λn, and C2 eigenvalue −i at Λn. Such
bands come in pairs with the same inversion eigenvalue
at Λn. If we organize these bands such that the 2j and
2j − 1 bands share the same inversion eigenvalue at Λn,

the invariant νRF,↑ is

(−1)νRF,↑ =
∏
n

δ−i,↑[Λn],

δ−i,↑[Λn] =

1
2N

odd
−i,↑[Λn]∏
j=1

ζ2j [Λn].

(74)

This is effectively Eq. 61 applied to the Sz = 1/2
fermions. The corresponding formula for νRF,↓ is related
to Eq. 74 by the spin-1/2 TRS of the full system.

We also note that

(−1)νRF↑,z = η↑0,+1η
↑
0,−1 = η↑π,+1η

↑
π,−1, (75)

defines a weak invariant that describes a system with
a 3D Wen-Zee term (as does the TRS related invariant
νRF↓,z). This Wen-Zee term differs by a factor of 2 from
that given in Eq. 63 due to Kramers degeneracy for spin-
1/2 fermions.

To conclude this section, it is worth reiterating that
the expressions derived for spinful fermions are based on
the assumptions that spin is conserved and cannot be
applied to systems with spin-orbit coupling. Determining
a general invariant for spin-1/2 insulators, and relating it
to the R ∧ F -term remains an open question for further
research.

VI. THE R ∧ F -TERM IN SYSTEMS WITH
BROKEN TIME-REVERSAL SYMMETRY

In this section, we discuss the R ∧ F -term in systems
that break time-reversal symmetry (TRS). As we show
below, the mixed geometry-charge responses arising from
the R∧F -term are intertwined with the charge response
of the axion electrodynamics Θ-term (Eq. 6) in spinless
systems when TRS is broken. Interestingly, we find that a
non-zero quantized R∧F -term naturally arises alongside
a quantized Θ-term in spinless mirror symmetric axion
insulators[96, 100, 101] with additional Cn rotation
symmetry.

A. Disclination Charges in 2D Systems with
Broken TRS

To demonstrate this intertwining of responses in 3D,
we first analyze the interplay between geometry-charge
responses and purely charge responses in 2D systems
with broken TRS. The charge bound to disclinations
in 2D systems with broken TRS depends on whether
the fermions are spinless or have spin-1/2. For spinless
fermions without TRS, the charge bound to 2π/n
disclinations satisfies Qdisc = C/2n mod (1/n), where
C is the Chern number of the insulator. For spin-1/2
fermions without TRS, the disclination charge comes in
multiples of 1/n (Qdisc = 0 mod (1/n)) regardless of the
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Chern number of the insulator [51]. This was result was
previously proved in Ref. 57, and we shall provide an
alternative proof below.

To establish this, we first note that spinless fermions
satisfy (Ûn)n = +1, and spin-1/2 fermions satisfy

(Ûn)n = −1, where Ûn is the 2π/n rotation operator.
In systems without TRS, a system of spinless fermions
can be mapped onto a system of spin-1/2 fermions, and
vice versa, by redefining the rotation operator

Ûn → Û ′n = Ûne
±iπ/n. (76)

This phase shift of the rotation operator also changes
the effective structure of lattice disclinations. In
2D, changing from a spinless (spin-1/2) insulator

with rotation operator Ûn to a spin-1/2 (spinless)

insulator with rotation operator Û ′n, amounts to adding
an additional ±π/n U(1) symmetry flux to 2π/n
disclinations. The extra U(1) flux binds charge ±C/2n,
where C is the Chern number of the insulator (note that
redefinition of the rotation operator does not change the
Chern number of the insulator).

From this relationship we can draw some conclusions.
If a spin-1/2 insulator exists where C = +1 and the
disclination-bound charge Qdisc = 0, it implies the
existence of a spinless insulator with C = +1 and
disclination charge Qdisc = ±1/2n. Continuing this
logic, it must then be true that Qdisc = 0 mod (1/n)
for spin-1/2 insulators regardless of the Chern number,
andQdisc = C/2n mod (1/n) for spinless insulators with
Chern number C.

Conversely, if there exists a spinless insulator with
C = +1, and Qdisc = 0, then there must exist a spin-1/2
insulator with C = +1, and disclination-bound charge
Qdisc = ±1/2n. If this is true, then Qdisc = 0 mod (1/n)
for spinless insulators regardless of the Chern number,
and Qdisc = C/2n mod (1/n) for spin-1/2 insulators
with Chern number C. Importantly, it is not possible
to have both spinless and spin-1/2 insulators with C =
+1 and Qdisc = 0. If this were true, it would imply
that there exist insulators with zero Chern number and
Qdisc = 1/2n, violating the results of Ref. 51.

To find out which one of these two scenarios plays out
we can calculate the disclination-bound charge in lattice
models. Indeed, this has already been previously done.
The calculations in Ref. 55 and 51 show that there are
spin-1/2 insulators with C = +1, and Qdisc = 0, and
spinless insulators with C = +1, and Qdisc = ±1/2n.
We therefore conjecture that Qdisc = 0 mod (1/n)
for spin-1/2 insulators having broken TRS regardless
of Chern number, and Qdisc = C/2n mod (1/n) for
spinless insulators with broken TRS and Chern number
C. In terms of the response theories, this means that
a system of spinless fermions can have a Wen-Zee term
with discrete shift 1/2 mod (1) if and only if it also has a
Chern-Simons term at level 1 mod (2). That is spinless

fermions can have the response action

L2D,spinless =
S
4π
εµνρωµ∂νAρ +

C

4π
εµνρAµ∂νAρ + ...,

(77)

where S = C mod (2).

B. Periodicity of the R ∧ F -Term in Systems with
Broken TRS

To see how the intertwining of mixed geometry-charge
and pure charge responses in 2D insulators affects the
3D R ∧ F -term, we determine the periodicity of the
coefficient of the R ∧ F -term Φ when TRS is broken.
For spin-1/2 insulators with broken TRS, the disclination
charge comes in multiples of 1/n, regardless of Chern
number, and the same logic used in Sec. II C indicates
that Φ has period 2π for these systems. The situation
for spinless insulators with broken TRS is more complex.
Here we show that the coefficients of the R ∧ F -term
(Φ) and axion electrodynamics Θ-term have a combined
periodicity, where

(Φ,Θ) ≡ (Φ + π,Θ + 2π) ≡ (Φ + π,Θ− 2π)

≡ (Φ + 2π,Θ) ≡ (Φ,Θ + 4π).
(78)

To show this explicitly, consider a domain wall where
the value of Φ changes by ∆Φ. If the domain wall
response can be cancelled by a purely 2D insulator
without topological order, then Φ and Φ + ∆Φ are
equivalent. As noted in the main text, a domain wall
where the value of Φ changes by ∆Φ hosts a Wen-Zee
term with discrete shift S = ∆Φ/2π. When ∆Φ = π the
domain wall Wen-Zee term is cancelled by the response
theory of the 2D spinless TRS breaking insulator in Eq.
77 with S = −1. However, when S = −1, the Chern-
Simons term in Eq. 77 is non-vanshing. Therefore, if we
add such a 2D insulator to the R ∧ F -term domain wall
with ∆Φ = π, the domain wall does not host a Wen-Zee
term, but instead hosts a Chern-Simons term at level 1
mod (2). Hence, a domain wall where Φ changes by π
cannot be completely trivialized by adding a purely 2D
system.

Let us now consider a domain wall of both the R ∧ F -
term and the Θ-term (Eq. 6), where Φ changes by ∆Φ
and Θ changes by ∆Θ. There is a Wen-Zee term at
this domain wall with discrete shift S = ∆Φ/2π and a
Chern-Simons term with coefficient ∆Θ/8π2. Based on
our previous discussion, when ∆Φ = π and ∆Θ = ±2π,
the domain wall can be completely trivialized by a 2D
insulator. The R ∧ F -term and the Θ term therefore
have a combined periodicity where Φ is shifted by π, and
Θ is shifted by ±2π. The other equivalence relationships
in Eq. 78 can be established using similar logic.

