
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Deep learning Hamiltonians from disordered image data in
quantum materials

S. Basak, M. Alzate Banguero, L. Burzawa, F. Simmons, P. Salev, L. Aigouy, M. M.
Qazilbash, I. K. Schuller, D. N. Basov, A. Zimmers, and E. W. Carlson

Phys. Rev. B 107, 205121 — Published 10 May 2023
DOI: 10.1103/PhysRevB.107.205121

https://dx.doi.org/10.1103/PhysRevB.107.205121


Deep Learning Hamiltonians from Disordered Image Data in Quantum Materials

S. Basak,1, 2 M. Alzate Banguero,3 L. Burzawa,4 F. Simmons,1, 2 P. Salev,5, 6 L. Aigouy,3

M. M. Qazilbash,7 I. K. Schuller,6 D. N. Basov,8 A. Zimmers,3 and E. W. Carlson1, 2

1Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
2Purdue Quantum Science and Engineering Institute, West Lafayette, IN 47907, USA
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The capabilities of image probe experiments are rapidly expanding, providing new information
about quantum materials on unprecedented length and time scales. Many such materials feature
inhomogeneous electronic properties with intricate pattern formation on the observable surface.
This rich spatial structure contains information about interactions, dimensionality, and disorder –
a spatial encoding of the Hamiltonian driving the pattern formation. Image recognition techniques
from machine learning are an excellent tool for interpreting information encoded in the spatial rela-
tionships in such images. Here, we develop a deep learning framework for using the rich information
available in these spatial correlations in order to discover the underlying Hamiltonian driving the
patterns. We first vet the method on a known case, scanning near-field optical microscopy on a thin
film of VO2. We then apply our trained convolutional neural network architecture to new optical
microscope images of a different VO2 film as it goes through the metal-insulator transition. We find
that a two-dimensional Hamiltonian with both interactions and random field disorder is required to
explain the intricate, fractal intertwining of metal and insulator domains during the transition. This
detailed knowledge about the underlying Hamiltonian paves the way to using the model to control
the pattern formation via, e.g., tailored hysteresis protocols. We also introduce a distribution-based
confidence measure on the results of a multi-label classifier, which does not rely on adversarial
training. In addition, we propose a new machine learning based criterion for diagnosing a physical
system’s proximity to criticality.

I. INTRODUCTION

The types of surface probes, such as atomic force mi-
croscopy (AFM), scanning tunneling microscopy (STM),
and scattering scanning near-field infrared Microscope
(SNIM), among many others [1, 2] and the wealth of
data they generate is increasing at a rapid pace. As of-
ten happens in science, new experimental frontiers reveal
new physics: These scanning and image probe experi-
ments often reveal complex electronic pattern formation
spanning multiple length scales at the surface of corre-
lated quantum materials, even when they are atomicaly
smooth.[3–12] For example, manganites can have ferro-
magnetic and antiferromagnetic regions that coexist on
multiple length scales.[9] In the unidirectional electronic
glass in cuprates,[4] domains of stripe orientation take
fractal form with correlations over 4 orders of magni-
tude in length scale.[13] Magnetic domains in NdNiO3

were also revealed to have fractal textures.[14] We focus
here on VO2, a material whose metal and insulator do-
mains can show self-similar structure over multiple length
scales.[3, 8, 15]

Unfortunately, most of our theoretical tools are de-
signed for understanding and describing homogeneous
electronic states. Therefore it is vital that we envi-

sion new theoretical frameworks for understanding why
the patterns form in strongly correlated materials. The
cluster analysis techniques we developed for interpreting
these images have already uncovered universal behavior
among disparate quantum materials,[3, 7, 8, 14, 16] but
the methods only work on systems near criticality, and
for sufficiently large fields of view. Powerful image recog-
nition methods from machine learning (ML) hold poten-
tial to complement and extend these analyses into new
regimes.

There has been tremendous growth recently in the
application of ML methods to condensed matter. (For
reviews, see Refs. 17–20.) ML is being applied as
a tool to tackle various problems in condensed mat-
ter physics, including disordered and glassy systems
systems[21–23], quantum many body problems[24], quan-
tum transport[25], renormalization group[26, 27], and
big data in materials science[28, 29]. ML also bene-
fits from physics, an area known as physics-inspired ML
theory.[17] Applied to experimental data, ML has been
used to detect which phase of matter a physical system is
in,[30] and aid in the experimental detection of the glass
transition temperature.[31] Other common uses of ML for
experimental data include the extraction of material pa-
rameters from experiment, [28, 32] or using ML to replace
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a lengthy and time consuming fitting procedure.[32, 33]
Regarding phase transitions, ML has been used to

detect which phase of matter a theoretical configura-
tion is in,[19, 20, 34] as well as identify the transition
temperature of a theoretical model,[19, 34, 35] each in
cases where a particular Hamiltonian is already assumed.
Relatively little attention has been paid to the critical
region,[20] where domains display power law structure
across multiple length scales. In addition, much of the
work done to identify phases or detect phase transitions
has been purely computational, with the Hamiltonian
assumed.[19, 20, 34, 35] By contrast, our method utilizes
the rich spatial correlations available in near critical con-
figurations to detect which Hamiltonian should be used
to describe a physical system, and we apply the method
to experimentally derived data.

Here we develop a Deep Learning (DL) classifier to
recognize spatial configurations from several different
Hamiltonians. We test the DL classifier on experimental
image data of VO2 obtained via SNIM, and then apply
it to new optical microscope images of VO2. Convolu-
tional neural networks in particular are heavily used in
image classification. We have previously shown that with
ML, images from simulation can be classified with very
good accuracy of ∼ 97%. [36] Here we show that a DL
architecture can classify 2D surface images into one of
seven candidate theoretical models, to even better ac-
curacy (> 99%). We introduce a symmetry reduction
method which reduces training time over the data aug-
mentation method. In addition, we use the DL model
on experimental images derived from SNIM and optical
microscope data to discover the underlying Hamiltonian
driving pattern formation of metal and insulator puddles
in films of VO2. We also introduce a new method for
judging the confidence of a multi-label classifier, based
on the multivariate distribution of values of the output
nodes. We furthermore propose that this confidence mea-
sure tracks proximity to criticality.

