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Due to the chiral anomaly, Weyl semimetals can exhibit a signature topological magnetoelectric
response known as an axion term which is determined by the microscopic band structure. In the
presence of strong interactions Weyl fermions may form a chiral condensate, with the intrinsic
dynamics and fluctuations of the associated condensate phase producing a dynamical contirbution
to the axion response. Here we show that an imbalance in the density of right- and left-handed
electrons drives an instability of the chiral condensate towards finite momentum and leads to strong
fluctuations in the axion response. We derive a long-wavelength theory of Lifschitz type governing
the dynamics of the Goldstone mode and use this to characterize its associated spatial fluctuations,
which manifest as an inhomogeneous anomalous Hall effect. We show that these fluctuations produce
signatures in inelastic light scattering experiments across a broad spectrum of frequencies, and can
be used to determine the structure factor for the axionic collective mode.

I. INTRODUCTION

One of the most fascinating developments in condensed
matter physics has been uncovering the fundamental role
that topology plays in quantum systems1–7. A key idea in
this framework is that of the chiral anomaly, which orig-
inally was found in the context of high-energy physics8,9,
but is now understood to have an important role in
condensed-matter systems10,11. Qualitatively, the chiral
anomaly occurs when the classical action has symmetries
which are not compatible with the quantum partition
function12,13, leading to a breakdown of the conservation
laws typically guaranteed by Noether’s theorem; in this
case the symmetry is called “anomalous.” This seemingly
abstract idea has direct observable consequences for Weyl
semimetals14–23.

Weyl semimetals feature a low-energy effective descrip-
tion in terms of gapless spin-1/2 electrons which come in
pairs of opposite chirality. Chiral symmetry then leads
to the conservation of particle number for each chirality
separately, strongly constraining their hydrodynamic re-
sponses and giving rise to interesting topological effects.
Hence, understanding the fate of these systems in the
face of strong interactions is critical24–29, especially due
to their potential for technological applications30.

Of particular interest is when interactions lead to a
spontaneous breaking of the chiral symmetry. This pos-
sibility was originally proposed in the celebrated Nambu-
Jona-Lasinio (NJL) model31, which describes the sponta-
neous generation of mass for quarks via the formation of
a chiral condensate. In a Weyl semimetal, this model can
be used to describe the transition into a charge-density
wave phase, dubbed an axionic insulator32. As in the NJL
model, this similarly gaps out fermionic quasiparticles
and produces a collective soft Goldstone mode (analo-
gous to the pion in particle physics). Due to the chiral
anomaly, these Goldstone modes become endowed with
a dynamic response resembling a fluctuating “θ-term” in
analogy to high-energy physics21,33–46. Such a response

was even reported experimentally47,48 in the compound
(TaSe4)2I, which has both a charge-density wave and
Weyl fermions49,50, although this remains heavily de-
bated51,52.

While the mean-field phase diagram of the NJL model
is known well at zero temperature and density, it is still
uncertain what the fate of this system is at finite tem-
perature, finite density, and beyond mean-field53,54. In
particular, it is believed that under certain conditions the
NJL model may exhibit inhomogeneous chiral condensate
order55,56. In condensed matter physics, the correspond-
ing parameter regimes are much milder in comparison
to their high-energy analogues —temperature can easily
be tuned to the scale of “meson disassociation” (corre-
sponding simply to melting the charge-density wave), and
finite particle density is achievable through combinations
of doping and magnetic field interaction46. Therefore, ex-
amining the dynamical axion response in such an inho-
mogeneous chiral condensate is readily within reach.

Here we study a minimal model for a correlated Weyl
semimetal and show that it exhibits a finite-momentum
instability under simple conditions. We then derive an
effective long-wavelength model for the resulting finite-
momentum condensate and propose a characteristic op-
tical signature in light-scattering due to the fluctuating
axionic response. In particular, we study a model of two
isotropic Weyl points interacting with a mean-field chi-
ral condensate in the presence of both a chiral chemical
potential κ as well as a regular chemical potential µ. We
show that in certain temperature and density regimes this
model maps on to the Fulde-Ferrell-Larkin-Ovchinikov
(FFLO) phases of superconductivity in a large Zeeman
field, which is known to result in finite-momentum con-
densation57. We then propose an appropriate Lifschitz
model to describe the axionic response of such a strongly-
fluctuating phase and predict characteristic signatures in
inelastic light scattering.