An interesting corollary of this analysis is that Θ = 2π
is not necessarily trivial for spinless fermions when Cn
rotation symmetry is present. We can show this using
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similar logic to before. Consider a domain wall where
Θ changes by 2π. This domain wall will host a Chern-
Simons term at level 1. We can cancel this out by adding
a 2D insulator with Chern number 1 to the domain
wall. However, as discussed above, this 2D insulator
will contribute a Wen-Zee term with discrete shift S =
1/2 mod (1). Hence, a 2π domain wall of the Θ-term
cannot be fully trivialized if Cn rotation symmetry is
also present.

C. Charge and Geometry-Charge Responses in
rTCIs with broken TRS

Will will now argue, based on Eq. 78, that there
exists a special type of spinless mirror symmetric rTCI
in a TRS-breaking context. To show this, we note that
both the R ∧ F - and Θ-terms are odd under mirror
symmetry. Hence, for a mirror symmetric insulator
(Φ,Θ) = (−Φ,−Θ). This equation admits two non-
trivial solutions (Φ,Θ) = (π/2, π) and (π/2,−π), each of
which describes a non-trivial spinless rTCI with mirror
symmetry. Since Θ is odd under time-reversal, the two
rTCIs are related to each other by time-reversal and do
not need to be considered individually. These insulators
have both a non-trivial R∧F -term, and a non-trivial Θ-
term. The Θ-term has the same quantized coefficient
as the Θ-term that describes time-reversal symmetric
topological insulators and axion insulators[25]. The
coefficient of the R ∧ F -term is half of that which is
allowed for mirror symmetric insulators with TRS (see
Sec. II C 2).

Since these rTCIs have both a non-vanishing R ∧
F -term and a non-vanishing Θ term, they exhibit
topological charge responses as well as mixed geometry-
charge responses. Individually, the charge responses
should resemble those that have been previously studied
in the contexts of 3D topological insulators with Θ =
π [25]. The geometry charge responses should be similar
to those that we have discussed in previous sections,
albeit with a different quantization. It is also possible
that the combination of the R ∧ F -term and the Θ term
may lead to fundamentally new phenomena,and we leave
that to future work.

Let us compare the spinless TRS-breaking system
with mirror symmetry to that with PHS. Naively, for
spinless insulators with PHS Φ = 0 or π (see second
line of Eq. 78), and the value of Θ in unconstrained.
However, a spinless Φ = π insulator with broken TRS
can actually be adiabatically deformed into a Φ = 0
insulator without breaking PHS. To show this, take
a spinless insulator with PHS and broken TRS where
(Φ,Θ) = (π, 0). Since the value of Θ is not quantized
by PHS, we can adiabatically increase Θ by 2π in this
insulator, i.e., (Φ,Θ) → (π, 2π). However, from Eq. 78
we have that (Φ,Θ) = (π, 2π) ≡ (0, 0). So, the
Φ = π insulator can be adiabatically deformed into a
trivial insulator without breaking PHS symmetry, and

is therefore a trivial insulator itself. The fact that PHS
alone cannot lead to a non-zero quantized value of Φ in
spinless systems is a direct consequence of the shared
periodicity of Φ and Θ in spinless systems without TRS.

For spin-1/2 insulators with broken TRS, Φ is 2π
periodic (regardless of Θ), and so Φ = 0 or π for systems
with PHS or mirror symmetry. As previously discussed,
the Φ = π R ∧ F -term can also be realized in spinless
insulators with TRS. So the geometric-charge responses
of these insulators will match those already discussed in
Sec. III and Appendix F.

D. Models for the Mirror Symmetric rTCI with
Broken TRS

In this subsection, we present a lattice model for the
(Φ,Θ) = (π/2, π) rTCI with mirror symmetry and C4

rotation symmetry. The minimal model for this rTCI is
given by the following 4-band Bloch Hamiltonian:

H(k) = sin(kx)Γx + sin(ky)Γy + sin(kz)Γ
z

+ (M + cos(kx) + cos(ky) + cos(kz))Γ
0.

(79)

The C4 rotation symmetry and mirror symmetry act on
Eq. 79 as

Û4 = exp
(
i
π

4
(Γxy + I4)

)
,

M̂z = Γz5,
(80)

where I4 is the 4 × 4 identity matrix. This model also
has inversion symmetry, which is the product of Mz

and C2 = (C4)2 symmetries. The spectrum of Eq. 79
is gapped except when |M | = 1, 3, and below we show
that this model realizes a mirror symmetric rTCI with
(Φ,Θ) = (π/2, π) when 1 < |M | < 3.

We determine the response theory for this insulator
using the same methods as in the main text. Specifically,
for the band crossing near M = −3 the continuum
Hamiltonian is

H = Γxi∂x + Γyi∂y + Γzi∂z +mΓ0. (81)

We couple this system to the spin connection ω and U(1)
gauge field Aµ via the covariant derivative

Dµ = ∂µ − iAµ − i
1

2
ωµ(Γxy + I4), (82)

and add the mirror symmetry breaking perturbation

H′ = m′Γ5. (83)

If we set m = −m̄ cos(φ), and m′ = −m̄ sin(φ), we find
that the effective response theory in terms of φ, A, and
ω is given by

Leff =
φ

8π2
εµνρκ∂µων∂ρAκ +

φ

8π2
εµνρκ∂µAν∂ρAκ

+
φ

32π2
εµνρκ∂µων∂ρωκ.

(84)
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When φ = 0 (M < −3 in the lattice model) the response
theory vanishes. When φ = π (−3 < M < −1 in the
lattice model), the response theory is

Leff =
1

8π
εµνρκ∂µων∂ρAκ +

1

8π
εµνρκ∂µAν∂ρAκ

+
1

32π
εµνρκ∂µων∂ρωκ.

(85)

The first two terms are the R ∧ F -term with Φ = π/2
and the Θ-term with Θ = π, confirming that this model
realizes the previously predicted mirror symmetric rTCI
with broken TRS. We also find that there is an additional
term that is quadratic in the spin connection. This
term was not predicted by our earlier heuristic argument,
but is not unexpected, and similar terms have been
previously studied [102].

If we ignore the Cn rotation symmetry, Eq. 79 is simply
a mirror symmetric axion insulator for 1 < |M | < 3
insulator, as indicated by the non-vanishing Θ-term in
Eq. 85. The spinless rTCI with (Φ,Θ) = (π/2, π)
is therefore equivalent to a mirror symmetric axion
insulator with additional Cn symmetry. Based on this,
the (Φ,Θ) = (π/2, π) rTCI with additional inversion
symmetry is described by the same topological invariant
as inversion symmetric axion insulators[100].

The surface theory of the model in Eq. 79 has been
exhaustively analyzed elsewhere (see Ref. 103 for
example). We would like to point out that the surface
theory for Eq. 79 when 1 < |M | < 3 consists of an
odd number of 2-component Dirac fermions, with a Dirac
mass term that is odd under mirror symmetry. So, for
open boundary conditions, the surfaces on the top half
and bottom half of the model can each be gapped out by
adding opposite mass terms to each half. However, at the
mirror invariant plane where the two halves meet, there
will be a domain wall that hosts an odd number of one-
dimensional chiral fermion modes. Since the fermions
are chiral, they cannot acquire a mass without closing
the bulk gap.

As mentioned above, there is also a spinless mirror
symmetric rTCI with (Φ,Θ) = (π/2,−π). This rTCI is
related to the (Φ,Θ) = (π/2, π) rTCI by time reversal
symmetry. Hence, the minimal model for the (Φ,Θ) =
(π/2,−π) rTCI is found by acting on Eq. 79 with
the TRS operator ΓyK, and redefining the C4 rotation
operator as

Û4 → exp
(
i
π

4
(Γxy − I4)

)
. (86)

Using linear response theory we find that in the
topological insulator phase the effective response theory
is the same as in Eq. 85 but with opposite signs for the
second and third terms, i.e., Φ = π/2 and Θ = −π as
expected.

