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The chiral vortical effect is a chiral anomaly-induced transport phenomenon characterized by an
axial current in a uniformly rotating chiral fluid. It is well-understood for Weyl fermions in high
energy physics, but its realization in condensed matter band structures, including those of Weyl
semimetals, has been controversial. In this work, we develop the Kubo response theory for electrons
in a general band structure subject to space- and time-dependent rotation or vorticity relative to
the background lattice. For continuum Hamiltonians, we recover the chiral vortical effect in the
static limit and the transport or uniform limit when the fluid, strictly, is not a Fermi liquid. In
the transport limit of a Fermi liquid, we discover a new effect that we dub the gyrotropic vortical
effect. The latter is governed by Berry curvature of the occupied bands while the former contains
an additional contribution from the magnetic moment of electrons on the Fermi surface. The two
vortical effects can be understood as kinematic analogs of the well-known chiral and gyrotropic
magnetic effects in chiral band structures. We address recent controversies in the field and conclude
by describing device geometries that exploit Ohmic or Seebeck transport to drive the vortical effects.

I. INTRODUCTION

Chiral transport phenomena in three dimensions
have garnered tremendous interest in condensed matter
physics since the discovery of Weyl semimetals (WSMs)
– three dimensional topological materials defined by
the presence of accidental intersections between non-
degenerate bands [1–19]. Near these intersections or
Weyl nodes, the Hamiltonian resembles that of mass-
less, relativistic Weyl fermions. Weyl nodes have a well-
defined handedness or chirality, defined as the absence
of all improper symmetries such as reflection and inver-
sion (I), and behave like unit magnetic monopoles for
Berry flux in momentum space. Chiral transport phe-
nomena in WSMs are characterized by distinct responses
of right- and left-handed Weyl fermions to external per-
turbations such as electromagnetic fields and can invari-
ably be traced to the chiral anomaly, defined as the vi-
olation of the classical U(1) chiral gauge symmetry by
the quantum path integral [20]. Although the anomaly,
first discovered in high-energy physics, is strictly absent
in WSMs as they necessarily contain equal numbers of
right- and left-handed Weyl nodes [21, 22], clever ways
of resolving the nodes have led to a myriad of anomalous
behaviors of WSMs subject to electromagnetic fields [23–
41].

Fundamentally, the anomaly manifests as a non-
conservation of chiral charge in the presence of parallel
electric and magnetic fields even though the low energy
Weyl Hamiltonian näıvely predicts chiral charge conser-
vation. Alternately, it generates the chiral magnetic ef-
fect (CME), defined as an equilibrium, dissipationless
current along a constant magnetic field: jCME ∝ B
[42, 43]. Such a current is allowed in the continuum,
where purely left-handed (or purely right-handed) Weyl
fermions can exist. However, similarly to the anomaly,
the CME too is forced to vanish in WSMs due to lattice
regularization. The core difference between the contin-
uum and the lattice versions of the CME generated great

debate during its adaptation from high-energy to con-
densed matter physics [27, 28, 44–48]. The controversies
were eventually resolved by extending the response to
non-zero frequency (ω) and momentum (q) and distilling
subtleties of the dc limit. The static limit (ω → 0 before
q → 0) leads to a non-zero CME only if the system is
held in a non-equilibrium steady state and directly mea-
sures the Berry monopole charge enclosed by the occu-
pied states [49, 50]. In contrast, the uniform limit (q → 0
before ω → 0) was termed the gyrotropic magnetic effect
(GME) [49] and was shown to describe the equilibrium
response to a time-dependent magnetic field, or equiva-
lently, a circulating electric field: jGME ∝ ∇ × E. In-
terestingly, it can exist even in band structures that lack
Weyl nodes but break time-reversal (T ) and I symme-
tries.

The chirality, however, is an intrinsic property of the
Weyl Hamiltonian that does not rely on coupling to elec-
tromagnetic fields. A natural question is, “what chi-
ral transport phenomena do neutral Weyl fermions ex-
hibit?” A striking such response is the chiral vortical ef-
fect (CVE), defined as the appearance of a dissipationless
axial current in a rotating Weyl fluid, jCVE ∝ Ω, where
Ω is the angular velocity. It was initially predicted for
neutrino fluxes from rotating black holes and other chiral
relativistic field theories [40, 42, 51–62] and has been ob-
served in heavy-ion collisions [63, 64]. Historically, it was
usually described as a CME where the Coriolis force in a
rotating frame simulates B. However, it differs from the
CME in key ways. Firstly, it is arguably more fundamen-
tal as it is a strictly kinematic effect that does not rely on
gauge fields. Secondly, it is much less understood in con-
densed matter; its historical derivations using Boltzmann
and hydrodynamic equations have yielded elegant solu-
tions in the static limit, especially for Lorentz invariant
Weyl fermions [40, 55–62, 65–68], but its generalization
to arbitrary band structures at finite q and ω remains an
open problem. Thirdly, electrons under a static B are
within the purview of Bloch’s theorem that forbids an
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equilibrium current in an infinite system [69–71], but the
theorem is inapplicable for a fluid rotating at constant
angular velocity. We will return to this point later. Fi-
nally, both lattice and continuum realizations of the CME
can be triggered in practice by merely applying a suit-
able B. In contrast, a continuous fluid can be physically
rotated to trigger the CVE, but crystalline solids do not
provide a mechanical handle for rotating the electrons
in their bands. A practical route to rotate the electrons
in a solid is essential for harnessing the phenomenon for
device applications.

In this work, we develop the theoretical framework
for describing the current response of electrons in a gen-
eral band structure rotated relative to a stationary lat-
tice at a space- and time-dependent angular velocity
Ω(r, t). Alternately, the current can be interpreted as a
response to space and time-dependent vorticity V(r, t) =
∇ × u(r, t)/2, where u(r, t) is the velocity field of the
electron fluid. This is because, for smooth and slow de-
pendence on r and t, u(r, t) = Ω(r, t) × r immediately
yields V(r, t) = Ω(r, t). In other words, the vorticity
locally mimics angular velocity about the vortex axis.

We will focus on the static and uniform limits, which
respectively describe the response to time-independent
and time-dependent spatially uniform vorticity or angu-
lar velocity. The static limit corresponds to the CVE;
interestingly, the uniform limit yields the same response
function provided the quasiparticle lifetime τ remains fi-
nite as the frequency ω → 0. In contrast, precisely in the
uniform or transport limit of a Fermi liquid, defined by
ωτ → ∞ as ω → 0, we discover a new response that we
term the gyrotropic vortical effect (GVE). The GVE can
be viewed as an axial current in response to angular ac-
celeration, jGVE ∝ α(r, t) = ∂tΩ(r, t), but its gyrotropic
nature becomes transparent when viewed as the response
to circulating acceleration ∇ × a(r, t) ≡ ∇ × ∂tu(r, t).
Thus, just as the CVE is usually interpreted as the ro-
tational analog of the CME, the GVE proposed here can
be understood as the rotational or vortical counterpart
of the GME.

Classically, the GME can be thought of as a solenoid
where a time-varying magnetic field induces a current
parallel to the magnetic field. The GVE can also be
thought of classically using the propagation of circularly
polarized (CP) light that can be described as a chiral
object where the rotation of the electric field is coupled to
the propagation direction. Changing the rotation speed
of the electric field vector by changing the light frequency
– analogous to introducing a non-zero angular velocity
for the chiral fluid – will change the magnitude of the
Poynting vector – analogous to the chiral fluid developing
an axial current.

Microscopically, we show that the GVE stems from
purely interband virtual processes in the clean limit
whereas the CVE relies on both interband and intraband
processes. In other words, we show that the (isotropic

FIG. 1. Schematic of microscopic processes causing the vorti-
cal effects in a WSM with left- and right-handed Weyl nodes
at different energies. The GVE arises from non-resonant
(Em

k −En
k ̸= ω) interband (m ̸= n) virtual processes at q = 0

(vertical arrows) and survives as ω → 0 provided EL ̸= ER.
The CVE appears in the static limit ω = 0, q → 0, and
contains an additional contribution from intraband (m = n)
resonant (En

k = En
k+q) processes (horizontal arrow).

parts of the) relevant linear response functions are

χGVE = χinter
iso (1a)

χCVE = χintra
iso + χinter

iso (1b)

Eqs. (7) summarize our main results. Explicit expres-
sions for χinter

iso and χintra
iso are given later in Eqs. (9)

and (10), while Fig. (1) depicts the corresponding mi-
croscopic processes for a pair of Weyl nodes.