This Article is structured as follows. In Sec. II we out-
line a simple model of Weyl fermions interacting with a
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FIG. 1. (a) Schematic depiction of Weyl fermions in the presence of κ > 0, with µ = 0. This has exactly compensated particle
and hole pockets with right (R) and left (L) chiralities respectively, leading to equal sized Fermi surfaces of fixed helicity σ = p̂.

(b) Schematic depiction of Weyl fermions the presence of κ > 0, with µ = 1.2T
(0)
c . This has uncompensated particle and hole

pockets, leading to imbalanced Fermi surfaces. (c) Chiral condensate collective-mode susceptibility L (q) in the compensated

µ = 0 case for different temperatures as a function of q. The condensate forms at T = T
(0)
c and at q = 0. (d) Chiral condensate

collective-mode susceptibility L (q) in the uncompensated µ = 1.2T
(0)
c case for different temperatures as a function of q. The

condensate forms at much lower temperature Tc < T
(0)
c , and occurs at finite momentum.

charge density-wave instability in the presence of uncom-
pensated electron and hole pockets. In Sec. III we then
analyze the saddle-point equations and demonstrate the
instability towards finite-momentum chiral condensate.
Then, in Sec. IV we derive the collective mode action in
the inhomogeneous phase and find the correlation func-
tions for the chiral phase mode. In Sec. V we show how
these fluctuations manifest as a strongly inhomogeneous
anomalous Hall effect response, and how they appear in
scattering experiments. Finally, in Sec. VI we present

concluding remarks.

II. MODEL

We consider an effective model for Weyl fermions, with
operator Ψ(x) = (ΨR(x),ΨL(x))T , interacting with a

mean-field chiral condensate ∆ ∼ 〈Ψ†RΨL〉31,35,36,40,42. In
the presence of both a chiral chemical potential κ and a
regular chemical potential µ the effective Matsubara La-
grangian is

L = Ψ

[
∂

∂τ
− µ+ τ3σ · (−i∇− τ3Q/2)− κτ3 + ∆e−iQ·rτ+ + ∆eiQ·rτ−

]
Ψ +

|∆|2

g
. (1)

This model features two Weyl points located at ±Q/2
in reciprocal space (we take the right-handed fermions
to reside at +Q/2), separated by 2κ in energy. This is
illustrated in Fig. 1(a),(b) for the cases of µ = 0 (com-

pensated pockets), and µ > 0 (uncompensated pockets).
Each Weyl spinor carries spin 1/2 and is characterized
by the Pauli matrices σ, while we reserve Pauli matrices
τ for the chirality quantum number. For simplicity, we
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take the dispersion near each Weyl cone to be isotropic
with Fermi velocity vF = 1.

We note that time-reversal symmetry acts in this
model as T = τ1iσ2, along with p → −p and the usual
complex conjugation, whereas inversion symmetry acts
as I = τ1 and p→ −p. Therefore having only two Weyl
points requires that the Hamiltonian explicitly breaks
time-reversal symmetry, while the presence of the finite
chiral chemical potential requires the additional break-
ing of inversion symmetry. In the following, we perform
a chiral gauge transformation to remove the fast-varying
component eiQ·r, absorbing it into the spinors Ψ, and
obtaining a resulting theory for only the slowly-varying
envelope, as originally done in Ref. 35.