VII. CONCLUSION AND OUTLOOK

In this work we analyzed how electromagnetic and
geometric responses can be intertwined in 3D rotation-

invariant insulators. Our main focus was a mixed
geometry-charge term, denoted the R∧F -term, that can
occur in the effective response theories of such systems.
The R ∧ F -term gives rise to a mixed Witten effect
and imparts fractional statistics to magnetic flux lines
and disclination lines. Additionally, Wen-Zee terms
are bound to domain walls where the coefficient of
the R ∧ F -term changes such as a surface. Using
symmetry analyses and lattice models we show that a
quantized R ∧ F -term occurs for a class of rotation-
invariant topological crystalline insulators with either
PHS or mirror symmetry. The coefficient of the R ∧ F -
term depends on if the rTCI is composed of spinless
fermions or spin-1/2 fermions. When a mass term is
added to the surface of an rTCI, the resulting massive
surface is described by a Wen-Zee response that has half
the coefficient that is allowed in purely 2D systems.

Based on our results, there are several open questions
for future work. First is the question of what mixed
geometry-charge responses are exhibited by other 3D
topological crystalline insulators, and how to relate a
given continuum response theory to a lattice model. We
use linear response theory to accomplish the latter in
this work, but this approach cannot be used on systems
where the geometric effects are non-perturbative. Second
is the question of what other anomalous symmetry-
enriched topological orders can be realized on the surface
of only a topological crystalline insulator. A partial
answer to this question would come from a set of
anomaly indicators [104] for topological orders that are
enriched by crystalline symmetries. A final question is
whether any physical systems can realize the R∧F -term
constructed here. In this work, we find that for certain
Cn and mirror symmetric insulators without spin-orbit
coupling, the R ∧ F -term is determined by the angular
momentum and inversion eigenvalues of the occupied
bands at TRIM. To consider more realistic materials, it is
likely necessary to generalize this result to more generic
band-structures and systems with spin-orbit coupling. In
experiments, the R∧F -term could be observed by using
scanning probes to detect the charge that is bound to
surface disclinations.
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Appendix A: Disclination Lines and Composite
Disclination Lines With Embedded 1D Insulators

As noted previously, the R ∧ F -term indicates that
disclinations carry polarization. However, it is possible
to change the local polarization of a disclination defect
by embedding an additional isolated 1D insulator at the
disclination core. For a gapped 3D system described
by an R ∧ F -term with coefficient Φ, embedding a 1D
insulator in the core of a 2π/n disclination will result in a
composite defect (disclination + embedded 1D insulator)
with polarization Pcomp = Φ/2πn + P1D. Note that a
disclination and a composite defect differ only locally
(i.e., near the defect core) and share the same Frank
angle. When the composite defect terminates at a surface
of the insulator, a composite surface defect is formed
(surface disclination + 0D edge of the embedded 1D
insulator) with charge Φ/2πn+ P1D.

It is useful to consider embedding a 1D insulator in
the core of a disclination line in a 3D insulator with
either PHS or mirror symmetry. From the symmetry,
we know the polarization of the 1D insulator must be 0
or 1/2 mod (1) for spinless fermions (we discuss spin-1/2
fermions below). As noted in the main text, for spinless
fermions with TRS, Φ is quantized to 0 or π mod (2π),
where the latter corresponds to an rTCI. Hence, for an
rTCI, a symmetric 1D insulator embedded in the core of
a 2π/n disclination line will result in a composite defect
that carries polarization Φ/2πn + P1D = 1/2n + 1/2.
This also leads to a composite surface defect with charge
1/2n+ 1/2.

For n = 2, 4, 6, the difference in polarization bound
to a 2π/n disclination and a 2π/n composite defect
(2π/n disclination + embedded 1D insulator with
polarization 1/2) is inconsequential and does not change

https://doi.org/10.1103/PhysRevLett.107.075502
https://doi.org/10.1103/PhysRevLett.107.075502
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our conclusions. This is because Φ (which is 2π
periodic) determines the polarization of a disclination
only mod 1/n, and the polarization of the disclination
and composite defect differs by 1/2 = 0 mod (1/n) for
n = 2, 4, 6. However, for n = 3 there is a distinction since
the difference in polarization bound to a 2π/3 disclination
and a 2π/3 composite defect is 1/6 mod(1/3). Hence, an
n = 3 spinless rTCI hosts disclinations with polarization
1/6 mod(1/3) and composite defects with polarization
0 mod(1/3), while a trivial insulator hosts disclinations
with polarization 0 mod(1/3) and composite defects with
polarization 1/6 mod(1/3). We find that for all Cn
symmetries, the polarization of a disclination of an rTCI
and the polarization of a disclination of a trivial insulator
differ by 1/2n mod(1/n), and that the polarization of
a composite defect of an rTCI and the polarization of
a composite defect of a trivial insulator also differ by
1/2n mod(1/n). Similar arguments indicate that the
difference between the surface charge bound to a surface
disclination of an rTCI and the surface charge bound
to a surface disclination of a trivial insulator is 1/2n
mod(1/n), as is the difference between the surface charge
bound to a composite surface defects of an rTCI and the
surface charge bound to a composite surface defects of a
trivial insulator. For spin-1/2 fermions, the difference in
the polarization (charge) of both disclinations (surface
disclination) and composite defects (surface composite
defects) between an rTCI and a trivial insulator is 1/n
mod(2/n) due to Kramers degeneracy.

Appendix B: Coupling Lattice Dirac Fermions to
the Spin Connection

In this appendix we discuss how to couple Dirac
fermions to the spin connection. The spin connection
is a gauge field whose flux distribution encodes the
configuration of lattice disclinations. For our purposes,
it will suffice to analyze a single 4-component Dirac
fermion that is located near an n-fold high-symmetry
point (HSPs) of the Brillouin zone of a Cn symmetric
lattice (i.e., the points of a Brillouin zone that are
invariant under Cn rotations). One can describe the
low-energy physics of generic systems that are Dirac-
like near HSPs by combining multiple 4-component Dirac
fermions.

The Hamiltonian for a single Dirac fermion located at
an n-fold HSP can be written as,

Ĥ = ψ†Hψ
H = Γxi∂x + Γyi∂y + Γzi∂z +mΓ0,

(B1)

where the Γ matrices are 4× 4 anti-commuting matrices.
It is useful to write the Cn rotation operator as

Un = exp

(
i
2π

n
L

)
, (B2)

where L is the Cn angular momentum operator, and Un
satisfies

U†nH(k)Un = H(Rnk), (B3)

where H(k) is the Bloch Hamiltonian of Eq. B1. To
proceed, we note that the continuum Dirac Hamiltonian
in Eq. B1 has a continuous U(1) rotation symmetry. In
order for the continuum theory to be consistent, the Cn
lattice rotation symmetry should be embedded in this
enlarged U(1), i.e.

U†(θ)H(k)U(θ) = H(R(θ)k)

U(θ) ≡ exp(iθL),
(B4)

where R(θ) is a rotation of the momentum by θ. The
most general, consistent definition of the Cn angular
momentum is

L ≡ 1

2
Γxy + pI4, (B5)

where I4 is the 4× 4 identity matrix, and Γxy = −iΓxΓy.
For spinless fermions (Un)n = +1 and for spin-1/2
fermions (Un)n = −1. So, for spinless fermions p must
be a half-integer, while for spin-1/2 fermions, p must be
an integer. Here, the value of p is defined only modulo
n, and any physical quantity should only depend on the
value of p modulo n.

We now gauge the Cn lattice rotation symmetry. To do
this, we must introduce the frame-fields, eAi (and inverses
EiA) for A = x, y, z, and the spin connection ω. Under a
local Cn transformation θ(xµ), the inverse frame-fields,
and Dirac fermions transform as

Eix → cos(θ)Eix + sin(θ)Eiy,

Eiy → cos(θ)Eiy − sin(θ)eix+,

ωµ → ωµ − ∂µθ,

ψ → eiθLψ = eiθ(
1
2 Γxy+pI4)ψ.

(B6)

In terms of these fields, the minimally coupled
Lagrangian is

L = ψ̄[iΓ̄0D0 + iEiAΓ̄ADi −m]ψ (B7)

where Γ̄A = Γ0ΓA, Γ̄5 = Γ0Γ5, and Γ̄0 = Γ0. The
covariant derivative is given by

Dµ = ∂µ − iωµ[
1

2
Γxy + pI4]. (B8)

The Lagrangian in Eq. B7 is invariant under the Cn gauge
transformation given in Eq. B6, as desired.