This article is organized as follows: In Sec. II A, we
give an overview of the Hamiltonians of interest from
statistical mechanics in this paper. Section III shows
the end-to-end deep learning architecture and process.
We demonstrate the effectiveness of symmetry reduction
to reduce training time as compared with data augmen-
tation, and develop a confidence criterion to judge the
reliability of predictions. In Sec. IV, we make predic-
tions on SNIM and optical microscope data on thin films
of VO2. We show that using only simulated data for
training, we have developed a robust deep learning clas-
sification model, that can learn the Hamiltonian driving
pattern formation from experimental surface probe im-
ages.

II. DEVELOPING A DEEP LEARNING MODEL
TO REVEAL UNDERLYING HAMILTONIANS

We first construct several possible Hamiltonians that
could potentially describe the morphology of these metal
and insulator domains, including the multiscale behavior.
Then, we use numerical simulations to generate thou-
sands of spatial configurations of metal and insulator do-
mains that can arise in these Hamiltonians. Next, we
develop and train a Deep Learning (DL) convolutional
neural network (CNN) on a subset of these images in su-
pervised learning mode. After we validate that the DL
model can correctly identify the underlying Hamiltonian
from a single domain configuration with greater than 99%
accuracy, we then apply our trained DL model to experi-
mental data on VO2 obtained via both SNIM and optical
microscopy.

A. Candidate Hamiltonians and the Morphologies
They Produce

We use numerical simulations to generate typical con-
figurations of metal and insulator domains that can
arise from various model Hamiltonians that could poten-
tially be controlling the metal-insulator domain struc-
ture. Simulation methods are described briefly in this
section and in detail in the SI, and are summarized in
Table I. As VO2 undergoes a temperature-driven transi-
tion from metal to insulator and vice versa, the macro-
scopic resistivity changes by 4 to 5 orders of magnitude.
However, rather than doing so homogeneously, we pre-
viously used SNIM to produce spatially resolved images
of the metal and insulator domains which revealed that
VO2 thin films transition inhomogeneously, with metal
and insulator domains interleaving with each other over a
wide range of length scales.[3, 37] (Note that the voltage-
driven transition is also inhomogeneous, as revealed by
optical measurements.[38]) We introduce a range of pos-
sible Hamiltonians which could be responsible for driving
the multiscale textures during the metal-insulator tran-
sition in VO2. Domain configurations from these Hamil-
tonians will be used to train the DL model to identify
the underlying physics driving pattern formation in this
material.

Because the experimental probes of interest are di-
rectly measuring electronic degrees of freedom, we con-
struct Hamiltonians that are about these electronic de-
grees of freedom. The intricate patterns of metal and
insulator domains happens across multiple length scales
from the resolution of the probes all the way out to
the field of view (≈ 20nm − 4µm for SNIM and ≈
370nm− 28µm for optical microscope data). Therefore,
we construct Hamiltonians at the order parameter level.
Because the theories are constructed at the order param-
eter level, they are not microscopic, although they can
provide constraints on microscopic models.

First, we consider a clean, interacting Hamiltonian. A
reasonable ansatz is that the interaction energy between
neighboring domains is lower for like domains than for
unlike domains. We model this proclivity toward neigh-
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(a) T=2.30J (b) T=2.35J (c) T=2.45J (d) T=2.55J

(e) T=4.50J (f) T=4.52J (g) T=4.55J (h) T=4.60J

(i) R=1.00J (j) R=1.05J (k) R=1.10J (l) R=1.15J

(m) R=2.25J (n) R=2.26J (o) R=2.27J (p) R=2.28J

(q) p=0.31 (r) p=0.50 (s) p=0.59 (t) p=0.80

FIG. 1. Typical critical configurations generated from simulations of clean and random field Ising models and percolation
models.

boring like domains[8, 39] with a nearest-neighbor Ising Hamiltonian:

H = −J
∑
<i,j>

σiσj −
∑
i

hσi (1)
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FIG. 2. (a) Generic liquid-gas phase diagram above the triple
point. For paths along the dotted blue line, the phase tran-
sition is first order. However, the transition is second order
when approached along the dotted red line. The critical end-
point (solid green circle) exerts itself over a critical region
(open green circles). (b) Phase diagram of the random field
Ising model. While the clean or random field Ising model
has a second order phase transition as a function of tempera-
ture (the red dotted lines), the transition is first order when
approached as a function of applied field, crossing through
the ordered region (blue dotted line). Critical behavior is ob-
served in the vicinity of the green critical temperature line,
whose critical behavior is controlled by the random field fixed
point for any finite disorder strength. Because the random
field fixed point is a zero temperature fixed point, the critical
region is much broader than in the clean case.

where, σi = ±1 is a two-state local order parameter
which in this case tracks metal (e.g., σ = 1) and in-
sulator (e.g., σ = −1) domains. In an infinite size sys-
tem, this model undergoes an equilibrium, second order
phase transition as a function of temperature at a critical
temperature of T 2D

c ≈ 2.27J in two-dimensional systems
and T 3D

c ≈ 4.51J in three-dimensional systems. [40, 41]
However, the model also undergoes a first order phase
transition as a function of applied field h. This first or-
der line terminates in the critical endpoint mentioned
above. The phenomenology of a first order line termi-
nating in a critical endpoint is why this model is often
used in conjunction with the liquid-gas transition. For
example, when the liquid-gas transition is approached
along the coexistence curve in temperature and pressure,
the transition is second order (see the red dotted line
in Fig. 2(a)).[42] The influence of that critical point is
felt throughout a critical region (the light green region in
Fig. 2(a)), which includes part of the first order line in
the vicinity of the critical endpoint. Similarly, this model
can be used to describe the first order metal-insulator
transition in VO2, with a critical endpoint whose influ-
ence extends along the first order line.[8] The physical
structure of domains is power law throughout this criti-
cal region, when viewed on length scales shorter than the
correlation length, which diverges as the critical point
is approached. In mapping this order parameter model
to the temperature-driven metal-insulator transition in
VO2, we are making the ansatz that a sweep of temper-

ature in the experiment maps to a combination of tem-
perature and field sweep in the model, as in our prior
work[8] and Ref. [43]

We simulate configurations near criticality (see Ta-
ble I), since that is where this Hamiltonian can cause
structure over multiple length scales. We use Monte
Carlo simulations to generate typical examples of mul-
tiscale morphologies of insulator and metal domains that
can arise from the clean Ising Hamiltonians of Eqn. 1.

