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Elucidating the microscopic mechanisms responsible for the charge density wave (CDW) instability
of the AV3Sb5 (A=Cs, K, Rb) family of kagome metals is critical for understanding their unique
properties, including superconductivity. In these compounds, distinct CDW phases with wave-
vectors at the M and L points are energetically favorable, opening the possibility of tuning the type
of CDW order by appropriate external parameters. Here, we shed light on the CDW landscape
of CsV3Sb5 via a combination of first-principles calculations and phenomenology, which consists
of extracting the coefficients of the CDW Landau free-energy expansion from density functional
theory. We find that while the main structural distortions of the kagome lattice in the staggered
tri-hexagonal CDW phase are along the nearest-neighbor V–V bonds, distortions associated with
the Sb ions play a defining role in the energy gain in this and all other CDW states. Moreover, the
coupling between ionic displacements from different unit cells is small, thus explaining the existence
of multiple CDW instabilities with different modulations along the c-axis. We also investigate
how pressure and temperature impact the CDW phase of CsV3Sb5. Increasing pressure does not
change the staggered tri-hexagonal CDW ground state, even though the M -point CDW instability
disappears before the L-point one, a behavior that we attribute to the large nonlinear coupling
between the order parameters. Upon changing the temperature, we find a narrow regime in which
another transition can take place, toward a tri-hexagonal Star-of-David CDW phase. We discuss
the implications of our results by comparing them with experiments on this compound.

I. INTRODUCTION

The family of metallic kagome compounds AV3Sb5,
with A = K, Rb, Cs, exhibit pressure-tunable super-
conductivity with Tc ranging from 2-8 K1–4, coexisting
with a charge density wave (CDW) order which sets in
at 80-100 K5–10. Despite concerted experimental and
theoretical effort11,12, a complete understanding of how
these electronic states change as the lattice and elec-
tronic structures are modified by pressure13–15, uniaxial
strain16, and doping17 remains elusive.

Experimentally, X-ray diffraction studies at zero ap-
plied pressure show that the charge-ordered state in-
duces a unit cell doubling along the in-plane a and b

axes, and either a doubling or a quadrupling along the
c axis3,6,18. However, the exact nature of the symme-
tries broken by the CDW in AV3Sb5 as a function of
temperature and pressure is still under investigation19–21.
For instance, several experimental results have indicated
that, upon application of pressure, there is a transition
between different CDW ground states, which is indi-
rectly manifested in the double-peak structure of the su-
perconducting dome13,22,23. Different CDW states have
also been reported as a function of temperature and
doping18,19,24,25. Moreover, experiments have reported
signatures of threefold rotational symmetry breaking ei-
ther inside the CDW phase or at its onset26–30. Finally,
time-reversal symmetry-breaking has been reported to
coincide with the CDW transition temperature by µSR
experiments31–33, whereas Kerr rotation measurements
have given conflicting results30,34,35.

Theoretically, the proximity of M -point van Hove
singularities to the Fermi level36 have led to the
proposal that the CDW is a correlation-driven
instability12,37–41. On the other hand, the softening of
several phonon modes along the M -L line, as seen by
DFT calculations21,40,42–44, indicate the importance of
electron-phonon coupling in promoting the CDW phase.
Time-reversal symmetry-breaking has been interpreted
in terms of loop-current patterns arising from a so-called
imaginary CDW (iCDW) instability38,39,45–47. Impor-
tantly, even a pure iCDW instability is expected to gen-
erally induce a “real” CDW, making the investigation of
the latter important to also shed light on the possible
loop current patterns that can be established in these
systems.

Therefore, elucidating the role played by structural and
electronic degrees of freedom, particularly those not asso-
ciated with the V ions at the kagome layer, is important
and the subject of ongoing research44,48,49. More specifi-
cally, predicting the evolution of the CDW with pressure
and other tuning parameters is of critical importance to
shed light on the microscopic mechanism responsible for
the CDW phase, and thus to gain insight into the prop-
erties exhibited by this materials class.

In this paper, using first-principles density functional
theory (DFT) in conjunction with a phenomenological
Landau free-energy model, we investigate the role of
the Sb degrees of freedom on the CDW instability of
CsV3Sb5, as well as the evolution of the latter as a func-
tion of both pressure and temperature. DFT has been
shown to correctly predict the CDW instabilities in this
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system21,42–44, whose electronic correlations do not seem
to be strong enough to change the lattice energetics sig-
nificantly. At the same time, phenomenological Landau
models for the CDW instabilities at the M and L points
have been analyzed to reveal the possible CDW phase
diagrams in these compounds38,40.

Here, we combine these two approaches by extracting
the free-energy coefficients from first-principles calcula-
tions, which allows us to “freeze” some degrees of free-
dom and focus on the contributions arising from different
ions. We not only find that a fourth-order Landau free
energy expansion is able to capture the energy landscape
of CsV3Sb5 with respect to its charge ordering behavior
towards a staggered tri-hexagonal CDW phase, but also
that the distortions of the V-bonds alone are not enough
to account for the energy gain in the CDW phase. In
particular, our calculations show that the apical Sb dis-
placements are significantly more important than previ-
ously assumed for the stabilization of any of the stable
CDW phases, which may have important consequences
for the mechanism of the CDW. Interestingly, the rela-
tive distortions between ions of different unit cells give
only a small contribution to the CDW energetics, which
addresses why there are multiple CDW instabilities along
the M -L line in momentum space.

