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Abstract 

 

Recently there has been intense interest in Kagome metals, which are expected to host flat 

bands (FBs). However, the observed “FBs” are not flat over the whole 2D Brillouin zone and 

overlap strongly with other bands. In fact, the FB does not truly exist in a default d-orbital 

Kagome lattice, and the conditions for its existence in Kagome metals are unknown. Here, 

based on tight-binding model analyses of the interplay between orbital and lattice symmetry, 

we establish such conditions. We show that for a single d-orbital Kagome lattice assuming a 

large crystal field splitting (CFS), only 𝑑𝑧2 orbital gives rise to a FB; while 𝑑𝑥𝑦, 𝑑𝑥2−𝑦2, 𝑑𝑥𝑧, 

and 𝑑𝑦𝑧 orbitals can only produce a FB with a rotated d-orbital basis so that they conform with 

the underlying Kagome lattice symmetry. Most importantly, we demonstrate that both 

conditions of d-orbital rotation and large CFS can be ideally satisfied by intercalating the 

Kagome lattice with a hexagonal sublattice without disrupting the destructive interference of 

FB wave function. Furthermore, we propose layered metalorganic frameworks as promising 

candidate Kagome metals to realize FB. 
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Introduction.−Kagome lattice is arguably the most intriguing lattice. A spin Kagome lattice is a 

prominent candidate for quantum spin liquid (QSL) due to geometrical frustration, while the 

quasiparticle eigen spectra of a Kagome lattice contains an eigenvalue with macroscopic 

degeneracy, a flat band (FB), due to destructive quantum interference, i.e., phase cancellation 

of Bloch wave function. Hybrid Kagome metals, namely compounds containing layers of 

Kagome sublattice of transition metals (TM) sandwiched by layers of organic ligands have been 

long investigated to search for signatures of QSL  [1–6], as well as other magnetic quantum 

states, such as quantum optical spin ice [7–11], Kagome magnet [4,12,13], anomalous Hall 

effect [14] and skyrmion [15]. 

Recently, inorganic Kagome metals, such as CoSn, Fe3Sn2, CsV3Sb5, YCr6Ge6, and Ni3In, have 

drawn increasing attention, due to the presence of Dirac bands with von Hove singularities and 

the expected FB, which lead to a range of observed  interesting physical phenomena, such as 

ferromagnetism [16–20], superconductivity [21–24]. However, the experimentally observed 

FBs [25–29] as well as the density-functional-theory (DFT)-calculated band structures are at 

best, if existed, non-ideal, as they are not flat over the whole 2D Brillouin zone and buried with 

strong overlap with many other bands around the Fermi level [25–29]. Moreover, there remain 

fundamental gaps in our understanding of d-orbital FBs in Kagome metals. Most critically, the 

FB does not truly exist in a default d-orbitals Kagome lattice [see Fig. S1(a) and S1(b) in the 

SM [30]], different from the simplest Kagome lattice model assuming an s-orbital per lattice 

site, and the conditions for its existence in Kagome metals are unknown. Therefore, it is highly 

desirable to establish viable physical conditions for the emergence of FB in Kagome metals, 

which will open a promising avenue to realizing some elusive predicted FB phenomena, such as 

the  fractional QHE [31–36] , Wigner crystallization [37–40], excitonic insulator [41,42], QAH/ 

QSH effect [43–46]. 

In this Letter, we develop a full tight-binding (TB) d-orbital Kagome lattice model, to establish 

orbital rotation and large CFS as general physical conditions for the existence of FB in Kagome 

metals, and most importantly demonstrate hexagonal lattice intercalation as an effective 

means to satisfy simultaneously both conditions. We show that in a single d-orbital Kagome 

lattice model assuming a large CFS, only 𝑑𝑧2 orbital by default gives rise to a FB; while 𝑑𝑥𝑦, 