Intricate domain configurations arise near the critical
points of this model. Figure 1(a-d) shows some config-
urations near T 2D

c on a 100 × 100 lattice, with periodic
boundary conditions. Figure 1(e-h) shows some repre-
sentative configurations near T 3D

c on a 100 × 100 × 100
lattice. Further simulation details are in the SI.

The correlation length of a system diverges at critical-
ity, ξ ∝ 1/|T−Tc|ν . When viewed on length scales x < ξ,
the system exhibits critical fluctuations, i.e. fluctuations
on all length scales between the correlation length ξ and
the short distance cutoff, which for the lattice models
we study is the lattice spacing, and in the real physical
system it is the size of a unit cell. Close enough to criti-
cality, this length scale will exceed any finite field of view
(FOV). Therefore, when observed on a finite FOV (exper-
imentally, or in simulation), there is a finite range of pa-
rameters over which the system displays critical pattern
formation. For this reason, the entire range of parame-
ters listed in the first part of Table I should be viewed as
critical for the FOV’s considered in this paper.

In addition to an interaction energy between domains,
material disorder also affects the types of shapes that
metal and insulator domains take. Because material dis-
order may make certain regions of the sample more fa-
vorable to insulator, and certain others more favorable
to metal, we use a random field Ising model (RFIM) to
simulate the effects of material disorder on the metal and
insulator textures:[44]

H = −J
∑
<ij>

σiσj −
∑
i

(hi + h)σi (2)

The first term is the clean Ising model of Eqn. 1. In
the second term, the uniform field h and the local ran-
dom fields hi couple directly with the local order pa-
rameter. The random fields are chosen from a Gaussian
distribution of width R where the probability of hi is
P (hi) = exp(−h2i /(2R2))/

√
2πR2. In the physical sys-

tem, VO2 changes from insulator to metal as the temper-
ature is changed. Within the model, this physics presents
itself as a combination of model temperature and uniform
field h.[8]

The ordered phase corresponds to all metal or all insu-
lator, and the transition is second order when approached
as a function of temperature or disorder strength at zero
applied field (see the red dotted lines in Fig. 2(b)). When
instead the field is swept across the ordered region, the
transition is a first order change from metal to insulator
(see the blue dotted line in Fig. 2(b)). When temperature
and the disorder strength are both nonzero, the behavior
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Model Parameters Simulated Simulation Method

2D Clean Ising (C-2D) T = 2.25 − 2.64 Monte Carlo

3D Clean Ising (C-3D) T = 4.45 − 4.65 Monte Carlo

2D RFIM (RF-2D) R = 1.00 − 1.19 Zero Temperature Field Sweep

3D RFIM (RF-3D) R = 2.25 − 2.29 Zero Temperature Field Sweep

2D Percolation (P-2D) p = 0.57 − 0.61 Biased coin flip

3D Percolation (P-3D) p = 0.29 − 0.33 Biased coin flip

p = 0.02 − 0.2 Biased coin flip

Non-Critical Percolation (P∗) p = 0.48 − 0.52 Biased coin flip

p = 0.8 − 0.98 Biased coin flip

TABLE I. Parameters of simulations of the statistical mechanics models. In the first part of the table, parameters are in the
critical region. In the second part of the table, parameters are not near criticality.

of the model in the vicinity of the phase transition is dom-
inated by the random field.[45] That is, the random field
is relevant but the temperature is irrelevant in the renor-
malization group sense in a broad range around the solid
green line in Fig. 2(b). We therefore model the patterns
of metal and insulator domains that are possible with this
Hamiltonian by generating domain configurations at zero
temperature, while sweeping the uniform field h. At zero
temperature, this model undergoes an equilibrium phase
transition at a random field strength of Rc ≈ 2.27J in an
infinite size three-dimensional system (RF-3D).[46] In
two dimensions (RF-2D), the critical disorder strength is
Rc → 0 [47] in the infinite size limit, although in a finite
size system or with finite FOV, Rc(L) > 0. For the FOV
we consider, Rc ≈ J for RF-2D.

When the random field model is near criticality, as the
uniform field is swept from low to high or high to low, in-
tricate patterns develop over multiple length scales near
the coercive field strength, where the metal/insulator do-
main fraction changes most rapidly with respect to uni-
form field h. Figures 1(i-l) show representative configu-
rations of RF-2D for a 100 × 100 lattice. Figures 1(m-
p) show representative configurations on the surface of
a 100 × 100 × 100 lattice near the 3D critical disorder
strength, R3D

c .

There is also the possibility that in fact domains are
not interacting with each other as in the above Hamil-
tonians, but rather each domain acts independently. In
the corresponding uncorrelated percolation model, a site
is labeled “metallic” with a probability p; otherwise it is
labeled “insulating”. When p 6= 0.5, this is like flipping
a biased coin where p is the probability of turning up
heads. This model also has a second order phase tran-
sition as a function of p, and displays structure across
multiple length scales near its critical point. The critical
percolation strength pc is marked by a percolating clus-
ter spanning the entire system, meaning that it touches
one side of the system, and also the opposite side. In
a two-dimensional system on an infinite square lattice,
this threshold occurs at p2Dc ≈ 0.59 and in a three-
dimensional system on an infinite cubic lattice it occurs
at p3Dc ≈ 0.31. [48] Figure 1(s) shows a percolation config-

uration of size 100×100 at p2Dc = 0.59. Figure 1(q) shows
a percolation configuration 100×100×100 at p3Dc = 0.31.