We take advantage of the Landau free energy expan-
sion to establish how the CDW phase evolves with pres-
sure and temperature. We show that there is a rather
narrow parameter regime in which two well separated
CDW transitions (corresponding in our calculations to
the staggered tri-hexagonal and tri-hexagonal Star-of-
David CDW phases) onset as a function of temperature,
as suggested by some experiments18,19,32,50. This re-
sult indicates that another ordered state not captured by
DFT with the generalized gradient approximation, such
as time-reversal symmetry-breaking iCDW order, may be
necessary to account for two different transition tempera-
tures in CsV3Sb5. By performing our calculations in the
presence of hydrostatic pressure, we find that the stag-
gered tri-hexagonal CDW ground state does not change,
despite the fact that the M -point instability is absent at
high enough pressures. Combined with the pressure de-
pendence of the Landau coefficients, this suggests that
the nonlinear coupling between the two CDW order pa-
rameters with wave-vectors at the M and L points is
essential to drive the CDW instability in the kagome met-
als.

This paper is organized as follows: In Section II, we
give an overview of our methods. In Subsection IIIA,
we present the Landau free energy, and its coefficients
as predicted from DFT. In Subsection III B, we eluci-
date the effect of the apical Sb ion on the phase stability
of CDW. We discuss the effect of pressure in Subsec-
tion III C, and draw finite-temperature phase diagrams
in Subsection III D. We conclude with a summary and
discussions in Section IV.

II. METHODS

All DFT calculations were performed using Projector
Augmented Waves (PAW) as implemented in the Vienna
Ab initio simulation package (VASP) version 5.4.451–53.
We used the PBEsol exchange correlation functional,
with valence configurations of 5s25p66s1, 3s23p63d44s1,
and 5s25p3 corresponding to Cs, V, and Sb, respectively.
Lattice parameters were found to be converged to within
0.001 Å using a plane wave cutoff energy of 450 eV, a
Γ-centered Monkhorst-Pack k-point mesh of 20×20×10,
and a 2nd order Methfessel-Paxton smearing parameter
of 10 meV.
Using DFT and the Landau free-energy derived in

Ref.40, we explore the CDW behavior of CsV3Sb5 at var-
ious pressures. The AV3Sb5 compounds are predicted to
have phonon instabilities at the M and L points of their
hexagonal Brillouin zones16,54. We use the eigenvectors
of the force constant matrix (FCM) corresponding to the
unstable modes that transform as irreducible representa-
tions (irreps) M+

1 and L−

2 as a basis, and use their ampli-
tudes as the order parameter components Mi and Li, re-
spectively. At each pressure, the free-energy coefficients
are found by freezing in selected combinations of the or-
der parameters at various amplitudes and performing a
least-squares fit to the data set. We confirmed that the
signs and magnitudes of these coefficients do not qualita-
tively change when coefficients beyond fourth-order are
included in the fit.

III. RESULTS

A. Electronic structure and free-energy coefficients

at zero applied pressure and temperature

At room temperature and ambient pressure, CsV3Sb5
adopts the P6/mmm (#191) space group, with Cs occu-
pying the 1a Wyckoff site, V the 3g site, and Sb the 4h
and 1b sites. Using DFT structural relaxation, we predict
lattice parameters a = 5.424 Å and c = 9.368 Å, as well
as a z coordinate for the apical Sb at the 4h(1/3, 2/3, z)
site with z = 0.740 in fractional coordinates. We find
phonon instabilities that lead to CDW driven structural
distortions transforming as the M+

1 and L−

2 irreducible
representations of the space group, in agreement with
earlier reports40,42.
There are three distinct M points and three distinct

L points in the hexagonal Brillouin zone, as shown in
Fig. 1, which we denote as kMi and kLi. The M point
wavevectors have zero z (out-of-plane) component, and
they correspond to the face centers of the hexagonal Bril-
louin zone. kLi have the same in-plane components as
kMi, but they also have a z component of π/c, which
places them at the edge centers of the hexagon on the
top or bottom faces, as illustrated in Fig. 1. The differ-
ent components of the M+

1 and L−

2 CDW order param-
eters correspond to displacement patterns with different
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FIG. 1. a) 2×2×2 unit cells of the high-temperature
P6/mmm phase of CsV3Sb5 along the c axis. b) The same
cell when viewed along the in-plane b axis with the Wyck-
off letters labeling each ionic site. c) The P6/mmm Bril-
louin zone with high-symmetry points Γ, M , and L labeled.
Translucent arrows indicate the position of other vectors in
the stars of M and L.

wavevectors, such that the ith componentMi and Li have
the wavevectors kMi and kLi respectively.

While for an isolated kagome plane there are only two
types of in-plane triple-Q charge-order patterns (called
tri-hexagonal and Star-of-David), there are several dif-
ferent possibilities for stacking them between consecutive
layers. They correspond to distinct superpositions of the
three Mi and three Li CDW components, giving rise to
a large number of different CDW phases with distinct
symmetries40. In the remainder of this paper, we denote
the phases reached by different directions in parameter
space using the notation (M1M2M3)+(L1L2L3), similar
to the one employed in Ref. 40. As explained above, Mi

and Li refer to the amplitude of each M+
1 and L−

2 order
parameter, respectively. For distortions where all of the
M or L order parameters have zero amplitude, we use the
notation (L1L2L3) and (M1M2M3), respectively. Illus-
trations of the phases discussed in this study are shown
in Fig. 2. In the notation used in this figure, we take all
M and L values to be positive, with negative values de-
noted by an overbar. Note that for each phase, multiple
equal-energy domains that are equivalent to each other
up to a translation or rotation can be obtained from com-
binations of order parameter components that preserve
the signs of the products M1×M2×M3 and L1×L2×L3.
For example, E(MMM) ≡ E(MMM). We do not dis-
cuss different domains of each phase further since they
are of no consequence in a single-domain system.