II. VORTICAL RESPONSE THEORY

We now develop the vortical response theory and de-
rive expressions for χintra and χinter. We begin by imag-
ining electrons governed by a Bloch Hamiltonian H0(k)
driven in such a way that they rotate by a space- and
time-dependent angular velocity Ω(r, t). This is a non-
equilibrium system; to apply the Kubo formalism, we
must first recast this problem into one of equilibrium
perturbation theory. To that end, we note that ro-
tation induces an additional time dependence into the
time evolution of any wavefunction ψ(r, t): ψ(r, t) =

T
[
ei

∫ t
0
L·Ω(r,t′)−iH0(k)t

]
ψ(r, 0) in units ℏ = 1, where

T [. . . ] denotes time-ordering and L is the spatial angu-
lar momentum that generates rotations on length scales
large compared to the lattice constant. Unlike usual per-
turbative calculations where the Hamiltonian is known,
and the wavefunction is determined perturbatively, the
time dependence of the wavefunction is physically given
here, and the perturbation must be inferred. Sugges-
tively defining ψI(r, t) = eiH0(k)tψ(r, t), we see that
i∂tψI(r, t) = −L·Ω(r, t)ψI(r, t). In other words, ψI(r, t)
behaves like an interaction picture wavefunction corre-
sponding to an unperturbed Hamiltonian H0(k) and per-
turbation −L ·Ω(r, t), implying a total Hamiltonian

H(k, r, t) = H0(k)−L ·Ω(r, t) (2)
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(a) (b)

FIG. 2. (a) The angular momentum vertex. (b) The first-
order Feynman diagram for the response.

while the appropriate equilibrium many-body state is the
equilibrium Fermi sea of H0(k). Now, the full machinery
of equilibrium perturbation theory can be deployed. In
particular, the Kubo formula can be used to compute the
linear current response to the perturbation −L ·Ω(r, t).

A few subtleties arise here, however, since L is not
translationally invariant, yet the corresponding vertex
conserves momentum. In the Bloch basis,

⟨ψm
k | −L ·Ω(r, t)|ψn

k+q′⟩ = (2π)3i∇q′δ(q′ − q)×
⟨umk |(k − i∇r)|unk+q′⟩ ·Ω(q, t) (3)

where |ψn
k⟩ is the Bloch wavefunction in the n-th band

and |unk⟩ is its periodic part. Thus, an angular velocity
field with momentum q can produce currents j(q′) dis-
tributed around q through the δ(q′ − q) function. Since
measurement probes have a finite resolution, the physical
current is given by the integrated weight

⟨jα(q, iωn)⟩ =
∫
q′

χ̃αβ(q
′, q, iωn)Ωβ(q, iωn) (4)

as a function of Matsubara frequencies, where

χ̃αβ(q, q
′, iωn) = −T

∑
k,iνn

tr [jα(k + q′)G(k, iνn)×

Lβ(q
′; q)G(k + q′, iνn + iωn)] (5)

and G(k, iνn) = [iνn −H0(k) + isgn(νn)/2τ ]
−1

as usual.
The physical, retarded response function is given by
χαβ(q, ω) =

∫
q′ χ̃αβ(q, q

′, iωn → ω + i0+) for which we

provide an explicit expression in App. B that is valid at
arbitrary T , ω and q and for general lattice models.

III. RESULTS

Henceforth, we focus on the isotropic part of the re-
sponse, χiso(q, ω) =

1
3χαα(q, ω). It is useful to separate

it into interband and intraband terms, χiso:

χiso = χinter
iso + χintra

iso (6)

Some algebra, described in App. A, leads to

χinter
iso =

i

3

∫
k

∑
n ̸=m

⟨umk |Qk|unk+q⟩·

⟨umk |∇ku
n
k⟩ × ⟨unk|j(k)|umk ⟩Snm(k)

χintra
iso =

i

3

∫
k

∑
n

⟨umk |Qk|unk+q⟩·

⟨unk| (jnk − vk)× |∇ku
n
k⟩Snn(k) (7)

where

Snm(k) =

∫
ν

Im

[
2

ν + i
2τ

]
f(Em

k + ν)− f(En
k+q − ν)

ν + Em
k − En

k+q + ω + i
2τ

(8)
evaluated in the desired limit of q, ω, τ . Here, f(ν) is
the usual Fermi function that reduces to a step function
at T = 0.
A peculiar quantity in the above expressions is Qk =

k − i∇ρ, a momentum-like object containing two parts:
the crystal momentum k and spatial derivative within
the unit cell i∇ρ. Together, they respect the periodicity
of the Brillouin zone. Alternately, Qk can be viewed as a
gauge invariant momentum corresponding to the “gauge
symmetry” k → k + K, where K is a reciprocal lat-
tice vector, and “gauge field” Amn

k (q′) = i⟨unk|∇ρ|umk+q′⟩
that captures the freedom in choosing the Brillouin zone.
In certain physical regimes described in App. A 2, such as
the nearly free electron limit with k far from the Brillouin
zone edges, Qk reduces to the usual continuum momen-
tum k.
Qk appears in our expressions because we are calcu-

lating the response to angular velocity, which couples to
spatial angular momentum. Q is analogous to the lattice
charge current that couples and captures the response to
Peierls electromagnetic fields. In other words, just as con-
tinuum current is well-defined independent of any lattice
but acquires interesting structure and inherits the lattice
periodicity when projected onto Bloch states, the con-
tinuum momentum should be replaced by the k-periodic
quantityQk that contains contributions from Bloch func-
tions.
Eqs. (7) and (8) describe the response of Bloch elec-

trons in a general lattice to rotation at arbitrary q and ω.
To proceed further analytically, we (i) set T = 0, (ii) take
the continuum limit and replace Qk → k (iii) assume no
band intersections near the Fermi level, and (iv) focus
on the regime of small of q, ω and 1/τ . Although τ was
introduced phenomenologically, we allow it to have an
implicit dependence on q and ω. Thus, we study the
uniform limit, q = 0 followed by ω → 0, in two regimes:
|ωτ | → 0 and |ωτ | → ∞, the latter defining a Fermi liq-
uid due to a diverging quasiparticle lifetime as ω → 0.
Similarly, we investigate the static limit, ω = 0 followed
by q → 0, in the two regimes qτ → 0 and qτ → ∞. We
emphasize that the large τ regimes of the uniform and
static limits include the cases where τ → +∞ from the
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outset. Thus, the six permutations for the orders of q,
ω and 1/τ define four distinct physical regimes. We now
provide results for the interband and intraband contribu-
tions to χiso in the limits q → 0, ω → 0 and 1/τ → 0 in
each of the four regimes.

A. GVE in the uniform, Fermi liquid limit

At q = 0 and in the Fermi liquid limit, defined by
long-lived quasiparticles with lifetime τ ≫ 1/|ω| as ω →
0, the intraband term Snn(k) → 0 while the interband
terms are non-zero. Some algebraic manipulations yield
an expression

χinter
iso = −2

3

∑
n

∫
k

Θ(−En
k )F

n
k · k (9)

where F n
k = i ⟨∇ku

n
k |×|∇ku

n
k⟩ is the Berry curvature of

the nth band. The term itself is insensitive to the order
in which q, ω and 1/τ were taken to zero, and is the only
one that survives in the Fermi liquid limit defined above.
In analogy with the GME, we term this effect the GVE.