In order to further train the DL model to distinguish
configurations that are near criticality (such as those
described above) from configurations that are not near
criticality, we also generate training images on uncorre-
lated percolation away from any critical point. In or-
der to avoid the multiscale, fractal textures associated
with criticality, in this set of images we use the per-
colation model in the following ranges: p = 0.02 −
0.2; 0.48 − 0.52; 0.8 − 0.98. The first range produces
images which are mostly black; the second range pro-
duces images which are “white noise” (such as Fig. 1(r)),
and the third range produces images which are mostly
all white (like those in Fig. 1(t)). Table I summarizes
the parameter ranges we use for generating simulated
data for training and validation from each of the above
Hamiltanions.

III. CUSTOMIZED DEEP LEARNING MODEL

The parameters from Table I are used to generate 8,000
images for each model near its transition, with the excep-
tion that percolation away from the 2D and 3D critical
percolation strengths accounts for 16,000 images, for a
total of 64,000 training images of synthetic data. We
describe below the three major components of our Deep
Learning model: (A) data preparation via symmetry re-
duction; (B) a CNN with multiple layers; and (C) our
method for judging the confidence of the classifier.

A. Data Preparation: Symmetry Reduction
Method

The entire phase space associated with typical config-
urations generated by the models above satisfies certain
symmetries. For example, the clean Ising model (Eqn. 1)
satisfies the Z2 symmetry σi → −σi. Similarly, the RFIM
(Eqn. 1) is symmetric under the simultaneous operations
σi → −σi with hi → −hi. Likewise, the percolation
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FIG. 3. Symmetry reduction method, as described in the text.

model is symmetric under the simultaneous operations
σi → −σi with p → 1 − p. In addition, for the square
domain configurations we use as training data, the sta-
tistical weight of typical configurations in phase space
is symmetric under all of the operations of the dihedral
group of the square, D4. Such symmetries are often em-
ployed in ML via a technique called data augmentation,
in which all of the distinct symmetry operations are ap-
plied to specific configurations, in order to generate more
configurations, and thereby augment the training data.
When a neural network is trained under this kind of aug-
mented data set, the resulting trained neural network
respects all of the symmetries of the underlying models
which produced the training data, rather than suffering
from accidental asymmetries which mimic the random
nature by which the training data are produced. The
number of distinct symmetry operations available in our
case is that of Z2 ⊗ D4, or 2 × 8 = 16. For the square-
shaped images of domain patterns that we generate, us-
ing this method of data augmentation would increase the
training set by a factor of 16.

Rather than employ data augmentation, we introduce
a new method: symmetry reduction. We prepare the data
by reducing the symmetry of each configuration as much
as possible before feeding it into the neural network. This

symmetry reduction is as effective as the data augmenta-
tion method, but significantly reduces the time needed to
train the neural network. In order for symmetry reduc-
tion to be effective, it is essential that all data go through
the symmetry reduction before being fed into the CNN
(including training, validation, and any subsequent real-
world data fed into the classifier).

Let us turn our attention to the Z2⊗D4 symmetry op-
erations in effect. Our models (Eqns. 1 and 2, including
the non-interacting percolation limit where J → 0) map
metal and insulator domains to Ising spins σ = +1 for
metal, and σ = −1 for insulator. There are 2 × 8 = 16
symmetry operations that can be applied to these spin
configurations while preserving the weights of the typical
configurations in phase space. We perform the following
symmetry operations to each configuration in order to
prepare the data:

1. Ising Z2 symmetry σi → −σi: If a domain configu-
ration has majority spin down, we flip all spins to
make it majority spin up.

2. Rotations by 0, π/2, π, 3π/2: The configuration is
rotated such that of the four quadrants, quadrant I
has the most spins up.

3. Transpose (reflection about the xy diagonal): If
quadrant IV has more spins up than quadrant II,
we transpose the configuration to ensure that quad-
rant II has more spins up than quadrant IV.

All the above operations are performed in the given order
and the logic is summarized in Fig. 3.[49]

B. Convolutional Neural Net Architecture

We pass to the neural network single channel binary
images (i.e. strictly black and white, the same image
space as QR codes) of size 100 × 100. The architecture
of the CNN is as follows (Fig. 4): We use two sets of
convolutional layers interleaved with max pooling layers.
The first convolutional layer applies a suite of 32 filters
of size 5× 5 to the image, resulting in an image with 32
channels. (By way of comparison, an RGB image has 3
channels, so that each pixel is described by 3 numbers.)
These 32 filters have a total of 32 × 5 × 5 parameters
to be trained. The subsequent max pooling layer groups
successive sets of 2 × 2 pixels, keeping only the largest
value in each channel, thus reducing the image size to
50 × 50. The next convolutional layer applies a suite of
64 filters of size 5×5×32 to the 32-channel image which
was passed from the previous max pooling layer. These
64 filters have a total of 64 × 5 × 5 parameters to be
trained. This is followed by another max pooling layer,
reducing the image size to 25 × 25 pixels, now with 64
channels.