𝑑𝑥2−𝑦2, 𝑑𝑥𝑧, and 𝑑𝑦𝑧 orbitals will only produce a FB is in a rotated basis so that they become 

conform the Kagome lattice symmetry. Interestingly, the lattice having rotated 𝑑𝑥𝑦 (𝑑𝑥𝑧) 

and 𝑑𝑥2−𝑦2(𝑑𝑦𝑧) orbitals leads to a FB of opposite chirality sitting above and below the Dirac 

bands, respectively. For intercalated TM Kagome lattice planes, the Kagome-hexagonal 

intercalation exhibits always an ideal FB, while the case for the Kagome-trigonal intercalation is 

conditional depending on the interaction between the two sublattices. Our findings explain why 

all the currently known inorganic Kagome metals do not have an isolated fully flat FB [see. e.g., 

Fig. S1(c) and S1(d) in the SM [30]]. Furthermore, we propose layered metalorganic frameworks 

(MOFs) to be a family of Kagome metals hosting FB. 



Tight-binding model of a single rotated d-orbital Kagome lattice.− It is important to recognize 

that the basic Kagome lattice model assumes by default a single s or pz orbital of even parity 

sitting at each lattice site  [16,47–51]. The FB arises from purely lattice symmetry, such as 

underlined by line-graph theorem  [52–55]. When five d-orbitals are placed on each lattice site 

[Fig. S1(a) in the SM [30]], however, the FB diminishes [Fig. S1(b) in the SM  [30]] due to the 

following complications. First, the five d–orbitals have distinct symmetries, each of them alone 

may not conform the underlying Kagome lattice symmetry. Secondly, unlike the s-s orbital 

hopping that is isotropic, inter-d-orbital hopping is directional dependent, affecting the 

existence of FB. Thirdly, the atomic TM d-orbitals have a five-fold degeneracy; when the CFS is 

weak, the inter-d-orbital hopping changes each individual subset of d-bands and also causes 

overlap between them. Therefore, the existence of FB in Kagome metals is rather nontrivial, 

much beyond the commonly perceived simple Kagome lattice model. 

To concretely illustrate the above points, we develop a full TB d-orbital Kagome lattice model, 

by explicitly implementing the five d-orbital symmetries to calculate band structure. For clarity 

and simplicity, we place one single d-orbital on each Kagome lattice site, which corresponds to 

the condition of a very large CFS. Figure 1(a) shows the schematic diagrams of a Kagome lattice 

having the 𝑑𝑧2, 𝑑𝑥2−𝑦2, 𝑑𝑥𝑦, 𝑑𝑧𝑥, and 𝑑𝑦𝑧 orbital in their default orientations, respectively. 

Figure 1(b) shows the corresponding calculated band structures. One sees that only the 𝑑𝑧2-

orbital Kagome lattice produces a perfect FB, while all other four orbitals fail. This is because 

the inter-𝑑𝑧2-orbital hopping within the 2D plane is isotropic. In other words, the 𝑑𝑧2 orbital 

symmetry conforms the underlying Kagome lattice symmetry, same as for s- or pz-orbital. In 

contrast, the other four orbitals have a two-fold rotation symmetry which does not conform the 

underlying lattice symmetries, e.g., C3+T, and the interatomic hopping between them is 

anisotropic and directional dependent. Consequently, these four d-orbital symmetries interfere 

with the Kagome lattice symmetry to disrupt the condition of phase cancellation of Bloch 

wavefunction [56] and hence to mitigate the FB. 

We note that in the above calculations [Fig. 1(b)], we used typical hopping strength (𝑉𝑑𝑑𝜎 =
−1.20𝑡0, 𝑉𝑑𝑑𝜋 = +0.90𝑡0, and 𝑉𝑑𝑑𝛿 = −0.10𝑡0) for TM metals [57] in the Slater-Koster 
formalism [58]. Due to the nature of localized d-orbitals, bandwidths are generally narrow and 
some appears rather “flat” [see middle band in the last two columns of Fig. 1(b)]. But they are 
isolated bands, different from the topological FB hosted in the Kagome lattice, which has a 
singular band touching point with a dispersive Dirac band [16,47–55,59]. 
 