Appendix C: Details of the Disclinated lattice

In this appendix we present details on how to define
a tight-binding lattice model with disclinations. For
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r1

r2

+

FIG. 15. An xy-cross section of the disclinated lattice. The
center of the disclination is marked as +.

a cubic lattice that is free of disclinations, a generic
Hamiltonian can be written in real space as

Ĥ =
∑
r

1

2
c†(r)T0c(r) + c†(r + ẑ)Tzc(r)

+ c†(r + x̂)Txc(r) + c†(r + ŷ)Tyc(r)

+ H.c..

(C1)

where c† is an n-component fermionic creation operator
(in this work n = 8 for the spinless fermion models and
n = 16 for the spin-1/2 fermion models). The matrices T0

and Tx,y,z are the on-site and nearest-neighbor hopping
terms, respectively. The next-nearest-neighbor (NNN)
hopping terms that appear in the models considered in
the main text take the form

ĤNNN =
∑
r

c†(r + x̂+ ẑ)Tx+zc(r)

+c†(r + x̂− ẑ)Tx−zc(r)

+c†(r + ŷ + ẑ)Ty+zc(r)

+c†(r + ŷ − ẑ)Ty−zc(r) + H.c. .

(C2)

In this work we study π/2 site-centered disclinations,
as depicted in Fig. 15. The important features of the
disclination are the disclination core, indicated by the
cross, and the hopping terms across the disclination
cut, indicated by dashed lines. On this lattice, the
Hamiltonian in Eq. C1 becomes:

Ĥdisc =
∑
r

1

2
c†(r)T0c(r) + c†(r + ẑ)T+zc(r)

+
∑
〈r,r′〉

solid, x

c†(r′)Txc(r) +
∑
〈r,r′〉

solid, y

c†(r′)Tyc(r)

+
∑
〈r,r′〉
dashed

c†(r′)Tdiscc(r)

+ H.c.,

(C3)

where the first sum is over all sites of the lattice,
the second sum is over sites connected by solid lines
along the +x-direction in Fig. 15, the third sum is over
sites connected by solid lines along the +y-direction,
and the fourth sum is over sites connected by dashed
lines. We exclude hopping terms between the disclination
core and its nearest-neighbor sites as these terms are
not determined by the bulk Hamiltonian. If included,
these terms must be carefully chosen to respect the C3

rotation symmetry of the disclinated lattice. The terms
involving Tdisc are hopping terms across the disclination.
Since crossing the disclination rotates the fermions, the
disclination hopping terms are given by

Tdisc = TxU
−1
4 = U−1

4 Ty, (C4)

where U4 is the C4 rotation matrix.
The NNN hopping terms on the disclinated lattice are

Ĥdisc, NNN =
∑
〈r,r′〉

solid, x

c†(r′ + ẑ)Tx+zc(r)

+
∑
〈r,r′〉

solid, x

c†(r′ − ẑ)Tx−zc(r)

+
∑
〈r,r′〉

solid, y

c†(r′ + ẑ)Ty+zc(r)

+
∑
〈r,r′〉

solid, y

c†(r′ − ẑ)Ty−zc(r)

+
∑
〈r,r′〉
dashed

c†(r′ + ẑ)Tdisc, +zc(r)

+
∑
〈r,r′〉
dashed

c†(r′ − ẑ)Tdisc, −zc(r)

+H.c. .

(C5)

The first and second sums are over sites r and r′ in
the same xy-plane that are connected by a solid line
along the +x-direction in Fig. 15. The third and fourth
sums are over sites r and r′ in the same xy-plane that
are connected by a solid line along the +y-direction.
The third and fourth sums are over sites r and r′ in
the same xy-plane that are connected by a dashed line
with a clockwise orientation. The next-nearest neighbor
disclination hopping terms Tdisc,±z are defined as

Tdisc, +z = −Tdisc, −z = Tx+zU
−1
4 = U−1

4 Ty+z. (C6)

Appendix D: Zero-energy Surface Mode

In this appendix we demonstrate the existence of a
zero energy mode on the surface of the spinless rTCI
when a mass vortex is added. The continuum surface
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Hamiltonian is

H = σxσ0(i∂x)− σyσ0(i∂y), (D1)

and the mass vortex term takes the form

HM = ms(r)σ
z (σx cos θ + σy sin θ) , (D2)

where θ is the polar-coordinate angle in the xy-plane,
and ms(r) is a function of the polar-coordinate radius
that vanishes at r = 0. It is convenient to convert the
Hamiltonian to polar coordinates to identify the zero
energy eigenstate:

H =i

(
0 eiθ

e−iθ 0

)
⊗ σ0 ∂

∂r
−
(

0 eiθ

−e−iθ 0

)
⊗ σ0 1

r

∂

∂θ

+ms(r)σ
z ⊗

(
0 e−iθ

eiθ 0

)
. (D3)

Let us choose ms(r) = m̄sΘ(r − R), where Θ is a step
function and R > 0. We make use of the following ansatz
to obtain the zero mode:

Ψ =


u1(r)einθ

u2(r)ei(n+1)θ

u3(r)ei(n−1)θ

u4(r)einθ

 . (D4)

Applying the Hamiltonian to this ansatz, we find that the
zero energy solution must satisfy the following equations:

(∂2
r −

n(n+ 1)

r2
−m2

s)u1 = 0 (D5)

(∂2
r +

2

r
∂r −

n(n+ 1)

r2
−m2

s)u2 = 0 (D6)

(∂2
r +

2

r
∂r −

n(n− 1)

r2
−m2

s)u3 = 0 (D7)

(∂2
r −

n(n− 1)

r2
−m2

s)u4 = 0. (D8)

Making the substitution u = r
1
2 f in the first and last

equations yields

r2 d
2f

dr2
+ r

df

dr
− [m2

sr
2 + n(n± 1) +

1

4
]f = 0, (D9)

and making the substitution u = r−
1
2 f in the remaining

two equations yields

r2 d
2f

dr2
+ r

df

dr
− [m2

sr
2 + n(n± 1) +

1

4
]f = 0. (D10)

The mass vanishes in the region r < R, ms(r) = 0, and
the four equations have solutions

u1 = c1r
−n, u2 = c2r

−n−1, u3 = c3r
n−1, u4 = c4r

n.
(D11)

For r > R where the mass is finite, these equations can
be solved with modified Bessel functions.

As the potential is regular at the origin and at infinity,
Ψ must also be regular at r = 0 and as r →∞. The wave

function Ψ must also be continuous at r = R. These
conditions lead to the conclusion u2 = u3 = 0. First,
suppose u2 is finite for r > R. Then the regularity at
r → ∞ requires it to be a modified Bessel function of
the second kind, which is non-vanishing at r = R. We
therefore must have n ≤ −1 to ensure continuity at r = R
and for u2 to be regular at the origin. However, for r < R,
the eigenvalue equations

u2 = − i

m̄s
e2iθ(∂r −

1

r
∂θ)u3 (D12)

u3 =
i

m̄s
e−2iθ(∂r +

1

r
∂θ)u2 (D13)

indicates that u3 must be non-zero for r > R when u2

is non-zero. Following the same logic as before, this
indicates that c3 6= 0, which in turn indicates that n ≥ 1
for u3 to be regular at the origin. Thus, there is a
contradiction, and the only possibility is that u2 = u3 =
0 for all r.

A similar argument applied to u1 and u4 leads to the
conclusions n = 0, and the solution must be

u =

 1
0
0
−i

√ π

2m̄s

{
e−m̄sr (r > R)

e−m̄sR (r < R)
. (D14)

The symmetries of the model are T̂ = σy ⊗ σyK,
Ĉ = σx ⊗ σxK, and Ĉ4 = exp

[
iπ4 (−σz ⊗ σ0 + σ0 ⊗ σz)

]
.

Under these symmetries the zero mode transforms as
T̂ u = −iu, Ĉu = iu, and Ĉ4u = u.

Appendix E: Topological crystalline insulator with
PHS for spin-1/2 fermions

In this appendix we present a model for the spin-1/2
rTCI with TRS, PHS and C4 rotation symmetry. The
spin-1/2 rTCI is realized by the following 16-band model
(8-bands per spin):

H(k) =
[
sin(kx)Γxσ0 + sin(ky)Γyσ0 + sin(kz)Γ

zσ0

+ sin(kx) sin(kz)Γ
0σx + sin(ky) sin(kz)Γ

0σy

+ (M + cos(kx) + cos(ky) + cos(kz))Γ
0σz
]
σ0,

(E1)

where the spin of the fermions is given by Sz = 1
2 Iσ0σz.