The GVE, defined completely by χinter
iso according to

Eq. (1a), is purely real, which implies a dissipationless
current that arises purely from interband processes be-
tween non-degenerate Bloch states. It vanishes in sys-
tems with an improper symmetry. For instance, a mirror
plane normal to z transforms kz → −kz, k(x,y) → k(x,y)
and Fn

kz → Fn
kz, F

n
k(x,y) → −Fn

k(x,y), while I trans-

forms k → −k and Fn
k → Fn

k . However, it is gener-
ically non-zero in chiral, T -symmetric systems, which
obey F n

k = −F n
−k. Näıvely, χinter

iso seems poorly regular-
ized as it receives contributions from all occupied states.
However, the total contribution from a filled band van-
ishes at T = 0 in the continuum limit, when the Bril-
louin zone can be compactified to a sphere and all points
at k → ∞ are identified. Specifically,

∫
BZ

F n
k · k =∫

∂BZ
(Ann

k ×k)·ds using Gauss’s divergence theorem, but
the last expression vanishes since |unk⟩ must be constant
on ∂BZ due to the above boundary condition. Thus,
only partially occupied bands contribute to χinter

iso .

B. CVE in all other limits

In contrast to χinter
iso , χintra

iso depends strongly on the
order of limits. It vanishes in the Fermi liquid limit,
while the other three limits lead to

χintra
iso = −2

3

∑
n

∫
k

δ(En
k )

k ·mn
k

e
(10)

where mn
k = ie

2 ⟨∇unk|× (Hk−En
k )|∇unk⟩ denotes the or-

bital moment of the Bloch state |unk⟩. Similar to χinter
iso ,

χintra
iso is also purely real and hence generates a dissipa-

tionless current. Moreover, mn
k transforms the same way

as F n
k under symmetry operations, so χintra

iso , similarly to
χinter
iso , is generically non-zero for chiral band structures.

The results for χinter
iso , χintra

iso and χiso are summarized in
Table. I.
The static, clean limit, defined as ω → 0 followed by

q → 0 with vqτ → ∞ where v is a typical band veloc-
ity, has been well-studied and referred to as the CVE.
Interestingly, we find that various other limits also yield
susceptibilities that match the CVE susceptibility since
the latter is given by the sum of χintra

iso and χinter
iso accord-

ing to Eq. (1b). Thus, the CVE susceptibility should
be easier to observe in experiments as it is robust to the
order of limits as long as we are not in the Fermi liquid
transport regime.

C. Application to Weyl fermions

We now evaluate the susceptibilities for an isotropic
Weyl fermion of chirality C = ±1 described by H0(k) =
Cvk · τ − µ, where τ are Pauli matrices. Its ener-
gies, Berry curvatures and magnetic moment for the

n = ±1 bands are En
k = nvk − µ, F n

k = −Cn k̂
2k2 and

mn
k = −eCn k̂

2k . Thus, for a WSM with Weyl nodes of
chirality Ci and velocity vi at energy Ei, i = 1 . . . 2N ,
and chemical potential µ, Eq. (9) reduces at T = 0 to

χGVE
WSM =

1

3

2N∑
i=1

Ci

(
µ− Ei

2πvi

)2

(11)

In deriving the above, we have subtracted the contribu-
tion of undoped Weyl nodes since filled bands do not
contribute, as argued earlier. Similarly,

χintra
WSM =

2

3

2N∑
i=1

Ci

(
µ− Ei

2πvi

)2

(12)

Including χinter
iso ≡ χGVE

WSM, we obtain the CVE for WSMs,

χCVE
WSM =

2N∑
i=1

Ci

(
µ− Ei

2πvi

)2

(13)

Eq. (13) is the well-known expression for the CVE in
relativistic Weyl fermions [40, 55–62].
The results for a single Weyl node are summarized in

Table II. While the effects are non-zero for individual
Weyl nodes, they vanish in a WSM unless all improper
symmetries are broken. If I or any improper symmetry
is present, the chiralities Ci would appear in equal and
opposite pairs while the energies Ei and speeds vi would
be equal for nodes within each such pair.

IV. COMPARISONS

The past decade has seen growing interest in vorti-
cal effects in both relativistic and non-relativistic chiral
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Limit Definition χinter
iso χintra

iso

Uniform, clean vq ≪ |ω|, 1/τ ≪ |ω|, arbitrary vqτ − 2
3

∫
k

∑
n Θ(−En

k )k · F n
k 0

Uniform, dirty vq ≪ |ω| ≪ 1/τ − 2
3

∫
k

∑
n Θ(−En

k )k · F n
k − 2

3

∫
k

∑
n

mn
k ·k
e

δ(En
k )

Static, clean |ω| ≪ vq, 1/τ ≪ vq, arbitrary ωτ − 2
3

∫
k

∑
n Θ(−En

k )k · F n
k − 2

3

∫
k

∑
n

mn
k ·k
e

δ(En
k )

Static, dirty |ω| ≪ vq ≪ 1/τ − 2
3

∫
k

∑
n Θ(−En

k )k · F n
k − 2

3

∫
k

∑
n

mn
k ·k
e

δ(En
k )

TABLE I. Summary of results at q → 0, ω → 0 and 1/τ → 0 in various orders. v is a typical band velocity. The interband
susceptibility is the same in all cases. In contrast, the intraband term vanishes in the uniform, clean limit but is the same in
all other limits.

Limit Definition χinter
Weyl χintra

Weyl χWeyl

Uniform, clean vq ≪ |ω|, 1/τ ≪ |ω|, arbitrary vqτ C
3
χ0 0 C

3
χ0

Uniform, dirty vq ≪ |ω| ≪ 1/τ C
3
χ0

2C
3
χ0 Cχ0

Static, clean |ω| ≪ vq, 1/τ ≪ vq, arbitrary ωτ C
3
χ0

2C
3
χ0 Cχ0

Static, dirty |ω| ≪ vq ≪ 1/τ C
3
χ0

2C
3
χ0 Cχ0

TABLE II. Summary of results at q → 0, ω → 0 and 1/τ → 0 in various orders for an isotropic Weyl fermion with velocity v,

chiral charge C and chemical potential µ relative to the Weyl node. Here, χ0 =
(

µ
2πv

)2
.

fermions as well as in their magnetic counterparts. We
now contrast our approach and results with the existing
ones in each context.

Ref. [57] calculated the CVE in Lorentz invariant ki-
netic theories and showed that

jCVE =
( µ

2πv

)2

Ω (14)

at T = 0 for a single right-handed isotropic Weyl fermion,
where v is the Weyl velocity and µ is measured relative
to the Weyl node energy. While this result is well-known,
Ref. [57] showed that jCVE consists of two parts: a Li-
ouville current jCVE

I = 1
3j

CVE from the group velocity of
all occupied (unoccupied) states above (below) the Weyl
node and a magnetization current jCVE

II = 2
3j

CVE from
the magnetization of states near the Fermi surface. More-
over, the above separation of terms was shown to arise
purely from Lorentz invariance. Interestingly, our results
for a single right-handed Weyl fermion show precisely the
same separation between interband and intraband terms.
In particular, interband processes contribute to the Li-
ouville current while intraband processes determine the
magnetization current. Both terms exist in the static and
dirty, uniform limits and yield the CVE. In contrast, the
clean, uniform limit gives rise to the GVE and receives
contributions from interband processes only, thus con-
sisting purely of a Liouville current. Our Kubo formula
approach provides microscopic insight into the CVE that
complements the arguments in Ref. [57] based on Lorentz
invariance.

For non-relativistic systems, recent works have trig-
gered a debate regarding the correct description of vorti-
cal effects. Ref. [66] described hydrodynamic transport
in non-centrosymmetric materials and included the effect
of vorticity through a coupling −L ·V to the spatial an-

gular momentum. In contrast, Ref. [65] also included
a spin-vorticity coupling, −S · V . In writing Eq. (2),
we have effectively adopted the former approach. Phys-
ically, this choice describes a fluid rotating relative to a
stationary lattice in such a way that its internal degrees
of freedom such as spin and orbital do not directly couple
to the external force driving the rotation. For instance,
for flow driven by an electric field, spin-vorticity coupling
is negligible because it is suppressed by the ratio of the
fluid speed to the speed of light. On the other hand, if
the crystal is mechanically rotated, the approach of Ref.
[65] is appropriate as rotation of the underlying lattice
couples to all degrees of freedom of the electron gas that
lives in it. If spin-vorticity coupling is neglected, our
results match with those of Ref. [65] provided our uni-
form and static limits are identified with their transport
and magnetization currents, respectively, with an extra
minus sign for the latter because we calculate the para-
magnetic current whereas orbital magnetization current
is diamagnetic.

