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We develop a systematic theory for excitons subject to Fermi-Hubbard physics in moiré twisted
transition metal dichalcogenides (TMDs). Specifically, we consider excitons from two moiré bands
with a Mott-insulating valence band sustaining 120◦ spin order. These “Mott-moiré excitons”,
which are achievable in twisted TMD heterobilayers, are bound states of a magnetic polaron in the
valence band and a free electron in the conduction band. We find significantly narrower exciton
bandwidths in the presence of Hubbard physics, serving as a potential experimental signature of
strong correlations. We also demonstrate the high tunability of Mott-moiré excitons through the
dependence of their binding energies, diameters, and bandwidths on the moiré period. In addition,
we study bound states between charges outside of the strongly correlated moiré band and find
that these as well exhibit signatures of spin correlation. Our work provides guidelines for future
exploration of strongly correlated excitons in triangular Hubbard systems such as twisted TMD
heterobilayers.

I. INTRODUCTION

Two-dimensional (2D) semiconducting transition
metal dichalcogenides (TMDs) [1–41] have become a
rich platform with which to explore the interplay of
optoelectronics and many-body physics, due primarily to
their band structure properties such as infrared/visible-
frequency band gaps [1] and additional valley degrees
of freedom at low energy [2]. In particular, many
studies have focused on the properties of excitons
(bound states of electrons and holes) [3–10], and on
understanding how excitons interact with the Fermi sea
to form exciton-polarons [11–14, 42]. In TMD bilayers
[Fig. 1(a)], the relative twist angle between the two
layers, and the resulting superlattice period, is a further
tunable parameter [17–23, 43]. The electronic properties
of twisted TMD bilayers are very different from those of
monolayers due to the presence of flat moiré bands that
significantly enhance the role of many-body interactions,
leading to strong correlations [24–38]. The effect of
strong correlations on excitons in the presence of moiré
structure remains a subject of active investigation.

One consequence of strong-correlation physics in
twisted TMD bilayers is the emergence of correlated in-
sulating states and charge order [24–38]. It has been
pointed out that generalized moiré-Hubbard models can
emerge for the first valence moiré band (v1) in hetero-
bilayers [24] and for the first few valence moiré bands
in homobilayers [25, 26, 30]. Moreover, at certain fill-
ing fractions ν (i.e., number of electrons per superlattice
unit cell), these models predict the existence of corre-
lated states such as Mott insulators (ν = 1) and Wigner
crystals (ν = 1

4 ,
1
3 ,

1
2 ,

2
3 ,

3
4 ) [27, 30]. This explains several

transport [31, 32] and optical [31–33, 36] measurements
of TMD heterobilayers, which observe enhanced resis-

tivity and incompressibility at the aforementioned filling
fractions.

In addition to charge order, spin correlation [28, 29, 45,
46] can significantly influence the properties of twisted
TMD bilayers. For example, at half filling and zero
temperature, a triangular-lattice Hubbard model yields a
120◦ magnetically-ordered state [24, 47, 48], and the spin
fluctuations on top of such a background can strongly
renormalize the charge dynamics, giving rise to magnetic
polarons [49–51]. Intuitively, this is because the move-
ment of charges in the ordered state disturbs the spin
configuration, leaving a trail of misaligned spins that is
energetically unfavored. To the best of our knowledge,
conclusive signatures of spin ordering and magnetic po-
larons in twisted TMD bilayers have not been established
experimentally, nor has the question been answered of
how spin correlation affects the excitons.

The rich phenomena derived from the Hubbard model
motivates us to study “Mott excitons” in twisted TMD
bilayers, namely excitons in which one or both of the
charge constituents are magnetic polarons rather than
bare charges. Broadly speaking, two distinct types of
Mott excitons can exist. We coin them “intra-band” and
“inter-band” Mott excitons [see Fig. 1(b)].

Intra-band Mott excitons consist of a vacancy and a
double-occupancy within a single-band Hubbard model.
Since the constituent charges lie within the same Bloch
band, the lowest such excitonic state is optically dark
(within the dipole approximation) and therefore not
readily accessible in solid-state systems. A few theoret-
ical works have considered this type of exciton [44, 52–
54], with particular focus on how spin fluctuations pro-
vide the binding mechanism [44], and despite the exper-
imental challenges, certain indirect optical signatures of
intra-band Mott excitons have recently been reported in
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FIG. 1. Illustration of Mott-moiré excitons on the moiré
superlattice of a TMD heterobilayer. (a) Moiré superlat-
tice structure in a twisted TMD heterobilayer, for instance,
WSe2/MoSe2 [24] or WSe2/WS2 bilayers [31]. Black dots
indicate AA-stacked atoms which themselves define a trian-
gular lattice structure and lead to folded moiré bands. (b)
Schematic diagram of the first valence (v1) and conduction
(c1) moiré bands. Vertical axes indicate energy, and the
shaded area refers to the filled Fermi sea. The Hubbard in-
teraction within the v1 band causes it to split into upper and
lower Hubbard bands (UHB and LHB). Black wavy lines in-
dicate interactions that can form Mott excitons, either intra-
band (hole in LHB and electron in UHB [44]) or inter-band
(hole in LHB and electron in c1 band). The latter is the
subject of this paper. (c) Schematic diagram for the inter-
band Mott-moiré exciton. Black and white dots indicate the
c1 electron and v1 hole respectively. Red, green, and blue
arrows show the 120◦ spin-ordered state on the triangular su-
perlattice in the v1 band. Note that the trajectory of the
hole, represented by gray shading, displaces spins and thus
disturbs the spin order.

iridates [55, 56].

On the other hand, inter-band Mott excitons consist
of a vacancy and electron in separate bands, with the va-
lence band described by a Hubbard model and the con-
duction band otherwise empty. In this case, the bind-
ing mechanism has a direct Coulomb origin rather than
being spin-mediated. These excitons very well can be

optically bright, assuming the valence and conduction
bands satisfy the appropriate selection rule. Accordingly,
inter-band Mott excitons have recently been reported in
cuprates via reflectivity measurements [57].

In this paper, we investigate the inter -band Mott ex-
citon formed from a magnetic polaron in the first valence
moiré band (v1) and an electron in the first conduction
moiré band (c1). We refer to these throughout as “Mott-
moiré excitons”. We give a theoretical description for
the formation of Mott-moiré excitons with 120◦ spin or-
der in v1 band, and discuss the role of spin correlation in
determining their properties. In particular, we compare
Mott-moiré excitons to those that would exist in the same
band structure with the same Coulomb interaction but
without any Mott physics (we label the latter simply as
“moiré excitons”). Our main finding is that Mott-moiré
excitons can be distinguished by their significantly heav-
ier mass, which serves as a signature in diffusion mea-
surements. Many of our techniques and conclusions hold
equally well for Mott excitons in non-moiré systems. Fi-
nally, complementing the study of Mott-moiré excitons,
we also study bound states between charges outside the
half-filled v1 band. We demonstrate that these “specta-
tor excitons” are also sensitive to spin correlation, pro-
viding a potential experimental signature of spin physics
in TMDs.