Following Ref. 40 (see also Ref. 38), the Landau free
energy in terms of Mi and Li takes the form of

Ftot = FM + FL + FML, (1)

FIG. 2. Illustrations of the undistorted kagome lattice and
a selection of structural phases that can be reached through
different directions in parameter space. The V networks are
shown for two subsequent layers stacked along the z axis (out
of the page). The bonds shown in these panels denote relative
displacement patterns.
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Here, we defined M2 = M2
1 +M2

2 +M2
3 and M4 = (M2)2,

with L2 and L4 defined analogously. The form of this
free energy is determined by symmetry, and it is the
most general fourth-order polynomial of Li and Mi that
transforms as a scalar under the symmetry operations
of space group P6/mmm. A necessary, but not suffi-
cient, condition for a term to appear in this expansion
is that its total wavevector is zero, so that the free en-
ergy is invariant under lattice translations. The sum of
the three M point wavevectors is zero modulo a recip-
rocal lattice vector (kM1 + kM2 + kM3 = 0), and hence
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the trilinear term γMM1M2M3 is allowed55. However,
there is no trilinear term proportional to L1L2L3 because
kL1 + kL2 + kL3 6= 0. Accordingly, there are trilinear
terms between two Li and one Mi component propor-
tional to M1L2L3 because kM1 + kL2 + kL3 = 0.

The Landau coefficients (Greek letters and u) in Eq. 4
are material-specific coefficients that can be obtained
from DFT. We calculate these quantities by perform-
ing a simultaneous least-squares fit of the total energy
extracted from DFT as a function of a selected combi-
nation of order parameters56. In practice, we take the
eigenvectors associated with each of the unstable eigen-
values of the force constant matrix that transform as M+

1

and L−

2 as the distortions associated with the M and L
point order parameters, respectively. Then, we use DFT
to calculate the energy associated with combinations of
these distortions with various amplitudes and frozen into
a 2×2×2 supercell commensurate with the stars of both
the M and L points in reciprocal space. The coefficients
obtained from these calculations at different values of hy-
drostatic pressure are shown in Table I.
The quadratic terms αL and αM correspond to eigen-

values of the force constant matrix. Since the dynami-
cal matrix is given by the force constant matrix scaled
by diagonal mass matrices57, they are thus proportional
to the square of the frequencies of the unstable phonon
modes at L and M , respectively. The results in Table
I show that at 3.50 GPa, the M+

1 CDW instability has
disappeared, whereas the L−

2 CDW instability is sup-
pressed at approximately 5.00-6.50 GPa. We note that
the exact value of pressure where this suppression oc-
curs is hard to pinpoint from DFT, as it also depends on
the choice of exchange-correlation functional and van der
Waals corrections. Nevertheless, the qualitative trends
are expected to be reliable22.
The “pure M” (γM ) and “mixed irrep” (γML) trilin-

ear coupling coefficients are significant at almost all pres-
sures, and hence play an important role in determining
the structure of the energy surface. Also of interest are
the biquadratic terms λM and λL, which take negative

values at all pressures explored. While other fourth-
order terms ensure positive curvature at large displace-
ment amplitudes that keep the free energy bounded, and
the third-order terms are dominant in CsV3Sb5, λL and
λM could play an important role in shaping the com-
petition between CDW phases in other kagome systems,
where their magnitude could be larger.
We show the energy contour plots along various cuts of

the six-dimensional phase space (M1,M2,M3, L1, L2, L3)
in Fig. 3. In order to assess whether the fourth-order
expansion is sufficient to capture the topography of the
energy landscape, we show the energies calculated using
the Landau free-energy expression and the coefficients
from Table I on the top panels of the figure, whereas the
bottom panels display the energies as obtained directly
from DFT. The comparison reveals good qualitative and

quantitative agreement between the fit and DFT, with
the fitted free energy capable of capturing all local min-
ima, as well as their relative amplitudes and energies.
This suggests that a fourth-order free-energy expression
is sufficient to capture the energetics of the CDW de-
grees of freedom. At zero temperature and zero applied
pressure, a minimization of the free energy predicts the
equilibrium phase to be the (M00) + (0LL) (staggered
tri-hexagonal) phase, in agreement with our DFT struc-
tural relaxations, which take into account strain degrees
of freedom as well. Earlier first principles studies also re-
ported the same ground state structure from structural
relaxations42,43.

These energy surfaces provide insights about various
unusual features of the coupling between the CDW or-
der parameters. Fig. 3a is very asymmetric as a function
of M1, which is solely due to the trilinear coupling term
γML. This term breaks the symmetry between ∓M1 in
this figure, and favors M1 > 0, which amounts to break-
ing the degeneracy between the staggered Star-of-David
phase, (M00) + (0LL), and the staggered tri-hexagonal
phase, (M00) + (0LL), by favoring the latter. Another
interesting feature, visible in Fig. 3b, is that the pure
(MMM) phase (the minimum on the horizontal axis) is
lower in energy than the mixed (MMM) + (LLL) phase
(the minimum slightly off of the vertical axis), despite
the latter being a subgroup of the former. This is due to
an interplay between third-order and fourth-order terms
in the free energy expansion: The (MMM) phase has
a considerable energy gain from the pure trilinear cou-
pling γM , whereas the (MMM)+ (LLL) phase only has
a small gain from the mixed trilinear coupling γML be-
cause of the small amplitude ofM . A larger value ofM in
the (MMM)+ (LLL) phase is disfavored because of the

fourth-order couplings λ
(i)
ML

, which results in the relative
stability of the (MMM) phase over (MMM) + (LLL).