III. MEAN-FIELD

We now study the saddle-point equations, which gov-
ern the mean-field chiral condensate phase diagram. The
mean-field solution to this model follows analogously to
the case of Bardeen-Cooper-Schrieffer (BCS) supercon-
ductivity; we first integrate out the Weyl fermions and
take the saddle point of the resulting action for the order
parameter ∆. Crucially, at finite chiral chemical poten-
tial κ there is a finite density of states at the Fermi level

ν(EF ) = κ2

2π2 that induces a weak-coupling instability58.
This is diagnosed by solving the gap equation

∆

g
= −

∫
p

trτG(p)

= −T
∑
iεm

∫
p

∑
σ=±1

∆

(iεm + µ)2 − (σ|p| − κ)2 − |∆|2
,

(2)

where G(p) =
(
iεm + µ− (σ · p− κ)τ3 −∆τ+ −∆τ−

)−1

is the mean-field electronic Green’s function in terms of
the fermionic Matsubara frequency εm = 2πT (m+ 1

2 ).
When µ = 0 the origin of the weak-coupling instability

is clear: it arises from the gapless positive-helicity states,
which have a normal-state propagator of (iεm − ξp)−1,
with ξp = |p|−κ. As ξp → 0 upon approaching the Fermi
surface, this generates the famous “Cooper logarithm” in
the pairing susceptibility which for sufficiently low tem-
perature will always diverge, guaranteeing a condensate
will develop. The presence of the other helicity states in-
troduces additional corrections that are suppressed when
the chiral chemical potential κ is much larger than the
cutoff on the BCS-type interaction (in superconductors
this is usually the Debye frequency). In this limit the pair-
ing interaction can be safely projected on to the Fermi
surface and the minority helicity bands can be projected
out. We also comment here that, while the bare Weyl
fermions with κ = µ = 0 exhibit an effective Lorentz
invariant dispersion, the presence of κ or µ produces a
finite Fermi surface which explicitly breaks this Lorentz
invariance by selecting a preferential frame of reference.

We now restore the finite chemical potential µ and
note that the analogous term in the BCS superconduc-
tor (which corresponds to a finite Zeeman field) is known
to quench spin-singlet superconductivity and ultimately
suppress condensation. In our case, the role of the chem-
ical potential is to imbalance the two Fermi surfaces,
leading to a difference of 2µ in their Fermi momenta.
While for sufficiently large imbalances the homogeneous
condensate is suppressed, the chiral pairing will in fact
persist at finite momentum. This is caused by the partial
nesting of the Fermi surface which typically forms a con-
densate of either a standing-wave, known as the Larkin-
Ovchinikov (LO) phase in space, or a plane-wave, known
as the Fulde-Ferrell (FF) phase; such a mechanism was
originally found to occur in superconductors and is by
now a well understood phenomenon57,59–63.

The instability towards finite momentum can be
diagnosed at the level of a Ginzburg-Landau the-
ory for the chiral condensate as a function of chem-
ical potential59–61,64–66. The resulting free energy
F =

∑
q L (q)|∆q|2 is determined by the leading Gaus-

sian, momentum-dependent susceptibility64,66, given in
the random phase approximation by (see Supplemental
Material for more detail)

L (q) =
1

g
−
∫
p

trG0(p)τ+G0(p+ q)τ− (3)

The result of this calculation is shown for two different
values of µ in Fig. 1(c) and (d). For sufficiently small µ,
the system will still condense at zero momentum, though
the critical temperature Tc drops with increasing µ. On
the other hand, for sufficiently large µ the condensate
at q = 0 is suppressed and, instead, a finite-momentum
condensate develops at a critical temperature Tc and mo-
mentum q? set by µ.

In the quasiclassical approximation the leading order
contribution to the free energy is determined by (for de-
tails see Supplemental Material C)

L (q) = ν(EF )
[
a0 + a2q

2 + a4q
4
]
. (4)

where

a0 = log(T/T (0)
c )− 2πT

∑
εm>0

(
εm

ε2m + µ2
− 1

|εm|

)
(5a)

a2 = −2πT
∑
εm>0

1

3
εm

3µ2 − ε2m
(ε2m + µ2)3

(5b)

a4 = −2πT
∑
εm>0

1

5
εm
ε4m + 5µ4 − 10ε2mµ

2

(ε2m + µ2)5
. (5c)

Similar expressions can also be found in, e.g. Ref. 64. If
µ < µc then a2 is positive, hence, the condensate has the
regular parabolic dispersion about zero momentum with
an increased effective mass and reduced critical tempera-
ture. On the other hand, if µ is large enough the conden-
sate has negative effective mass, hence, Eq. (4) is mini-
mized at finite momentum.
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IV. FLUCTUATING AXION RESPONSE