All of this is followed by a fully connected layer,
followed by dropout of 50 % of the connections, fol-
lowed by a final fully connected layer, resulting in seven-
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FIG. 4. Convolutional Neural Network. The input image
here is reduced by the symmetry operations given in Fig. 3.
The multi-dimensional output 2b is flattened into a one-
dimensional array (3a) before it is fed into the fully connected
layer. We use the Adam (Adaptive moment estimation) op-
timization algorithm to train the network. [50] The output
label is determined using softmax activation on the output
layer.

dimensional output for classification (C-2D, C-3D, RF-
2D, RF-3D, P-2D, P-3D, and P*). We use a softmax
activation in the final output layer, which results in sin-
gle label classification. If there are n output classes with
numbers vi, the softmax activation function is defined as:

Y softmaxi = exp (vi)/

n∑
j=1

exp (vj) (3)

where Y softmaxi is the output likelihood estimate.
After the symmetry reduction, 80% of the configura-

tions are used for training; the remaining 20% are used
for validation. The training set is used to train the net-
work whereas the validation set is used to predict the
expected error upon generalization beyond the training

FIG. 5. Error in the training and validation set vs. the num-
ber of epochs. Epochs correspond to the number of times
the training set went through a training process. To prevent
overfitting we chose epoch=4 for testing with experimental
images. Training/Validation accuracy = 99.64%/99.67%

set. Figure 5 shows how the errors evolve with training
epoch. The epoch at which the classification errors in the
validation phase deviate from the errors in the training
phase roughly marks the onset of overfitting. Figure 5
shows that the classification errors are less than 0.5% at
this point.

C. Figure of Merit of Classifications

Our goal is to use our ML model developed under
supervised learning conditions to distinguish among hy-
potheses about datasets from real experiments. But be-
fore applying our trained ML model to images from ex-
periment, it is important to understand that a trained
classifier is only as good as its training set. Thus far, we
have generated “simulated data” from various theoreti-
cal Hamiltonians, and we have trained an ML algorithm
as to which sets of simulated data came from which un-
derlying Hamiltonian. A major challenge in going from
simulated data to real-world data is how to control for
hypotheses that were not originally envisioned. For ex-
ample, if an ML classifier has been trained to recognize
the difference between cats and dogs, what answer will
it give when shown a banana? A simple classifier will
give a classification from its training set, but ideally, the
answer should not be “cat” or “dog,” but rather, “nei-
ther.” Likewise, if our ML classifier is shown experimen-
tal data from a system whose underlying Hamiltonian is
sufficiently different that none of our Hamiltonians used
in the training process are a good description of the phys-
ical system, a simple classifier will still return some classi-
fication. Therefore, it is necessary to devise a method for
flagging potentially dubious classifications. One method
is adversarial training, i.e. to train the CNN on images
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FIG. 6. Distribution of values of the output nodes for each class in the last fully connected layer, for all of the training
sets. These clusters inhabit a 7-dimensional “model” space. The two representations in the figure are projections of the same
7-dimensional information onto two different 3-dimensional subspaces. An interactive 3D visualization of the full 7D file is
available in the Supplementary Material[51] and Ref. [52].

that are not in the set of Hamiltonians comprising the
hypothesis. Once again, this is limited by human imagi-
nation. For example, how will one know when this pro-
cess is sufficiently completed, and how can one control
for unforeseen image types arising in experiment? It is
better to design a neutral method for flagging suspicious
classifications, one that is not limited by the adversarial
training set.

Therefore, we seek to devise a completely different
method for identifying potentially dubious classifications.
In order to do this, we turn our attention to the distri-
bution of values observed right after the last fully con-
nected layer in Fig. 4. Fig. 6 shows what the distribution
of values looks like at this step, over the entire training
set. Since this distribution is well clustered for the seven
models of interest, a prediction point lying far from its
corresponding cluster should be scrutinized rather than
blindly accepted.

For each class, the distribution at the end of the last
fully connected layer (see Fig. 6) is generated from the
training examples. We form the 7-dimensional standard
deviation vector of these clusters about their centers of
mass. We subsequently flag as suspicious any output in
this layer that is a distance in this space of more than one
standard deviation vector from all points in the cluster.
Setting the cutoff at smaller distances rejects too many
correct predictions in the validation set. A generalization
of this method would be to use any or all of the interme-
diate layers for detecting such an anomaly in the input
data, see Ref. [53].

IV. APPLICATION TO EXPERIMENTAL
IMAGES ON VO2

A. Testing the CNN on SNIM images of a thin
film of VO2

We next turn our attention to testing the trained
CNN on an experimentally derived dataset for which
the Hamiltonian underlying the experimentally observed
pattern formation is already known, before applying the
CNN to a new experimental dataset for which the an-
swer is not previously known. In this section, we con-
sider experimental data taken via SNIM on a thin film
of VO2. VO2 undergoes a metal-insulator transition just
above room temperature, in which the resistivity changes
by over five orders of magnitude.[54] Rather than transi-
tioning all at once, we previously showed that there is a
finite regime of phase coexistence in which the metal and
insulator puddles show significant pattern formation.[3]
In fact, the spatial correlations reveal structure on all
length scales measured via SNIM, from the pixel size
(20nm) all the way out to the field of view (4 µm).[8]
The physics driving the pattern formation in this sample
is already known via the cluster analysis techniques we
recently developed.[55–57] By applying these techniques
to analyze the metal and insulator puddles in this thin
film of VO2, we showed that the multiscale domains are
of a fractal nature, with quantitative geometric charac-
teristics including avalanche statistics matching those of
the RF-2D.[8]

Fig. 7 shows the application of the CNN to experi-
mental data on a thin film of VO2 as it undergoes the
metal-insulator transition. The data were obtained using
SNIM, and first reported in Ref. 3. SNIM measurements
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return an intensity a as a continuous variable at each
pixel, resulting in single channel images. These SNIM
images are of size 256 × 256 px. The SNIM images are
converted to black pixels and white pixels by assigning
SNIM values of a < 2.5, which are insulating, to be white,
and SNIM values of and a > 2.5, which are metallic, to
be black, as discussed in Ref. [8]. These thresholded im-
ages are shown in the top row of Fig. 7. Ref. [8] showed
that the geometric characteristics of the pattern forma-
tion are insensitive to changes in the threshold a within
about 15% of this threshold value.

As shown in Fig. 8, the CNN takes in the experimen-
tally derived images 100× 100px at a time, in each in-
stance returning a classification indicating which Hamil-
tonian likely produced the pattern formation. In order
to make full use of the spatial structure in the image,
we use a sliding window of size 100× 100px, resulting in
(256−100+1)×(256−100+1) = 157×157 classifications
for each image.