The outline of the paper is as follows. We summarize
the model and our main results in Sec. II. We describe our
theoretical techniques in Sec. III, and present our results
in more detail in Sec. IV. Finally, we discuss potential
experimental signatures of Mott-moiré excitons in Sec. V.
Various technical details can be found in the appendices.

II. SUMMARY

A. Overview of the model

We consider Mott excitons in the presence of a moiré
potential coming from a twisted TMD heterobilayer sys-
tem [see Fig. 1(a)]. Stacking the two monolayers with a
small relative twist angle gives the sample a moiré period
aM greater than the monolayer lattice spacings. This
enlarged periodicity folds the band structure into mini-
bands. It is known that a tight-binding model in terms
of superlattice sites can describe both c1 and v1, albeit
with strong on-site interactions in the latter at half fill-
ing [24, 35]. Such a filling condition is achievable by
tuning the gate voltage [31]. Hence, we focus on a two-
moiré-band model to capture the essence of inter-band
Mott excitons:

Ĥ = −t
∑
τ

∑
〈R,R′〉

[
ĉ†R,τ ĉR′,τ + ĥ†R,τ ĥR′,τ

]
+ U

∑
R

n̂R,↑n̂R,↓

−
∑
ττ ′

∑
RR′

V|R−R′|ĉ
†
R,τ ĥ

†
R′,τ ′ ĥR′,τ ′ ĉR,τ ,

(1)
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with τ ∈ {↑, ↓} labeling the spin index [58], and 〈R,R′〉
denoting nearest-neighbor sites on a triangular superlat-
tice. ĉR,τ represents the c1-electron annihilation opera-

tor and ĥR,τ the v1-hole operator. We assume that the
charges live on the same triangular superlattice, although
they could lie on different lattices microscopically [19].

n̂R,τ ≡ 1− ĥ†R,τ ĥR,τ is the electron occupation at moiré
siteR and spin τ in v1. Note that, as discussed above, we
only include the Hubbard interaction U for electrons in
v1, specifically on-site repulsion since the off-site electro-
static interactions can be rendered insignificant by gate-
screening [24]. We choose the v1-hole and c1-electron
hopping coefficients t to be equal for simplicity, and as-
sume U � t [24]. Lastly, V|R−R′| denotes the Coulomb
interaction between the two moiré bands. Since the v1
is in a (correlated) insulating state and the c1 is initially
empty, the interaction is not screened.

In TMD heterobilayers, typically Coulomb interaction
is more significant than the moiré bandwidths [24, 59,
60]. Although such a considerable interband attraction
could mix the narrow minibands, experiments suggest
that these single-particle bands still manifest in optical
excitations [61]. Thus, we can focus on specific moiré
bands and use Eq. (1) as a minimum model to capture
strong correlation physics.

In addition to the density-density attraction in Eq. (1),
other interband interactions are present in general. These
contributions include exchange Coulomb interaction and
optical coupling [62, 63]. We drop such terms in Eq. (1)
since large bandgaps (of order eV [1]) in TMDs diminish
their correction to the exciton energy [62]. In partic-
ular, the C3 rotational symmetry completely suppresses
the interband exchange process within bright Mott-moiré
excitons (see Appendix H and Ref. [5, 64]). We thus ne-
glect the exchange interaction and optical coupling in our
minimum model.

With the two-band model of Eq. (1), we proceed to de-
scribe the resulting spin correlation in v1. Following the
standard arguments [65], including extra charges (in our
case vacancies) into the half-filled v1 band yields an effec-
tive t-J model. We take the 120◦ coplanar spin-ordered
phase of such a model as our ground state [24], supported
by measurements showing antiferromagnetic Curie-Weiss
behavior at half-filling of the moiré valence band [31].
Spin fluctuations on top of such order propagate at en-
ergy scale J ' 4t2/U [24] and dress the charges into
magnetic polarons [49–51]. It is convenient to describe
the charge and spin degrees of freedom separately, via
slave fermion [49, 66] and Holstein-Primakoff bosons [65]
respectively. This reduces Eq. (1) to the following two-
body Hamiltonian (see Sec. III):

Ĥ =
∑
k

εkψ̂
†
kψ̂k − 2t

∑
k,τ

γkĉ
†
k,τ ĉk,τ

− 1

A
∑
τ

∑
k,k′,q

V (q)ĉ†k+q,τ ψ̂
†
k′−qψ̂k′ ĉk,τ ,

(2)

in which ψ̂ stands for the fermionic charge degree of free-

dom (i.e., holon) in v1 band, whereas ĉ remains the bare
c1 electron. A denotes the system area. Momentum sums
run over the first moiré Brillouin zone (mBZ). εk is the
(dressed) holon dispersion, −2tγk is the c1 electron dis-
persion, and V (q) is the Coulomb interaction written in
momentum space. See Eqs. (24), (16), and (26) for the
explicit expressions and further details.

Eq. (2) captures the formation of Mott-moiré excitons
from c1 electrons and v1 holons [see also Fig. 1(b)]. We

introduce the composite operator X̂n,τ (Q) for such a
bound state, which we write in the form

X̂n,τ (Q) =
∑
p

φ
(n)
Q (p)ψ̂Q

2 −p
ĉQ

2 +p,τ , (3)

where Q and p are the total and relative momenta of
the two particles respectively, and n labels the internal

state. φ
(n)
Q (p) is the corresponding exciton wavefunction,

and if chosen so as to solve an appropriate effective two-
particle Schrodinger equation [Eq. (27)], Eq. (2) becomes
“quadratic” in terms of the composite operators:

Ĥ =
∑
n,Q,τ

EXn,QX̂
†
n,τ (Q)X̂n,τ (Q), (4)

with EXn,Q denoting the exciton energy. The operator

X̂n,τ (Q) can be shown to satisfy bosonic commutation
relations in the dilute limit [63] (with a correction propor-
tional to the exciton density [67]), meaning that Eq. (4)
does amount to an approximate diagonalization of the
Hamiltonian for small numbers of excitons.

We end this overview by noting that, strictly speaking,
Eq. (3) gives such bound state as a composite particle in-
volving a holon rather than magnetic polaron [68]. The
holon is merely the charge sector of the polaron — the
latter additionally contains a surrounding cloud of spin
fluctuations [49, 69]. Yet since we shall find that the exci-
ton radius (Fig. 3) is smaller than the polaron radius [69],
we feel it is reasonable to consider binding between the
electron and holon alone (spin fluctuations are still in-
cluded via the dressed holon dispersion).

B. Overview of results

Our main finding is that moiré and Mott-moiré exci-
tons are similar in certain regards (namely the binding
energy and radius) but dramatically different in others
(particularly the bandwidth, i.e., exciton mass). We fur-
ther identify how the properties of the two vary with the
moiré period aM — recall that the moiré period is tun-
able experimentally.