The spectrum for the lattice model is 4-fold degenerate
and gapped for |M | 6= 1, 3,

E±(k) =
[
sin(kx)

2
+ sin(ky)

2
+ sin(kz)

2

+ sin(kx)
2

sin(kz)
2

+ sin(kz)
2

sin(kz)
2

+ (M + cos(kx) + cos(ky) + cos(kz))
2
]1/2

.

(E2)
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Here we show that this lattice model realizes a spin-1/2
rTCI with a Φ = 2π R ∧ F -term for 1 < |M | < 3.

Eq. E1 conserves charge and is invariant under TRS,
PHS, and C4. The TRS and PHS operations are defined
as

T̂ = iΓyσyσyK,

Ĉ = iΓ5yσyσyK,
(E3)

and C4 rotation is defined as

Û4 = exp
(
i
π

4
[Γyxσ0σ0 + Iσzσ0 + Iσ0σz]

)
. (E4)

Here T̂ 2 = (Û4)4 = −1 because the fermions have spin-
1/2.

1. Response theory

We follow the methodology used in Sec. III B to derive
the response theory for the spin-1/2 model. We consider
the system close to the band crossing at M = −3 where
the low-energy degrees of freedom obtain the Dirac-like
form

H =
[
Γxσ0i∂x + Γyσ0i∂y + Γzσ0i∂z +mΓ0σz

]
σ0,

(E5)

with m ∼ M + 3. To determine the effective response
theory, we gauge the U(1) charge and C4 rotation
symmetries and couple the fermions to the gauge field
Aµ and spin connection ωµ via the covariant derivative
(see Appendix B),

Dµ = ∂µ − iAµ

− i1
2
ωµ[Γxyσ0σ0 + Iσzσ0 + Iσ0σz].

(E6)

Similar to before, the C4 rotation symmetry of Eq. E5 is
part of an enlarged U(1) rotation symmetry. In addition
to the gauge fields, we also include a PHS breaking
perturbation

H′ = m′Γ5σ0σ0, (E7)

and set m = −m̄ cos(φ), and m′ = −m̄ sin(φ) , with
m̄ > 0, such that m < 0 when φ = 0, and m > 0
when φ = π. The effective response theory is obtained
via a diagrammatic expansion in terms of Aµ, ωµ, and
φ. As before, we are primarily interested in the triangle
diagrams shown in Fig. 5. The contribution from the
triangle diagrams is

Leff =
φ

2π2
εµνρκ∂µων∂ρAκ. (E8)

For φ = π, the effective response is,

Leff =
1

2π
εµνρκ∂µων∂ρAκ, (E9)

which is exactly the R ∧ F -term with Φ = 2π. We
therefore find that the continuum model with m > 0
(equiv. the lattice model with −3 < M < −1) is a
spin-1/2 rTCI with a Φ = 2π R ∧ F -term. Repeating
this procedure for the band crossings at M = ±1, 3 we
conclude that Φ = 2π for 1 < |M | < 3 and vanishes
otherwise.

2. Surface Theory

Here we analyze the surface theory of the spin-1/2
rTCI. For a C4 invariant surface with −3 < M < 1 for
z < 0 and M < −3 for z > 0, the surface theory consists
of four 2-component Dirac fermions,

Ĥsurf = ψ†Hsurfψ,

Hsurf = [σxi∂x − σyi∂y]σ0σ0,
(E10)

where ψ is an 8-component spinor. The spin of the
surface fermions is given by Szsurf = 1

2σ
0σ0σz and the

surface symmetry operations are

T̂surf = σyσyσyK,

Ĉsurf = σxσxσyK,

Û4−surf = exp
[
i
π

4

(
−σzσ0σ0 + σ0σzσ0 + σ0σ0σz

)]
.

(E11)

The symmetry operations satisfy T̂ 2
surf = (Û4−surf)

4 = −1
because the fermions have spin-1/2.

As expected, the surface theory is gapped out by the
PHS breaking surface mass term msσ

zσzσ0. To find the
response theory for the massive, PHS breaking surface,
we once again introduce the gauge field Aµ and spin
connection ωµ via the covariant derivative

Dµ = ∂µ − iAµ

− i1
2
ωµ[−σzσ0σ0 + σ0σzσ0 + σ0σ0σz].

(E12)

The response theory for the spin-1/2 surface is given by
the Wen-Zee term

Lsurf =
sgn(ms)

2π
εµνρωµ∂νAρ. (E13)

This is exactly the anomalous surface term where ∆Φ =
2π, and indicates that charge ± 1

4 is bound to π/2
disclinations on the surface. The discrete shift of the
surface Wen-Zee term can be shifted by an even integer
by purely surface effects, and, in general, a surface π/2
disclination binds charge 1

4 + m
2 for m ∈ Z.

3. Dimensional reduction to a 1+1D SPT

In this subsection, we use the logic of Ref. 30 and
dimensionally reduce the 3D spin-1/2 rTCI to a 1D SPT.
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The resulting 1D SPT is equivalent to the spin-1/2 SSH
chain, with an additional Z4 symmetry that is inherited
from the C4 symmetry of the rTCI. The spin-1/2 SSH
chain can be though of as a doubled version of the spinless
SSH, one copy per spin. The edge of this system hosts
two zero-energy modes that form a Kramers’ pair. The
edge also has charge ±1 when TRS is preserved on the
edge. The ±1 edge charge is protected for the spin-1/2
system, unlike the spinless version, since TRS requires
that particles are added in Kramers’ pairs, which carry
charge 2. The Z4 symmetry of the SSH chain can be
interpreted as a discrete internal spin rotation symmetry
along the z-axis. In this interpretation, the two zero-
energy modes of the spin-1/2 SSH chain have spin Sz =
± 1

2 respectively.
To show that the spin-1/2 rTCI can be dimensionally

reduced to this system, we add a mass term of the form,

Hsurf-mass = [mxσ
zσx +myσ

zσy +mzσ
zσz]σ0, (E14)

to the surface theory in Eq. E10, and set mz = 0
and mx + imy = ms(r) exp(iθ). Here, (r, θ) are polar
coordinates on the surface and ms(r) ≥ 0 is a function
of the radial coordinate that vanishes at r = 0 and goes
to a non-vanishing constant value m̄s > 0 as r → ∞.
This mass term trivializes the surface, except for at the
C4 rotation center.

At the rotation center, there are two localized zero-
energy modes, ψ0↑, and ψ0↓ (see Appendix D). These two
zero-energy modes form a Kramers’ pair under TRS, T :
(ψ0↑, ψ0↓) → (ψ0↓,−ψ0↑). Under a C4 rotation the zero
modes transform as C4 : (ψ0↑, ψ0↓)→ (ψ0↑e

iπ4 , ψ0↓e
−iπ4 ).

The ψ0↑ mode therefore has internal angular momentum
(i.e. spin) +1/2 and ψ0↓ has spin −1/2. Since the zero
modes have finite spin, both of the zero modes must
either be empty or occupied in order to preserve TRS.

When the two zero-energy modes are empty, the
effective response theory for the massive surface is

Leff-surf =
εµνρ

4π
n · (∂µn× ∂νn)Aρ

+
nz
2π
εµνρωµ∂νAρ,

(E15)

where n = m/|m| and m = (mx,my,mz). Using the
definition of the mass terms from above, we find there
is a charge Q = −1 localized at r = 0. Due to the
aforementioned gapless modes at r = 0, this charge is
only defined mod(2) for a time-reversal invariant surface.

Based on this, we can conclude that the surface physics
of the mass-deformed spin-1/2 rTCI matches the surface
physics of a spin-1/2 SSH chain with additional Z4 spin
rotation symmetry. Namely, both surfaces have two
zero modes, which form a Kramers’ pair and have spin
±1/2. Additionally, when TRS is preserved, the charge
at the surfaces is 1 mod (2). Using the bulk boundary
correspondence, we conclude that the spin-1/2 rTCI
and spin-1/2 SSH chain with additional Z4 spin-rotation
symmetry are equivalent.