In Fig. 9, we show the distribution of values in the last
fully connected layer of the CNN, over the set of sliding
windows. The colored dots corresponding to the train-
ing set are the same as those shown in Fig. 6. Results
of CNN applied to the experimentally derived SNIM im-
ages of VO2 that are within one 7-dimensional standard
deviation of a training set are indicated by orange dots.
Results of the SNIM data that are farther away are indi-
cated by black dots, as described in Sec. III C.

Fig. 7 shows the final results of the classifier applied
to the SNIM data. Below each SNIM image (top row),
the bar chart indicates the percentage of sliding windows
which give a particular classification. Bright bars and
numbers in parentheses correspond to classifications that
are within one 7-dimensional standard deviation of the
training sets. The darker part of the bar, and the num-
bers not in parentheses refer to the the total percentage
of sliding windows which give the corresponding classifi-
cation. Thus the overall result of the ML classifier on an
experimentally derived dataset is that it agrees with the
classification from cluster techniques, with at least 83%
confidence.

Notice that in Fig. 9, the distribution of values of the
output nodes in the last fully connected layer for the
CNN applied to the SNIM data is always close to the
RF-2D model. Moreover, the entire set of points moves
toward the training set distribution and then away from
it, as a function of temperature. The temperature of
closest approach is T = 342.8K. This same phenomenon
is borne out in the bar charts of Fig. 7, where height of the
bright green bar also peaks at T = 342.8K. This is highly
reminiscent of critical behavior, which grows in strength
as the system approaches criticality, and diminishes as
the system moves away from criticality. We propose that
the distance of the center of mass of the SNIM cluster
from the training clusters can be used as a measure of
proximity to the critical point. Further study is needed
to test this idea.

B. Applying the CNN to New Optical Microscope
Images of a VO2 film

The top panels in Fig. 10 show metal and insulator
domains in a thin film of VO2 made at UCSD, taken
using a home-built optical microscopy system capable of
remaining in focus while temperature is cycled through
the full metal-insulator transition. (See Supplementary
Material[51] and Ref. [58] for full details of the sample
preparation and experimental setup.) The optical data
are taken at a series of temperatures going through the
metal-insulator transition. The physical dimensions of
the square image sizes in Fig. 10 are all 28µm × 28µm,
and the pixel size is 50nm.[59] Both the FOV and the
pixel size are larger than those of the SNIM images in
Fig. 7.

We apply the same sliding window technique as with
the SNIM data to analyze pieces of each image, 100×
100px at a time, in each instance returning a classification
indicating which Hamiltonian likely produced the pattern
formation. Because the optical images in Fig. 10 are
760× 760 pixels, this results in (760− 100 + 1)× (760−
100 + 1) = 6612 classifications for each image.

The bottom panels in Fig. 10 show the final results
of the CNN classifier applied to the optical microscope
data. Below each optical microscope image, the bar chart
indicates the percentage of sliding windows which give a
particular classification. In this case the images from
temperatures T = 339K to T = 343K are each identified
as RF-2D with a maximum greater than 89% confidence.
In Figure 11 we show the distribution of values in the last
fully connected layer of the CNN, over the set of sliding
windows. The small circles correspond to the training
set, and are the same as those shown in Fig. 6. We discuss
the implications of this identification in Sec. V.

From a theoretical point of view, we don’t expect ev-
ery image acquired from the experiments to have sig-
nificant pattern formation. For example, once the image
saturates to metal or insulator, there is no pattern forma-
tion left, and consequently there is much less information
available in these datasets about the underlying model.
Rather, we expect the images to display criticality which
reaches peak prominence at a particular temperature.
The typical method to discern proximity to criticality
is through correlation lengths. The correlation length is
expected to blow up as a power law, ξ ∝ 1/|T − Tc|ν
in the vicinity of the critical temperature. However, the
maximum correlation length our CNN can discern is cut
off by the maximum FOV that the CNN is fed from the
experimental data. Furthermore, the CNN analysis does
not return a length scale. Instead, we observe once again
the interesting behavior that the proximity of the ex-
perimentally derived data’s cluster of output values in
the last fully connected layer approaches and then re-
treats from the cluster of output values in the training
sets as a function of temperature, as evidenced by the
non-monotonic behavior of the height of the bright green
bars with temperature in Fig. 12. This is in line with our
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FIG. 7. Classification results of our deep learning model applied to SNIM images on a thin film of VO2 as described in the text.
The top row shows the thresholded data as described in the text. The field of view is 4µm×4µm. White patches are insulating;
black patches are metallic. The total percentage of classifications for a particular model are reported in the bar charts of panels
(a)-(d). Classification percentages that fall within 1σ of a cluster in the training set are indicated in parentheses. Classifications
that fall more than 1σ away from the edge of the corresponding cluster in the training set are colored darker in the bar chart.

previous conjecture that the average distance of the clus-
ter from that of the training set can be used as a measure
of proximity to criticality.

V. DISCUSSION

For both experimental datasets, whether from SNIM
or from optical microscopy, the deep learning CNN deter-
mined that the intricate pattern of metal and insulator
patches was being set by the physics of the RF-2D. For
the SNIM data, this matches our prior identification us-
ing cluster methods.[8] For the microscope data, it was
already known prior to application of the CNN that the
physics driving the pattern formation should be arising
from a 2D Hamiltonian. This is because the thickness of
the film (≈ 300nm) is comparable to the lateral resolu-
tion of the instrument. Consequently, the spatial corre-
lations being measured are firmly in the two-dimensional
limit. However, the fact that the CNN returned a two-
dimensional model and not a three-dimensional model
gives us further confidence in the CNN method.