To begin, the dispersions of moiré and Mott-moiré ex-
citons are quite different, as shown in Fig. 2. Whereas
moiré excitons possess a band minimum at Q = Γ ≡
(0, 0) and maxima at the mBZ boundary, Mott-moiré ex-
citons have the opposite behavior: a maximum at Q = Γ
and minima at the mBZ boundary. We shall demonstrate
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FIG. 2. Dispersion relation of the lowest-energy throughout
the entire mBZ, indicated by the black hexagon for Mott-
moiré (top) and moiré (bottom) exciton, at superlattice pe-
riod aM = 10 nm and with dielectric constant εr = 10. For
Mott-moiré, we use t/J = 7.3 (taken from Ref. [24]) and the
equilibrium magnetization m = 0.48. System size is 3 × 242

sites. Qx and Qy are the total momentum of the two-particle
state. Colorbars indicate energy relative to the two-particle
continuum (lowest energy of two free particles) — note in par-
ticular that the top panel has energies shifted by 46.8 meV.
Blue dots indicate important points in the Brillouin zone.

that the inverted dispersion is precisely a consequence of
the background spin order. Furthermore, the bandwidth
WX of Mott-moiré excitons is roughly two orders of mag-
nitude smaller than that of moiré excitons [see Fig. 3(c)].
This suppression is primarily due to the reduced holon
bandwidth, and experiments in cold-atom quantum sim-
ulators have reported similar effects [70]. Interestingly,
in a sense we shall make sharp, the lowered holon band-
width is more a consequence of spin fluctuations than
spin order alone. We refer to Section IV for more details.

Mott-moiré excitons have a slightly smaller binding en-
ergy [71] EBn,Q and larger diameter 〈r〉X compared to

moiré excitons in their lowest internal states (n = 0)
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FIG. 3. Properties of Mott-moiré excitons at different mag-
netization (blue and red, indistinguishable at the scales of top
and middle panels) and moiré excitons (green) as functions of
the moiré period aM . Dielectric constant is εr = 10. System
size is N = 3 × 242 sites. (a) Binding energy of the lowest
internal state EB0,κ at total momentum Q = κ, which has the
largest binding among all Q for both excitons (even though
the moiré exciton energy is lower at Q = Γ in absolute num-
bers). Note that our binding energy is of the same order of
magnitude as in the literature [60]. (b) Average diameter of
excitons at total momentum κ. (c) Exciton bandwidths WX .
Inset shares the same axes. Values for t and J as functions of
aM are taken from Ref. [24] for WSe2 on top of MoSe2 (see
also Fig. 17).

[see Fig. 3(a) and (b)]. Regardless, in both cases the
exciton is significantly smaller than a moiré period, and
correspondingly the binding energy is much greater than
the Coulomb energy scale for charges separated by aM .
Qualitatively, this is due to the fact that the on-site
Coulomb attraction is noticeably larger than the super-
lattice hopping amplitudes (see Fig. 11). In reality, ex-
citon sizes could deviate from Fig. 3(b) since a descrip-
tion of the dynamics within a supercell is beyond our
two-band model Eq. (1). Nevertheless, we still antici-
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FIG. 4. Dressed holon bandwidthW from SCBA as a function
of moiré period aM , at different sublattice magnetizations m
(blue and red). System size is 3× 242 sites. Also shown is J
as a function of aM (empty circle), for WSe2 on top of MoSe2
according to Ref. [24].

pate that the separation between charges in the lowest
exciton will be less than a moiré period, even for a multi-
band calculation, as long as the bandwidths of incorpo-
rated minibands are narrower than the strong Coulomb
interaction. Such a conclusion is consistent with first-
principle calculations [19] and identifies the bound states
as Frenkel-type [72], unlike the Wannier-type excitons
(size larger than lattice spacing) found in conventional
semiconductors [73]. We provide the corresponding anal-
ysis in Sec. IV (with further details in Appendix G).

As for how these properties vary with the moiré
period aM , a larger period implies significantly sup-
pressed superlattice hopping amplitudes and thus rel-
atively stronger Coulomb binding. This explains the
trends seen in Fig. 3: 〈r〉X and WX both decrease as
aM increases. Since the inter-site Coulomb interaction is
itself weaker at larger aM , albeit less so than the hopping
strength, the binding energy EB0κ decreases as well. We
refer to Sec. IV and Appendix G for more details.

We also compare the Mott-moiré exciton properties at
different sublattice magnetizations m (the order parame-
ter for the 120◦ coplanar spin state). As we are consider-
ing 2D systems, spin fluctuations reduce the magnetiza-
tion even at zero temperature. Linear spin-wave theory
predicts m ≈ 0.48 on the triangular lattice, which we
compare to full magnetization m = 1. The qualitative
trends for all properties are the same at both magnetiza-
tions. Furthermore, we see in Fig. 3 that only the exciton
bandwidth has a noticeable dependence on m (and even
then only by a factor of 2). This is because m influences
only the holon kinetic energy, which is a small energy
scale regardless. Thus while the exciton bandwidth (be-
ing controlled primarily by the holon bandwidth) is sen-
sitive to magnetization, the other properties (for which

the holon acts more-or-less as inert) are not.
In addition, we study the excited states of Mott-moiré

excitons within the two-band model of Eq. (2). In accor-
dance with the symmetry group of this model, we identify
nondegenerate states classified as s- and f-wave, and dou-
bly degenerate p- and d-wave-like states. However, we
find that only s-wave excitons are optically bright (see
Eq. (30)) and that the oscillator strength comes mainly
from the lowest state (see Fig. 13). Although these re-
sults are based on a two-band model, we expect that the
analysis can be generalized to multi-band models.

Lastly, we note that our Mott-moiré exciton results
are based on the existence of 120◦ coplanar spin order.
While supported by the measurements exhibiting anti-
ferromagnetic Curie-Weiss behavior [31], concrete signa-
tures of such correlation are absent. Our main result
— suppressed exciton bandwidth in the presence of spin
physics — serves as an additional signature. As a com-
plement, we discuss another way of probing spin correla-
tion by utilizing spectator excitons in Section IV C and
Appendix I.