4. Surface Topological Order

Similar to the spinless model, the spin-1/2 rTCI
admits a symmetric gapped topologically ordered
surface state. This surface state has anyon content
{1, v, v2, v3, w, w2, w3, vawb} × {1, f}, for a, b = 1, 2, 3.
Similar to before, the f particle is a fermion and the v
and w anyons are self-bosons with π/2 mutual statistics.
The v particle has charge 1

2 and angular momentum 0,
and the w particle has charge 0 and angular momentum
1
2 . This topological order can be viewed as the spinless
topological order described in Sec. III F, except that
the m particle has angular momentum 1

2 instead of 1
4 .

Nevertheless, we shall label the anyons of the spin-1/2
surface topological order as v and w instead of e and m
to avoid confusion.

The spin-1/2 topological order can be constructed
using a vortex proliferation argument similar to that
in Sec. III F. As before, the starting point is to add
a superconducting term to the surface theory. If we
divide the 8-component spinor in Eq. E10 into four 2-
component Dirac fermions, ψ = (ψ1, ψ2, ψ3, ψ4), the
superconducting surface can be written as

ĤSC =i∆1ψ1σ
yψ1 + i∆2ψ2σ

yψ2

+ i∆3ψ3σ
yψ3 + i∆4ψ4σ

yψ4 + H.c.
(E16)

Under U(1) and C4 rotations, the ∆i’s transform as,

U(1) : (∆1,∆2,∆3,∆4)

→ (∆1e
i2θ,∆2e

i2θ,∆3e
i2θ,∆4e

i2θ)

C4 : (∆1,∆2,∆3,∆4)

→ (∆1e
iπ,∆2,∆3,∆4e

−iπ).

(E17)

Therefore ∆1 describes a Cooper pair with charge 2
and angular momentum 2, ∆2 and ∆3 describe Cooper
pairs with charge 2 and angular momentum 0, and
∆4 describes a Cooper pair with charge 2 and angular
momentum −2. By extension, there also exist composite
Cooper pairs with charge 0 and angular momentum ±2.
The TRS and PHS operations act via

T : (∆1,∆2,∆3,∆4)→ −(∆∗4,∆
∗
3,∆

∗
2,∆

∗
1)

C : (∆1,∆2,∆3,∆4)→ (∆∗4,∆
∗
3,∆

∗
2,∆

∗
1).

(E18)

We can identify 2-types of vortices that must be
proliferated in order to restore all symmetries. First
are 2πn w-vortices, where all ∆i wind by 2πn. Second
are 2πn v-vortices where ∆1 winds by 2πn, ∆4 winds
by −2πn, and ∆2 and ∆3 are left invariant. Based
on Eq. E17, a 2π w-vortex is generated by a π
electromagnetic flux, while a 2π v-vortex is generated
by a π disclination.

Using the effective response theory, we find that a −2π
w-vortex has charge 0 and angular momentum 1

2 , and a

−2π v-vortex has charge 1
2 and angular momentum 0.

Both the w and v-vortices are self-bosons, and the 2π w
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and v-vortices have π/2 mutual statistics. Additionally,
a 2π w-vortex binds 4 Majorana fermions (2-complex
fermions) and a 2π v-vortex binds 2 Majorana fermions
(1-complex fermion). Following the same logic used in
Sec. III F, the following two types of vortices can be
simultaneously condensed: first, an 8π w-vortex and
composite Cooper pair with charge 0 angular momentum
−2, and second, an 8π v-vortex along and a Cooper
pair with charge 2 angular momentum 0. The Majorana
zero modes of these vortices can all be gapped while
preserving symmetry. Based on Eqs. E17 and E18,
proliferating these two types of vortices restores the
symmetry of the surface.

The anyon content of the gapped surface theory
corresponds to the vortices that have trivial braiding
statistics with the condensate. These are the 2πn w-
vortices, 2πn v-vortices, and their combinations. There
is also a fermion f , which is the remnant of the gapped
fermionic zero modes. The −2π w-vortex is a self-
boson with charge 0 and angular momentum 1

2 , and it
constitutes the w anyon. The −2π v-vortex is a self-
boson with charge 1

2 and angular momentum 0, and
it constitutes the v anyon. The v and w anyons have
π/2 mutual statistics. The w4 and v4 anyons have
trivial braiding statistics and unfractionalized quantum
numbers, so they can be regarded as local particles that
do not enter into the anyonic data.

We conclude that the topological order described at the
beginning of the section can be realized on the surface
of the spin-1/2 rTCI. Due to the same logic used in
Sec. III F, this topological order cannot be realized in
a purely 2D system with PHS, but can be realized on the
surface of the particle-hole symmetric spin-1/2 rTCI.

Appendix F: Topological crystalline insulator with
mirror symmetry for spinless fermions

In this subsection, we present a model for the spinless
rTCI with TRS, C4 rotation symmetry and mirror
symmetry. Our starting point is the 8-band lattice model
in Eq. 12,

H(k) = [sin(kx)Γx + sin(ky)Γy + sin(kz)Γ
z]σ0

+ sin(kx) sin(kz)Γ
0σx + sin(ky) sin(kz)Γ

0σy

+ (M + cos(kx) + cos(ky) + cos(kz))Γ
0σz,

(F1)

In Sec. III A we were primarily interested in the
topological features of Eq. 12 associated with PHS. Here,
we are interested in the topological features associated
with the mirror symmetry. The mirror symmetry
operator is given by

M̂z = Γ5zσ0, (F2)

and satisfies the relation M̂−1
z H(kx, ky, kz)M̂z =

H(kx, ky,−kz). Since mirror reflection is equivalent to

the combination of a π rotation and inversion, (M̂z)
2 =

+1 for spinless fermions.
The lattice model also has PHS,

Ĉ = Γ5yσyK, (F3)

but the PHS should be regarded as an “accidental”
symmetry of the lattice model and we explicitly break
this symmetry throughout this section.

1. Response theory

The response theory for the rTCI with mirror
symmetry is with the same technique as in Sec. III B.
The continuum theory near the band crossing at M = −3
is the same as in Eq. 17. In the continuum limit, the
effective response theory is found by coupling the Dirac
fermions to the spin connection ω and U(1) gauge field A
(see Eq. 18). We also include the perturbation in Eq. 21
and set m = −m̄ cos(φ) and m′ = −m̄ sin(φ). Here, if
φ is a function of z, mirror symmetry is preserved only
when φ(z) = −φ(−z) mod(2π). After integrating out the
massive fermions, the response theory as a function of ω,
A, and φ is again given by Eq. 22.

When φ is constant, mirror symmetry requires that
φ = 0 or π. The former corresponds to the m < 0
insulator (M < −3 in the lattice model), which has a
trivial R ∧ F -term. The latter corresponds to the m > 0
insulator (−3 < M < −1 in the lattice model), which is
a mirror symmetric rTCI with a Φ = π R∧F -term. This
analysis is much the same as that of the rTCI with PHS.
However, as noted before, the coefficient of the R ∧ F -
term can fluctuate while preserving mirror symmetry,
provided that Φ(z) = −Φ(−z) mod(2π). Because of
this, it is possible to have mirror symmetry preserving
domain walls between the rTCI and a trivial insulator
(see Sec. II C 2). We show this explicitly in the next
subsection.

2. Surface Theory

To analyze the surface theory of the rTCI with mirror
symmetry, we consider a pair of domain walls that are
related to one another by mirror symmetry. Specifically,
we use a geometry where −3 < M < 1 for |z| < zdw

and M < −3 for |z| > zdw, which corresponds to a pair
of symmetry related domain walls at z = ±zdw (zdw is
taken to be large compared to the correlation length of
the insulators).

The Hamiltonians for the two surfaces are,

Ht = [σxi∂x − σyi∂y]σ0,

Hb = [σxi∂x − σyi∂y]σ0, (F4)

where the t and b subscripts indicate the top and bottom
surfaces, respectively. The two surface theories can be
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combined as

Ht-b = [σxi∂x − σyi∂y]σ0σ0, (F5)

where the two domain walls are indexed by σ0σ0σz.
Mirror symmetry acts on Eq. F5 as

M̂z−surf = σ0σ0σx. (F6)

Using the 8-band description of the surfaces in Eq. F5,
there are two surface mass terms of note. First is the
mass term promotional to σzσzσz that preserves TRS
and breaks mirror symmetry. Second is the mass term
proportional to σzσzσ0 that which preserves both TRS
and mirror symmetry. Hence, in agreement with our
discussion from Sec. II C 2, we find that the surface Dirac
fermions are not protected by mirror symmetry.