Therefore, a Kagome lattice with default d-orbital orientations, and hence a Kagome metal does 

not generally host a topological FB, as commonly perceived. We found that an effective way to 

make the other four d-orbitals to conform the Kagome lattice symmetry is to rotate two of 

three d-orbitals clockwise/counterclockwise by a degree of 2/3 within a unit cell, so that they 

conform the three-fold rotation among the three sublattice sites A, B and C [marked in the first 

column of Fig. 1(a)] plus translation in the Kagome lattice. Starting from the default d-orbital 



orientation in Fig. 1(a), we rotate two of them clockwise/counterclockwise by 2/3, as indicated 

by the curved black arrows, to arrive at the configuration of the rotated d-orbital basis in Fig. 

1(c). Now they all produce an ideal FB, as shown in Fig. 1(d). Interestingly, one also sees that 

the lattice having rotated 𝑑𝑥2−𝑦2/𝑑𝑥𝑦 orbitals [the second/third column in Fig. 1(d)] leads to a 

FB of opposite chirality sitting above/below the Dirac bands, respectively [Similarly for 𝑑𝑧𝑥/𝑑𝑦𝑧 

orbitals in the fourth/fifth column of  Fig. 1(d)]. This means that due to the directional 

dependence of d-orbital hopping there are two groups of d-orbital Kagome lattices have 

effectively the lattice hopping of opposite sign (t) [59]. Also, we emphasize that the FB 

resulted from the rotated d-orbital Kagome lattices as shown in Fig. 1(d) is symmetry protected 

and hence robust, independent of variations of hopping strength (𝑉𝑑𝑑𝜎, 𝑉𝑑𝑑𝜋 and 𝑉𝑑𝑑𝛿). 

Lattice intercalation induced orbital rotation.− The reason for the above “hypothetically” 

rotated d-orbital in a Kagome lattice to produce FB can be easily understood, from a theoretical 

point of view, because it effectively makes the inter-d-orbital nearest-neighbor (NN) hopping 

become the same, as in the s-orbital Kagome lattice (see Table S1 and related discussion [30]). 

However, how to rotate an isolated single d-orbital, especially in a real material, is highly 

nontrivial. One has to find a way to not only rotate two out of three orbitals in the desired 

manner but also eliminate the hopping between different d-orbitals by lifting their degeneracy. 

Remarkably, we found that this can be ideally done by hexagonal lattice intercalation. 

Since the objective is to rotate the d-orbital to conform C3+T symmetry of Kagome lattice, we 

intuitively tried hexagonal and trigonal lattice intercalation. For simplicity, assuming one s-

orbital at each site of hexagonal [Fig. 2(a)] and triangular sublattice [Fig. 2(b)], the calculated 

bands are shown in Fig. 2(c) and 2(d), respectively, for varying onsite energy differences (Δsd  =

ε𝑠 − ε𝑑) and interaction strength (𝑉𝑠𝑑𝜎) between s- and d-orbitals. Here we show the case of 

𝑑𝑥2−𝑦2 in Fig.2 for illustration, and the other cases are shown in Fig. S2 in the SM [30] with 

qualitatively the same behavior. Red and blue bands present the intercalation-sublattice and 

Kagome-sublattice projection, respectively. The TB bands obtained with two sets of 

representative limiting-case parameters [(Δsd = 10t0, Vssσ = −1.2t0, Vsdσ = 0 ) and (Δsd = 0,  

Vssσ = −1.2t0, Vsdσ = 4t0)] are shown in upper and lower panel of Fig.2(c) and 2(d), 

respectively (another intermediate case is shown in Fig. S2 in the SM  [30]). 

Most significantly, with the hexagonal intercalation [Fig. 2(c)], an ideal FB emerges all the time, 

consistent with the rotated d-orbital Kagome bands modeled above, independent of 𝑉𝑠𝑑𝜎 and 

Δsd. Even when  Δsd is small, the d-bands of Kagome sublattice will inevitably overlap with the 

s-Dirac bands of hexagonal sublattice, still the FB remains perfectly flat over the whole BZ 

[lower panel of Fig. 2(c)]. In contrast, the trigonal intercalation is less effective, the FB becomes 

dispersive and mixed with other bands when  Δsd is small [lower panel of Fig. 2(d)]. 