III. FORMALISM AND METHODS

In this section, we present the formalism describ-
ing inter-band Mott-moiré excitons in TMD heterobi-
layers. The Hubbard model on a triangular lattice
has been investigated with various analytical methods:
Hartree-Fock mean field theory [74], strong-coupling ex-
pansions [75], and slave particles [47, 48]. Here we use the
slave-particle formalism because spin and charge excita-
tions are automatically distinguished in this approach.
The steps of our calculations are summarized as follows:

i) Implement projection to the subspace of zero double-
occupancies in v1 band and keep only nearest-
neighbor terms, thus obtaining a t-J model [24, 65].

ii) Express the Hamiltonian in terms of slave particles,
namely holons and spinons (keep in mind that the
spin degrees of freedom described by spinons are
locked to the valley degrees of freedom).

iii) Focus on the 120◦ coplanar magnetically ordered
phase of the triangular-lattice t-J model, as de-
scribed through a mean-field approximation for the
spinons (while still including linear spin-wave fluctu-
ations).

iv) Calculate the dispersion of spin-dressed holons
within the self-consistent Born approximation
(SCBA) [47–49, 66].

v) Construct the exciton Hamiltonian from the kinetic
energies of dressed holons in v1 and electrons in c1,
together with the Coulomb interaction. Diagonalize
this Hamiltonian numerically to obtain the exciton
spectrum and wavefunctions.
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Before proceeding, let us emphasize that our usage of
mean-field theory to describe the magnetic order implies
that our results become inaccurate near its melting point.
We nonetheless expect mean-field theory to capture the
qualitative features of the 120◦ spin-ordered phase, and
previous studies have confirmed that magnetic order per-
sists (at around 0.4 – 0.5 of the classical value) even
once quantum fluctuations are taken into account [76–
78]. Furthermore, our results turn out to be largely in-
sensitive to the precise value of the magnetization (see
Sec. II).

A. t-J model

Since the derivation of a t-J model from a half-filled
Hubbard model is by now standard (see, e.g., Ref. [65]),
we simply mention the result. Starting from a state with
one v1 electron per superlattice site, second-order per-
turbation theory in t/U gives an effective Hamiltonian:

ĤtJ = −t
∑
τ

∑
〈R,R′〉

P̂ĥ†R,τ ĥR′,τ P̂ + ĤJ , (5)

ĤJ = J
∑
〈R,R′〉

ŜR·ŜR′ , ŜR ≡
∑
ττ ′

ĥR,τ
στ,τ ′

2
ĥ†R,τ ′ , (6)

where J ≡ 4t2/U , P̂ is the projector onto the subspace
having no more than one electron per site, and στ,τ ′ de-
notes the vector of 2 × 2 Pauli matrices.

B. Slave particles

The hole creation operator can be represented as
(meaning that the two sides obey the same commutation
relations)

ĥ†R,τ = ψ̂†RŝR,τ + τ ŝ†R,−τ d̂R, (7)

with fermionic ψ̂R and d̂R, and bosonic ŝR,τ . We inter-

pret ψ̂R as an empty site — a “holon” — and ŝR,τ as a
singly-occupied site with spin (equivalently valley) — a

“spinon” [79–81]. d̂R corresponds to a doubly-occupied
site, but since the t-J model projects into the subspace
with no double occupancies, this operator does not ap-
pear in any subsequent expressions (it is needed only
to ensure that Eq. (7) is consistent with the commuta-
tion relations). The slave-particle transformation is illus-
trated in Fig. 5.

Eq. (7) indicates that hole creation (i.e., electron an-
nihilation) is equivalent to removing the corresponding
spinon and creating a holon in its place (or replacing a
double occupancy with the non-annihilated spin). Since
we are neglecting double occupancies, any site which does
not contain a spin by definition contains a hole, and

FIG. 5. Schematic diagram for the slave-particle formalism.
Blue and red arrows represent the states with a single τ =↑
and τ =↓ electron respectively, and are mapped to states with
the corresponding bosonic spinons ŝ. States with zero and
two electrons are mapped to corresponding fermionic slave
particles, holons ψ̂ and doublons d̂. Doublons are not shown,
as indicated by the cross, because they are projected out due
to the large energy cost U .

therefore the slave particles must obey the following con-
straints for all R:

ψ̂†Rψ̂R +
∑
τ

ŝ†Rτ ŝRτ = 1, d̂†Rd̂R = 0. (8)

Substituting Eq. (7) into Eq. (5) and making use of the

constraints allows us to express ĤtJ as Ĥt + ĤJ , where:

Ĥt = −t
∑
τ

∑
〈R,R′〉

(
ψ̂†Rψ̂R′ ŝ

†
R′,τ ŝR,τ + h.c.

)
, (9)

ĤJ = J
∑
〈R,R′〉

ŜR ·ŜR′ , ŜR =
∑
ττ ′

ŝ†R,τ
σ̂τ,τ ′

2
ŝR,τ ′ , (10)

where the spin vectors are now expressed in terms of
spinons. Note that the Hamiltonian automatically pre-
serves the conditions in Eq. (8).

C. Magnetic order and spin waves

To study the magnetic order in the t-J model, we con-
sider the dilute limit in which the low number of holons
does not disturb the spin background. Consequently, ĤJ

alone determines the spin ground state of ĤtJ. In the
classical limit, ĤJ is minimized by a 120◦ spin order such

as sketched in Fig. 7. Replacing ŜR by 〈ŜR〉 = 〈σ̂R〉
2 , this

classical order on the A, B, and C sublattices reads

〈σ̂R〉 ≡ n̂R =


ex, R ∈ A
−ex2 −

√
3ey
2 , R ∈ B

−ex2 +
√

3ey
2 , R ∈ C

. (11)
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To include a low density of spin fluctuations on top
of this background order, we rewrite the spinons ŝR,τ in
terms of Holstein-Primakoff (HP) bosons âR [65]:

ÛR

[
ŝR↑
ŝR↓

]
=

[√
2S − â†RâR

âR

]
. (12)

Here ÛR is the spin rotation matrix from ez to n̂R. S
denotes the spin magnitude. Although we are ultimately
considering S = 1

2 , it is useful to compare with the semi-
classical regime S � 1 [65]. Magnetic order in this cal-
culation is characterized by the (normalized) sublattice
magnetization:

m ≡
[
1− 1

S
〈â†RâR〉

]
. (13)

We refer to Appendix B for further details.
Thus far, all transformations have been exact (except

for the perturbation theory used to derive the t-J model).
To make further progress, we consider either of two sim-
ilar approximations. First is the standard linear spin-
wave (LSW) theory [47–49, 65], namely expanding in
1/S and neglecting all subleading terms. Even though
S = 1/2 is far from the large-S limit, it has been observed
that this approximation still gives the correct qualita-
tive features of spin waves [82, 83]. Second is a mean-

field approximation in which we replace
√

2S − â†RâR in

Eq. (12) by ξ ≡
√

2S − 1
N

∑
R〈â

†
RâR〉, where the ex-

pectation value is in the ground state of ĤJ . The value

〈â†RâR〉 is then determined self-consistently.