In general, the phase diagram of such an inhomoge-
neous phase is quite complex59–61,64–66. Here we con-
sider a phenomenological analysis of this phase and as-
sume a plane-wave solution ∆ = |∆|eiθ(x), i.e., the
FF ground-state57, though the generalization to more
complex liquid-crystalline condensates would be inter-
esting. Keeping the amplitude |∆| fixed, the minimal
model describing the long-wavelength dynamics of the
soft phase ∂µθ(x) in the finite-momentum condensate re-
quires terms up to fourth order in the spatial derivatives
where the free-energy is given by

F ∼
∫
d3r

[
a0|∆|2 + a2|∆∇eiθ|2 + a4|∆∇2eiθ|2

]
=

1

2
J ′(∇2θ)2 +

1

2
J((∇θ)2 − q2

?)2 + const. (6)

The constants J and J ′ are identified in terms of the
parameters a2 and a4 extracted above as

J ′ = 2ν(EF )a4|∆|2, J = 2ν(EF )a2|∆|2 (7)

while the ordering vector q? is given by

q? ∼
√
− a2

2a4
. (8)

We note that the above expression may receive higher-
order corrections from powers of |∆|2 but these are more
complicated to assess away from the critical point, or if
the transition is driven first order (such that ∆ is not
small). However, we expect the phenomenological model
this motivates to be valid more broadly. The thermal
fluctuations of the chiral phase including quantum effects
are hence modeled by

L =
1

2
K(∂τθ)

2 +
J

4
((∇θ)2 − q2

?)2 +
J ′

2
(∇2θ)2

+ i
e2

8π2
(θ + Q · r)E ·B (9)

where K describes the chiral compressibility (this is of or-
der ν(EF )|∆|2), J and J ′ describe the compressional and
bending moduli of the condensate, respectively (in analog
with the theory of liquid crystals66), q? is determined by
the minimum of the free energy67, while E = ∂τA+∇A0

and B = ∇ × A are the electric and magnetic fields in
terms of the gauge potentials.

The last term in Eq. (9) is due to the chiral anomaly
and results from the chiral gauge transformation in the
presence of gauge fields E·B (see Supplemental Material).
This has contributions from: (i) the fluctuating phase θ,
and (ii) the static part of the band structure Q · r. While
the latter yields a homogeneous anomalous Hall effect
(AHE), here we are more interested in the phase mode
θ, which is expected to fluctuate very strongly. Due to
the chiral anomaly, these fluctuations also couple to the

electromagnetic field and, in particular, contribute to the
AHE.

To diagnose the effect of these fluctuations we perform
a Gaussian approximation where the ground state is ob-
tained by θ = zq?

68 (without loss of generality, we choose
ez to put the momentum gradient on). In this case, the
system has spontaneously broken rotational symmetry,
although in a more realistic treatment rotational sym-
metry would be broken by the crystal, e.g. to reduced
uniaxial or planar symemtry, which may impact the or-
dering of the phase. The finite additional phase gradient
due to q? offsets the effective momentum-space separa-
tion Q→ Q + q?ez to a slightly different nesting vector.
This change can be detected in magnetoelectric transport
where by driving the system into the finite-momentum
condensate shifts the value of the Hall coefficient.

Finally, we turn our attention to the fluctuating part
θ(x) = q?z + δθqe

iq·r−iΩ(q)t, and linearize in δθq. The
phase fluctuations exhibit a dispersion relation which is
highly anisotropic, with

Ω(q) =
√
v2q2

z + v′2|q|4/q2
?. (10)

where v =
√

2Jq2
?/K is the longitudinal sound velocity

and v′ =
√
J ′q2

?/K is the higher-order transverse veloc-
ity. While longitudinal oscillations with q ‖ ez disperse
linearly due to the compressional modulus J , the trans-
verse modes with q ⊥ ez (which lead to fluctuations of
the orientation of the phase gradient) are very soft, dis-
persing quadratically with the bending modulus J ′. As a
result we expect a very large number of long-wavelength
fluctuations which will reduce the long-range correlations
in the anomalous Hall response.