Compatibility of lattice intercalation with FB wave function.−The intriguing difference between 

the hexagonal versus triangular lattice intercalation in preserving the FB is revealed to be 



profoundly related to the fundamental nature of destructive quantum interference of Bloch 

state in a Kagome lattice, namely the phase cancellation of outward hopping from the real-

space compact localized state (CLS) of FB wave function. To illustrate this point, in Fig. 2(a) and 

2(b) we draw the outward hopping pattern from the CLS formed by the rotated 𝑑𝑥2−𝑦2-orbital 

FB on the TM Kagome lattice (silver balls) in presence with a hexagonal and triangular 

intercalation lattice (green balls), respectively. Black arrows indicate the outward hopping from 

the CLS to the NN sites. The alternating positive and negative phases of d-orbitals on six nodes 

of the CLS (marked by a black hexagon) are indicated in Fig. 2(a) and 2(b). It ensures the 

condition of phase cancellation for outward hopping from the CLS to all NN sites to vanish, so 

that the FB forms inherently in a Kagome lattice without intercalation. In the presence of 

additional intercalated lattice, one can see from the pattern of NN hopping, the condition for 

phase cancellation, is still preserved by symmetry with the hexagonal lattice intercalation 

[paired curved black arrows in Fig. 2(a)], namely the hexagonal sublattice does not perturb the 

CLS outward hopping pattern; but not with the triangular intercalation [single straight black 

arrow in Fig. 2(b)]. In other words, the triangle lattice intercalation would disrupt the 

destructive interference of FB wave function, even though it could rotate the d-orbital. 

The effect of Crystal field splitting.−In the above analyses, we consider only one d-orbital per 

Kagome lattice site, which corresponds to the limit of a large CFS so that this d-band is 

energetically well separated from other d-bands. In real Kagome metals, the CFS can vary. In 

addition to d-orbital rotation, another general condition for the emergence of FB is to have a 

strong enough CFS (Δ0) exceeding the bandwidth (𝑊), namely Δ0 ≫ 𝑊 (see Fig. S3 and related 

discussion in the SM [30]). CFS is determined by local point-group symmetry of atoms (or 

molecular motifs) coordinated with the center TM atom and their bonding strength. The former 

dictates the lifted d-level degeneracy, while the latter affects the magnitude of energy splitting. 

When Δ0 ≫ 𝑊, the isolation of d-orbitals also makes the orbital rotation more effective by 

suppressing the inter-d-orbital hopping. 

One way to tune CFS is by changing the intercalation potential, such as by placing a benzene-

derived molecule at each hexagonal sublattice site instead of single atom, as shown in Fig. 3. 

Remarkably, the conditions of orbital rotation and Δ0 ≫ 𝑊 are found to be satisfied 

simultaneously by the intercalation with a strong ligand field, as revealed by TB calculation. 

Figure 3(a) and (b) shows a case study of such intercalated Kagome lattice. We place three 

degenerate d-orbitals (𝜀𝑑
𝑥2−𝑦2 = 𝜀𝑑𝑥𝑦

= 𝜀𝑑
𝑧2 = 0) in their default orientation, i.e., without 

rotation. These three d-orbitals are orthogonal to other two d-orbitals (𝜀𝑑𝑦𝑧
 and 𝜀𝑑𝑧𝑥

) and the 

two groups have opposite mirror parity eigenvalues; therefore, the latter two are neglected 

without loss of generality. Two different orientations of benzene-derived molecules are 

considered as shown in Fig. 3(a) and 3(b), respectively, to account for different CFS due to 

different local bonding geometry. Figure 3(c) and 3(d) show the TB band structures 

corresponding to Fig. 3(a) and 3(b), respectively. In all cases, typical hopping strengths (𝑉𝑑𝑑𝜎 =



−1.20𝑡0, 𝑉𝑑𝑑𝜋 = +0.90𝑡0, and 𝑉𝑑𝑑𝛿 = −0.10𝑡0) are used again. Vssσ = 16t0 is used for 

stronger interaction within the molecule, and Vsdσ = 4𝑡0 is used between the Kagome and 

hexagonal sublattices.  