Finally, we compare and contrast the results for the
vortical effects with their magnetic counterparts. The
magnetic and vortical effects all require broken I as well
as broken T I symmetries. However, the CME explicitly
requires the presence of Weyl nodes while the GME as
well as both the vortical effects can exist for general chiral
band structures devoid of Weyl nodes. The microscopic
contributions to the various effects are also different: the
CME and the GME are governed by the net chirality
of the occupied bands and the Fermi surface magneti-
zation, respectively. In contrast, the GVE depends on
the Berry curvature of the occupied bands whereas the
CVE contains additional contribution from the orbital
magnetization of states on the Fermi surface.
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V. IMPLICATIONS FOR BLOCH’S THEOREM

Bloch’s theorem states that the current density van-
ishes in the thermodynamic limit in an arbitrary system
at equilibrium. In WSMs, it manifests as a vanishing
equilibrium CME. To activate a CME, chiral charge first
needs to be pumped across Weyl nodes to create a non-
equilibrium steady-state. It is often stated that the CVE
evades Bloch’s theorem because the thermodynamic limit
here violates causality. Specifically, if a fluid rotates at
constant Ω, particles far enough from the rotation axis
will be forced to travel faster than light, so the system
must necessarily have a finite size. However, a recent
refinement of Bloch’s theorem for finite systems shows
that the current density is bounded only by the inverse
system size in the current direction, i.e., |⟨jz⟩| < O(1/lz)
[72]. Therefore, a generic equilibrium system must have
vanishing |⟨jz⟩| as lz → ∞ regardless of its transverse
dimensions. This contradicts Eq. (13), which clearly pre-
dicts a non-zero CVE.

The resolution to the paradox can be understood in
two equivalent ways. From the lab perspective, the en-
ergy of a fluid rotating at constant Ω can always be
lowered by slowing down its rotation, whereas Bloch’s
theorem assumes that the fluid is already in its lowest
energy state. Alternately, the rotating frame Hamilto-
nian in Eq. (2) violates a key assumption of Bloch’s theo-
rem, namely, an energy spectrum that is bounded below,
since L is unbounded. Specifically, the upper bound on
|L| = |r × k| is of order l⊥/a⊥, where a⊥ is the lattice
constant in the i-direction, which diverges in both con-
tinuum (a⊥ → 0) and thermodynamic (l⊥ → ∞) limits
in the transverse directions.

VI. DEVICE GEOMETRIES

We close by sketching various device geometries that
rely on the vortical effects. In these devices, carriers are
forced to traverse curved paths by a combination of de-
vice geometry and electromagnetic or thermal fields and
hence, endowed with a non-zero Ω relative to the back-
ground lattice. As a result, they develop a voltage per-
pendicular to the plane of motion. Figs. 3(a)-(c) illus-
trate the basic ideas for vortical effects driven by an elec-
tric field, thermal gradient and time-dependent magnetic
flux, respectively. If the mobility is µmob and the radius
of the curved path is R, an electric field E induces a drift
velocity vd = µmobE and hence, Ω = µmobE/R. Assum-
ing typical values for a WSM, E = 0.1V/m, R = 1µm,
µmob = 105cm2V/s, vF = 105m/s, (µ++µ−)/2 = 0.5eV ,
µ+ − µ− = 50meV , where µ± is the Fermi energy
relative to the right/left-handed Weyl node, we get a
large vortical current density of j = 100mA/mm2. For

q ∼ 1/R, the above numbers result in the CVE (GVE)
for ω ≪ 1011 Hz (ω ≫ 1011 Hz) Fig. 3(b) depicts a chi-
ral Nernst effect, defined as j(r, t) ∝ ∇×∇T (r). Note,
∇×∇T is guaranteed to vanish only if T (r) is twice con-

(a) (b)

(c) (d)

FIG. 3. Device geometries for utilizing the vortical effects.
In (a), (b) and (c), respectively, a current is driven along a
curved path by a voltage, a temperature gradient and a time-
dependent magnetic field, which produces a vertical potential
difference due to the vortical effects. (c) is equivalent to the
GME, but here we adopt the perspective that B(t) triggers
fluid rotation. In (d, top), Vvort ̸= 0 if a current is driven
between AB or AC because it is forced to go around a corner,
but Vvort = 0 for a current between AC. (d, bottom) shows
a more complex geometry with more terminals and corners
that offers richer manipulation. Geometries in (d) can serve
as building blocks for scalable circuits.

tinuously differentiable on all space – a condition violated
by the geometry of Fig. 3(b). Once again, we expect a
large effect in WSMs owing to their large mobility. For
∇T ∼ 1K/µm and Seebeck coefficient S = 100µV/K,
the resultant electric field is E = 0.1V/m, which leads
to j = 100mA/mm2. Fig. 3(d) shows examples of ge-
ometries that can form building blocks of larger circuits.
Here, the vortical effects are invoked when the carriers
have to turn a corner on their way from a source to a
drain.
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Appendix A: Angular momentum on a lattice

In the continuum, basic quantum mechanics dictates L̂ = r̂× p̂, where ⟨r|p̂|r′⟩ = −i∇rδ(r− r′) and we are using
hats to distinguish operators from states. In lattice systems such as a rotating optical lattice, one typically recasts
L̂ into a tight-binding hopping operator by evaluating its matrix elements in the basis of Wannier orbitals. Since we
need to evaluate a Kubo formula, which is easier in Fourier space, we project the perturbation −L̂ ·Ω(r̂, t) onto Bloch
states instead.

1. Projection onto Bloch states

The Bloch wavefunction for the n-th band is generically of the form ψn
k(r) ≡ ψn

k(R + ρ) = N−1/2eik·(R+ρ)unk(ρ),
where N is the number of unit cells, R is a discrete index that labels them, ρ denotes position within a unit cell, and
unk(ρ) is periodic in r with the same periodicity as the underlying Hamiltonian. In this basis,

⟨ψm
k | − L̂ ·Ω(r̂, t)|ψn

k+q′⟩ =
∫

r,r′

ψm∗
k (r)r × i∇rδ(r − r′)ψn

k+q′(r′) ·Ω(r′, t) (A1)

Suppose Ω(r′, t) = e−iq·r′
Ω(q) is monotonic in space. Approximating r ∼ R and ∇r = ∇ρ, the matrix element

becomes

⟨ψm
k | − L̂ ·Ω(r̂, t)|ψn

k+q′⟩ =
1

N

∑
R

ei(q
′−q)·R

∫
ρ,ρ′

e−ik·ρ+i(k+q′−q)·ρ′ [
um∗
k (ρ)R× i∇ρδ(ρ− ρ′)unk+q′(ρ′)

]
·Ω(q, t)

= − (2π)3

N

∑
K

i∇q′δ(q′ − q +K)×

 ∫
ρ,ρ′

e−ik·ρ+i(k+q′−q)·ρ′
um∗
k (ρ)i∇ρδ(ρ− ρ′)unk+q′(ρ′)

 ·Ω(q, t) (A2)

where K are reciprocal lattice vectors. Integrating by parts over ρ and integrating over ρ′,

⟨ψm
k |−L̂ ·Ω(r̂, t)|ψn

k+q′⟩ =
(2π)3

N

∑
K

i∇q′δ(q′−q+K)×
∫
ρ

ei(q
′−q)·ρ [kum∗

k (ρ) + i∇ρu
m∗
k (ρ)]unk+q′(ρ) ·Ω(q, t) (A3)

Since unk+q′+K(ρ) = e−iK·ρunk+q′(ρ), each term in the sum over K gives the same contribution and cancels the

factor of N . Thus, we can safely assume q and q′ to be within the first Brillouin zone and write

⟨ψm
k | − L̂ ·Ω(r̂, t)|ψn

k+q′⟩ = (2π)3i∇q′δ(q′ − q)×
〈
umk |(k − i∇ρ)|unk+q′

〉
·Ω(q, t)

(A4)

Thus, the angular momentum vertex is the prefactor of Ω(q, t) as used in Eq. 4 in the main paper.