The similarity between Figs. 3a and c is also striking.
For Fig. 3c, where only CDW orders at the M -point are
considered, the γM trilinear term drives the minimum of
the free energy to a point in phase space where |M1| =
|M2| = |M3|, regardless of the sign of γM , which only
determines whether the Star-of-David (M < 0) or the
tri-hexagonal (M > 0) phase is favored40. Both of these
phases retain the six-fold rotational symmetry in their
point group, which would be broken if any of the |Mi|
were not equal to the others. However, Fig. 3a shows
an energy minimum very close to |M1| = |L2| = |L3|,
despite the fact that no similar symmetry conditions or
constraints are enforced by the form of the free energy.

We explored the structural details of the tri-hexagonal
CDW (M00) + (0LL) phase, with space group Fmmm
and which is the global minimum of the free energy, us-
ing DFT to relax all structural degrees of freedom in it.
We then used ISODISTORT58,59 to decompose the dis-
tortions from the parent kagome structure in terms of the
irreps of space group P6/mmm. The relaxed structure
hosts multiple distortions with different irreps, including
Γ-point strain modes. These uniform distortions are in-
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Pressure αM αL γM γML uM uL λM λL λ
(1)
ML

λ
(2)
ML

λ
(3)
ML

(GPa) (eV/Å2) (eV/Å2) (eV/Å3) (eV/Å3) (eV/Å4) (eV/Å4) (eV/Å4) (eV/Å4) (eV/Å4) (eV/Å4) (eV/Å4)

0.00 -2.53 -2.92 -22.16 -24.15 76.43 89.93 -137.67 -194.47 347.73 332.28 24.20
0.80 -1.78 -2.42 -22.88 -30.15 73.05 77.68 -128.01 -127.43 347.38 341.12 29.53
1.74 -1.00 -2.21 -17.57 -27.78 52.87 74.91 -94.82 -122.71 244.04 324.52 24.79
2.50 -0.53 -1.31 -10.60 -32.66 70.71 82.46 -118.16 -138.51 266.06 333.90 12.58
3.50 0.51 -0.89 -7.06 -31.62 16.01 110.61 61.26 -203.07 98.22 353.52 3.45
5.00 1.22 -0.43 3.56 -20.41 101.42 181.22 -64.76 -279.73 400.84 639.46 -32.88

TABLE I. Coefficients of the Landau free energy corresponding to Eqs. 2, 3, and 4 obtained from fits to DFT data for different
applied pressures. The units for all second-order (α), third-order (γ), and fourth-order (u and λ) coefficients are eV/Å2, eV/Å3,
and eV/Å4, respectively, defined per 2×2×2 (eight formula unit) supercell, which is the smallest supercell commensurate with
all three wavevectors in the stars of M and L.

FIG. 3. Energy surfaces along specific cuts in the six-dimensional phase space (M1,M2,M3, L1, L2, L3) obtained from the
Landau free-energy fit (top panels) and from DFT (bottom panels). (a),(b), and (c) correspond, respectively, to the order
parameter subspaces spanned by (M1,M2 = M3 = 0) and (L1 = 0, L2 = L3); (M1 = M2 = M3) and (L1 = L2 = L3);
(M1,M2 = M3) and (L1 = L2 = L3 = 0).

duced by their coupling to the L−

2 and M+
1 CDW distor-

tions. For simplicity, we ignore them and focus only on
the unstable L−

2 and M+
1 modes. We find that the total

distortion can indeed be described by a superposition of
L−

2 and M+
1 irreps of near-equal magnitudes (within 1%

at zero pressure, see Fig. 6), which primarily takes the
form of distortions of the V and Sb ions as seen from the
decomposition of each irrep into separate ionic displace-
ments (Fig. 4, discussed further in Section III B). Note
that neither the L−

2 or M+
1 irreps accommodate distor-

tions of the Sb ions located in the kagome plane (Wyckoff
site 1b in space group P6/mmm), nor are there any de-

grees of freedom in the Wyckoff sites corresponding to
those ions in the (M00) + (0LL) CDW phase (sites 4a,
4b, 8e of space group Fmmm). This means that all Sb
distortions in Fig. 4 refer to the “apical” (Wyckoff site
4h in P6/mmm) Sb ions located above and below the
kagome plane.

Taken together, these results suggest that, while the
coupling between the M -point and L-point CDWs play
an important role in determining the global energy min-
imum, it is intralayer interactions between ions in the
same vanadium kagome sublattice, as well as their cou-
pling to neighboring Sb ions, that dominates the behav-
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FIG. 4. a) Norm squared magnitude of the displacements
associated with the eigenvectors of the force constant matrix
that correspond to the M+

1 and L−
2 CDW instabilities decom-

posed by ionic species. The total magnitude is normalized
to 1. b) Total amplitude of the ionic displacements associ-
ated with the order parameter components L and M for the
(M00)+(0LL) phase obtained from DFT and calculated with
the ISODISTORT program.

ior of the energy surface, with little coupling to layers
in neighboring unit cells. This is supported by the sim-
ilarity of pure-L and pure-M coefficients in Table I at
0.0GPa, especially the α terms, which are proportional
to the squared phonon frequencies and are within about
15% of each other. Since these values are so close, we con-
clude that the vibrational frequencies are fairly agnostic
as to whether their associated distortions are in-phase or
out-of-phase with respect to neighboring kagome layers,
again supporting a physical picture of weak interaction
between nearest-neighbor unit cells.

While this interpretation is consistent with the layered
crystal structure of AV3Sb5 and is also in line with many
studies that assume well isolated vanadium kagome layers
that are stacked with some space-filling ions in between,
in the following sections we argue that ions other than
vanadium are also important for the CDW phase.