One sees that for both molecular orientations, the d-bands from the Kagome lattice are forming 

identifiable FB, while a set of Dirac bands can be distinguished arising from the hexagonal 

sublattice. By purposely projecting bands onto the rotated d-basis rather than the default basis, 

one reveals also the FB arises from the rotated  𝑑𝑥2−𝑦2 orbital (cyan color) in Fig. 3(c) but 𝑑𝑥𝑦 

orbital (red) in Fig. 3(d), due to different molecular orientations that change their local bonding 

geometry and strength with the TM to modify the CFS. In contrast, as shown in Fig. 2(c), the 

single-atom intercalation is not able to modulate the flat band via changing Vsdσ. These results 

indicate that hexagonal intercalation with strong ligand field can promote FB formation in a 

Kagome metal by simultaneously rotating the d-orbital and increasing CFS. Also, a larger 

intercalation molecule and a stronger intercalation potential are preferable for increasing CFS. 

Realization of rotated d-orbital FB in MOF Kagome metal.−Finally, we present DFT calculations 

of real materials to confirm the above theoretical findings. TM Kagome lattice are often found 

in two material systems, inorganic and MOF Kagome metals. Our studies point to the need for 

an in-plane hexagonal intercalation of molecular motifs. By examining the known inorganic 

Kagome metals (see Fig. S4, S5 in the SM  [30], and Table 1), we found GdV6Sn6/YCr6Ge6 do not 

have an in-plane intercalation lattice, while the others have a single-atom triangular 

intercalation lattice. Thus, the d-orbital cannot be effectively rotated and the CFS is too small 

based on our theoretical analyses (Table 1). This explains why they do not truly exhibit a 

topological FB, as commonly perceived. Instead, some 2D MOF structures are known to have 

TM Kagome lattice intercalated with a hexagonal lattice of benzene-derived motifs. Therefore, 

we propose layered MOF Kagome metals to be a promising family of organic Kagome metals to 

realize FB. This has been indeed confirmed by DFT calculations of an example system, Ni3C12S12-

Li6, as shown in Fig. 4. A monolayer 2D MOF with a Kagome TM sublattice, such as Ni3C12S12 is 

well-known to host an ideal FB [52,60], as shown in Fig. 4(b), which can be understood by our 

analyses in Fig. 2 and 3. Now, in forming layered 3D MOF Kagome metals, if one simply stacks 

2D MOF layers together, such as AA stacking shown in Fig. 4(c), then the FB in each individual 

2D layer is heavily perturbed becoming dispersive [Fig. 4(d)] due to too strong interlayer 

interaction. To reduce the interlayer interaction, alkali metal intercalation can be used, such as 

Li intercalation [Fig. 4(e)], which will resume the FB [see red and blue dotted bands in Fig. 4(f)]. 

It is important to point out that such intercalation has been indeed observed in 

experiments [60]. Also, by first-principles calculation, AA stacking is suggested as energetically 

more stable than AB stacking [62,63]. We also perform orbital decomposition of DFT band 

structures by projecting onto the rotated d-orbitals using the rotation matrix (Eq. S 5 in the 

SM [30]), to illustrate the effective d-orbital rotation by intercalation (see also Fig. S6 and 

related discussions in the SM [30]). This allows us to clearly show the FBs in MOF is composed 

of single rotated d-orbital.  