The identification of the Hamiltonian as RF-2D means
that a combination of material disorder and interactions
between spatially proximate regions of the sample drives
the pattern formation. The fact that interactions must
be present rules out a Preisach model[60] of independent
hysteretic switchers, as we previously argued based on

first-order reversal curve measurements[61] and a cluster
analysis of the critical exponents during the transition.[8]
The multiscale nature of the pattern formation is driven

by proximity to criticality, which can happen even in a
1st order phase transition, near a critical endpoint.[8] [62]
Consistent with proximity to criticality, we have previ-
ously shown that there is significant slowing down of the
relaxation time near the phase transition.[63, 64]

Random field critical points exhibit extreme critical
slowing down: because the barriers to equilibration grow
as a power law as the system nears criticality, the char-
acteristic relaxation time grows exponentially as the sys-
tem approaches criticality.[45] Because of this extreme
critical slowing down, the model is notorious for highly
nonequilibrium behavior, including hysteresis, glassiness,
coarsening, and aging. In addition, the model has an
anomalously large region of critical behavior: a system
that is 85% away from the critical point can still display
2 decades of scaling.[65] This means that it is fairly easy
within this model to get into a regime that displays pat-
tern formation across multiple length scales, including
fractal textures.

With the model controlling this pattern formation now
well established from this study and from our previous
work[8], we can make the following statements about
VO2: Increasing disorder is expected to broaden hys-
teresis curves, and also decrease the slope of the hys-
teresis curve at its inflection point.[66] Indeed, these ex-
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FIG. 8. End-to-end classification flowchart with CNN. We
use a sliding window of size 100 × 100 px over the experi-
mentally derived images, and slide the window 1px at a time
in each direction. For each 100 × 100 px image, we first apply
symmetry reduction before feeding the image into the trained
CNN. We compare the result of the CNN classifier to the en-
tire distribution of CNN output from our training set. If the
result is within one 7-dimensional standard deviation of one
of the training images, the prediction is considered more con-
fident than if it is farther away.

pectations are borne out in recent ion irradiation studies
of resistivity in VO2.[67] In addition, due to the pro-
nounced memory effects with exponentially long equili-
bration times, exact identification of material properties
can be history-dependent, leading to the appearance of
non-repeatability. On the other hand, disorder can ulti-
mately be exploited as another means of control[9, 68].

The ML method is complementary to the aforemen-
tioned cluster techniques. Whereas the cluster techniques
require at least two decades of scaling in the dataset, we
have shown here and in Ref. [36] that an ML classifier can
make determinations on datasets with smaller FOV. And
while the cluster techniques are designed to extract infor-
mation from datasets in systems that are in the vicinity
of a critical point, we expect that the ML methods de-
veloped here can be useful farther away from criticality,
because they are able to make determinations on smaller
FOV, i.e. they do not require that the system have the
long correlation length associated with proximity to crit-
icality.

In the same way that the critical exponents are en-
coded in the shapes and statistics of the fractal electronic
textures that arise near a critical point,[55, 56, 69] our
ML study reveals that the universal features of the model

itself are encoded in the spatial correlations of the tex-
tures, without needing the intermediate step of identi-
fying critical exponents. Criticality presents itself even
at the moderate (i.e. not long) length scales our CNN
views, which is set by the size of the sliding window we
employ on the datasets to be classified.

The method is also potentially extendible to handle
non-discrete order parameters, such as continuum mod-
els, which present a challenge for cluster methods. For
example, it may be possible to use a similar framework
to diagnose pattern formation that reveals an underlying
XY model or Heisenberg model. In addition, by using
regression, we expect to be able to go beyond critical-
ity to begin to determine the values of parameters in the
Hamiltonian.

We have developed this ML method first on critical
systems, which have no characteristic length scale due
to the power law structure, and therefore display spa-
tial structure on every length scale within a correlation
length. However, we expect this general scheme to also
be broadly applicable to systems that have an emergent
length scale, such as frustrated phase separation systems
in general, such as block copolymers, the mixed phase of
Type I superconductors, reaction-diffusion systems, and
convection rolls.[70, 71]

Dagotto[9] points out that quenched disorder plays an
important role in many strongly correlated materials, and
based on this he argues that for such materials, “it is not
sufficient to consider phase diagrams involving only tem-
perature and hole-doping x. A disorder strength axis
should be incorporated into the phase diagram of these
materials as well.” Models incorporating disorder predict
that nonequilibrium behavior including glassiness (multi-
ple nearby local energy minima) and hysteresis are promi-
nent features when electronic phase separation occurs in
the presence of quenched disorder.[14, 16, 55, 56, 69, 72–
76] The methods we have employed here, which identify
the terms in the Hamiltonian, when extended to include
a regression analysis to identify the values of the param-
eters in those terms, have the potential to identify the
disorder strength. Mapping out this disorder strength
axis in strongly correlated phase diagrams has the po-
tential to help disentangle some of the ambiguities and
apparent inconsistencies heretofore reported in the liter-
ature of these systems.[77–80]

Future work on this type of classifier will also benefit
from: (1) generalizing the CNN to handle input images of
any size; (2) developing a learning-based optimization for
the rejection classifier; and (3) handling grayscale images
without the need to threshold them.

VI. CONCLUSION

In conclusion, we have extended machine learning
methods to be able to identify the Hamiltonian driving
pattern formation in complex electronic mater. We have
shown the accuracy that can be achieved by using a CNN
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FIG. 9. Distribution of values of the output nodes for each class in the last fully connected layer, for the VO2 SNIM data,
superimposed on the distribution for the training sets shown in Fig. 6. Results for the VO2 data that are within one 7-
dimensional standard deviation of a training set are indicated by orange dots. Results for the VO2 data that are farther away
are indicated by black dots. An interactive 3D visualization of the full 7D file is available in the Supplementary Material[51]
and Ref. [52].

to classify synthetic data is better than 99%, and about
83–89% accurate on experimental data. We introduce a
symmetry reduction method, which significantly lowers
the training time over data reduction without reducing
accuracy. In addition, we introduce a distribution-based
method for quantifying confidence of multilabel classifier
predictions, without the problems associated with intro-
ducing adversarial training sets. We also propose a new
machine learning based criterion for diagnosing proxim-
ity to criticality.