B. Importance of apical Sb displacement

While much of the theoretical work on AV3Sb5 has fo-
cused on the role of the V ions that form the kagome
lattice, there is a growing body of evidence that points
to the important role of the Sb ions17,44,48,49. Impor-
tantly, the pz orbitals of both types of Sb anions (in-
plane and apical) together give rise to a Γ-centered Fermi
surface pocket17,44,48. Moreover, certain types of imagi-
nary CDW or loop current phases are predicted to induce
magnetic moments on the in-plane Sb ions47. As for the
apical Sb ions, constrained random phase approximation
calculations report that they give an important contribu-
tion to the correlation strength in CsV3Sb5

48. Finally, as
discussed in the previous section, both L and M CDW
order parameters involve displacements of the apical Sb
ions, while the planar Sb ions remain fixed by symmetry
in many CDW phases.

In addition to their role in the electronic structure, the
Sb ions can also be important in determining the relative
stability of different CDW phases. Indeed, while the ionic
displacements associated with the unstable M+

1 and L−

2

modes obtained from phonon calculations are primarily
dominated by the V ions, decomposition of force constant
matrix (FCM) eigenvectors and the relaxed structures
suggests that the displacements of other ions may play
an important role in the energetics of the CDW phase.
In Fig. 4a, we plot the components of the FCM eigen-
vectors of the unstable M+

1 and L−

2 modes. The FCM
eigenvectors are conceptually similar to the dynamical
matrix eigenvectors, which give the displacement pattern
of phonon modes when multiplied by the square roots of
the atomic masses. However, for unstable lattice modes,
the FCM eigenvectors give a more precise description of
the displacement pattern since they do not depend on the
masses of the atoms. The FCM eigenvector of both M+

1

and L−

2 modes at zero pressure has the largest contri-
bution from the V ions, with Sb atoms having a smaller
total displacement despite the fact that there is a larger
number of Sb ions being displaced. Under pressure, the
most significant change is an increase in the out-of-plane
Cs ion displacement in the L−

2 mode, but the Sb contri-
bution remains relatively flat.

The FCM eigenvectors only contain information about
the nature of the instabilities in harmonic order, and can-
not capture the effects of the higher order terms in the
lattice Hamiltonian. As a result, they cannot explain
which ions’ displacements lead to the largest energy gain,
because the higher order interactions can give rise to a
different ionic displacement pattern when the lattice is
relaxed. In order to evaluate this possibility, in Fig. 4b,
we plot the total amplitudes of ionic displacements in
the staggered tri-hexagonal (M00)+(0LL) phase decom-
posed into different irreps and ions. We note that the Sb
displacements with L−

2 character in the relaxed structure
are as large as the V displacements with M+

1 character,
and therefore, Sb displacements may be responsible of a
significant energy gain in the CDW phase.
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FIG. 5. Comparison of the effects of different ionic degrees of freedom on the energy surface for various CDW distortion patterns.
The black lines overlaid with square markers correspond to the energy change associated with a distortion constructed from
the force-constant matrix (FCM) eigenvectors associated with the indicated direction in parameter space. These eigenvectors
involve displacement of not only V, but also of apical (1b) Sb, and of Cs (for L−

2 order parameters only). Blue lines overlaid with
inverted triangles correspond to distortions constructed using only V-ion displacements, leaving all other degrees of freedom
fixed. Using the minimum of this blue curve as initial conditions, the results of constrained structural relaxations are shown
as additional symbols. Red stars correspond to letting only V ions relax further, while green squares correspond to letting
V and Cs ions relax. Brown triangles correspond to letting V and Sb ions relax, and black crosses, to allowing all internal
degrees of freedom to relax. Note that for all directions in the CDW parameter space spanned by the M and L order parameter
components, the magnitudes of M and L were selected to be equal. While these directions are useful for illustrating the energy
surfaces, the magnitudes of L and M need not be equal in general, and the values of L and M which minimize the total energy
do not necessarily lie along a direction where |M | = |L|.

To investigate the importance of the degrees of free-
dom other than V displacements, we perform a series of
DFT calculations, the results of which are shown in Fig.
5. Each panel of Fig. 5 shows the energy calculated for a
different CDW phase [(M00), (MMM), etc.] as a func-
tion of ionic displacements. For each phase, we consider
two different displacement patterns: The black solid lines
correspond to distortions according to the FCM eigenvec-
tors, and thus include a displacement of Sb and Cs ions in
addition to the V ions. The blue solid lines, on the other
hand, are the energies when only the V ions are displaced
according to the same pattern, but the positions of the
Cs and Sb ions are kept fixed. In every case, we find
that that black curve goes much deeper than the blue
one. In other words, even though there is an energy gain
even when only V ions are displaced, this energy gain is
much less than that obtained when all ions are displaced.

Thus, the greatest share of the free energy change is asso-
ciated with degrees of freedom other than the vanadium
displacement. These other degrees of freedom are not
unstable by themselves, however, it is their interactions
with the V displacements (i.e. the off-diagonal elements
of the FCM) that lead to these large energy gains.

In order to further learn how these other degrees of
freedom contribute to free energy, we also performed con-
strained ionic relaxations in DFT. In these calculations,
the ionic positions are allowed to relax to the minimum
energy configuration that preserves symmetry. As the
starting point, we used the minimum of each V–V-only
distortion pattern (i.e. the minimum of the blue curves),
and performed four different types of relaxations while
keeping certain ions’ positions fixed. The results of these
calculations are shown by different symbols in Fig. 5.
Keeping the Cs and Sb ions fixed while allowing the
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FIG. 6. Total amplitude of the order parameter components
L and M for the (M00) + (0LL) phase relaxed with DFT.
At each pressure, the ISODISTORT program was used to
decompose the distortion of the relaxed cell with respect to
the high-symmetry kagome structure into contributions from
the L−

2 and M+
1 irreps. Since two equivalent and nonzero L

order parameter components appear in the (M00) + (0LL)
phase, the value for L−

2 plotted in the figure is equal to the
total value reported by ISODISTORT scaled by 1√

2
.