L(q′; q) = i(2π)3∇q′δ(q′ − q)× (k − i∇ρ) (A5)

We have adopted a notation for L(q′; q) where the momentum to the right of the semicolon is that of the boson
line.

2. Reduction to the continuum

In an appropriate continuum limit, the matrix elements of the perturbation on a lattice reduce to the appropriate
continuum values, i.e., k − i∇ρ should reduce to the ordinary continuum momentum. Below, we describe how this
occurs in the nearly-free-electron limit. Interestingly, such a reduction also occurs in a deep tight-binding limit, which
may be more relevant to d− and f−electron compounds.
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a. Nearly free electron limit

Let us Fourier expand the periodic part of the Bloch wavefunction in terms of the reciprocal lattice vectors,
unk(ρ) =

∑
K eiK·ρunk(K). The desired matrix element can then be written as

⟨unk|(k − i∇ρ)|umk′⟩ =
∑
K

(k +K)un∗k (K)umk′(K) (A6)

Now, consider the Hamiltonian for electrons in a periodic potential, H = −ℏ2∇2/2m + V (r). For Inserting Bloch
wavefunctions ψn

k(r) into the equation gives[
(k − i∇ρ)

2

2m
+ V (ρ)

]
unk(ρ) = En

ku
n
k(ρ) (A7)

Fourier expanding V (ρ) =
∑

K ̸=0 V (K)eiK·ρ and integrating over ρ gives a set of linear equations, indexed by K,
for each band:

(k +K)2

2m
unk(K) +

∑
K′

V (K −K ′)unk(K
′) = En

ku
n
k(K)

=⇒ unk(K) =

∑
K′ V (K −K ′)unk(K

′)

En
k − (k+K)2

2m

(A8)

Suppose the periodic potential and eigenenergy are weak compared to the free electron kinetic energy at the edge
of the first Brillouin zone:

|V (ρ)|, |En
k | ≪

ℏ2(Kmin/2)
2

2m
∼ h2

8ma2
(A9)

where Kmin is the shortest non-zero reciprocal lattice vector and has length O(2π/a) with a being the length scale of
the lattice constant. For k ≪ Kmin, the denominator of Eq. A8 is large for any K ̸= 0, so the corresponding unk(K)
must be small. Specifically,

|un(K ̸= 0)| ≤
∑

K′ |V (K −K ′)||unk(0)|∣∣∣En
k − (k+K)2

2m

∣∣∣ ∼ |V |
h2/8ma2

(A10)

Thus, we can approximate

⟨unk|(k − i∇ρ)|umk′⟩ ≈ kun∗k (0)umk′(0) (A11)

thereby recovering the continuum behavior of the momentum operator, p̂ → k.

b. Deep tight-binding limit

Interestingly, the continuum behavior also arises in a useful opposite “deep tight-binding” limit. Suppose V (ρ)
consists of a sum of Dirac delta function wells within the unit cell:

V (ρ) =
∑
i

Viδ(ρ− ρi) (A12)

For E < 0 and 1/
√
−2mE ≪ |ρi − ρj | ∀ i, j, the local spectrum consists of nearly decoupled exponentially decaying

waves around each well

ϕi(ρ) ∼ e−
√
−2mE|ρ−ρi| (A13)

and the Bloch functions unk(ρ) are superpositions of ϕi(ρ):

unk(ρ) =
∑
i

un,ik ϕi(ρ) (A14)

Importantly, for k within the first Brillouin zone, the only ρ dependence of unk(ρ) is through ϕi(ρ); there are no
factors of eiK·ρ in the coefficients above. The inner product ⟨unk|i∇ρ|umk′⟩ is now exponentially small as ⟨ϕi|i∇ρ|ϕj⟩ ∼
e
√
−2mE|ρi−ρj | ≪ 1 if i ̸= j and ⟨ϕi|i∇ρ|ϕi⟩ = 0 since ϕi(ρ) have definite parity. Thus, p̂ → k is recovered in this

limit as well. Now, we will calculate the response to this rotation using the Kubo formula to first order in Ω. First, we
will show the expression for generic band structure in terms of the Berry curvature and then use it to derive explicit
results for Weyl fermions.
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Appendix B: General results

1. Response function

Since L violates translational invariance, a spatially monotonic angular velocity Ω(r, t) = e−iq·rΩ(q) gives rise to
currents j(q′) with a range of momenta q′. On the other hand, momentum non-conservation due to L is delicate –
through a ∇q′δ(q′ − q) function – so the resultant j(q′) will still be sharply peaked around q. Thus, the physical
current corresponds to the integrated weight of the current distribution. Physically, the integration captures the
fact that momentum-resolved measurement probes necessarily have a non-zero width and, thus, can only detect the
integrated weight.

At the level of linear response, the physical current is given by the Kubo formula

⟨jα(q, iωn)⟩ =
∫
q′

χ̃αβ(q
′, q, iωn)Ωβ(q, iωn) (B1)

where, χ̃αβ is the response function.
Depicted by the Feynman diagram Fig. 1(b), it is given at temperature T by

χ̃αβ(q
′, q, iωn) = −T

∑
iνn

∫
k

tr[jα(k + q′)G(k, iνn)Lβ(q
′; q)×G(k + q′, iνn + iωn)]

where G(k, z) = [z −H0(k) + isgn(Imz)/2τ ]
−1

with a phenomenological quasiparticle relaxation time τ . In the
following, we will refer to regimes of relatively small and large τ as “dirty” and “clean” for convenience, which is
appropriate for impurity scattering, but stress that τ is a phenomenological timescale whose origin could be other
scattering processes too. As usual, j(k) = ∇kH0(k) is the number current; the charge current is ej(k).
To proceed, we insert complete sets of states umk and unk+q′ as written below:

χ̃αβ(q
′, q, iωn) = −T

∑
iνn

∫
k

⟨unk+q′ |jα(k + q′)G(k, iνn)
∑
m

|umk ⟩⟨umk | Lβ(q
′; q)G(k + q′, iνn + iωn)|unk+q′⟩

= −T
∑

iνn,n,m

∫
k

⟨unk+q′ |jα(k + q′)|umk ⟩⟨umk | Lβ(q
′; q)|unk+q′⟩[

iνn − Em
k + i sgn(νn)

2τ

] [
iνn + iωn − En

k+q + i sgn(νn+ωn)
2τ

]
=

∑
n,m

∫
k

⟨unk+q′ |jα(k + q′)|umk ⟩⟨umk | Lβ(q
′; q)|unk+q′⟩Snm(k, q′, iωn) (B2)

where

Snm(k, q′, iωn) = −T
∑
iνn

1[
iνn − Em

k + i sgn(νn)
2τ

] [
iνn + iωn − En

k+q′ + i sgn(νn+ωn)
2τ

] (B3)

is evaluated in the next section. Integrating by parts over q′ and analytically continuing iωn → ω + i0+ gives the
physical, retarded response function χαβ(q, ω) =

∫
q′ χ̃αβ(q

′, q, iωn → ω + i0+):

χαβ(q, ω) = εβµν
∫
k

∑
n,m

i∂qν [⟨unk+q|jα(k + q)|umk ⟩ ⟨umk |kµ − i∂ρµ
|unk+q⟩Snm(k, q, ω)] (B4)

This is a general expression valid for lattice models at arbitrary T , q, and ω. Its real and imaginary parts define the
reactive and dissipative responses, respectively. It can be calculated precisely if the Bloch Hamiltonian H0(k) and
the basis states for the Bloch functions [ϕi(ρ) in Eq. (A14)] are known. The factor Snm(k, q, ω) will be calculated
generally in the next section.