Conclusion.−We have developed a TB model to establish the necessary conditions of d-orbital 

rotation and strong CFS for the emergence of topological FB in Kagome metals. Significantly, we 

demonstrate that these two conditions can and only can be simultaneously met by intercalating 

the Kagome TM lattice plane with a hexagonal sublattice of molecular motifs, which are not 

fulfilled by any known existing inorganic Kagome metal. Instead, we propose a family of layered 

MOF Kagome metals as promising candidate materials for realizing the eluding topological FB. 
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Figure 1. [Double-column] Single d-orbital rotation in Kagome lattice to form topological FB. (a) 
Schematic diagram of single d-orbital with default orientation (𝑑𝑧2, 𝑑𝑥2−𝑦2, 𝑑𝑥𝑦, 𝑑𝑧𝑥, and 𝑑𝑦𝑧) 

and corresponding (b) TB band structures. (c) Conceptual diagram of rotated d-orbital basis 
[indicated by black arrows in (a)] and corresponding (d) TB band structures. Red and blue dots 
represent the positive and negative nodes of d-orbital wave functions.  



 

 

 

Figure 2. [single-column] Illustration of lattice intercalation (green balls) induced 𝑑𝑥2−𝑦2-orbital 

(red and blue) rotation and compatibility of intercalation with FB wave function. (a) Kagome-
hexagonal intercalated lattice and (b) Kagome-trigonal intercalated lattice. Thin black rhombus 
indicates the unit cell. Black arrows indicate the outward NN hopping from CLS (thick black 
hexagon).  (c) and (d) TB band structures of Kagome-hexagonal and -triangular intercalated lattice, 
respectively. Upper panels in (d) and (e) show bands with on-site energy difference 𝛥𝑠𝑑 = 10𝑡0 
and s-d hopping integrals  𝑉𝑠𝑑𝜎 = 0; the lower shows bands with 𝛥𝑠𝑑 = 0 and 𝑉𝑠𝑑𝜎 = 4𝑡0. Blue 
and red bands represent the orbital projection onto the rotated d-orbital Kagome and s-orbital 
intercalation sublattice, respectively. 

  



 

Figure 3. [Single-column] Illustration of hexagonal intercalation motifs on effectively rotating 

the default 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦 orientations in the Kagome lattice and enhancing CFS. (b, c) 

Schematics of benzene-derived molecule intercalation. (c-d) TB band structures with default d-

orbitals corresponding to atomic structure of (a-b), respectively. Orbital projection of bands 

onto the rotated 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦 orbital basis is shown by cyan and red color, respectively, 

indicating clearly the effect of orbital rotation induced by hexagonal intercalation. Green dotted 

bands are orbital projection onto the hexagonal intercalation lattice. 

 

 

 

Figure 4. [Single-column] Comparison between single stacking and alkali atom-intercalated 
layered 3D MOF metals. (a) Crystal structure and (b) DFT band structure of 2D Ni3C12S12 (c) Crystal 



structure and (d) DFT band structure of AA stacked Ni3C12S12. (e) Crystal structure and (f) DFT 
band structure of Li intercalation (Ni3C12S12-Li6). Orbital projection onto the rotated 𝑑𝑧2, 𝑑𝑥2−𝑦2, 

𝑑𝑥𝑦, 𝑑𝑦𝑧, and 𝑑𝑧𝑥 orbitals are colored by green, cyan, red, magenta, and blue, respectively.  



 

Table 1. Analysis of crystal structure of inorganic Kagome metals. Intra- and inter-layer 
intercalation with Kagome TM sublattice are specified. 

 
Intralayer 

intercalation 
Intercalation 

motif 
Interlayer intercalation FB existence 

CoSn triangular Sn [hexagonal Sn]×2 No 

AV3Sb5 
(A=K, Cs, Rb) 

triangular Sb 
[triangular A] ×2 

[hexagonal Sb] ×2 
No 

GdV6Sn6 
YCr6Ge6 

None None 
[Triangular Gd/Y + hexagonal Sn/Ge] 

[Triangular Sn/Ge] ×2 
[hexagonal Sn/Ge] 

No 

Ni3In triangular In [triangular In + Kagome TM] ×2 No 

Fe3Sn2 triangular Sn 
[hexagonal Sn] ×2 

[Kagome TM + triangular Sn] ×2 
No 

Ni3C12S12-Li6 hexagonal C6S6 [hexagonal Li3] ×2 Yes 
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