V ions to relax (red stars) gives rise to a marginal en-
ergy gain and additional displacements compared to the
minimum of the blue curve. This indicates that, in this
relaxed structure, the V displacements differ very little
from the pattern obtained from the force constant matrix
eigenvectors. Relaxing both the V and the Cs ions (green
squares) makes almost no difference either, implying that
the Cs ions have almost no effect in the stabilization of
the CDW phase. Hence, we conclude that any difference
between the CDW behavior in CsV3Sb5, RbV3Sb5 and
KV3Sb5 is likely due to the size effects of the different
alkali metals, which change the lattice parameter and
hence the electronic structure, and not directly due to
steric effects related with the alkali metal displacements.

Unlike the Cs ions, the relaxation of the Sb ions make a
significant difference in the amount of energy gained. Re-
laxing both the V and the Sb ions (brown triangles) leads
to both an energy and a mode amplitude that are close
to the minimum of the curve where all ions are displaced
according to the FCM eigenvector. Therefore, while the
V-ion degrees of freedoms by themselves can explain the
presence of the CDW instability and qualitatively cap-
ture the ground state symmetry, the displacements of
the Sb ions are essential in obtaining the large energy
gain that stabilizes the CDW phase at ∼80 K. Finally,
also relaxing Cs together with V and Sb (black crosses)
makes very little difference, confirming the unimportance
of Cs displacements.

C. Effect of Hydrostatic Pressure

CsV3Sb5 exhibits a rich phase diagram under hy-
drostatic pressure, where the CDW order is sup-
pressed around 2 GPa, while superconductivy displays
a double-peak dome behavior when it coexists with
CDW9,13,14,16,22,60,61. In this subsection, we study the
evolution of the CDW under pressure by focusing on
the coefficients of the Landau free-energy to predict any
change in the CDW ground state of the system.
In Table I, we show the values of the free energy co-

efficients for CsV3Sb5 under pressure. As the pressure
increases, both quadratic coefficients αM and αL become
less negative, which is consistent with the disappearance
of the CDW under pressure in the experiments discussed
above. Interestingly, αM changes sign and becomes pos-
itive while αL remains negative, indicating that, in the
higher pressure regime, it is the L instability that drives
the CDW transition. However, as shown in Figure 6, the
M+

1 distortions continue to contribute significantly to the
CDW phase, even in this regime.
We also find large changes in the the third-order co-

efficients γM and γML, with γM becoming less negative
much faster than γML with increasing pressure, and even
changing sign near 5.0 GPa. Despite these changes, the
(M00) + (0LL) CDW phase is predicted by both DFT
and the fitted free energy function to be the lowest en-
thalpy structure throughout the entire pressure range, as
seen in Fig. 7a. However, the energy difference between
the three lowest energy CDW phases shown in Fig. 7a is
typically of the order of few meV per formula unit, which
suggests that the vibrational entropy of the ions, which
is not taken into account in our calculations, can be large
enough to lead to a different ground state or even a phase
transition under pressure. We also note that the critical
pressure we predict for the complete suppression of the
CDW, P = 6.5 GPa, which we reported previously in
Ref.22, is higher than the experimentally reported value,
which may in large part be due to the systematic er-
rors in DFT and GGA approximations. The trends in
the coefficients, which do not sensitively depend on the
equilibrium lattice constants, are nevertheless reliable.
As discussed in Section IIIA, the similarity between

αM and αL can be interpreted as a measure of the weak-
ness of the coupling between the displacements of ions
in neighboring unit cells along the c axis. Moreover, the
CDW structural distortion patterns associated with the
unstable L−

2 modes are nearly the same as those associ-
ated with the M+

1 modes, except that in the L−

2 mode
each kagome layer is out of phase from its neighbors40.
Thus, if the frequencies of the L−

2 andM+
1 phonon modes

are close in value, it suggests that the frequencies are rel-
atively indifferent to the relative phases between each
layer. Since M and L are the two endpoints of the
U line in reciprocal space parameterized by (π

a
, π

a
, qz),

the similarity of αM and αL can be used as a rough
measure of the sensitivity of a phonon frequency to qz,
which modulates the phase relation between neighbor-
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FIG. 7. (a) The difference in enthalpy per formula unit be-
tween each of the indicated CDW phases and the undistored
kagome lattice as a function of pressure. Only the three
lowest enthalpy phases predicted by DFT are shown. (b)
Quadratic (left axis) coefficients of the Landau free energy
and ∆α = αL−αM

αL

(right axis) as a function of pressure. (c)

Pressure-dependence of the coefficients α′
M and α′

L. They cor-
respond to the αM and αL of Eqs. 2 and 3 calculated for a dis-
tortion pattern transforming as M+

1 and L−
2 , respectively, but

involving only the displacements of the V ions along nearest-
neighbor V–V bonds.

ing layers. Fig. 7b shows how the relative difference be-
tween the quadratic coefficients of the M and L modes,
∆α = αL−αM

αL

, changes as a function of pressure. αM

becomes positive faster than αL, and as the latter ap-
proaches zero, ∆α increases sharply. This steady increase
with pressure indicates an increased importance of the in-
terlayer coupling under pressure. This may be due to the
decrease of the out-of-plane c axis, enhancing the possi-
bility that the leading instability transforms like an irrep
associated with another wave-vector on the U line.