2. Matsubara sum

We now evaluate the Matsubara sum Snm(k, q, iωn) in Eq. B3. Similar sums appear in textbook calculations of
transport. Here, we recap the calculation for completeness and tailor it for the goals of this work.
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The summand in Eq. (B3) contains no poles but has two branch cuts in the complex frequency plane along Imz = 0
and Imz = −ωn, where z is the complex generalization of iνn. As a result, the Matsubara sum transforms into
integrals over the real axis as

Snm(k, q, iωn) = −i
∫
ν

f(ν)

[
1

ν − Em
k + i

2τ

− 1

ν − Em
k − i

2τ

]
1

ν + iωn − En
k+q + isgnωn

2τ

− i

∫
ν

f(ν)

[
1

ν − En
k+q + i

2τ

− 1

ν − En
k+q − i

2τ

]
1

ν − iωn − Em
k − isgnωn

2τ

(B5)

where f(ν) = 1/(eν/kBT + 1) is the Fermi function. Upon analytic continuation, iωn → ω + i0+,

Snm(k, q, ω) =

∫
ν

2f(ν)

{
Im

[
1

ν − Em
k + i

2τ

]
1

ν + ω − En
k+q + i

2τ

+ Im

[
1

ν − En
k+q + i

2τ

]
1

ν − ω − Em
k − i

2τ

}
(B6)

Shifting ν by Em
k and En

k+q in the two terms and changing ν → −ν in the second term yields

Snm(k, q, ω) =

∫
ν

2Im

[
1

ν + i
2τ

]
f(ν + Em

k )− f(−ν + En
k+q)

ν + Em
k − En

k+q + ω + i
2τ

(B7)

The above expression is valid for general q, ω, τ , and T . At T = 0, it can be evaluated analytically and gives

Snm(k, q, ω) =
i

2π

ln

[
Em

k + i
2τ

Em
k +ω+ i

2τ

En
k+q− i

2τ

En
k+q−ω− i

2τ

]
Em

k − En
k+q + ω + i

τ

− i

2π

ln

[
Em

k − i
2τ

Em
k +ω+ i

2τ

En
k+q+

i
2τ

En
k+q−ω− i

2τ

]
Em

k − En
k+q + ω

(B8)

Appendix C: Simplifications and limits

Ultimately, we will be interested in the limits of q → 0 and ω → 0. For small q, Snm(k, q, ω) for En
k ̸= En

k is
well-behaved, whereas Snn(k, q, ω) and Snm(k, q, ω) for En

k = Em
k are not. Thus, we can apply i∂qν on the matrix

elements and safely take q → 0 in these factors. This yields,

χαβ(q, ω) =

iεβµν
∫
k

∑
n,m

⟨∂νunk|jα(k)|umk ⟩
(
kµδ

mn −Amn
kµ

)
Snm(k, q, ω) + iεβµν

∫
k

∑
n,m

⟨unk|∂νjα(k)|umk ⟩
(
kµδ

mn −Amn
kµ

)
Snm(k, q, ω)

+ iεβµν
∫
k

∑
n,m

⟨unk|jα(k)|umk ⟩ ⟨umk |kµ|∂νunk⟩Snm(k, q, ω) + iεβµν
∫
k

∑
n,m

⟨unk|jα(k)|umk ⟩
(
kµδ

mn −Amn
kµ

)
vnk+qν

dSnm(k, q, ω)

dEn
k+q

(C1)

where ∂ν ≡ ∂kν
and Amn

kµ = ⟨umk |i∂ρµ
|unk⟩. In the third line, we have used the smoothness of unk(ρ) in k and ρ to

drop εβµν⟨umk |i∂ρµ
|∂νunk⟩. In the fourth line, we have exploited the fact that Snm(k, q, ω) depends on q only through

En
k+q We no longer need the basis functions ϕi(ρ); instead, momentum matrix elements Amn

kµ , which are routinely
computed by first principles or determined experimentally by measuring optical transitions, suffice.

Next, we assume a limit where the “gauge field” ⟨umk |i∂ρµ |unk⟩, proportional to the optical matrix element, is
negligible, such as the nearly-free-electron or deep tight-binding limits described in Sec. A 2. Then,

χαβ(q, ω) = iεβµν
∫
k

∑
n

⟨∂νunk|jα(k)|unk⟩ kµSnn(k, q, ω) + iεβµν
∫
k

∑
n

⟨unk|∂νjα(k)|unk⟩ kµSnn(k, q, ω)

+iεβµν
∫
k

∑
n,m

⟨unk|jα(k)|umk ⟩ ⟨umk |∂νunk⟩kµSnm(k, q, ω) + iεβµν
∫
k

∑
n

vnkαkµv
n
kν

dSnn(k, q, ω)

dEn
k+q

(C2)



11

This further simplifies if we focus on the isotropic part of the response, χiso = 1
3

∑
α χαα. Verifying that

dSnn(k, q, ω)/dE
n
k+q is finite, the fourth line does not contribute to χiso thanks to the factor εαµνvnkαv

n
kν . Using

εαµν∂ν⟨unk|jα(k)|unk⟩ = εαµν∂ν∂αE
n
k = 0 (C3)

we get

χiso(q, ω) =
iεαµν

3

∫
k

kµ
∑
n

⟨unk| (vnkα − jkα) |∂νunk⟩Snn(k, q, ω) +
iεαµν

3

∫
k

kµ
∑
n ̸=m

⟨unk|jα(k)|umk ⟩⟨umk |∂νunk⟩Snm(k, q, ω)

= χintra
iso + χinter

iso (C4)

where we have separated the intraband (n = m) and interband (n ̸= m) contributions. We now study the uniform
(q → 0 before ω → 0) and static (ω → 0 before q → 0) limits for the two types of contributions.

1. Interband, away from band intersections (En
k ̸= Em

k )

In this case, the uniform and static limits commute and we can set q = 0 and ω = 0 directly. Eq. (B8) reduces to

Snm(k, 0, 0) = −
arg

(
Em

k + i
2τ

)
− arg

(
En

k + i
2τ

)
π (Em

k − En
k )

≈ −Θ(−Em
k )−Θ(−En

k )

Em
k − En

k

+
1

2πτEm
k E

n
k

(C5)

for |Em
k τ |, |En

kτ | ≫ 1, where the Θ(. . . ) terms come from branch cuts in arg(. . . ). If one of the energies is zero, then

Snm(k, 0, 0) ≈

{ 1/2−Θ(−Em
k )

Em
k

+ 1
2πτEm2

k
En

k = 0, Em
k ̸= 0

1/2−Θ(−En
k )

En
k

− 1
2πτEn2

k
Em

k = 0, En
k ̸= 0

(C6)

With Θ(0) = 1/2, we can compactly write

Snm(k, 0, 0) ≈ −Θ(−Em
k )−Θ(−En

k )

Em
k − En

k

(C7)

to leading order in 1/τEm,n
k . Inserting this into the response function gives

χinter
iso = − iε

αµν

3

∫
k

kµ
∑
n ̸=m

⟨unk|jα(k)|umk ⟩⟨umk |∂νunk⟩
Θ(−Em

k )−Θ(−En
k )

Em
k − En

k

(C8)

as long as there are no band crossings. We can simplify the above by observing that

⟨unk|∂α (H0(k)|umk ⟩) = ⟨unk|∂α (Em
k |umk ⟩)

=⇒ ⟨unk|jα(k)|umk ⟩ = (Em
k − En

k ) ⟨unk|∂αumk ⟩+ vnkαδmn

(C9)

and

⟨unk|∂αumk ⟩+ ⟨∂αunk|umk ⟩ = ∂α ⟨unk|umk ⟩ = 0 (C10)

Thus,

χinter
iso = − iε

αµν

3

∫
k

kµ
∑
n ̸=m

⟨unk|∂αumk ⟩⟨umk |∂νunk⟩ [Θ(−Em
k )−Θ(−En

k )]

=
iεαµν

3

∫
k

kµ
∑
n ̸=m

{⟨∂αunk|umk ⟩⟨umk |∂νunk⟩ − ⟨∂νunk|umk ⟩⟨umk |∂αunk⟩}Θ(−En
k )

=
iεαµν

3

∫
k

kµ
∑
n

{⟨∂αunk|∂νunk⟩ − ⟨∂νunk|∂αunk⟩}Θ(−En
k )

= −2

3

∫
k

∑
n

Θ(−En
k )k · F n

k (C11)
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where F n
k = i ⟨∇ku

n
k |×|∇ku

n
k⟩ is the Berry curvature of the nth band. Going from the second to the third line, we

added the m = n term to the summation, noting that it vanishes anyway. Thus, χinter
iso in continuum Hamiltonians is

given by the first moment of the Berry curvature of the occupied Bloch states if there are no band intersections. We
will see shortly that the above result holds even when band intersections are included as long as the intersections are
not within O(1/τ) of the Fermi level.

