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In two dimensions, magnetic higher-order topological insulators (HOTIs) are characterized by
excess boundary charge and a compensating bulk “filling anomaly.” At the same time, without
additional noncrystalline symmetries, the boundaries of two-dimensional HOTIs are gapped and
featureless at low energies, while the bulk of the system is predicted to have a topological response
to the insertion of lattice (particularly disclination) defects. Until recently, a precise connection
between these effects has remained elusive. In this work, we point the direction towards a unifying
field-theoretic description for the bulk and boundary response of magnetic HOTIs. By focusing
on the low-energy description of the gapped boundary of a two-dimensional magnetic HOTI with
no time-reversing symmetries, we show that the boundary charge and filling anomaly arise from
the gravitational “Gromov-Jensen-Abanov” (GJA) response action first introduced in [Phys. Rev.
Lett. 116, 126802 (2016)] in the context of the quantum Hall effect. As in quantum Hall systems
the GJA action cancels apparent anomalies associated with bulk response to disclinations, allowing
us to derive a concrete connection between the bulk and boundary theories of HOTIs. We show
how our results elucidate the connection between higher order topology and geometric response
both in band insulators, and point towards a new route to understanding interacting higher order
topological phases beyond the simple cases considered here.

I. INTRODUCTION

Traditionally, the most fruitful experimental and theo-
retical investigations into topological insulators have fo-
cused on the presence of gapless edge states [1–11]. How-
ever, recent work on topological insulators protected by
crystal symmetry has shown that in many cases, topo-
logically nontrivial systems need not have gapless states
on surfaces that are not invariant under crystal symme-
tries [12–18]. Instead, many topological crystalline in-
sulators feature gapless corner (in two dimensions) or
hinge states (in three dimensions) states at the point
where boundary facets meet, at least in highly symmet-
ric finite size geometries [19–22]. Such systems, known
as higher-order topological insulators (HOTIs) have at-
tracted great interest since their discovery. HOTI phases
are now ubiquitous in condensed matter [23–41], meta-
material [42–44], and photonic [45–54] systems.
While many three-dimensional HOTIs are topologi-

cally nontrivial in the sense that the occupied states
cannot support exponentially localized Wannier func-
tions [21, 55, 56], the case of two-dimensional HOTIs is
more subtle. Simple models of rotationally-symmetric
HOTIs in two-dimensions feature fractionally charged
midgap corner states and quantized bulk electric mul-
tipole moments. However, much like with electric polar-
ization in one dimension, midgap corner states in two-
dimensional HOTIs can only be pinned in energy by ad-
ditional noncrystalline symmetries such as charge conju-
gation or chiral symmetry. In the absence of such sym-
metries, corner modes may increase or decrease in en-
ergy, becoming indistinguishable from the continuum of
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bulk states. Nevertheless, even when corner states do
not appear within the bulk energy gap, there remains an
excess charge on the boundary and a “filling anomaly,”
where the number of filled electronic states in the bulk
is mismatched from the number of unit cells [56–61].
Thus, much like the one-dimensional SSH chain, two-
dimensional HOTIs with only crystalline symmetries are
obstructed atomic insulators (or, more generally, fragile
topological phases [55–57, 62–64]), which admit exponen-
tially localized Wannier functions (after the appropriate
addition of trivial occupied bands), albeit displaced from
atomic positions.

At the same time, recent work has indicated that—
in addition to quantized multipole moments—two-
dimensional HOTIs can host nontrivial excitations on lat-
tice defects in the bulk [65–71]. Particularly relevant for
this work, it has been shown that for magnetic (time-
reversal breaking) C2n-symmetric HOTIs, disclination
defects in the bulk with deficit angle π/n bind fractional
electric charge (fractional fermion number). In order to
capture this phenomenon in a low-energy effective theory,
field-theoretic descriptions of magnetic HOTIs have been
proposed that, after integrating out fermionic degrees of
freedom, involve couplings between the electromagnetic
field and the geometry of the lattice. Similar field theories
were first discussed by Wen and Zee [72] in the context
of the quantum Hall effect. Considering these Wen-Zee
(WZ) responses to geometry has led to a number of conse-
quences; as a notable example, the WZ response gives rise
to the quantized Hall viscosity in rotationally-invariant
quantum Hall phases[73–77]. Some progress has been
made viewing the excess corner and disclination charges
that stem from higher-order topology as a (discrete) geo-
metric response. For instance, it was recently shown that
the charge bound to disclinations in 2D magnetic HOTIs

mailto:bbradlyn@illinois.edu


2

could be captured by a Wen-Zee like response involving
the coupling of the electromagnetic field to discrete rota-
tional gauge fields [66, 68, 70, 71, 78].

At first sight, the bulk Wen-Zee response does not cap-
ture the filling anomaly, which is present even in systems
with vanishing curvature (and no disclinations). The
close geometric analogy between corners and disclina-
tions suggests that it may be possible to capture corner
charge and filling anomaly in HOTIs via Wen-Zee like
geometric response. Steps in this direction were taken
in Ref. [68]. That work derived the bulk Wen-Zee ac-
tion for a model of a fourfold (C4) rotationally-symmetric
magnetic HOTI, and argued how to connect this to the
fractional charge bound to corners. However, Ref. [68]
also showed that the bulk Wen-Zee action predicts an
anomaly on the boundary of a magnetic HOTI that raises
questions about how to describe the gapped boundary.

A similar puzzle was encountered in the study of the
geometric response of quantum Hall states, where it was
shown by Gromov, Jensen, and Abanov that the noncon-
servation of charge at the boundary of a system with a
Wen-Zee response could be cancelled by a local countert-
erm [79]. In that sense, the Wen-Zee term does not result
in a boundary anomaly [80, 81] and does not require gap-
less edge modes; rather, it implies a nontrivial coupling
between electromagnetism and extrinsic curvature in the
(possibly gapped) boundary theory.

In this work, we show how the anomaly-cancelling
Gromov-Jensen-Abanov (GJA) boundary action SGJA

arises in two-dimensional magnetic HOTIs, focusing on
systems with no time-reversing symmetries (i.e. in type-
I magnetic space groups [82]). We will show that SGJA

cancels the inflow of current from the bulk predicted in
Ref. [68], rendering the total bulk-plus-boundary theory
of the magnetic HOTI anomaly-free. At the same time,
SGJA also necessitates an excess charge on the bound-
ary of the magnetic HOTI even in flat space, due to
the nontrivial Euler characteristic (extrinsic curvature)
of a closed boundary. We will validate these phenomeno-
logical calculations by deriving SGJA explicitly from the
boundary theory in a microscopic model of a magnetic
HOTI, following the approach of Refs. [57, 61]. We
will emphasize the important role of discrete (in con-
trast to continuous) rotational symmetry in determin-
ing the matching conditions between the boundary filling
anomaly and the bulk disclination response.