V. OPTICAL DETECTION

We now explore the fluctuating part of the Hall re-
sponse and, in particular, determine how these fluctua-
tions can produce signatures in light scattering exper-
iments. Specifically, we consider Brillouin light scatter-
ing, which describes the scattering of light off of acoustic
modes and involves an exchange of both energy and mo-
mentum. In the presence of a fluctuating axion phase δθ
the modified current in Ampere’s Law is given by

J = − e2

4π2
(∂tδθ)B−

e2

4π2
(∇δθ)×E, (11)

where we disregarded the mean value of θ for simplic-
ity. These contributions can be measured using Dynamic
Light Scattering69, which is sensitive to the fluctuations
of the dielectric constant, and hence can be used to mea-
sure the fluctuations of the Hall conductivity.

The linearized fluctuations δθ obey the highly-
anisotropic dispersion relation Ω(q), see Eq. (10), where
v and v′ are generally expected to be proportional to
the Fermi velocity vF of the underlying Weyl cones70. As
such, the excitation frequency can be taken to be much
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smaller than the optical probing frequency, hence, to low-
est order in vF /c the scattering is elastic. In this case
contributions from ∂tδθ vanish and scattering of light is
dominated by the fluctuating Hall conductivity

δσab(q) =
e2

4π2
δnc(q)εabc, (12)

where εabc is the three-dimensional Levi-Civita tensor
and δn = ∇δθ. In this limit, the light scattering is sen-
sitive to the static structure factor, calculated in linear
response as

〈δσjk(q)δσlm(−q)〉 = T

(
e2

4π2

)2

εjkaεlmb
qaqb

2Jq2
?q

2
z + J ′q4

.

(13)
In addition to the polarization dependence due to the
Levi-Civita symbols, the static structure factor has a
characteristic pinch-point singularity as q→ 0, whereby
it diverges differently depending on the angle of q relative
to the nematic axis êz.

VI. CONCLUSION

We have explicitly verified that in a simple Weyl
semimetal with both broken T and P symmetries, where
an imbalance in the carrier density of the two chi-
ralities can naturally arise, an instability of the chi-
ral condensate appears towards finite momentum, akin
to the Fulde-Ferrell-Larkin-Ovchinikov phase in a spin-
polarized Fermi superfluid. Due to the chiral anomaly,

the spatial fluctuations of this phase lead to a fluctu-
ating Hall conductivity that gives rise to characteristic
signatures in light-scattering experiments.

In the future, it will be important to consider a more
detailed microscopic model in order to make contact with
experiments, as well as treat the non-Gaussian nature of
the fluctuations more quantitatively. In particular, study-
ing the role of anisostropy, multiple Weyl points, electron-
electron and electron-phonon interactions, and disorder
will be important for obtaining a more precise phase di-
agram and prediction for light scattering. Our results
show that solid-state systems are ripe for studying the
interplay of strong spatial fluctuations and inhomogene-
ity, topology, and condensation62,63. This may offer in-
sight into the complex phase diagrams in nuclear and
particle physics at finite temperature and density, or un-
veil new unconventional “topological” electronic liquid-
crystal phases.
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We now see that the action becomes (explicitly writing
out the gauge field)

L = ψ(−iτ2)
[
∂τ − ieA0 + τ3σ · (−i∇− eA) + ∆τ+ + ∆τ−

]
ψ.

(A3)
We now introduce the four γµ matrices as

γ0 = τ2 (A4a)

γj = τ1σ
j , (A4b)

and γ5 = γ0γ1γ2γ3 = τ3. Since we are working in Eu-
clidean spacetime we have

{γµ, γν} = 2δµν , (A5)

which is the metric with standard Euclidean signature,
and (γµ)† = γµ.

We thus obtain the usual Dirac equation with chiral
gauge field coupled to the mass as

L = ψ
[
γ0(−i∂τ − eA0) + γ · (−i∇− eA)− |∆|γ5eiθ(x)γ5

]
ψ.