We also find that the the non-vanadium degrees of
freedom discussed in Section III B play a critical role in

the evolution of the structural instability with pressure.
Fig. 7c shows the α′

M
and α′

L
values calculated using the

distortion patterns associated only with V displacements
rather than the eigenvectors of the force constant ma-
trix. These are not only far less negative than the actual
α values show in Figure 7b, but also become positive at a
much smaller pressure. As a result, in the absence of Sb
and Cs displacements, the CDW instabilities are greatly
weakened, in line with the results in Fig. 5. Thus, the
displacements of Sb ions not only play an important role
in the stability of the CDW phase of CsV3Sb5 at zero
pressure, but also in controlling how the CDW instabil-
ity evolves with pressure.

D. Finite Temperature Phase Diagrams

While the DFT analysis of the CDW energetics is valid
only at T = 0, the Landau free-energy expansion allows
us to also investigate the fate of the CDW transitions at
finite temperatures. The close proximity between differ-
ent CDW ground states at T = 0, as shown for instance
in Fig. 7, suggests that multiple CDW transitions can
take place as a function of temperature. While such a
scenario was explored phenomenologically in Ref.40 us-
ing the same free energy as in Eq. 1, our approach gives
the Landau parameters of CsV3Sb5 directly from DFT.
Experimentally, probes such as Raman spectroscopy19,
µSR32,62, and elastoresistance29 report signatures con-
sistent with multiple CDW transitions as temperature is
changed, which may also involve time-reversal and three-
fold rotational symmetry-breaking.
In order to render the problem tractable, and follow-

ing the spirit of a Landau expansion, we assume that
only the quadratic coefficients αM and αL are tempera-
ture dependent. Thus, we define αM ≡ α0

M
(TM −T )/TM

and αL ≡ α0
L
(TL − T )/TL, and set the zero temperature

quadratic coefficients α0
M

and α0
L
equal to the αM and αL

predicted by DFT, while treating the bare critical tem-
peratures TM and TL as free parameters. For all third
and fourth order coefficients, we use the values extracted
from DFT at each pressure. Because, in general, α0

M
6=

α0
L
, the temperature phase diagrams depend on the ab-

solute values of both TM and TL, and not just on their
difference. It is therefore convenient to define the average
transition temperature T0 ≡ (TM +TL)/2, which sets the
temperature scale of the transition, and the dimension-
less temperature difference δτ ≡ (TM − TL)/(TM + TL),
such that TM = T0(1+δτ) and TL = T0(1−δτ). For con-
creteness, we consider the range 0.60 < TM/TL < 1.67.
This range is likely to include the actual value of TM/TL

given how close αM and αL are to each other at zero
temperature.
The (δτ, T ) CDW phase diagram is found by numer-

ically minimizing the resulting free energy as a function
of each of the six order parameter components Mi and Li

using the L-BFGS-G algorithm63 and the SciPy Python
library64, considering a grid of 300 values of δτ and 400
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values of T at each pressure. In Fig. 8a, we show the zero
pressure CDW phase diagram. There are three differ-
ent possible CDW phases, which correspond to the three
lowest energy CDW structures found in DFT. While the
zero temperature CDW ground state is (M00) + (0LL)
(staggered tri-hexagonal) for any value of δτ , the CDW
phase condensed immediately below the highest temper-
ature transition can be either (M00) + (0LL) or a dif-
ferent phase – namely, (MMM) + (LLL) (tri-hexagonal
Star-of-David) or MMM (planar tri-hexagonal). Since
x-ray experiments find a CDW unit cell that is at least
doubled along the c axis, the (MMM) phase cannot
be the intermediate phase. Thus, the only scenario
that gives two separate CDW transitions at zero pres-
sure as a function of temperature, without invoking
time-reversal symmetry-breaking, is a transition from
an undistorted kagome lattice to the (MMM) + (LLL)
CDW phase, followed by a lower temperature transition
to the (M00) + (0LL) CDW phase. This would restrict
the parameter δτ to δτ . −0.1. Moreover, it would be
manifested by the breaking of threefold rotational sym-
metry below the second CDW transition38,40, in qualita-
tive agreement with the experiments26,29.
Following the Raman spectroscopy results of Ref. [19],

we set the ratio between the first and second transition
temperatures in CsV3Sb5 to be (70 K/94 K) = 75%.
Using the phase diagram at zero pressure, this sets δτ ≃
−0.23, which implies TM/TL ≈ 0.63 and is indicated by
the vertical dotted red line in Figure 8. This is to be
contrasted with the zero-temperature DFT result that
αM (T = 0)/αL(T = 0)∼0.87. While such a change in
the proximity between the M and L CDW instabilities
from zero temperature to finite temperature is possible,
a perhaps more likely scenario would be that one of the
transitions involves the condensation of a different order
parameter not captured in our DFT analysis, such as
the imaginary CDW (i.e. loop-current) order parameters
discussed for instance in Ref.47.
The DFT-extracted Landau coefficients in Table I can

also be used to examine the behavior of the CDW phase
as both temperature and pressure are changed simul-
taneously. As the quadratic coefficients α become less
negative under pressure, we can expect TM and TL to
decrease and the undistorted kagome phase to become
stable at a wider temperature range. We use a simple
parametrization of TM and TL, assuming that they scale
proportionally to the DFT quadratic coefficient at each
finite pressure, such that

TM (P, δτ) =
αM (P )

αM (P = 0)
TM (P = 0, δτ)

and

TL(P, δτ) =
αL(P )

αL(P = 0)
TL(P = 0, δτ).