The structure of this paper is as follows: First, in
Sec. II we will review the induced action formalism for
geometric response in 2D magnetic systems. We will in-
troduce the Wen-Zee action, show how it captures charge
bound to disclination defects in the bulk, and review how
it appears in the study of magnetic HOTIs. Then, we
will introduce the Gromov-Jensen-Abanov boundary ac-
tion, which cancels the apparent anomaly of the Wen-Zee
theory and allows a system described by the Wen-Zee ac-
tion in the bulk to be consistent with a gapped bound-
ary. We will show how the Gromov-Jensen-Abanov term
determines the filling anomaly and corner charge of a

magnetic HOTI, thus closing the conceptual gap between
bulk disclination response, corner charge, and the filling
anomaly.

To justify these observations, we will in Sec. III in-
troduce a microscopic model of a p4m-symmetric mag-
netic HOTI adapted from Ref. [57]. We will derive the
low-energy theory for the gapped boundary in terms of a
two-component Dirac fermion with a p4m-symmetric but
space-dependent mass term, paying particular attention
to the role of the extrinsic geometry of the boundary.
In Sec. IV we will bosonize the theory and determine
the boundary current density and excess charge. We
will thus see how the filling anomaly of the HOTI arises
due to the chiral anomaly in the boundary theory via
the Goldstone-Wilczek mechanism. Since the boundary
mass depends on the extrinsic geometry of the boundary,
we will show how the current density can be expressed
in terms of the extrinsic curvature. Building on this,
in Sec. V we will integrate our expression for the cur-
rent to obtain the boundary Gromov-Jensen-Abanov in-
duced action for the magnetic HOTI. We will then show
how the Gromov-Jensen-Abanov boundary action neces-
sitates the existence of a bulk Wen-Zee action, highlight-
ing the ambiguities that arise due to the presence of dis-
crete rotational symmetry. Finally, in Sec. VI we will dis-
cuss the implications of our results for more general C2n-
symmetric magnetic insulators and gappable boundaries
of interacting topological phases. We will discuss how our
result cements the Wen-Zee and Gromov-Jensen-Abanov
actions as the hallmarks of obstructed atomic insulators
in magnetic two-dimensional systems.

II. THE WEN-ZEE AND

GROMOV-JENSEN-ABANOV ACTIONS

We will begin by reviewing the induced action ap-
proach to geometric response in 2 + 1-dimensional mag-
netic topological phases (i.e. topological phases with bro-
ken time-reversal symmetry). We imagine our system is
defined on a spacetime manifold M = Γ×R, where Γ is a
two-dimensional spatial manifold, and R represents time.
The spatial manifold Γ may be either a closed manifold,
or a manifold with boundary ∂Γ; the boundary ∂Γ sep-
arates the system of interest from a topologically trivial
region which we can treat as the vacuum. We note that in
this case the boundary ofM is ∂M = ∂Γ×R. We will be
interested in gapped systems coupled to both an external
electromagnetic field A = Aµdx

µ (where µ = 0, 1, 2 is a
spacetime index, and µ = 0 is the time direction), and
to deformations of the geometry of the spatial manifold
Γ (we will for simplicity neglect deformations that mix
space and time in this work). The geometry of Γ can
be specified in terms of a set of orthonormal frames eai ,
where i = 1, 2 indexes spatial directions in the manifold
and a = 1, 2 specifies one of the two frames. We can also
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introduce the inverse frames Ei
a satisfying

Ei
ae

b
i = δba, (1)

Ei
ae

a
j = δij, (2)

where δ is the Kronecker delta symbol. Here and
throughout this work we use the Einstein summation
convention for repeated indices. While a full account-
ing of this nonrelativistic geometry can be found in, e.g.,
Refs. [74, 75, 79, 83, 84], we will for our purposes only
highlight that the frames determine the metric

gij = eai e
a
j (3)

on the manifold Γ, and that the change in the frames
between nearby points on the manifold is determined by
the spin connection ω = ωµdx

µ. In terms of the frames
and the metric, we have the explicit expression [74, 75]

ω0 =
1

2
ǫabE

i
a∂0e

b
i ,

ωk =
1

2
ǫabE

i
a∂ie

b
i +

1

2
ǫabEi

aE
j
b∂igjk (4)

for the components of the spin connection, where ǫab is
the antisymmetric symbol, and indices a, b are lowered
with the identity matrix.
Given a gapped system of fermions coupled to the

electromagnetic field and background geometry, we can
integrate out the microscopic degrees of freedom to
determine the induced action (generating functional)
S[A, e, ω]. Functional derivatives of S[A, e, ω] with re-
spect to the background fields determine ground state
averages and correlation functions (response coefficients).
For a gapped system, we expect S[A, e, ω] to be a local
functional of the fields,

S[A, e, ω] ≡ Sloc[e, F,R] + Stop[A, e, ω] (5)

=

∫

M

Lloc(e, F,R) + Ltop, (6)

where the scalar function (or, more precisely, the three-
form) Lloc(e, F,R) is a function of the frames, the elec-
tromagnetic field strength F = dA, and the curvature
R = dω; by construction Lloc(e, F,R) is invariant under
electromagnetic (U(1)) gauge transformations and local
changes of frame [which are themselves SO(2) local ro-
tations (gauge transformations)]. On the other hand,
Ltop is invariant under gauge transformations only up
to boundary terms. The non-invariance of Ltop under
gauge transformations implies that coupling constants
for terms in Ltop cannot be locally renormalized in a
space-dependent way by perturbations of the microscopic
Hamiltonian that respect the symmetries of the problem.
The prototypical example of a contribution to Stop is

the electromagnetic Chern-Simons action

SECS =
ν

4π

∫

M

A ∧ dA. (7)

By varying SECS with respect to Aµ, we find that the co-
efficient ν determines the Hall conductivity of the sam-
ple. At the same time, the fact that SECS changes by
a boundary term under electromagnetic gauge transfor-
mations necessitates the existence of gapless boundary
modes when the system has a boundary.
In this work, we will be focusing on magnetic topo-

logical phases with ν = 0, so that the Hall conductivity
vanishes. In this case, the leading contribution to Stop

involves mixed coupling between electromagnetism and
background geometry, first introduced by Wen and Zee
in the context of the quantum Hall effect [72]. This Wen-
Zee action is a mixed Chern-Simons term coupling the
electromagnetic vector potential A and the spin connec-
tion ω,

SWZ[A,ω, s̄] =
s̄

2π

∫

M

A ∧ dω (8)