(A6)
We define the Dirac slashed operator

/D = γµ(∂µ − ieAµ), (A7)

such that

L = ψ
[
−i /D − |∆|γ5eiγ

5θ(x)
]
ψ. (A8)

For future reference we have

{γ5, /D} = 0. (A9)

Finally, we note that in the absence of electromagnetic
gauge field we have

/D
2

= /∂
2

=
[
(−iεm)2 + (iq)2

]
. (A10)

Upon continuation to real time we would then have[
(−iεm)2 + (iq)2

]
→ ε2 − q2, (A11)

the appropriate Lorentz invariant dispersion relation.

Appendix B: Anomaly via Fujikawa Method

We consider the attempted chiral gauge transforma-
tion and its effect on the integration measure. We follow
Ref.13, and in particular focus on the approach based on
evaluation of the Jacobian. To this end, we consider the
transformation of the integration measure D[ψ,ψ] under
the transformation

ψ(x) = eiα(x)γ5η(x) (B1a)

ψ(x) = η(x)eiα(x)γ5 . (B1b)

To evaluate the Jacobian, we must regularize our inte-
gration measure, which we write in terms of Grassman

valued normal modes. Let us use as a set of basis func-
tions the gauge-invariant eigenspectrum of the operator
−i /D, with

− i /Dφn(x) = λnφn(x) (B2)

and the corresponding fermionic field operator is

ψ(x) =
∑
n

ψnφn(x). (B3)

We then may define the gauge invariant functional inte-
gration measure as

D[ψ,ψ] =
∏
n

dψndψ̄n. (B4)

Note that {γ5, /D} = 0.
The chiral gauge transformation acts to change the

normal mode eigenbasis. We may write it in terms of the
same basis functions as

η(x) =
∑
n

ηnφn(x). (B5)

The gauge transformation induces a linear transforma-
tion on the Grassman coefficients such that

ψm =

∫
d4xφm(x)eiα(x)γ5φn(x)︸ ︷︷ ︸

Ξmn[α]

ηn. (B6)

Due to standard Grassman integration rules, the trans-
formation on the integration measure induced by this
change of variables is the inverse of the determinant, such
that (recall both fields transform in the same way)

D[η, η] = D[ψ,ψ] (DetΞ)
2
. (B7)

We evaluate the determinant as

DetΞ = expTr log Ξ. (B8)

This must be regularized in order to be evaluated. The
most straightforward way is via the heat-kernel method,
where we impose a cutoff on modes which have a large
eigenvalue of the gauge invariant derivative. We have

Tr log Ξ =
∑
n

e−λ
2
n/Λ

2

(log Ξ)nn . (B9)

The gauge transformation is commuting in the local
eigenbasis so we can evaluating the matrix logarithm in
real-space. This gives

Tr log Ξ =
∑
n

e−λ
2
n/Λ

2

∫
d4xφm(x)iα(x)γ5φn(x)

∼ i
∫
d4xα(x)

∑
n

e−λ
2
n/Λ

2

φn(x)γ5φn(x). (B10)
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This is expressed as the coupling between the phase and
the anomalous action via

Tr log Ξ = i

∫
d4xα(x)A(x) (B11)

with

A(x) = lim
x′→x

∑
n

φn(x)γ5e
/D2/Λ2

φn(x′) = trγ5

(
e /D

2/Λ2
)

(x, x′).

(B12)
We use

/D
2

= γµγν (∂µ − ieAµ) (∂ν − ieAν) = DµD
µ− ie

2
γµγνFµν .

(B13)
We further have DµD

µ = ∂2− ie{∂µ, Aµ}− e2A2, which
yields the gauge invariant spectrum of an equivalent
charged boson.

We then find, using the standard BCH formula

A(x) =
∑
n

φn(x)γ5e
/D2/Λ2

φn(x) = trγ5e
D2/Λ2

(
1 +
− ie2 γ

µγνFµν

Λ2
+

1

2

(
− ie2 γ

µγνFµν
)2

Λ4
− ie

4Λ4
γµγν [D2, Fµν ]

)
(B14)

The only term which has a non-zero trace against the
chiral gamma matrix is the middle term with F 2. Also
note that this is still composed only of manifestly gauge-
invariant terms. We have

A(x) = trγ5e
D2/Λ2 1

2

(
− ie2 γ

µγνFµν
)2

Λ4
(B15)

This simplifies to

A(x) = −e
2

8
tr
(
γ5γ

µγνγαγβ
)
FµνFαβ

[
eD

2/Λ2

Λ4

]
.