We have also demonstrated that this framework can be
successfuly applied to real experimental images, by using

it to classify the Hamiltonian of SNIM data on a thin
film of VO2, for which the answer was already known
from a complementary theoretical method. Having thus
vetted our ML model, we applied it to optical microscope
data on a different sample of VO2. In each case, we find
that the pattern formation of metal-insulator domains
in thin films of VO2 is driven by proximity to a critical
point of the two-dimensional random field Ising model.
Further tests of this model include hysteresis protocols in
the presence of a series of engineered disorder strengths.
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FIG. 10. Classification results of our deep learning model applied to new 28µm×28µm optical microscopy images of a VO2 thin
film as described in the text. White patches are insulating; black patches are metallic. The total percentage of classifications
for a particular model are reported in the bar charts of panels (a)-(e). Classification percentages that fall within 1σ of a cluster
in the training set are indicated in parentheses. Classifications that fall more than 1σ away from the edge of the corresponding
cluster in the training set are colored darker in the bar chart. All CNN predictions from optical data during a full temperature
ramp up are presented in Fig. 12 of the Supplementary Material[51].
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FIG. 11. Distribution of relative weights of each class in the last fully connected layer, for the VO2 optical data (square sample
presented in the main text Fig. 10), superimposed on the distribution for the training sets shown in Fig. 6. Results for the
VO2 data that are within one 7-dimensional standard deviation of a training set are indicated by orange dots. Results for the
VO2 data that are farther away are indicated by black dots. An interactive 3D visualization of the full 7D file is available in
the Supplementary Material[51] and Ref. [52].
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FIG. 12. All CNN predictions from optical data during a temperature ramp up of data presented in Fig. 10. Darker colors
denote classifications that are more than 1 standard deviation from the identified training set.
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Journal of Physics: Condensed Matter 33, 053001 (2021).

[20] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richard-
son, C. K. Fisher, and D. J. Schwab, Physics Reports
810, 1 (2019).

[21] P. Ronhovde, S. Chakrabarty, D. Hu, M. Sahu, K. K.
Sahu, K. F. Kelton, N. A. Mauro, and Z. Nussinov, The

European Physical Journal E 34, 611 (2011).
[22] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxi-

ras, and A. J. Liu, Nature Physics 12, 469 (2016).
[23] L.-F. Arsenault, A. Lopez-Bezanilla, O. A. v. Lilienfeld,

and A. J. Millis, Physical Review B 90, 155136 (2014).
[24] G. Carleo and M. Troyer, Science 355, 602 (2016).
[25] A. Lopez-Bezanilla and O. A. v. Lilienfeld, Physical Re-

view B 89, 235411 (2014).
[26] P. Mehta and D. J. Schwab, arXiv (2014), 1410.3831.
[27] C. Beny, arXiv (2013), 1301.3124.
[28] J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L.

Marques, npj Computational Materials 5, 83 (2019).
[29] L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl,

and M. Scheffler, Physical Review Letters 114, 105503
(2015).

[30] Y. Zhang, A. Mesaros, K. Fujita, S. D. Edkins, M. H.
Hamidian, K. Chng, H. Eisaki, S. Uchida, J. C. S. Davis,
E. Khatami, and E.-A. Kim, Nature 570, 484 (2019).

[31] Y. Zhang and X. Xu, Heliyon 6, e05055 (2020).
[32] S. Xu, A. S. McLeod, X. Chen, D. J. Rizzo, B. S. Jessen,

Z. Yao, Z. Wang, Z. Sun, S. Shabani, A. N. Pasupathy,
A. J. Millis, C. R. Dean, J. C. Hone, M. Liu, and D. N.
Basov, ACS Nano 15, 18182 (2021).

[33] X. Chen, Z. Yao, S. Xu, A. S. McLeod, S. N. G. Corder,
Y. Zhao, M. Tsuneto, H. A. Bechtel, M. C. Martin, G. L.
Carr, M. M. Fogler, S. G. Stanciu, D. N. Basov, and
M. Liu, ACS Photonics 8, 2987 (2021).

[34] J. Carrasquilla and R. G. Melko, Nature Physics 13, 431
(2017).

[35] L. Wang, Physical Review B 94, 195105 (2016).
[36] L. Burzawa, S. Liu, and E. W. Carl-

son, Phys. Rev. Materials 3, 033805 (2019),
https://doi.org/10.1103/PhysRevMaterials.3.033805.

[37] A. Sohn, T. Kanki, K. Sakai, H. Tanaka, and D.-W.
Kim, Scientific Reports 5, 10417 (2015).

[38] N. J. McLaughlin, Y. Kalcheim, A. Suceava, H. Wang,
I. K. Schuller, and C. R. Du, Advanced Quantum Tech-
nologies 4, 2000142 (2021).

[39] S. Papanikolaou, R. M. Fernandes, E. Fradkin, P. W.
Phillips, J. Schmalian, and R. Sknepnek, Physical Re-
view Letters 100, 026408 (2008).

[40] L. Onsager, Phys. Rev. 65, 117 (1944),
https://doi.org/10.1103/PhysRev.65.117.

[41] M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974),
https://doi.org/10.1103/RevModPhys.46.597.

[42] C. Kittel and H. Kroemer, Thermal Physics (W. H. Free-
man and Company, San Francisco, 1980).

[43] P. Limelette, A. Georges, D. Jerome, P. Wzietek, P. Met-
calf, and J. M. Honig, Science 302, 89 (2003).

[44] Disorder can also cause spatial variations in the cou-
pling J. This random bond disorder is irrelevant in the
renormalization group sense when random field disorder
is present.

[45] D. S. Fisher, Physical Review Letters 56, 416 (1986).
[46] A. A. Middleton and D. S. Fisher, Physical Review B 65,

1747 (2002).
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