2. Intraband or at a band intersection (En
k = Em

k )

In this case, the uniform and static limits do not commute, so we must consider them separately. We assume that
band intersections, if any, are not close to the Fermi level. If they are, Bloch functions become non-differentiable
at these points, and the formalism we have developed so far breaks down. Physically, tuning the Fermi level to a
band intersection invalidates smooth, semiclassical nature of the q → 0 limit and demands a non-perturbative, fully
quantum calculation.

a. Uniform limit: q → 0 before ω → 0

At q = 0 and En
k = Em

k , Eq. (B8) becomes

Snm(k, 0, ω) =
i

2π
ln

[
Em

k + i
2τ

Em
k − ω − i

2τ

Em
k − i

2τ

Em
k + ω + i

2τ

]
1

ω(iωτ − 1)
(C12)

For Em
k ̸= 0, which is true away from the Fermi level, we consider the low-frequency regime, |ω| ≪ |Em

k | and
approximate

Snm(k, 0, ω) =
1

π
Im

[
1

Em
k + i

2τ

]
1

iωτ − 1
(C13)

Now taking ω → 0 in the two extremes ωτ → ∞ (“clean”) and ωτ → 0 (“dirty”),

Snm(k, 0, ω → 0) =

{
− δ(Em

k )
iωτ → 0 |ωτ | ≫ 1

− 1
π Im

[
1

Em
k + i

2τ

]
|ωτ | ≪ 1

(C14)

On the other hand, if Em
k = 0,

Snm(k, 0, ω) = − i ln(1− 2iτω)

πω(iωτ − 1)
(C15)

As ω → 0,

Snm(k, 0, ω) =

{
0 |ωτ | ≫ 1
2τ
π |ωτ | ≪ 1

(C16)

which is equivalent to Eq. (C14) at Em
k = 0. In other words, the ω → 0 and the Em

k → 0 limits commute. Thus, we
can compactly write

Snm(k, 0, ω → 0) =

{
0 |ωτ | ≫ 1

− 1
π Im

[
1

Em
k + i

2τ

]
|ωτ | ≪ 1

(C17)

for all Em
k . Thus, the |ωτ | ≫ 1 regime gives no additional contribution to χinter

iso even if there are band crossings.
If |ωτ | ≪ 1, χinter

iso receives an additional contribution from regions where Em
k = En

k :

∆χinter
iso = − iε

αµν

3π

∫
k

kµ
∑

n̸=m;Em
k =En

k

⟨unk|jα(k)|umk ⟩⟨umk |∂νunk⟩Im

[
1

Em
k + i

2τ

]
(C18)
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The factor Im
[

1
Em

k + i
2τ

]
stipulates that the above correction is governed by band intersections within O(1/τ) of the

Fermi level – a situation we excluded from the outset in this section – so the correction will be negligible.
In the uniform limit, χintra

iso vanishes if |ωτ | ≫ 1 according to Eq. (C17). If |ωτ | ≪ 1,

χintra
iso = − iε

αµν

3π

∫
k

kµ
∑
n

⟨unk| (vnkα − jkα) |∂νunk⟩Im

[
1

En
k + i

2τ

]

= − iε
αµν

3π

∫
k

kµ
∑
n

⟨∂αunk| (H − En
k ) |∂νunk⟩Im

[
1

En
k + i

2τ

]

=
2

3

∫
k

∑
n

mn
k · k
e

1

π
Im

[
1

En
k + i

2τ

]
(C19)

where mn
k = ie

2 ⟨∇unk| × (Hk − En
k )|∇unk⟩ is the orbital moment of the Bloch state |unk⟩. To leading order in 1/τ ,

χintra
iso = −2

3

∫
k

∑
n

mn
k · k
e

δ(En
k ) (C20)

Thus, the contribution is given by the orbital magnetic moment integrated over the Fermi surface.

b. Static limit: ω → 0 before q → 0

At ω = 0,

Snm(k, q, 0) = −
arg

(
Em

k + i
2τ

)
− arg

(
En

k+q + i
2τ

)
π
(
Em

k − En
k+q

) (C21)

Now taking q → 0, we find

Snm(k, q → 0, 0) =

{
δ(Em

k ) |vn
k · q|τ ≫ 1

− 1
π Im

[
1

Em
k + i

2τ

]
|vn

k · q|τ ≪ 1
(C22)

Inserting this into χinter
iso for |vn

k ·q|τ ≫ 1 (“clean” limit) gives a correction to χinter
iso from band intersections at or near

the Fermi level. Since we have excluded such situations, the correction vanishes for |vn
k · q|τ ≫ 1 and is negligible for

|vn
k · q|τ ≪ 1.
On the other hand, the intraband susceptibility for |vn

k · q|τ ≫ 1 (“dirty” limit) is given by

χintra
iso =

iεαµν

3

∫
k

kµ
∑
n

⟨unk| (vnkα − jkα) |∂νunk⟩δ(En
k )

= −2

3

∫
k

∑
n

mn
k · k
e

δ(En
k ) (C23)

identical to the result obtained in the uniform limit q = 0, ω → 0, τ → ∞ with |ωτ | ≪ 1. When |vn
k · q|τ ≪ 1, the

result to leading order in 1/τ is

χintra
iso = −2

3

∫
k

∑
n

mn
k · k
e

δ(En
k ) (C24)

identical to the expression in the dirty limit.

[1] O. Vafek and A. Vishwanath, Annual Review of Con-
densed Matter Physics 5, 83 (2014).

[2] A. A. Burkov, Annual Review of Condensed Matter



14

Physics 9, 359 (2018).
[3] A. A. Burkov, Nature Materials 15, 1145 EP (2016).
[4] B. Yan and C. Felser, Annual Review of Condensed Mat-

ter Physics 8, 337 (2017), arXiv:1611.04182.
[5] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev.

Mod. Phys. 90, 15001 (2018).
[6] S.-Q. Shen, Topological dirac and weyl semimetals, in

Topological Insulators: Dirac Equation in Condensed
Matter (Springer Singapore, Singapore, 2017) pp. 207–
229.

[7] I. Belopolski, D. S. Sanchez, Y. Ishida, X. Pan, P. Yu, S.-
Y. Xu, G. Chang, T.-R. Chang, H. Zheng, N. Alidoust,
G. Bian, M. Neupane, S.-M. Huang, C.-C. Lee, Y. Song,
H. Bu, G. Wang, S. Li, G. Eda, H.-T. Jeng, T. Kondo,
H. Lin, Z. Liu, F. Song, S. Shin, and M. Z. Hasan, Nature
Communications 7, 13643 (2016).

[8] Z. P. Guo, P. C. Lu, T. Chen, J. F. Wu, J. Sun, and D. Y.
Xing, Science China: Physics, Mechanics and Astronomy
10.1007/s11433-017-9126-6 (2018).

[9] G. Chang, S.-Y. Xu, H. Zheng, C.-C. Lee, S.-M. Huang,
I. Belopolski, D. S. Sanchez, G. Bian, N. Alidoust, T.-R.
Chang, C.-H. Hsu, H.-T. Jeng, A. Bansil, H. Lin, and
M. Z. Hasan, Phys. Rev. Lett. 116, 66601 (2016).

[10] A. Gyenis, H. Inoue, S. Jeon, B. B. Zhou, B. E. Feldman,
Z. Wang, J. Li, S. Jiang, Q. D. Gibson, S. K. Kushwaha,
J. W. Krizan, N. Ni, R. J. Cava, B. A. Bernevig, and
A. Yazdani, New Journal of Physics 18, 105003 (2016).

[11] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee,
G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane,
C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan,
Nature Communications 6, 7373 (2015).