Both approaches ultimately approximate ĤJ by a
quadratic Hamiltonian, which a Bogoliubov rotation then
diagonalizes. The resulting expression is, in terms of mo-
menta q,

ĤJ =
3Jξ2

2

∑
q

Ωqβ̂
†
qβ̂q, β̂q ≡ uqâq − vqâ†−q, (14)

where

Ωq =

√(
1 +

γq
6

)2

−
γ2
q

4
, (15)

γq =

3∑
i=1

cos(aMq · ei), (16)

uq =

√
1

2Ωq

(
1 +

γq
6

+ Ωq

)
, (17)

vq = sgn[γq]

√
1

2Ωq

(
1 +

γq
6
− Ωq

)
, (18)

FIG. 6. Diagrammatic equation defining the self-consistent
Born approximation (SCBA) for the holon propagator. Solid
single lines are the bare holon propagator G0

k(ε). Solid double
lines are the dressed holon propagator Gk(ε). The dashed line
represents the propagator for a Holstein-Primakoff spin exci-
tation, and black dots indicate the holon-spin vertex (second
line of Eq. (19)).

with e1 = ex and e2,3 = −ex/2±
√

3ey/2 (ex and ey are
the x and y unit vectors). LSW theory corresponds to
ξ2 = 1, while the mean-field approximation corresponds
to ξ2 = (1 +m)S (see Eq. (13)). In particular, one finds
that m = 1− 2

N

∑
q v

2
q ' 0.48 at zero temperature, inde-

pendent of t and U (see Appendix B).

Making the same approximations in Ĥt gives (N de-
notes the number of moiré sites)

Ĥt = tξ2
∑
k

γkψ̂
†
kψ̂k

+

√
3tξ√
N

∑
k,q

[
iMk,qψ̂

†
k+qψ̂kβ̂

†
−q + h.c.

]
,

(19)

with vertex

Mk,q = hkvq − hk+quq, (20)

hk ≡
3∑
i=1

sin(aMk · ei). (21)

Note that the bare holon hopping in Eq. (19) has the
opposite sign compared to that of the original hole, which

is −2tγkĥ
†
k,τ ĥk,τ [Eq. (5)]. The minus sign comes from

the fact that holon hopping has an additional factor of the
dot product between neighboring spin axes [see Eq. (9)],
which is cos 2π/3 = −1/2 for 120◦ order. Depletion of
the magnetization due to spin fluctuations gives a further
factor ξ2.

D. Self-consistent Born approximation

The second term of Eq. (19) leads to a modification
of the holon propagator, which we describe via the stan-
dard self-consistent Born approximation (SCBA) [47–49]
as given in Fig. 6. The SCBA ignores vertex corrections
and crossed diagrams, and uses the bare spin propaga-
tor corresponding to Eq. (14). Fig. 6 translates to the
integral equation

Σk(ε) =
3t2ξ2

N

∑
q

M2
k,q

ε− ωq − tξ2γk+q − Σk+q(ε− ωq)
,

(22)
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FIG. 7. Illustration of hopping parameters t1, t2 and t3 for
the approximated dressed-holon dispersion in Eq. (24). Ar-
rows show the background magnetic order in which the holon
(white dot) hops.

where Σk(ε) is the dressed holon self-energy. We solve
Eq. (22) numerically, and determine the effective holon
dispersion εk by locating a pole in the propagator (which
amounts to solving Σk(εk) + tξ2γk = εk).

We find that in practice, the effective holon dispersion
can be approximated reasonably well by that of the fol-
lowing effective Hamiltonian:

Ĥd.h. = −
∑
R

3∑
i=1

[
t1ψ̂
†
Rψ̂R+ei + t2ψ̂

†
Rψ̂R+e′i

+ t3ψ̂
†
Rψ̂R+2ei

]
+ h.c.,

(23)

where ei are again the nearest-neighbor vectors defined
below Eq. (18), and e′i are next-nearest-neighbor vectors:

e′1 =
√

3ey and e′2,3 = ± 3
2ex −

√
3

2 ey. The dispersion
corresponding to Eq. (23) is

εk = −2t1γk − 2t2γ
′
k − 2t3γ2k, (24)

where γ′k =
∑3
i=1 cos(aMk · e′i).

Eqs. (23) and (24) have a simple physical interpreation:
in addition to the original nearest-neighbor hopping
(with renormalized amplitude t1), there is effective hop-
ping to next-nearest-neighbor sites, which can be either
to the same or different sublattices (with amplitudes t2
and t3 respectively). This is illustrated in Fig. 7. In our
subsequent calculations, we use εk as given by Eq. (24)
for the holon dispersion, with the hopping amplitudes
determined by a fit to the numerical solution of Eq. (22).

E. Exciton Hamiltonian

Recall the effective Hamiltonian given in Eq. (2) of
Sec. II (reproduced here):

Ĥ =
∑
k

εkψ̂
†
kψ̂k − 2t

∑
k,τ

γkĉ
†
k,τ ĉk,τ

− 1

A
∑
τ

∑
k,k′,q

V (q)ĉ†k+q,τ ψ̂
†
k′−qψ̂k′ ĉk,τ .

(25)

The preceding subsections have explained the term

εkψ̂
†
kψ̂k, and the term −2tγkĉ

†
k,τ ĉk,τ is simply the

bare c1 electron hopping term written in momen-
tum space. To obtain the second line, we take
the Coulomb interaction from our starting Hamilto-

nian — V|R−R′|ĉ
†
R,τ ĥ

†
R′,τ ′ ĥR′,τ ′ ĉR,τ — and use the

constraints on the slave particles [Eq. (8)] to express∑
τ ′ ĥ
†
R′,τ ′ ĥR′,τ ′ = 1 + ψ̂†R′ ψ̂R′ . The constant term

amounts to a shift of chemical potential (and should be
balanced against the background positive charges in any
case), thus we ignore it and are left with Eq. (25) in mo-
mentum space.

We take the Coulomb interaction to be

V (q) =
2πe2

εr

tanh (qd)

q
. (26)

The factor tanh (qd) comes from considering there to be
metallic gates at a perpendicular distance d from the
TMD bilayer [84, 85], which screen the charges at dis-
tances greater than d (momenta less than d−1). We set
d� aM , and have found that our results are insensitive
to the precise value. The remaining factors in Eq. (26)
are simply the bare interaction for charges forced within
a 2D plane.

Although written in second quantization, Eq. (25) in
the one-electron & one-holon subspace is a two-body
Hamiltonian and can readily be diagonalized numerically.
This gives a set of exciton energies EXn,Q and wavefunc-

tions φ
(n)
Q (p), where Q and p are respectively the total

and relative momenta of the electron-holon pair, and n
is a discrete index labeling the eigenstates at given Q
(note that the eigenstates are degenerate with respect to
the c1 electron spin τ). In particular, the energies and
wavefunctions solve the following eigenvalue problem:

∑
q

[
εQ(p)δq,0 −

1

A
V (q)

]
φ

(n)
Q (p− q) = EXn,Qφ

(n)
Q (p),

(27)
where εQ(p) denotes the two-particle kinetic energy

εQ(p) ≡ εQ
2 −p
− 2tγQ

2 +p. (28)

Eq. (27) is the standard Wannier equation for exci-
tons [73], albeit with a modified kinetic energy. Those
eigenvalues lying within the band gap correspond to
bound states.