We have made explicit the dependence of SWZ on the
coupling constant s̄, known as the orbital spin per par-
ticle (working in units where ~ = c = e = 1. Note also
that s̄ as defined here differs from the similar quantity
introduced in the Hall effect by a factor of ν).
The Wen-Zee action determines the response of a topo-

logical phase to variations in background geometry. In
particular, varying Eq. (8) with respect to the frames us-
ing Eq. (4) determines the ground state stress tensor, and
s̄/2π determines the Hall viscosity (per unit of magnetic
flux through the system) [73, 76, 85–87]. Additionally,
we can vary Eq. (8) with respect to the vector potential
to determine the excess charge density

∆ρR =
δSWZ

δA0
=

s̄

2π
dω (9)

bound to sources of curvature R = dω. We see that the
Wen-Zee action determines the charge bound to disclina-
tion defects R = αδ(x−x0) of deficit angle α at position
x0 in otherwise flat space. Furthermore, we can integrate
Eq. (9) over space to find the shift in the total charge on
a closed spatial manifold (∂Γ = 0),

∆QR =
s̄

2π

∫

Γ

R = s̄χΓ, (10)

where χΓ is the Euler characteristic of the spatial mani-
fold Γ.
In Ref. [68], the authors showed that when coupled to

nontrivial geometry the low-energy bulk behavior of a
model for a 2D magnetic HOTI with C4 rotation sym-
metry is governed by the Wen-Zee action Eq. (8) with
s̄ = 2. This leads to the prediction that their C4-
symmetric HOTI will feature fractional 1/2 charge bound
to bulk π/2 disclination defects. However, in flat geome-
tries where ω = 0, the Wen-Zee action does not lead to
an accumulation of charge in the ground state, and so
alone cannot explain the filling anomaly in rotationally-
symmetric magnetic HOTIs.



4

The Wen-Zee action Eq. (8) is invariant with respect
to SO(2) gauge transformations of the spin connection
(i.e., local rotations of the frames). However, under U(1)
(electromagnetic) gauge transformations of A, Eq. (8) is
only invariant up to a boundary term. In particular,
when the spacetime M has a boundary ∂M = ∂Γ × R,
then under the U(1) gauge transformation A → A + df
we have

SWZ[A,ω, s̄] → SWZ[A+ df, ω, s̄] (11)

= SWZ[A,ω, s̄] +

∫

M

df ∧ dω (12)

= SWZ[A,ω, s̄] +
s̄

2π

∫

M

d3xǫµνλ∂µ(f∂νωλ) (13)

= SWZ[A,ω, s̄] +
s̄

2π

∫

∂M

d2xǫµνλn̂µf∂νωλ (14)

= SWZ[A,ω, s̄]−
s̄

2π

∫

∂M

fdω, (15)

where n̂i is an outward-directed unit one-form on the
boundary, and ǫµνλ is the Levi-Civita symbol. A minus
sign arises in going from Eq. (14) to Eq. (15) due to the
spacetime orientation of ∂M, following the conventions
of Ref. [79].
Naively, the non-invariance Eq. (15) seems to imply

the existence of an anomaly in the current on the bound-
ary of the system [80]. This poses a conceptual problem
for the application of Eq. (8) to 2D HOTIs: since the
boundary of a 2D HOTI is generically gapped, charge on
the boundary must be conserved. This conundrum was
first highlighted in Ref. [68] in the context of a fourfold
symmetric magnetic HOTI.
To resolve this paradox, we note that—as first shown

in Ref. [79]—there exists a local action that can be added
to the boundary theory to cancel the non-invariance
Eq. (15) of the Wen-Zee action. Introducing the extrin-
sic curvature K of the boundary ∂M , We can write the
Gromov-Jensen-Abanov action

SGJA[A,K, s̄] =
s̄

2π

∫

∂M

A ∧K. (16)

The extrinsic curvature K differs from the spin connec-
tion projected to the boundary ω|∂M by a closed form

dα = ω|∂M +K. (17)

Geometrically, the form dα corresponds to the derivative
of the angle between the boundary normal and tangent
vectors and the bulk frames evaluated on the boundary.
Under a U(1) gauge transformation, SGJA transforms as

SGJA[A,K, s̄] → SGJA[A+ df,K, s̄]

= SGJA[A,K, s̄] +
s̄

2π

∫

∂M

df ∧K

= SGJA[A,K, s̄] +
s̄

2π

∫

∂M

df ∧ (dα − ω)

= SGJA[A,K, s̄] +
s̄

2π

∫

∂M

fdω, (18)

which exactly compensates the boundary variation
Eq. (15) of the Wen-Zee action. Thus, the total action
Stotal = SWZ + SGJA is gauge invariant:

Stotal =
s̄

2π

(∫

M

A ∧ dω +

∫

∂M

A ∧K
)

(19)

The GJA action gives rise viscous forces at the bound-
ary ∂M, which can be seen by considering the stress
tensor associated to variations of SGJA with respect to
the boundary tangent and normal frames[88–90]. In the
hydrodynamic context, this results in a modification of
the boundary conditions for fluid flow. For our present
purposes, however, we are more interested in the electro-
magnetic response captured by SGJA. By varying SGJA

with respect to the vector potential, we find that it quan-
tifies a ground state average current density proportional
to the extrinsic curvature,

jµ̄FA =
s̄

2π
ǫµ̄ν̄Kν̄ , (20)

where µ̄ = 0, 1 indexes spacetime directions on ∂M. Fo-
cusing on the µ̄ = 0 component and integrating over the
spatial boundary ∂Γ given by

∆QGJA =

∫

∂Γ

δSGJA

δA0
=

s̄

2π

∫

∂Γ

K. (21)

Eqs. (15) and (18) show that SGJA is necessary for a
system with bulk Wen-Zee response to be consistent with
a gapped boundary; hence, by the results of Refs. [65–
68, 70, 71] we can deduce that a magnetic HOTI where
disclinations bind fractional charge in the bulk must have
a boundary described by SGJA, when the boundary is
gapped. This is one of the central results of this work,
and in Secs. III–V we will derive SGJA from a microscopic
model of a magnetic HOTI boundary. Before moving on
however, let us note that Eqs. (21) and (9) shows that
there is a concrete connection between charge bound to
disclinations in the bulk, and the excess charge at the
boundary of the system. This allows us to understand
the filling anomaly in the context of the induced action.
Combining Eq. (21) for the boundary charge due to the
GJA action with Eq. (10) for the excess charge due to
the bulk Wen-Zee term, and using the Gauss-Bonnet the-
orem [91] we find

∆Q =
s̄

2π

(∫

Γ

dω +

∫

∂Γ

K

)