For the mirror symmetry breaking surface masses, the
surface response theory consists of two Wen-Zee terms,
one per surface. The Wen-Zee terms discrete shifts of the
form S = 1/2 mod (1), half the amount allowed in 2D
systems. In general, the two surfaces will have different
coefficients. Following the same logic used before, a π/2
disclination of the rTCI with mirror symmetry breaking
surfaces binds charge ± 1

8 mod( 1
4 ) on one surface and

charge ∓ 1
8 mod( 1

4 ) on the other surface.
For the mirror symmetry preserving surface masses,

the response theory consists of a Wen-Zee term defined
on each surface. Due to mirror symmetry, these Wen-Zee
terms have the same discrete shift S = 1/2 mod (1).
A π/2 disclination of the rTCI with mirror symmetry
preserving surfaces will therefore bind charge ± 1

8 mod( 1
4 )

on both surfaces.

3. Dimensional Reduction to 1D SPT

Here we dimensionally reduce the rTCI with mirror
symmetry to a 1D SPT, as in Sec. III E. The resulting
SPT is the SSH chain protected by mirror symmetry with
a trivial on-site Z4 symmetry. Much like the SSH chain
with PHS, the SSH chain with mirror symmetry has half-
integer quantized charges at its boundaries. However, the
SSH chain with mirror symmetry does not have protected
zero edge modes. This is because mirror symmetry only
requires that the energies of the two edge modes are
equal to each other, (under PHS, the energies of any edge
modes must be exactly zero). However, the fractional
charge localized at a pair of mirror symmetry related
edges must be the same for the SSH chain, which leads
to a filling anomaly[97].

With this in mind, consider the two surface
Hamiltonians in Eq. F4 with additional mass
perturbations of the form

Ht-mass = mx,tσ
zσx +my,tσ

zσy +mz,tσ
zσz,

Hb-mass = mx,bσ
zσx +my,bσ

zσy +mz,bσ
zσz. (F7)

Under mirror symmetry, mi,t → mi,b, for i = x, y, z. As
discussed in Sec. III E, the rTCI can be dimensionally
reduced to an SSH chain with gapless edge modes by
setting mz,t = mz,b = 0, mx,t + imy,t = mx,b +
imy,b = ms(r) exp(iθ), where (r, θ) are polar coordinates
on the surface, and ms(r) ≥ 0 is a function of the
radial coordinate that vanishes at r = 0, and goes
to a non-zero constant m̄s, as r → ∞. This mass
configuration preserves TRS, mirror symmetry and C4

rotation symmetry. Similar to before, there is a zero
energy mode on each surface located near r = 0, which
transforms trivially under C4 symmetry.

It is possible to gap out the edge modes of the SSH
chain by setting mz,t = mz,b =

√
m̄2
s −ms(r)2, such

that mz,t and mz,b take on the same non-zero value at
r = 0. This perturbation preserves all symmetries of the
model, and gaps out the zero modes located at r = 0 on
each surface (see Appendix D).

We integrate out the massive fermions to determine
the charge that is bound at r = 0, leading to the effective
response theory

Leff-t =
εµνρ

8π
nt · (∂µnt × ∂νnt)Aρ

+
nz
4π
εµνρωµ∂νAρ,

Leff-b =
εµνρ

8π
nb · (∂µnb × ∂νnb)Aρ

+
nz
4π
εµνρωµ∂νAρ,

nt/b =
mt/b

|mt/b|
, mt/b = (mx,t/b,my,t/b,mz,t/b).

(F8)

For the mass configurations discussed above, the response
theory indicates that charge 1/2 is localized near r = 0
on both the top and bottom surfaces (this charge is only
defined modulo 1 due to surface effects).

Viewed as two 0D systems, the rotation centers of
the top and bottom surfaces each have an unprotected
mode and carry the same half-integer of charge. These
are exactly the characteristic features of the 0D edges
of a 1D SSH chain with mirror symmetry. Using the
bulk-boundary correspondence, we conclude that the
deformed rTCI and SSH chain with mirror symmetry are
adiabatically connected.

It is worth noting that the 1D SSH chain with mirror
symmetry can be further dimensionally reduced to a non-
trivial 0D system with on-site Z2 symmetry, which is
inherited from the mirror symmetry (see Ref. 98 for
further discussion). By extension, the rTCI can also be
dimensionally reduced to the same 0D system, with an
additional trivial Z4 symmetry.

Appendix G: Topological invariant and R ∧ F -term
for Dirac-like insulators

In this appendix we calculate the R ∧ F -term and
topological invariant for insulators that have a Dirac-like
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band structure at the time-reversal invariant momentum
(TRIM). We show that νRF = Φ/π for spinless Dirac-like
insulators with TRS, Cn rotation, mirror, and inversion
symmetry, where νRF is defined as in Eq. 60. Similarly,
we show that νRF↑ = Φ/2π for spin-1/2 Dirac-like
insulators with TRS, Cn rotation, mirror, and inversion
symmetry, and additional spin conservation, where νRF↑
is defined as in Eq. 73.

The analysis we present here is simplified by the
following observations. First, the combination of mirror
and inversion symmetry leads to a C2 symmetry, and
so we need to consider Cn symmetry only for n =
2, 4, 6, as combining C3 and C2 symmetry leads to C6

symmetry. Second, for Cn-invariant systems (n = 2, 4, 6),
the R∧F -term can be determined by gauging only the C2

subgroup of the full rotation symmetry. All the TRIM
are invariant under C2 rotations, so these considerations
greatly simplify our analysis. Physically, gauging only
the C2 rotation symmetry is equivalent to considering
responses only to the π disclinations of a C4 or C6

symmetric system. Since a π disclination is the fusion
of two π/2 disclinations or three π/3 disclination, the
response of a system to either π/2 or π/3 disclinations
can be deduced from the response of the system to π
disclinations and the disclination fusion rules.

First, we consider the R ∧ F -term for a lattice model
of spinless fermions, where the band-structure is Dirac-
like near the TRIM. We take this model to have TRS
(with T 2 = 1), U(1) charge conservation, Cn symmetry,
Mz mirror symmetry, and inversion symmetry. As noted
before, the rotation symmetry has a C2 subgroup, and we
need to consider only this C2 subgroup to determine the
R ∧ F -term of this system. A 3D spinless Dirac-fermion
with TRS requires a minimum of 8-bands, and the lattice
models therefore have Nband ∈ 8Z bands.

Our goal is to show that νRF = Φ/π for these systems,
where νRF is defined as in Eq. 60. To do this, we note
that any two band insulators with the same symmetries
(and representations) can be symmetrically evolved into
one another via a sequence of band crossings. Since the
R ∧ F -term is quantized in mirror symmetric insulators,
the difference in the R ∧ F -term between two mirror
symmetric insulators is equal to the total change in the
R∧F -term that occurs during the aforementioned gapless
band crossings. Based on this, we prove that νRF = Φ/π
by first proving that νRF = 0 for a trivial symmetric
insulator (where Φ = 0 by definition), and that any
band crossing that generates a non-trivial R ∧ F -term
also changes the value of νRF .

To this end, take a trivial (atomic) insulator, where
the lattice Hamiltonian contains only a constant on-
site potential HTriv = σz ⊗ INband/2. Importantly, the
band structure is constant throughout the Brillouin zone,
which implies that η0,+1 = ηπ,+1 (see Eq. 58). Because
of this, νRF = 0 for such a spinless trivial insulator.