To describe normal moiré excitons, we again use
Eq. (25) but with bare holes in place of holons. Thus
the term εQ/2−p in Eq. (28) is replaced by −2tγQ/2−p,
and we otherwise solve Eq. (27) as before.

With the exciton wavefunctions in hand, we can define
composite boson operators X̂n,τ (Q)† as in Eq. (3), cor-
responding to creation of an exciton. Then (in the dilute
limit) the Hamiltonian takes the “quadratic” form shown
in Eq. (4).
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F. Exciton-light coupling

As a final step, we investigate the possibility of op-
tically detecting these excitons via light-matter coupling

Ĥopt. Within the dipole approximation [73], Ĥopt ∼ ĵ ·A,

with ĵ and A denoting the spatially homogeneous cur-
rent and vector potential respectively. We focus on the
interband current [86] with the following expression (see
Appendix E) as it introduces electron-hole pairs:

ĵ(cv) =
evF
c

∑
k,τ

eτ ĉ
†
k,τ ĥ

†
k,τ + h.c., (29)

with polarization vector eτ ≡ τex − iey. Note that as
a result of this polarization vector, circularly-polarized
light couples selectively to individual spin/valley τ . This
is true for both moiré and Mott-moiré excitons [20], since
the Hubbard interaction does not enter into the current
operator.

To derive further selection rules for Mott-moiré exci-
tons, we rewrite Eq. (29) in terms of the exciton operators

X̂n,τ (Q)† (see Appendix E). For definiteness, we consider
photons with the polarization vector of e−, and the corre-
sponding longitudinal optical conductivity obtained from
linear response theory is given by [87],

σ(ω) ∼ i

ω

∑
n

|Φ(n)
κ |2

ω − EXn,κ + iδ+
, (30)

where Φ
(n)
κ ≡ 1√

N

∑
p φ

(n)
κ (p) is the wavefunction ampli-

tude at zero (spatial) separation between electron and
holon, specifically at total momentum κ in the mBZ (see
Fig. 2). δ+ is an infinitesimal positive regulator. An
analogous expression holds for moiré excitons (see Ap-
pendix F).

Importantly, since σ(ω) is proportional to the probabil-
ity of zero separation between charges, only s-wave exci-
tons are optically bright. In addition, only the states with
Q at mBZ corners contribute to σ(ω). This is because
Mott-moiré excitons are electron-holon states. Conse-
quently, their total momentum differs from electron-hole
states by a spin-ordering vector, which is κ as indicated
by Eq. (11). Hence, our result is consistent with the fact
that zero total momentum electron-hole bound states are
bright [73].

IV. RESULTS

A. Single-holon

We first present results on the properties of individual
dressed holons. Although similar results already exist in
the literature [47, 48], it is useful to review them here for
completeness.

In Fig. 8, we show a representative plot of the dressed
holon dispersion εk throughout the mBZ. The minimum

−π 0 π
kxaM

−π

0

π

k
y
a
M

(a)

Γ
M

Γ M Γ
0.00

0.05

0.10

0.15

0.20

ε k
 (m

eV
)

(b)

SCBA
Fitting

0.00

0.05

0.10

0.15

0.20
εk

FIG. 8. Dispersion of dressed holon within the SCBA. The
moiré period is aM = 10 nm, at which t ' 1.1 meV and J '
0.15 meV according to Ref. [24]. Sublattice magnetization is
the equilibrium value m ' 0.48. System size is 3× 242 sites.
(a) Dispersion εk throughout the entire mBZ, indicated by the
black hexagon. Black dots with labels Γ, κ, and M indicate
important mBZ points. (b) Line-cut of the dispersion along
the path Γ → κ → M → Γ. Blue dots give data from the
SCBA, and the red dashed line shows the best fit to Eq. (24).
The minimum of the dispersion is set arbitrarily to zero.

is at the point M and the maximum is at the point κ,
both at the edge of the mBZ. We also fit to the dispersion
of the effective hopping Hamiltonian in Eq. (23), and find
reasonable agreement. The values of the fit parameters
t1,2,3 as functions of aM are shown in Fig. 9. Note that,
when viewed as functions of t/J (see Appendix A), these
results apply to general triangular lattices described by
a t-J model and not merely TMD heterobilayers.

The magnitudes of the hopping coefficients decrease
significantly as aM increases. The same is true for the
holon bandwidth W (see Fig. 4). We find that W is com-
parable to J , much smaller than the bare hole bandwidth
(which scales with t). Qualitatively, this reduction is be-
cause a hole in the t-J model is really a magnetic polaron,
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FIG. 9. Fitting parameters t1,2,3 of the dressed holon disper-
sion in Eq. (24) as a function of moiré period aM . System
size is 3 × 242 sites. Solid and empty circles represent data
for m = 1 and m = 0.48 respectively. Blue, red, and green
denote t1, t2, and t3 respectively.

a charge with a surrounding cloud of spin fluctuations,
and the velocity of the polaron is determined by its much
slower spin sector [51].

Another perspective on the dressed holon dispersion
comes from a Hartree-Fock treatment of the triangular-
lattice Hubbard model, which we present in Appendix D.
In the large-U limit, the Hartree-Fock Hamiltonian —
which amounts to particles hopping in a Zeeman field
determined self-consistently from the average magnetiza-
tion — comes out to be precisely of the form in Eq. (23),
with parameters 2t1 = −t + 3J/2 and 2t2 = −2t3 =
−3J/4. This simple treatment correctly predicts the
signs of the effective hoppings, including the extra minus
sign in t1, as well as the locations of band extrema ob-
tained from the more sophisticated SCBA. Interestingly,
however, it significantly overestimates the magnitude of
the effective hoppings (see Fig. 9), and thus we stick to
the SCBA results in what follows.

We lastly compare these properties for m = 1 (LSW
theory) to m = 0.48 (mean-field approximation), also
shown in Fig. 9. The magnitudes of t1,2,3 are all reduced
for the smaller magnetization, but otherwise the behavior
is largely unaffected.

B. Mott-moiré exciton

We now turn to the properties of Mott-moiré excitons
obtained by solving Eq. (27). We compare these results
to those of normal moiré excitons, where strong corre-
lations in the v1 band play no role. All numerical data
uses dielectric constant εr = 10 unless otherwise noted.

Γ M Γ

46.815

46.814

E
X 0,

Q
 (m

eV
)

(a)

Γ M Γ
41.0

40.8

40.6

40.4

40.2

E
X 0,

Q
 (m

eV
)

(b)

m= 1.0
m= 0.48
moiŕe exciton

46.772

46.770

E
X 0,

Q
 (m

eV
)

FIG. 10. Center-of-mass dispersion for the lowest-energy ex-
citon EX0,Q, along the path Γ → κ → M → Γ. (see Fig. 2).
Moiré period is aM = 10 nm, dielectric constant is εr = 10,
and system size is 3 × 242 sites. (a) Numerical results for
Mott-moiré excitons at m = 1 (blue circles) and m = 0.48
(red circles). Dashed lines denote dispersions obtained from
perturbation theory, Eq. (G6) (shifted so as to coincide with
data at the Γ point). (b) Numerical results for moiré excitons.
Dashed line again denotes the prediction from perturbation
theory, Eq. (G2).