=
s̄

2π

∫

∂Γ

ω|∂M +K

=
s̄

2π

∫

∂Γ

dα

= s̄χd, (22)

where χd is the generalized Euler characteristic for the
manifold with boundary. In the absence of disclinations,
χd = 1 for a system with a single closed boundary, and we
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recover the filling anomaly of an excess charge s̄ above
charge neutrality in a magnetic HOTI. For a flat disc,
Eq. (22) shows that the excess charge is entirely local-
ized on the boundary, consistent with known results on
magnetic HOTIs in Refs. [57, 59, 68]; in the presence of
corners, dα = 0 everywhere except at the corners, mean-
ing the excess charge will be localized on the corners mod-
ulo locally invariant modifications to the actions. Finally
we see that Eq. (22) also incorporates the charge bound
to bulk disclinations as computed from the Wen-Zee ac-
tion Eq. (9). Eq. (22) in particular shows that when a
(uncharged) disclination of deficit angle ∆α is dragged
adiabatically from infinity, through the boundary of the
system, and deep into the bulk of the system, it acquires
a charge s̄∆α in the bulk at the singularity of dω, and
leaves behind an image charge of magnitude −s̄∆α on
the boundary due to the deficit in K.
So far, we have deduced the presence of SGJA in

magnetic HOTIs based on the conclusions of Ref. [65–
68, 70, 71] on fractional disclination charge in magnetic
HOTIs. Already we have seen how a careful study of
SGJA yields a simple view of the connection between
bulk geometric response, boundary corner charge, and
the filling anomaly. In what follows, we will introduce a
specific model for a magnetic HOTI with p4m symmetry,
and will derive SGJA from the microscopic theory for the
gapped boundary. In doing so, we will see that there is an
additional subtlety in the connection between SWZ and
SGJA in systems with only discrete rotational symmetry,
related to our ability to add charge symmetrically to the
boundary of the system.

III. A MICROSCOPIC MODEL FOR THE HOTI

BOUNDARY

We consider a microscopic model of a p4m-symmetric
HOTI first introduced in Ref. [57], and related to the
model considered in Refs. [19, 61, 68]. To begin, we
will review the derivation of the boundary theory for this
model. We start with a 2D TI in layer group p4/mmm1′

with hybridized pz and dx2−y2 orbitals located at the
origin of the unit cell. We consider the low-energy k · p
description of this 2D TI expanded about the Γ point in
the Brillouin Zone (BZ), where the Bloch Hamiltonian is

HΓ(k) = mτz + vkxτ
xσy + vkyτ

xσx. (23)

Here the τi are Pauli matrices acting in the {pz, dx2−y2}
orbital space, and σi are Pauli matrices acting on spin.
The Hamiltonian Eq. (23) is invariant under fourfold ro-
tation C4, time-reversal T , mirror Mx, and inversion I
symmetry represented as

T : σyH
∗(k)σy = H(−k) (24)

I : τzH(k)τz = H(−k) (25)

Mx : τyσzH(k)τzσz = H(−kx, ky) (26)

C4 : τze
−iπ/4σzH(k)τze

iπ/4σz = H(−ky, kx) (27)

While the k · p Hamiltonian Eq. (23) has an enhanced
emergent continuous rotational symmetry, we focus here
only on those symmetries that are relevant for the mag-
netic HOTI phase. However, the low-energy rotational
symmetry will allow us to more easily discuss coupling
to curvature in Secs. IV and V. The spectrum of H is
gapped for all m 6= 0; when m > 0 filling the negative
energy states gives a trivial insulator, while when m < 0
filling the negative energy states gives a two-dimensional
topological insulator.
In order to ultimately analyze edge modes of this

model, we can consider a circular domain wall between
trivial and topological insulating phases. To model this,
we consider a spatially varying mass m(r) in polar coor-
dinates r2 = x2+y2. We let m(r < R) → −|M0| be large
and negative within a circle of radius R >> a, where a
is the lattice constant. Similarly, we take m(r > R) →
+|M0| for r > R. We take m(r) to be independent of the
polar angle θ = arctan(y/x). In polar coordinates the
Hamiltonian operator takes the form

HΓ(r, θ) = m(r)τz − ivτx
[

σ1(θ)∂r +
1

r
σ2(θ)∂θ

]

, (28)

where the θ-dependent Pauli matrices are defined by

σ1(θ) = sin θσx + cos θσy (29)

σ2(θ) = − sin θσy + cos θσx. (30)

For r ≈ R, the mass m(r) passes through zero, repre-
senting the domain wall between trivial and topological
insulating phases. Choosing the ordered basis |τzσz〉 =
(|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉) for the four-state Hilbert space, we
can introduce two Jackiw-Rebbi zero modes of the radial
part of Eq. (28),

|φ1〉 =
1√
2
e−

1

v

∫
r

R
m(r′)dr′







−eiθ
0
0
1






(31)

|φ2〉 =
1√
2
e−

1

v

∫
r

R
m(r′)dr′







0
e−iθ

1
0.






(32)

We can obtain the edge Hamiltonian HTI for the coun-
terpropagating boundary modes of our system by pro-
jecting Eq. (28) into the basis of zero modes |φi〉 Intro-
ducing a set of Pauli matrices si acting in the subspace
of {|φ1〉 , |φ2〉}, we find

HTI =
v

R

(

1

2
+ isz∂θ

)

. (33)

We now consider perturbations that break time-
reversal and inversion symmetry in the bulk while pre-
serving C4 and Mx symmetries. This causes a transition
from a two-dimensional topological insulator to a mag-
netic HOTI. The most general bulk magnetic potential U



6

consistent with C4 and Mx symmetries and guaranteed
to enlarge the bulk and edge gaps [i.e., anticommuting

with the angular terms in Eq. (23)] takes the form

Ubulk =

∞
∑

n=0

τxσzm
−
n sin((4n+ 2)θ) + τym

+
n cos((4n+ 2)θ)

+

∞
∑

n=0

τxσ
1(θ)m1

n cos(4nθ) + τyσ
2(θ)m2

n sin(4nθ)

(34)

We can obtain the microscopic boundary theory of the
magnetic p4m-symmetric HOTI by projecting the mag-
netic mass Eq. (34) into the basis {|φ1〉 , |φ2〉} of Jackiw-
Rebbi boundary states of the two-dimensional topological
insulator. Doing so, we find

Hedge =
ivsz

R

(

− i

2
sz + ∂θ

)

+
∑

n

[

s1(θ)m−
n sin((4n+ 2)θ) + s2(θ)m+

n cos((4n+ 2)θ)
]

, (35)

where we have introduced the rotated boundary Pauli
matrices

s1(θ) = cos θsx − sin θsy (36)

s2(θ) = sin θsx + cos θsy. (37)