(B16)
Here we have used the fact that for slowly-varying field
configurations, the field-strength tensor can be treated
as a constant, leaving only the heat-kernel itself as
the remaining object to be evaluated. We also have
tr
(
γ5γ

µγνγαγβ
)

= 4εµναβ , so that we have

A(x) = −e
2

2
εµναβFµνFαβ

[
eD

2/Λ2

Λ4

]
. (B17)

Now, to evaluate the divergent term we expand in a
plane-wave basis. It can be seen that the corrections aris-
ing from the gauge field in the plane-wave basis are of
order 1/Λ and thus vanish in the long-wavelength limit
so that we can evaluate using D2 = −p2 so that

eD
2/Λ2

Λ4
(x, x) =

1

Λ4

∫
p

e−p
2/Λ2

+O(1/Λ5) =
1

16π2
+O(1/Λ).

(B18)
We then obtain

A(x) = − e2

32π2
εαβµνFαβFµν . (B19)

Finally, we note that taking both copies in to account,
this result is the additional contribution to he effective

action (strictly valid at zero temperature) of

Sanomaly = +i
e2

16π2

∫
d4xα(x)FαβFµνε

αβµν . (B20)

We express this in terms of the electric and magnetic
fields (recall the scalar potential enters with opposite sign
relative to usual relativistic convention) as

FαβFµνε
αβµν = 4(∂τA +∇A0) · ∇ ×A. (B21)

Thus, we get imaginary time axion term of

Saxion = +i
e2

4π2

∫
d4xα(x)B · (∂τA +∇A0). (B22)

Note to return to the real-time result, we take dτ =
+idt, ∂τ = −i∂t, A0 = −iφ so that we see this term be-
comes

e−Saxion = e−i
e2

4π2

∫
d4xα(x)B·(−∂tA−∇φ),

so that we may identify the real time action in terms of
electric and magnetic fields as

Saxion = − e2

4π2

∫
d4xα(x)B ·E. (B23)

Finally, we must connect the infinitesimal gauge trans-
formation with the complete transformation needed to
remove the axion phase from the mass terms. We can
see that performing an infinitesimal transformation is go-
ing to be additive in this case, since it is linear in the
transformation α(x). Therefore, we can simply replace
α(x) = 1

2 (θ(x) + Q · r) in the above to obtain the final
result

Saxion = +i
e2

4π2

∫
d4x

1

2
(θ(x) + Q · r)B · (∂τA +∇A0).

(B24)
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Appendix C: Chiral Condensate Cooperon

Here we elaborate slightly on the calculation of the
chiral condensate “Cooperon” (i.e. collective-mode fluc-
tuation propagator) in the presence of the chiral and reg-
ular chemical potentials. We expand the NJL action up
to quadratic order in the order parameter ∆(q) in the
Random Phase Approximation (RPA) to obtain

S =
∑
q

L (q)|∆q|2. (C1)

We find the standard expression

L (q) =
1

g
+ tr

∫
p

τ+G0(p+ q)τ−G0(p). (C2)

where

G0(p) = [iεm + µ− τ3(p · σ − κ)]
−1

(C3)

is the normal state Weyl-fermion propagator. We focus on
the momentum dependence of this, to wit we set ωm = 0
in the Cooperon and compute

L (q, ω = 0) =
1

g
−
∫
p

tr
[
(iεm + µ− (σ · (p + q)− κ))

−1
(iεm + µ+ (σ · (p)− κ))

−1
]
. (C4)

For small q this can be diagonalized in terms of the he-
licities σ = σ · p/|p| = ±1; there are two for each chiral
Fermi pocket.

On the one hand, for the positive helicity σ = +1 the
electron propagator will exhibit a resonance upon ap-
proaching the Fermi surface, whereupon the dispersion
|p| − κ crosses through zero. This will therefore produce
a strong contribution to the collective dynamics, yield-
ing the Cooper logarithm in the absence of µ. The other
helicity σ = −1 will always remain gapped and buried
below the Fermi surface, with a quasiparticle excitation
energy at least of order κ.