1. Exciton dispersion

First, we discuss the dispersion profile for the lowest-
energy moiré and Mott-moiré excitons (see Figs. 2
and 10). The former has a minimum at Γ and a maxi-
mum at κ, whereas the latter has a maximum at Γ and
a minimum at M . Furthermore, the bandwidth of Mott-
moiré excitons is drastically narrower than that of moiré
excitons.

We can understand these differences by noting that
at large superlattice period aM , since the kinetic energy
scale decreases exponentially with aM but the interac-
tion scale decreases only as 1/aM , the term εQ(p) in
Eq. (27) can be treated as a perturbation compared to
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FIG. 11. Average kinetic and potential energies for the lowest-
energy exciton as a function of moiré period aM . Total mo-
mentum is set to Q = κ. Dielectric constant is εr = 10, and
system size is 3 × 242 sites. Blue and red circles are data
for Mott-moiré excitons at m = 1 and m = 0.48 respectively
(indistinguishable at this scale). Green circles are for moiré
excitons. Solid markers indicate the two particle kinetic en-
ergy 〈εκ〉 (Eq. (28)), and empty markers indicate the Coulomb
energy A−1〈|V (q)|〉 (Eq. (26) with A the system area).

V (q). At zeroth order, the exciton eigenstates are sim-
ply (relative) position eigenstates, since these diagonal-
ize the Coulomb interaction. Denote the unperturbed
eigenstates by |j,Q〉, with j an integer labeling positions
in order of increasing separation, and denote the unper-
turbed energies by −Vj . We give details of the perturba-
tion theory in Appendix G, ultimately finding that the
first momentum-dependent correction to the moiré exci-

ton is − t2

V0−V1
γQ whereas that for the Mott-moiré exciton

is t|t1|
V0−V1

γQ (the factor of t comes from the electron hop-

ping and the factor of t1 from the holon). Note first of
all the relative minus sign between the two, and second
that the Mott-moiré dispersion is reduced by an overall
factor of |t1|/t. Thus we see that both the inverted dis-
persion and smaller bandwidth of Mott-moiré excitons
can be traced back to the renormalization of the holon
hopping.

Recall that the extra minus sign in t1 — and thus
the inverted Mott-moiré dispersion — can be under-
stood through Hartree-Fock theory, which treats the
background spin order as static. Spin fluctuations can
therefore be seen as not essential to this phenomenon.
However, they play a much more significant role in the
reduced Mott-moiré bandwidth, since Hartree-Fock the-
ory alone overestimates the magnitude of t1 — and thus
the bandwidth — significantly as compared to the SCBA.

6 8 10 12
aM (nm)

0.000
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W
M
m

X
/W

m X
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Perturbation

FIG. 12. Ratio between the bandwidths of Mott-moiré
(WMm

X ) and moiré (Wm
X ) excitons from data (solid circles,

see also Fig. 3) and from Eq. (G7) (empty circles).

2. Properties of the lowest exciton state

We now turn to detailed properties of the lowest-energy
excitons, particularly their binding energies, sizes, and
bandwidths. The results are summarized in Fig. 3.

Fig. 11 compares the separate kinetic and potential
energies of both excitons. As argued above, the potential
energy is noticeably larger than the kinetic energy within
the range of aM we consider, especially for Mott-moiré
excitons. This both explains the small exciton diameters
〈r〉X � aM [see Fig. 3(b)] and justifies our perturbative
treatment outlined in Appendix G.

Since the Coulomb attraction conserves the the total
momentum Q, we define the binding energy as EB0,Q ≡
minp εQ(p) − EX0,Q, i.e., the difference between EX0,Q
and the lowest non-interacting two-particle state at mo-
mentum Q. The perturbative analysis described above
gives EB0,Q ∼ V0 − 6t − 2tγQ for moiré excitons and

EB0,Q ∼ V0 − 6t for Mott-moiré excitons. This explains
the slightly larger binding energy for moiré excitons at
Q = κ [see Fig. 3(a)]. We refer to Appendix G for more
details.

Finally, we elaborate on the bandwidth WX for both
excitons. We have already discussed how the significantly
smaller Mott-moiré bandwidth is a consequence of the
dressed holon dispersion, but our perturbative analysis
makes a further quantitative prediction: the reduction
of the bandwidth is |t1/t| to leading order. We show in
Fig. 12 that this result is borne out quite well in the
numerics. A further observation is that even the moiré
bandwidth itself is much smaller than the hopping coef-
ficient t which one might naively expect. This effect is
due to strong Coulomb binding on the lattice [88], with
physical origin given above.
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FIG. 13. (a) Energies EXn,Q of the first few excited states
for moiré and Mott-moiré excitons, at the indicated total
momenta. The labels s, E, and f denote the D3 group
representations with which the states are associated. (b)

Wavefunction amplitude |Φ(n)
Q | which determines the oscilla-

tor strength, for the first few excited states of both excitons.
The eigenstate number n simply labels the states (only one
of each degenerate pair is shown). The total momenta used
(Q = κ for Mott-moiré and Q = Γ for moiré) are those
which are relevant for the optical conductivity (see Eqs. (30)
and (F4)). Data is for moiré period aM = 10 nm, dielectric
constant εr = 10, magnetization m = 0.48, and system size
3× 242 sites.

3. Excited states and optical spectrum

The first few excited-state exciton energies EXn,Q are

shown in Fig. 13(a), at the values of Q relevant for the
optical conductivity in both cases (Γ for moiré and κ for
Mott-moiré). These levels are not well-described by the
Rydberg series EXn,Q ∼ (2n + 1)−1 found in hydrogenic

excitons [73], but this is merely a consequence of the
lattice structure together with the small exciton radii.
Also note that our use of a two-band model restricts
us to excitonic states formed from the valence and con-
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FIG. 14. The wavefunctions for the first few excited states of
Mott-moiré excitons. We set the total momenta Q = κ, the
moiré period aM = 10 nm, and the magnetization m = 0.48
for this figure. The axes (pe,x, pe,y) denote the c1 electron
momentum of the exciton, within the first mBZ. The colorbar

gives the exciton wavefunction φ
(n)
κ (p). n in the titles denote

the eigenstate number in Fig. 13 to which the wavefunctions
belong. The n = 0 and n = 1 states are s-waves with different
energies. The n = 1 state is similar to n = 0 and is not plotted
here. The p-wave-like state n = 2 and d-wave-like state n = 3
are doubly degenerate. The n = 4 state is f-wave. The s, E,
and f labels in the titles denote the D3 group representations
with which the states are associated.

duction moiré bands, whereas experimental optical spec-
tra would include contributions from composite particles
having constituents in other moiré bands.