Now consider a generic symmetric band crossing. This
band crossing can either occur at a TRIM or at an
arbitrary point in the Brillouin zone. We begin with

the latter case. Due to the C2 and Mz symmetries
of the lattice Hamiltonian, such a band crossing must
be accompanied by an odd number of other symmetry
related band crossings. In general, it is possible
to adiabatically and symmetrically evolve the lattice
Hamiltonian such that the momentum space distance
between the multiple band crossings is taken to zero
(modulo a reciprocal lattice vector). After this evolution,
an even number of band crossings will occur at a single
TRIM, Λn. Because of this, any two band insulators
that are related by band crossings at arbitrary momenta
are also related by an even number of band crossings
that only occur at TRIM. Since moving the location
of the band crossings can be done symmetrically and
adiabatically, it does not affect the change in the R ∧ F -
term that is generated by the band-crossing.

We now consider the case where the band crossing
occurs at a TRIM, Λn (recall that we assume the band-
structure is Dirac-like at Λn). To begin, we analyze a
band crossing that involves 8-bands (the minimal number
of bands for a spinless Dirac fermion with TRS). In an
appropriate basis, the Hamiltonian for the low energy
bands can be written as

HDirac = Γxσ0i∂x + Γyσ0i∂y + Γzσ0i∂z

+mΓ0σz,
(G1)

where m parameterizes the band-crossing and the Γ-
matrices are a set of 4×4 anti-commuting matrices. The
TRS, C2, inversion, and mirror symmetries act on Eq. G1
via

T̂ = ΓyσyK,

Û2 = (Ûn)
n
2 = exp

(
i
π

2
[Γxyσ0 + I4σ

z]IN

)
,

P̂ = Γ0σz,

M̂z = Û2P̂ .

(G2)

We now determine how the R ∧ F -term for Eq. G1
changes during the band crossing where m changes from
a negative to a positive value. As before, we do this by
gauging the U(1) and C2 symmetries, and coupling the
Dirac fermions to the electromagnetic gauge field Aµ and
spin connection ωµ, via the covariant derivative

Dµ = ∂µ − iAµ − iωµ
1

2
[Γxyσ0 + I4σ

z]. (G3)

We also add an additional mass term,

H′ = m′Γ5σ0, (G4)

that preserves TRS but breaks mirror symmetry. Upon
setting m = −m̄ cos(φ), m′ = −m̄ sin(φ) and integrating
out the massive fermions, we find the following R ∧ F -
term:

Leff[Aµ, ωµ, φ] =
φ

2π2
εµνρκ∂µων∂ρAκ. (G5)
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As we can see, the coefficient of the R ∧ F -term Φ shifts
by π when m changes sign (since the R∧F -term is a total
derivative, it is only possible to determine the change in
the coefficient of the R ∧ F -term during this process).
It is straightforward to generalize this result to a Dirac
band crossing at Λn that involves 8N bands, in which
case Φ shifts by Nπ during the band crossing. Taking
into account that Φ is defined mod(2π), the 8N band
crossing changes the physical value of Φ by 0 when N is
even and by π when N is odd.

Let us now consider the 8-band Dirac Hamiltonian
restricted to the mirror invariant plane that contains Λn.
On this mirror plane, we can divide the Hamiltonian
into sectors with mirror eigenvalue M̂z = ±1. The
Hamiltonian for the M̂z = +1 sector can be written as

Hmirror = Γxi∂x − Γyi∂y −mΓz, (G6)

where the TRS, and C2 (equivalently 2D inversion)
symmetry act as

T̂mirror = σyσyK,

Û2 = P̂ = exp
(
i
π

2
[−Γxy + σ0σz]

)
.

(G7)

Eq. G6 therefore describes a pair of TRS related 2D Dirac
fermions. Using Eq. 56 we find that the Chern number
parities of the two occupied bands with M̂z = +1 at
this mirror invariant plane change sign when m changes.
Based on this, the band crossing sends ηkz,+1 → −ηkz,+1,
where kz = 0, π is the mirror invariant plane that
contains Λn (see Eq. 58). It is again straightforward
to extend this analysis to an 8N -band crossing at Λn,
where the band crossing sends ηkz,+1 → +ηkz,+1 when
N is even and ηkz,+1 → −ηkz,+1 when N is odd. Based
on this, νRF → νRF +1 mod(2) and Φ→ Φ+π mod(π) if
N is odd for an 8N -band, Dirac-like crossing at a TRIM.
The values of both νRF and Φ do not change if N is even.

We can therefore conclude that when the coefficient
of the R ∧ F -term changes due to any symmetric band
crossing, the value of νRF will also change and vice
versa. Combined with the fact that νRF = 0 for a
trivial insulator, and that any two symmetric insulators
(with the same representations) can be evolved into one
another via a sequence of symmetric band crossings, we
conclude that νRF = Φ/π for the insulators considered
here.

We now turn our attention to Dirac-like lattice models
of spin-1/2 fermions with TRS (with T 2 = −1),
U(1) charge conservation, Cn rotation symmetry, mirror
symmetry, inversion symmetry, and spin conservation.
To show that νRF,↑ = Φ/2π, where νRF,↑ is defined as
in Eq. 73, we note that such a system can be divided
into Sz = +1/2 and Sz = −1/2 sectors. Furthermore,
as shown in Sec. V B, each sector can be treated as
a system of spinless fermions. In this framework, the
invariant νRF,↑ is simply the invariant νRF evaluated for
the effectively spinless Sz = +1/2 sector. Using our
previous analysis, we find the effective response theory

of the Sz = +1/2 sector contains an R ∧ F -term with
coefficient Φ↑ = πνRF,↑. The total R∧F -term of the spin-
1/2 insulator contains contributions from the both the
Sz = ±1/2 sectors, Φ = Φ↑ + Φ↓, and by TRS Φ↑ = Φ↓.
Hence, νRF,↑ = Φ/2π for these spin-1/2 insulators.

Appendix H: Linear response for the 3D Wen-Zee
term

In this appendix we use linear response theory to
determine the topological response theory that describes
the 3D layered Hamiltonian

H(k) = sin(kx)σxσ0 + sin(ky)σyσ0

− (m+ cos(kx) + cos(ky))σzσz.
(H1)

The TRS, C2 rotation symmetry (which is part of a large
C4 symmetry), and mirror symmetry act as

T̂ = σyσyK,
Ĉ2 = σzσz,

M̂z = σ0σ0.

(H2)

Note that this Hamiltonian is independent of kz, as it
has a decoupled-layer structure.

The Hamiltonian is gapped except when |m| = 0, 2.
The 2 < |m| phase is a trivial insulator that is
adiabatically connected to an atomic insulator when
|m| → ∞. To find the effective response theory, we
consider the system near the m = −2 band crossing,
where the low energy physics near momentum kx = ky =
0 takes on the Dirac form

H = i∂xσ
xσ0 + i∂yσ

yσ0 −m′σzσz (H3)

where m′ ∝ m + 2 for m ∼ −2 controls the transition
between the m < −2 and −2 < m < 0 phases.
When introducing the spin connection ω, and U(1) gauge
field A, we should replace ordinary derivatives with the
covariant derivative

Dµ = ∂µ − iAµ − iωµ
1

2
[σzσ0 + σ0σ2], (H4)

where ωµ couples via the C2 angular momentum.
Let us first consider the Hamiltonian for a single layer

at a fixed z-coordinate. The topological term in the linear
response theory for the 2D system is the Wen-Zee term

Leff,2D =
sgn(m′) + 1

4π
εµνρωµ∂νAρ, (H5)

where µ, and ν, and ρ run over x, y, and t. The term

proportional to sgn(m′)
4π is contributed by the low-energy

fermions while the term proportional to 1
4π arises from

massive fermions at the other C2 invariant momenta.
This second term ensures that the Wen-Zee term vanishes
for the trivial insulator with m′ < 0 (m < −2 in the
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lattice model). Since the Hamiltonian is independent of
the z-direction, the full topological response theory is
given by

Leff,3D =
sgn(m′) + 1

8π2
Gzε

µνρωµ∂νAρ. (H6)

where Gz is the reciprocal lattice vector along the z-

direction, which results from stacking the response in
Eq. H5. The numeric prefactor of the response theory
is therefore − 1

4π2 for −2 < m < 0 and zero for m < −2
in the lattice model. Similar calculations show that the
numeric prefactor is 1

4π2 for 0 < m < 2 and zero for
2 < m. These conclusions are not modified if we couple
the layers, as long as the rotation symmetry and bulk
gap are maintained.
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