Eq. (35) will be the starting point for our analysis of
the HOTI boundary theory. Ref. [57] showed that when
only a single mass term m±

n 6= 0 was nonvanishing, the
boundary has a chiral symmetry protecting the existence
of exact zero-energy modes. In this limit, Eq. (35) hosts a
set of 4n+2 charge-1/2 zero modes localized at the zeros
of the oscillating mass term. A perturbative analysis then
showed how weakly breaking chiral symmetry causes all
zero modes to gain the same energy, resulting in the filling
anomaly: either all four zero modes are filled or all are
empty, changing the ground state charge by ∆Q = ±2.
Here, using a field-theoretic treatment we will show how
the filling anomaly arises from Eq. (35) generally, as a
result of the coupling of the low-energy fermions to the
extrinsic geometry of the HOTI boundary.
To see this, let us first recast Eq. (35) into a second-

quantized form. First, note that the constant v/2R term
in the edge Hamiltonians Eq. (33) and (35) indicate the

absence of exact zero energy modes of the boundary
fermions when the mass U is zero. This constant term
arises because the local spin quantization axis for the
fermions on the boundary is determined from the bulk
Pauli matrices in polar coordinates, Eqs. (29) and (30).
This forces the spin of the boundary modes in Eq. (31)
to precess along the boundary as a function of θ. More
generally, this means that the Pauli matrices that ap-
pear in the boundary theory are rotated into a frame
aligned with the boundary tangent and normal vectors.
We note that this is an extrinsic geometric effect, due to
the embedding of the one-dimensional domain wall into
two-dimensional space. For the same reason, the Pauli
matrices in the boundary mass term in the second line of
Eq. (35) are also dependent on the polar angle θ.
To account for these extrinsic effects, we can introduce

a second-quantized antiperiodic fermion field

ψ(θ) =
∑

n

einθ
(

eiθ/2cn1
e−iθ/2cn2

)

(38)

where cni destroys an electron in the eigenstate |ψni〉 =
einθ |φi〉 of Eq. (33). In terms of ψi(θ), we can second
quantize the Hamiltonian Eq. (35) as

Hedge → Hedge =

∫

dθψ†

[

i
v

R
sz∂θ +

∑

n

[

sxm−
n sin((4n+ 2)θ) + sym+

n cos((4n+ 2)θ)
]

]

ψ. (39)

Finally, we can introduce a coordinate x along the bound- ary such that θ = θ(x), a set of Dirac matrices

γ0 = sy, γ1 = −isx, γ5 = γ0γ1 = sz, (40)



7

and the Dirac adjoint ψ̄ = ψ†γ0. These allow us to
rewrite Eq. (39) in the suggestive form

Hedge =

∫

dxψ̄ [ivγ1∂x +M0(x)− iM5(x)γ5]ψ, (41)

with

M0(x) =
∑

n

m+
n cos((4n+ 2)θ(x)), (42)

M5(x) =
∑

n

m−
n sin((4n+ 2)θ(x)), (43)

where for a circular boundary θ(x) = x/R.
We see that the boundary theory for a magnetic HOTI

is given by a two-component Dirac fermion with a space-
dependent mass M0(x) and a space-dependent chiral
mass M5(x). The spatial profiles of M0(x) and M5(x)
are dictated by the rotational and mirror symmetries of
the bulk HOTI. In particular, we can examine the repre-
sentation of C4 and Mx inherited from the bulk. Noting
that C4 takes θ → θ + π/2 (and hence x → x + πR/2),
we can use Eq. (24) and the definition of the edge basis
Eq. (31) to see that

C4 : ψ(x) → −iγ5ψ(x− πR/2). (44)

Similarly, mirror symmetry Mx maps θ → π − θ (and
hence x→ π R − x), and so is represented by

Mx : ψ(x) → iγ2ψ(πR− x). (45)

Note that due to the antiperiodic boundary conditions on
ψ(x), the representative Eq. (44) of C4 satisfies (iγ2)

4 =
+1. In the edge theory, the fourfold rotation C4 acts as
translation by one quarter the circumference of the sys-
tem; Eq. (44) shows that the spinor basis of edge states
transforms nontrivially (by iγ2) under this translation.
This means that even though the γ matrices in Eq. (41)
appear independent of position, the mass term in the
Hamiltonian must be consistent with rotational symme-
try; hence M0(x) and M5(x) contain only angular har-
monics eimx/R with m = 2 mod 4. In other words, the
quantization axis for the boundary pseudospin si matri-
ces is determined from the extrinsic geometry of the em-
bedding of the boundary in two-dimensional space, and
consistent with the C4 symmetry of the boundary. We
can view the spatial dependence of the massesM0(x) and
M5(x) as arising due to a competition between the two
types of frames in the system: the boundary tangent and
normal vector, and the bulk space-independent Cartesian
frames evaluated on the boundary.
Finally, although we derived Eq. (41) by assuming

a rotationally-invariant bulk mass m(r), the symme-
try considerations of Eqs. (41)–(45) allow us to gener-
alize Eq. (41) to other fourfold-symmetric boundaries.
Provided the boundary is a single closed curve, then
x ∈ [0, 2πR] gives a coordinate along the boundary, while
the polar angle θ(x) can be written as

θ(x) = α(x) + f(x), (46)

where α(x) is the angle between the two-dimensional x-
axis and the outward normal to the boundary, and f(x)
is a periodic function. Enforcing p4m symmetry on the
boundary requires that

α(x+ πR/2) = α(x) + π/2 (47)

α(πR − x) = π − α(x) (48)

f(x+ πR/2) = f(x) (49)

f(πR − x) = −f(x) (50)

With this parameterization, we note from Eq. (17) that
since we are working in a system where the bulk spin con-
nection vanishes, the extrinsic curvature of the boundary
is given by

Kx = ∂xα. (51)

Since the boundary ∂Γ×R is embedded in flat spacetime
and ∂Γ forms a simple closed curve, the Gauss-Bonnet
theorem implies that

1

2π

∫

dxKx = 1 =
1

2π

∫

dx∂xθ (52)

For the remainder of this work, we will consider this gen-
eral boundary. We will show that we can integrate out
the gapped boundary fermions and derive the geometric
effective action for a p4m-symmetric magnetic HOTI.