[12] H. Inoue, A. Gyenis, Z. Wang, J. Li, S. W. Oh, S. Jiang,
N. Ni, B. A. Bernevig, and A. Yazdani, Science 351, 1184
(2016).

[13] B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C.
Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti,
V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi,
and H. Ding, Nature Physics 11, 724 EP (2015).

[14] Y. Sun, S. C. Wu, and B. Yan, Physical Review B -
Condensed Matter and Materials Physics 10.1103/Phys-
RevB.92.115428 (2015).

[15] A. S.-y. Xu, I. Belopolski, N. Alidoust, M. Neupane,
C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-c. Lee, S.-
m. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang,
F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Zahid,
Science (2015).

[16] S. Y. Xu, I. Belopolski, D. S. Sanchez, M. Neupane,
G. Chang, K. Yaji, Z. Yuan, C. Zhang, K. Kuroda,
G. Bian, C. Guo, H. Lu, T. R. Chang, N. Alidoust,
H. Zheng, C. C. Lee, S. M. Huang, C. H. Hsu, H. T. Jeng,
A. Bansil, T. Neupert, F. Komori, T. Kondo, S. Shin,
H. Lin, S. Jia, and M. Z. Hasan, Physical Review Letters
116, 096801 (2016), arXiv:1510.08430.

[17] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane,
G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-
C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez,
B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin,
S. Jia, and M. Z. Hasan, Science 349, 613 (2015).

[18] L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang,
T. Zhang, B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn,
D. Prabhakaran, Z. Hussain, S. K. Mo, C. Felser, B. Yan,
and Y. L. Chen, Nature Physics 11, 728 EP (2015).

[19] H. Zheng, S. Y. Xu, G. Bian, C. Guo, G. Chang, D. S.
Sanchez, I. Belopolski, C. C. Lee, S. M. Huang, X. Zhang,

R. Sankar, N. Alidoust, T. R. Chang, F. Wu, T. Neupert,
F. Chou, H. T. Jeng, N. Yao, A. Bansil, S. Jia, H. Lin,
and M. Z. Hasan, ACS Nano 10, 1378 (2016).

[20] H. B. Nielsen and M. Ninomiya, Physics Letters B 130,
389 (1983).

[21] H. B. Nielsen and M. Ninomiya, Nuclear Physics B 185,
20 (1981).

[22] H. B. Nielsen and M. Ninomiya, Nuclear Physics B 193,
173 (1981).

[23] P. Hosur and X. Qi, Comptes Rendus Physique 14,
10.1016/j.crhy.2013.10.010 (2013).

[24] H. Wang and J. Wang, Chinese Physics B 27, 107402
(2018).

[25] J. Hu, S.-Y. Xu, N. Ni, and Z. Mao, Annual Review of
Materials Research 49, 207 (2019).

[26] A. A. Zyuzin and A. A. Burkov, Phys. Rev. B 86, 115133
(2012).

[27] Y. Chen, S. Wu, and A. A. Burkov, Phys. Rev. B 88,
125105 (2013).

[28] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 27201
(2013).

[29] A. A. Burkov, Journal of Physics: Condensed Matter 27,
113201 (2015).

[30] P. Hosur, S. Parameswaran, and A. Vishwanath, Physical
Review Letters 108, 10.1103/PhysRevLett.108.046602
(2012).

[31] F. de Juan, A. G. Grushin, T. Morimoto, and J. E.
Moore, Nature Communications 8, 15995 (2017).

[32] S. Wang, B. C. Lin, A. Q. Wang, D. P. Yu, and Z. M.
Liao, Advances in Physics: X 2, 518 (2017).

[33] N. Nagaosa, T. Morimoto, and Y. Tokura, Nature Re-
views Materials 5, 621 (2020).

[34] M. V. Isachenkov and A. V. Sadofyev, Physics Letters B
697, 404 (2011).

[35] A. V. Sadofyev, V. I. Shevchenko, and V. I. Zakharov,
Phys. Rev. D 83, 105025 (2011).

[36] P. Goswami and S. Tewari, Phys. Rev. B 88, 245107
(2013).

[37] Z. Wang and S.-C. Zhang, Phys. Rev. B 87, 161107
(2013).

[38] G. Basar, D. E. Kharzeev, and H.-U. Yee, Phys. Rev. B
89, 35142 (2014).

[39] K. Landsteiner, Phys. Rev. B 89, 75124 (2014).
[40] R. Loganayagam and P. Surówka, Journal of High Energy

Physics 2012, 97 (2012).
[41] J. Nissinen and G. E. Volovik, Phys. Rev. D 106, 045022

(2022).
[42] A. Vilenkin, Phys. Rev. D 21, 2260 (1980).
[43] D. E. Kharzeev, Progress in Particle and Nuclear Physics

75, 133 (2014).
[44] A. A. Zyuzin, S. Wu, and A. A. Burkov, Phys. Rev. B

85, 165110 (2012).
[45] P. Goswami and S. Tewari, Chiral magnetic effect of weyl

fermions and its applications to cubic noncentrosymmet-
ric metals (2013), arXiv:1311.1506 [cond-mat.mes-hall].

[46] M.-C. Chang and M.-F. Yang, Phys. Rev. B 91, 115203
(2015).

[47] M.-C. Chang and M.-F. Yang, Phys. Rev. B 92, 205201
(2015).

[48] P. Goswami and A. H. Nevidomskyy, Phys. Rev. B 92,
214504 (2015).

[49] S. Zhong, J. E. Moore, and I. Souza, Phys. Rev. Lett.
116, 077201 (2016).

[50] D. T. Son and N. Yamamoto, Phys. Rev. Lett. 109,



15

181602 (2012).
[51] A. Vilenkin, Phys. Rev. Lett. 41, 1575 (1978).
[52] A. Vilenkin, Physics Letters B 80, 150 (1978).
[53] A. Vilenkin, Phys. Rev. D 20, 1807 (1979).
[54] A. Vilenkin, Phys. Rev. D 22, 3067 (1980).
[55] O. V. Rogachevsky, A. S. Sorin, and O. V. Teryaev, Phys.

Rev. C 82, 054910 (2010).
[56] M. A. Stephanov and Y. Yin, Phys. Rev. Lett. 109,

162001 (2012).
[57] J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, and

Y. Yin, Phys. Rev. Lett. 113, 182302 (2014).
[58] G. Y. Prokhorov, O. V. Teryaev, and V. I. Zakharov,

Phys. Rev. D 98, 071901 (2018).
[59] G. Prokhorov and O. Teryaev, Phys. Rev. D 97, 076013

(2018).
[60] G. Y. Prokhorov, O. V. Teryaev, and V. I. Zakharov,

Journal of High Energy Physics 2019, 146 (2019).
[61] V. I. Zakharov and O. V. Teryaev, Quark-hadron duality

in hydrodynamics: an example (2018), arXiv:1801.08183
[hep-th].

[62] M. Stone and J. Kim, Phys. Rev. D 98, 025012 (2018).

[63] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang,
Progress in Particle and Nuclear Physics 88, 1 (2016).

[64] T. D. C. Bevan, A. J. Manninen, J. B. Cook, J. R. Hook,
H. E. Hall, T. Vachaspati, and G. E. Volovik, Nature
386, 689 (1997).

[65] A. Shitade, K. Mameda, and T. Hayata, Phys. Rev. B
102, 205201 (2020).

[66] R. Toshio, K. Takasan, and N. Kawakami, Phys. Rev.
Research 2, 032021 (2020).

[67] Z. V. Khaidukov, V. P. Kirilin, and A. V. Sadofyev,
Physics Letters B 717, 447 (2012).

[68] V. P. Kirilin, A. V. Sadofyev, and V. I. Zakharov, Phys.
Rev. D 86, 25021 (2012).

[69] D. Bohm, Phys. Rev. 75, 502 (1949).
[70] Y. Ohashi and T. Momoi, Journal of the

Physical Society of Japan 65, 3254 (1996),
https://doi.org/10.1143/JPSJ.65.3254.

[71] N. Yamamoto, Phys. Rev. D 92, 085011 (2015).
[72] H. Watanabe, Journal of Statistical Physics 177, 717

(2019).