Thus, for a given value of Ω (and thus a particular com-
bination of TM and TL) at 0 GPa, we can predict the

FIG. 8. Finite-temperature CDW phase diagrams corre-
sponding to different choices of the “pure” CDW transi-
tion temperatures TM and TL (dashed black lines) at dif-
ferent pressures. The vertical axis corresponds to the tem-
perature as a fraction of the average transition temperature
T0 ≡ (TM + TL)/2, whereas the horizontal axis corresponds
to the relative temperature δτ ≡ (TM − TL)/(TM + TL).

change in the CDW behavior with pressure by com-
bining TM (P,Ω) and TL(P,Ω) with the finite pressure
coefficients found in Table I, as shown in Figs. 8b-
d. As the pressure increases, the area associated with
the (MMM) phase rapidly diminishes. This is con-
sistent with a rapidly suppressed |γM | coefficient un-
der pressure. The sequence of transitions from undis-
torted to (MMM) + (LLL) and then to (M00)+ (0LL)
is possible throughout the studied pressure range. The
(M00) + (0LL) CDW phase remains the lowest-energy
low temperature structure for all pressures, due to the
coefficient γML being significant even as the quadratic
coefficients α approach zero.

IV. CONCLUSIONS

In summary, we performed a detailed first princi-
ples study of the lattice energetics of the kagome metal
CsV3Sb5 by not only considering different metastable
ground state candidates, but also extracting the coeffi-
cients of the Landau free-energy expansion. Using this
approach, we drew finite-temperature phase diagrams
under pressure, and showed that while a scenario with
two lattice transitions is not explicitly inconsistent with
the DFT results, it is not favored by it; because it re-
quires the second order coefficients cross zero at signif-
icantly different temperatures. We also performed con-
strained structural relaxations to show that while V-only
displacements of atoms lead to an energy lowering, a large
portion of the energy gain is obtained through Sb dis-
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placements for all ground state candidates. This shows
that even though the lattice instability is driven by V
displacements, its collective nature makes the apical Sb
ions essential for understanding the relative stability of
different CDW phases.

It is instructive to compare our results with experi-
ments. Our finding that the Sb degrees of freedom give
an important contribution to the energetics of the CDW
phase is consistent with the conclusions of Ref.49, which
performed x-ray absorption experiments in CsV3Sb5.
Moreover, our finding may also be connected to the
strong sensitivity of the CDW transition temperature on
the c-axis parameter, as revealed by Ref.16. This is be-
cause modifications of the c-axis lattice parameter pro-
moted by hydrostatic or uniaxial pressure are expected to
particularly impact the apical Sb ion displacements. This
effect, in turn, should also affect the electronic structure
by altering the overlap between the Sb pz-orbitals, which
are known to contribute to the Fermi surface pocket cen-
tered at the Γ point17,44,48, resulting in an interesting
feedback between structural and electronic degrees of
freedom.

Our analysis of the pressure dependence of the CDW
phase reveals that the near-degeneracy between the M
and L point instabilities, as reflected by their similar
quadratic Landau coefficients, is lifted for high enough
pressures. In particular, there is a range of pressures
for which αM becomes positive while αL remains neg-
ative. Yet, the CDW ground state at these pressures
remain the same as the one found at ambient pressure
– namely, the (M00) + (0LL) staggered tri-hexagonal
CDW phase. This highlights the importance of the cou-
pling between the M and L CDW order parameters in
promoting the CDW instability. Elucidating the micro-
scopic origin of such a coupling will shed new light on the
microscopic mechanism of the CDW instability. While
a purely phononic mechanism is unlikely40, our results
highlighting the importance of the Sb degrees of freedom
show that a mechanism relying only on the van Hove sin-
gularities arising from the V orbitals may not be enough
either. Taking into account the kz dispersion of the sad-
dle points that give rise to these van Hove singularities
may be important to capture the coupling between the
M and L CDW orders. Interestingly, one of these saddle
points has a strong spectral weight contribution from the
Sb orbitals48. Moreover, for finite kz values, bands stem-
ming from van Hove singularities even cross the Fermi
level17.

Previous experiments have reported evidence for a
pressure-induced transition between two different CDW

phases22,23, as reflected by the double-peak structure of
the superconducting dome inside the coexistence state
with CDW9,13,14,60,61. Our analysis, which extends the
findings first reported by us in Ref. 22, reveals instead
that the CDW ground state remains unchanged as a func-
tion of pressure. While effects not captured by DFT may
impact the small energy differences between the stable
CDW states and thus favor a different ground state, it
is also plausible that a distinct type of charge order is at
play, such as the so-called imaginary CDW, which breaks
time-reversal symmetry.
Similarly, there is experimental evidence for two differ-

ent CDW transitions as a function of temperature19,26,29.
Our finite-temperature analysis does find a narrow pa-
rameter regime in which the (M00) + (0LL) staggered
tri-hexagonal CDW ground state is preceded by a tran-
sition to the (MMM) + (LLL) tri-hexagonal Star-of-
David CDW phase. Notwithstanding the rather restric-
tive conditions in this parameter range, it is not clear
whether this scenario could explain the experimental ob-
servations. The main signature of the (MMM)+ (LLL)
to (M00) + (0LL) transition would be the breaking of
the threefold rotational symmetry of the kagome lattice.
The transport data of Refs.26,29 is consistent with such a
transition, as threefold rotational symmetry breaking is
observed only well below the CDW transition tempera-
ture. On the other hand, the optical data of Ref.30 shows
threefold rotational symmetry being broken at the same
temperature as the onset of CDW. Furthermore, the Ra-
man data of Ref.19 is consistent with two CDW transi-
tions between structures that share the same symmetries.
As with the situation of the pressure-induced CDW-to-
CDW transition, it is also possible that one of the finite-
temperature transitions is related instead to an imag-
inary charge density wave (i.e. loop currents). As dis-
cussed above, while the reported µSR data is characteris-
tic of a time-reversal symmetry-breaking transition31,32,
there is disagreement on Kerr effect data30,34,35. To shed
more light on this issue, it would be interesting to be
able to capture such loop current phases within a first-
principles approach as has been done for CrSiTe3 and
CrGeTe3 in Ref. 65.
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