IV. ANOMALOUS CHARGE

Given the HOTI boundary Hamiltonian Eq. (41), we
would like to integrate out the fermions to obtain the in-
duced action (generating functional). To do so, we will
first derive the expectation value of the current on the
boundary as a function of extrinsic curvature. We can
then (functionally) integrate the current to obtain the
boundary geometric action. To begin, in this section,
we derive the Goldstone-Wilczek expression for the fill-
ing anomaly current jµ̄FA by bosonizing the Hamiltonian
Eq. (41).
Following Refs. [92–95], we can introduce bosonic fields

η(x) and β(x) to rewrite our second-quantized boundary
fermions in Eq. (38) as

(

ψ1(x)
ψ2(x)

)

=
1√
2πR

(

F1 : ei(η+β−x/2R) :
F2 : ei(η−β+x/2R) :

)

, (53)

where : · : denotes normal ordering with respect to the
ground state of Eq. (33) at charge neutrality (zero chem-
ical potential) and Fi are anticommuting Klein factors
connecting states with different total fermion number.
This is well-defined since Eq. (33) has no zero modes.
The bosons η and β are compact.
The normal-ordered fermion density (i.e., the fermion

density measured in excess of the charge neutral ground
state) is given by

ρ(x) =: ψ̄γ0ψ :=
1

π
∂xβ. (54)
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Since Eq. (33) has linear dispersion, we can rewrite HTI

in terms of density fluctuations to find

HTI ≡
∫

dx
v

2π
: (∂xβ)

2 : . (55)

Next, using Eq. (53) and the definition Eq. (40) for our
γ matrices, we find that

ψ̄ψ = i(ψ†
2ψ1 − ψ†

1ψ2) =
1

πµ
: sin 2β : (56)

and

ψ̄γ5ψ = i(ψ†
2ψ1 + ψ†

1ψ2) =
i

πµ
: cos 2β :, (57)

where µ is a short-distance cutoff scale. We thus have
that Hedge in Eq. (41) is equivalent to the bosonic Hamil-
tonian

Hedge →
∫

dx
v

2π
: (∂xβ)

2+
M0(x)

πµ
sin 2β+

M5(x)

πµ
cos 2β :

(58)
Note that our choice of γ matrices has resulted in the sine
and cosine in Eqs. (56) and (57) being reversed with re-
spect to the bosonization formulas of Ref. [96]; this does
not affect any observables of the theory, and merely re-
flects a choice of representation for the Klein factors [97].
In the limit of large |M0(x)|2 + |M5(x)|2, the boson

field β will be pinned to the minimum of the classical
potential

πµV (x, β) =M0(x) sin 2β +M5(x) cos 2β, (59)

which occurs when

〈β(x)〉 = βcl(x) = −π
4
− 1

2
arctan

M5

M0
(60)

Using the bosonization relation Eq. (54), this implies that
the edge of the HOTI has an excess charge density

〈ρ(x)〉 = 1

π
∂xβcl =

1

2π
∂µIm log(M0(x)− iM5(x)). (61)

Similar results for the boundary charge density were first
obtained in Ref. [61]. Now, by Eq. (42), we know that
M0(x) andM5(x) consist only of Fourier harmonics with
winding number 2 modulo 4. We can thus write

M0(x)− iM5(x) = e2iθ
∑

z

zne
4inθ ≡ e2iθz(θ), (62)

where we have reintroduced the polar angle θ(x). Since
z(θ) = z(θ+π/2) andM0(x)

2+M5(x)
2 is, by hypothesis,

large, we can write

z(θ) = r(θ)eiq(θ) (63)

with

|r(θ)| > 0, q(θ) = 4n∗θ + g(θ) (64)

with g(θ) a periodic function. Inserting this into Eq. (61)
we find

〈ρ(x)〉 = 1

2π
(4n∗ + 2)∂xθ +

1

2π
∂xg (65)

=
1

2π
(4n∗ + 2)Kx +

1

2π
∂xf

′. (66)

In going from Eq. (65) to (66) we used Eqs. (46) and
(51) to introduce the periodic function f ′(x) = g(x) +
(θ(x) − α(x)). The two expressions Eq. (65) and (66)
for the ground state excess density in the HOTI phase
are equivalent, and each make clear different features of
the result. Integrating Eq. (65) over space and using the
periodicity of g immediately gives the filling anomaly

∆Q =

∫

dx〈ρ(x)〉 = 4n∗ + 2, (67)

which shows that for all choices of the bulk mass U in
Eq. (34), the magnetic HOTI has excess boundary charge
∆Q mod 4 = 2. This represents a field-theoretic deriva-
tion of the filling anomaly.
Our result for the filling anomaly ∆Q is consistent

with Ref. [57] in the nearly-chiral-symmetric considered
in that reference. The nearly-chiral-symmetric limit cor-
responds in our language to the case where M0 and M5

have a single nonvanishing Fourier component

M0 → m0 cos((4n
∗ + 2)θ), (68)

M5 → m5 sin((4n
∗ + 2)θ), (69)

with m0 ≫ m5 (or m5 ≫ m0, however we choose
m0 to be the larger mass for concreteness). Ref. [57]
treated m5 to first order in perturbation theory, and
showed using a (nested) Jackiw-Rebbi analysis that there
exist charge-1/2 modes localized at the 8n∗ + 4 ze-
ros of cos(4n∗ + 2)θ), which are either all occupied (for
m5 < 0) or all unoccupied (for m5 > 0). Thus, there
is an excess charge of |∆Q| = |4n∗ + 2| on the bound-
ary relative to the charge neutral ground state with
m0 = m5 = 0. Our field-theoretic derivation general-
izes this result to generic p4m-symmetric mass config-
urations M0(x),M5(x), showing concretely how the fill-
ing anomaly results from the coupling of the boundary
fermions to extrinsic geometry.
Our Goldstone-Wilczek analysis shows that the con-

nection between chiral symmetry breaking and boundary
curvature is a direct result of the chiral anomaly. To see
this, let us first rewrite our expression Eq. (66) for the
charge density in the reparameterization-covariant form

jµ̄FA =
4n∗ + 2

2π
ǫµ̄ν̄Kν̄ +

1

2π
ǫµ̄ν̄∂ν̄f

′. (70)

Although we derived this result using bosonization, it
can also be derived directly from the fermionic path inte-
gral corresponding to Eq. (41). Following Refs. [96, 98],
we can perform a space-dependent chiral transformation
to eliminate the chiral mass M5. Doing so results in
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an anomalous change in the path integral measure due
to the chiral anomaly, yielding Eq. (70) for the ground
state average current. Thus, we see that breaking chi-
ral symmetry in the bulk of the magnetic HOTI gaps out
the corner modes on the boundary and leads to the emer-
gence of the filling anomaly and geometric response via
the boundary chiral anomaly.