On the other hand, the BCS-like interaction, which
is characterized by attraction g is not valid throughout
the entirety of momentum space, but rather result from
projecting of a more microscopically accurate interaction
on to the Fermi surface. This is only valid for momenta
near the Fermi surface, implying the integral on p should
be cutoff at Λ. In the case where Λ & κ we find that in
general both helicities participate in the interaction and
the system is more complicated. We focus on the simpler
case where Λ� κ, in which case only states at the Fermi
surface participate. We can therefore discard the σ = −1

helicity and project onto the σ = +1 states, which have
σ → p̂ = p/|p|. This yields

L (q, ω = 0) =
1

g
+

∫
p

1

(iεm + µ+ p̂ · q)2 − (|p| − κ)2
.

(C5)
This can be evaluated in the usual quasiclassical approx-
imation by writing q · p̂ = qu where u = cos θ is the
scattering cosine, and ξ = |p| − κ, producing

L (q, ω = 0) =
1

g
+T

∑
iεm

ν(EF )

∫
dξ

∫ 1

−1

du

2

1

(iεm + µ+ qu)2 − ξ2
.

(C6)
Here we have the density-of-states at the Fermi level
ν(EF ) = κ2/(2π2) enter. We can remove the dependence
on g by renormalizing the scattering length with reference
to the transition temperature at µ = 0, q = 0, defined by
the equation

ν(EF ) log(T/T (0)
c ) =

1

g
+ T

∑
iεm

νF

∫
dξ

1

(iεm)2 − ξ2
.

(C7)

with usual BCS result for T
(0)
c ∼ Λe−1/(gν(EF )). We then

find the UV convergent expression of

L (q, ω = 0) = ν(EF )

[
log(T/T (0)

c ) + T
∑
iεm

∫
dξ

∫ 1

−1

du

2

(
1

(iεm + µ+ qu)2 − ξ2
− 1

(iεm)2 − ξ2

)]
. (C8)

Utilizing ∫
dξ

1

ξ2 + (εm + iz)2
=
πsign(εm)

εm + iz
(C9)
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and simplifying we obtain the result

L (q, ω = 0) = ν(EF )

[
log(T/T (0)

c )− 2πT
∑
εm>0

∫ 1

−1

du

2

(
εm

ε2m + (µ+ qu)2
− 1

|εm|

)]
. (C10)

This is easily evaluated as a function of q by numerically summing Matsubara frequencies and performing the solid-
angle integral on u numerically, since the integral is both IR and UV convergent. In fact, we can analytically evaluate
the integral over u as well to produce∫ 1

−1

du

2

1

ε2m + (µ+ qu)2
=

1

2

∫ µ+q

µ−q

dx

q

1

x2 + ε2m
. (C11)

Thus

L (q, ω = 0) = ν(EF )

[
log(T/T (0)

c )− 2πT
∑
εm>0

(
1

2q

[
arctan

(
µ+ q

εm

)
− arctan

(
µ− q
εm

)]
− 1

|εm|

)]
.. (C12)

For q � µ we see the expansion goes as arctan(q/ε)/q −
1
ε ∼ −

1
3
q2

ε3m
, giving an overall positive phase stiffness.

We find for sufficiently large µ that the transition (sig-
nified by L = 0) occurs at a finite momentum |q| = q?.
The exact form of L (q) near q? is not particularly clear,
and furthermore would require numerical evaluation in
a real system. We can generically conclude however that
as µ passes through the critical µc, q? would soften at µc

and then smoothly rise again, implying that the charac-
teristic length scales may be parametrically longer than
the lattice scales. We may also generically expect the
compressibility coefficient K in the Nonlinear σ-model in
the main text to be of order ν(EF )|∆(0)|2 where ∆(0)
is the zero-temperature chiral-condensate gap, and the
phase stiffnesses J/K, J ′/K ∼ v2

F /q
2
? though this should

be investigated more thoroughly.
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