V. IMPLICATIONS FOR THE BULK ACTION

Finally, we can connect the anomalous charge with the
Gromov-Jensen-Abanov boundary action. Writing the
filling anomaly current from Eq. (70) as

jµ̄FA =
∂S[A,K]

∂Aµ̄
, (71)

we can integrate with respect to Aµ̄ to obtain the gener-
ating functional

S[A,K] =

∫

∂M

4n∗ + 2

2π
A ∧K − 1

2π
f ′(x)F (72)

= SGJA[A,K, (4n
∗ + 2)]− 1

2π

∫

∂M

f ′(x)F,

(73)

where F = dA is the electromagnetic field strength ten-
sor. Eq. (73) allows us to identify two contributions
to the boundary induced action. The first is the GJA
boundary term proportional to A ∧K, with orbital spin
per particle s̄ = (4n∗ + 2). This captures the filling
anomaly ∆Q mod 4 = 2. The second term is the in-
tegral of a scalar function that is locally invariant under
gauge and reparameterization transformations, and can
thus arise from integrating out gapped fermions in any
1D system.
The decomposition Eq. (73) of the action into SGJA

and locally-invariant terms is not unique, however. In
particular, defining

q′(x) = (4n∗ − 4m∗)θ − f ′, (74)

we can rewrite Eq. (73) as

S[A,K] =

∫

∂M

4m∗ + 2

2π
A ∧K +

1

2π
q′(x)F (75)

= SGJA[A,K, 4m
∗ + 2] + Sq′ (76)

with

Sq′ =
1

2π

∫

∂M

q′(x)F. (77)

Sq′ is naively a locally-invariant function, and is fur-
thermore consistent with C4 symmetry. For a compact
boundary spacetime, we have that a C4 transformation
takes q(x) → q(x+ πR) = q(x) + 2π(n∗ −m∗) and so

Sq → 1

2π

∫

∂M

q(x)F + n∗

∫

∂M

F (78)

= Sq + 2π(n∗ −m∗). (79)

Thus, the propagator eiSq′ is invariant under C4. Phys-
ically, Sq′ corresponds to our ability to add an integer
number of electrons in each quarter of the 1D bound-
ary without closing a bulk gap. For example, adding
one filled single-particle orbital to each quarter of the
boundary in a p4m symmetric way will shift q′(x) →
q′(x)+4θ(x). Nevertheless, C4 symmetry combined with
Eq. (73) shows that the coefficient of SGJA for the p4m-
symmetric HOTI cannot be equal to zero, reflecting the
filling anomaly.

Above, we have examined how the filling anomaly in
higher-order topological insulators can be explained by
notions of geometric response and specifically a proper
consideration of the GJA boundary action SGJA. The
existence of this term on the boundary necessitates a bulk
WZ response Eq. (8). In turn, there must be a universal
disclination response in these systems as dictated by the
bulk WZ response. To determine the coefficient of the
bulk WZ term, we note that the presence of Sq′ presents
an ambiguity in linking the bulk and boundary induced
actions that is not present in systems with continuous
rotational symmetry. Continuous rotational symmetry
requires ∂xq = 0, and so all boundary charge is due to the
GJA action. However, n∗ (and hence q(x)) can change
by an integer when a boundary gap closes, while the bulk
gap remains open. This means that the boundary filling
anomaly determines the coefficient of the bulk Wen-Zee
term only modulo 4. Putting it all together, we deduce
that in the most general case the bulk plus boundary
action for a p4m-symmetric HOTI with gapped boundary
can be written

S[e, A, ω] =
(4n∗ + 2)

2π

∫

M

A ∧ dω +
4n∗ + 2

2π

∫

∂M

A ∧K +
1

2π

∫

∂M

(4m∗)θ(x)F + . . . , (80)

where the omitted terms on the boundary do not con-
tribute to ∆Q. The bulk spin per particle s̄bulk = 4n∗+2

determines the charge bound to disclinations. Gauge-
non-invariance of the bulk Wen-Zee action requires the
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presence of the boundary GJA action with coefficient
s̄ = s̄bulk = 4n∗ + 2. Finally, the boundary charge is
given by ∆Q = s̄bulk + 4m∗. Only ∆Q mod 4, and
hence only s̄bulk mod 4, is a universal property of the
bulk HOTI phase. This ambiguity corresponds to the
fact that angular momentum s̄ = 4 per particle cannot
be distinguished by a fourfold rotation, which has eigen-
values λC4

= eiπs̄/2.

Our result also highlights the importance of chiral sym-
metry breaking to understanding the filling anomaly.
The Gromov-Jensen-Abanov boundary term explicitly
breaks chiral symmetry: Eq. (21) shows that a sys-
tem with s̄ 6= 0 cannot have a charge neutral (chiral-
symmetric) ground state in the presence of a curved
boundary. Similarly, the bulk Wen-Zee actions shows
that a bulk system with s̄ 6= 0 cannot have a charge neu-
tral ground state in the presence of disclination defects.

VI. DISCUSSION AND FUTURE DIRECTIONS

In this work, we have considered the geometric re-
sponse of higher-order topological insulators that exhibit
a filling anomaly. By focusing on the low-energy theory
for the (generically gapped) boundary of two-dimensional
magnetic HOTIs, we have shown that the induced action
contains the Gromov-Jensen-Abanov action Eq. (16). We
demonstrated this both at the phenomenological level in
Sec. II, and for a concrete microscopic model of a mag-
netic HOTI with p4m symmetry in Secs. IV and V. The

variation of SGJA with respect to the electromagnetic po-
tential A0 in flat space gives the excess charge density on
the boundary of the HOTI in the ground state, which in-
tegrates to the filling anomaly. At the same time, SGJA

couples electromagnetism to extrinsic curvature on the
boundary, cancelling the anomalous inflow of current due
to the bulk Wen-Zee term in the presence of disclinations
in the bulk (or other smooth sources of curvature).
Although we paid particular attention to p4m (and

hence C4) symmetric magnetic HOTIs, our results gen-
eralize straightforwardly to magnetic HOTIs with C2n

symmetry (note that the case of C3-symmetry alone is
rather subtle, as discussed in Ref. [99–102]). In this
case, as was argued in Refs. [54, 57, 61], we can start
with our same p−d hybridized topological insulator from
Eq. (23), and add a C2n-symmetric magnetic potential.
Furthermore, we can consider models where the bulk
tight-binding orbitals are localized at Wyckoff positions
other than the origin of the unit cell, allowing for more
general (nonzero angular momentum) representations of
rotations in the subspace of low-energy modes. We will
find that the boundary theory describes a two-component
Dirac Fermion with spatially-dependent masses M0(θ)
and M5(θ) as in Eq. (42), although now the allowed
Fourier harmonics in the masses will be of the form eimθ

with m = 2nℓ + k, where 2n is the order of the C2n ro-
tational symmetry, ℓ is an integer, and k is an integer
modulo 2n that depends on the occupied Wyckoff posi-
tions [58, 59]. Carrying out the same Goldstone-Wilczek
calculation as in Sec. IV, we expect to find the total in-
duced action

S2n[e, A, ω] =
2nn∗ + k

2π

(∫

M

A ∧ dω +

∫

∂M

A ∧K
)

+
2nm∗

2π

∫

∂M

θ(x)F + . . . (81)

We see that in the C2n-symmetric magnetic HOTI, the
spin per particle s̄2n = k mod 2n. From the Gromov-
Jensen-Abanov term we recover the observation that for a
system with boundary given by a C2n symmetric regular
2n-gon, each corner will bind a fractional k/2n charge
(modulo 1), although crucially the charge can be shifted
away from the corners by locally invariant terms in the
action.
Additionally, we emphasize that in the C2n-symmetric

case the spin per particle s̄—and hence the filling
anomaly and disclination charge—are only invariant
modulo 2n. This reflects our ability to add 2n electrons
to the system in a C2n-symmetric fashion. In this way,
discrete 2n-fold rotational symmetry leads to a reduction
in our ability to deduce the boundary excess charge (fill-
ing anomaly) directly from the bulk disclination charge.
Locally invariant terms of the form

Lloc = 2nm∗θ(x)F (82)

are allowed by 2n-fold rotational symmetry and add 2n

electrons to the boundary. We also saw in Sec. V that we
can interpret this ambiguity in terms of angular momen-
tum eigenvalues: breaking continuous rotational symme-
try down to C2n breaks the conservation of angular mo-
mentum: in a C2n-symmetric system angular momentum
is only conserved modulo 2n. Thus, the spin per parti-
cle s̄ is only robust modulo 2n. By tuning the Fourier
components of the bulk mass U in Eq. (34) (and its ap-
propriate C2n-symmetric generalization), we can change
s̄ by multiples of 2n without closing a bulk gap. This
leads to an analogous shift in the filling anomaly due to
the Goldstone-Wilczek mechanism. At the same time, we
can also perturb the edge theory independent of the bulk
and change the filling anomaly by multiples of 2n without
changing the bulk spin s̄. Perturbations in the edge the-
ory that change the filling anomaly by 2n require closing
a gap in the edge theory, and correspond to shifting sets
of 2n corner modes from the bulk conduction band man-
ifold to the bulk valence band manifold; this changes the
integer m∗ in the locally-invariant Lagrangian Eq. (82).
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This can be alternatively reinterpreted in terms of crys-
talline gauge fields, by viewing the role of the bulk mag-
netic mass as “Higgsing” the SO(2) gauge group of the
spin connection down to Z2n. In this language the am-
biguity of the filling anomaly and the disclination charge
is connected to the fact that a 2π disclination is trivial.
Our work opens up several intriguing directions for fu-

ture research. First, our microscopic edge theory ap-
proach to HOTIs can allow for an examination of how
crystalline gauge fields emerge in effective descriptions
of topological crystalline phases [66, 68, 70, 71, 103–108],
by completing the analogy between rotational symmetry-
breaking mass terms and the Higgs mechanism described
in the previous paragraph. More generally, our work
shows that focusing on the boundary theory offers a new
window into bulk geometric response. This indirect ap-
proach can be useful for geometric response beyond the
Wen-Zee action Eq. (8), for instance in probing the sec-
ond Wen-Zee action

SWZ,2 =
s2

4π

∫

M

ω ∧ dω (83)

in microscopic models of HOTIs. As argued in Ref. [79],
the second Wen-Zee action requires a local counterterm

SGJA,2 =
s2

4π

∫

∂M

ω ∧K. (84)

The second Wen-Zee term has primarily been investi-
gated only in quantum Hall systems, which feature gap-
less boundary modes. In these systems, it is difficult to
distinguish the second Wen-Zee and gravitational Chern-
Simons induced actions [83, 109–111]. By applying the
formalism we developed here to magnetic HOTIs, the sec-
ond Wen-Zee response can be probed via Eq. (84) in the
gapped boundary theory.
Our point of view also offers a new perspective on crys-

talline gauge fields[66, 70, 71] and the geometric response
of topological phases that has promise for broader stud-
ies. By probing the boundary physics, we are able to
make statements about the bulk geometric response with-
out needing to directly gauge a discrete spatial symmetry.
This indirect approach can be useful for other geomet-
ric responses, for example considering the analog of the
second WZ term, or even more nuanced translation re-
sponses. Furthermore, this approach could shed light on
what ingredients are necessary to consistently treat the
bulk response, in this instance by inferring a consistent
way to define the discrete rotation gauge field from the
boundary details, which we leave for future work.

Next, although we considered noninteracting magnetic
HOTIs in this work, our Goldstone-Wilczek derivation
in Sec. IV can be applied equally well to interacting
boundary theories, such as those that may arise on the
boundary of non-chiral (Abelian) quantum Hall systems.
There the boundary theory would consist of several coun-
terpropagating bosonic modes. While many non-chiral
quantum Hall edges are known to be gappable [112], it
is possible that discrete rotational (or other point group)
symmetries can place constraints on the space depen-
dence of the interaction between modes. This would lead
to the emergence of a fractionalized filling anomaly and
fractional HOTI phases, via a generalization of our argu-
ments in Sec. IV.
Additionally, although we focused in this work on 2D

HOTIs with no time-reversing symmetries (i.e. with
type-I magnetic space group symmetries [82]), our ap-
proach based on geometric response can be extended to
systems with more complicated symmetries. First, our
work can also be extended to (interacting and noninter-
acting) time-reversal invariant HOTI phases in 2D (i.e.,
type-II magnetic space group symmetries), where we ex-
pect to find spin-resolved responses [113–115] and charge-
neutral defect states [56, 69]. Such an extension would
be particularly relevant to experimental searches for non-
magnetic obstructed atomic limit phases [116–118]. Sec-
ond, it would be interesting to apply our approach to
2D HOTIs with type-III and IV magnetic symmetries,
where a richer interplay between boundary geometry and
symmetry could be expected. Third, our work can be
extended to three-dimensional systems with “R ∧ F” re-
sponses [119], and topological semimetals with unquan-
tized anomalies [104].
Finally, we conclude by emphasizing that our work fur-

ther supports the point made recently in the literature
that the Wen-Zee action is a “geometric”, rather than
topological action. As we have seen here, a nonvanishing
s̄ is a signature of an obstructed atomic limit (or fragile
topological) phase. This is consistent with recent work
on disclination charge in noninteracting [59, 68] and in-
teracting [78] fragile topological and obstructed atomic
limit phases.
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