Fig. 13(b) plots the wavefunction amplitude Φ
(n)
Q

which determines the oscillator strength. The lowest-
energy states substantially dominate the spectra (for
both excitons), and furthermore, as discussed in Sec. III,
only s-wave excitons exhibit a response.

4. Exciton wavefunction

We show the lowest state wavefunctions of different
angular momentum (s-, p-, d- or f-symmetry) for Mott-
moiré exciton at Q = κ in Fig. 14. We understand
their rotational properties with the D3 point group sym-
metry of Eq. (27) (in terms of the electron momen-
tum pe = κ

2 − p). D3 point group should give two 1-
dimensional representations and one 2-dimensional rep-
resentation [89]. The 1-dimensional representations can
be identified as s- and f-wave states (see Fig. 14). The 2-
dimensional representation, which we label E, cannot be
interpreted cleanly in terms of the usual angular momen-
tum classification (Fig. 14 shows examples of apparently
p- and d-wave states which both belong to E).
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FIG. 15. Illustration of the spectator exciton formed by an
electron in c1 band and a hole in v2 band. It couples to the
spin states in the half-filled (denoted with gray-dashed line)
v1 band via exchange interaction.

6 8 10 12
aM (nm)

18

20

22

24

26

∆
x
y
/m

 (m
eV

)

FIG. 16. The spectator exciton gap ∆xy divided by the
sublattice magnetization m of 120◦ coplanar spin order as
a function of moiré period aM . Numerical calculation fol-
lows Eq. (I13) using moiré potential parameters taken from
Ref. [24] for WSe2 on top of MoSe2 and dielectric constant
εr = 10 (see Appendix I for more details).

C. Spectator exciton

We end the results with spectator excitons, providing
an additional signature of spin correlation in the half-
filled v1 band. These excitations are the lowest internal
bound states between a hole in some valence moiré band
other than v1, say v2 (with annihilator v̂), and a con-
duction electron (assumed to be c1 for simplicity). Note
that neither band involved is directly subject to strong-
correlation physics. Nonetheless, the composite particles
could gain v1-spin information via the exchange interac-
tion [5, 62, 64] between v1 and v2 bands (see Fig. 15).
Specifically, this vertex could flip v2-spins upon scatter-
ing with v1, introducing coupling between the excitons

x̂τ = v̂τ ĉτ and ŷτ = v̂−τ ĉτ . Such a scattering process is
present with a 120◦ coplanar spin order, opening a gap
∆xy between the two spectator excitons. We find that
∆xy is proportional to the sublattice magnetization m
in v1 (see Appendix I). Crucially, the two excitons are
degenerate when v1 is magnetically disordered, giving a
qualitative distinction between the presence and absence
of spin order.

We estimate the gap (see Fig. 16) by taking v2 to be the
next valence moiré orbital centered around the same set
of lattice sites as v1. ∆xy decreases with a larger moiré
period due to suppressed exchange matrix elements from
more extended Wannier orbitals [see Eq. (I13)]. In addi-
tion, we find ∆xy ' 20 meV at full magnetization — note
that this quantitative value depends on the microscopic
details, such as the approximate orbitals. The fact that
∆xy is much larger than the superexchange constant J
may imply that the exciton dynamics has a significant
back-reaction on the spin correlations, which is beyond
our analysis. Nevertheless, we still anticipate that the
spin-induced spectator exciton gap would be rather large.
We refer to Appendix I for details.

We end by pointing out other variants of spectator
excitons. These include bound states with charges in
moiré bands other than c1, v1, and v2. More generally,
they could even be outside of the moiré bilayer [33] —
as long as they couple to v1 spin states with exchange
interaction, the same physics is present and the splitting
∆xy indicates whether there is spin correlation.

V. CONCLUSION

We have demonstrated the existence of bound states
between spin-dressed holons, i.e., magnetic polarons, and
conduction electrons on the moiré superlattice of twisted
TMD heterobilayers. Such bound states, named Mott-
moiré excitons, possess much narrower bandwidths than
moiré excitons. Thus the degree of correlations, control-
lable by gate voltages [84, 85], offers a further mech-
anism to engineer exciton properties. This is in addi-
tion to the already high tunability provided by the moiré
period. However, we predict that only s-wave excitons
(both moiré and Mott-moiré) are detectable via optical
measurements.

These results are a consequence of two simple physical
features. First, the kinetic energy of the holon is heavily
suppressed by spin fluctuations. We further draw a dis-
tinction between effects which are due to the presence of
static spin order versus genuine fluctuations — inversion
of the Mott-moiré dispersion can be traced to the former,
but the reduction of the bandwidth is due to the latter.
Second, the Coulomb energy is much larger than kinetic
at large moiré periods due to the exponential suppres-
sion of the latter. This allows us to treat the hopping
terms as a perturbation, and the exciton properties fol-
low straightforwardly.

One natural question is how to distinguish between
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moiré and Mott-moiré excitons experimentally. Since the
main difference is in their masses (i.e., bandwidths), we
propose diffusion measurements as one viable possibil-
ity. Intuitively, excitons with larger mass should have
slower diffusion, and so diffusion constants should be sig-
nificantly reduced in the presence of magnetic polaron
physics. Recent diffusion measurements have been per-
formed on excitons in TMD heterobilayers [39–41], but
have not compared different fillings of the v1 band (and
hence degree of correlations) to the best of our knowl-
edge.

Besides Mott-moiré excitons, we also study spectator
excitons, bound states between charges outside of the
strongly correlated moiré band. Incorporating the ex-
change interaction, we find that they exhibit additional
energy splitting when the correlated band is 120◦ spin-
ordered. This result, together with the modified mass
of Mott-moiré excitons, demonstrates the importance of
spin physics for optical excitations in TMDs.

Nevertheless, the existing experiments have focused
thus far on effects due to charge order [31–33, 36] rather
than spin correlation. Since the energy scale for charge
order is U and that for spin correlation is only J , it should
be possible to separate these effects by varying the tem-
perature T . Changes at T ∼ J can likely be attributed
to spin physics alone. One example is the exchange-
induced splitting of spectator excitons [90]. Another is
the enhancement of the Mott-moiré exciton mass, which
should appear once the spin correlation length exceeds
the polaron size. These qualitative differences at dis-
tinct temperature regimes could provide signatures for
spin correlation, and our work gives two platforms for
corresponding measurements. We therefore expect that
our systematic study on these strongly-correlated bound
states can inform these future experiments.

Much work regarding Mott excitons remains to be done
beyond the inter-band species considered here. For ex-
ample, at half-filling of the v1 band, there should also
exist intra-band excitons consisting of two magnetic po-
larons [see Fig. 1(b)]. Previous work has discussed these
excitons for a single-band Hubbard model on the square
lattice [44], but no such work for triangular moiré super-
lattices has been done to the best of our knowledge. The
optical properties of strongly-correlated excitons, both
inter- and intra-band, such as their coupling to optical
cavities and potential cavity-QED effects, are also highly
active topics [91, 92].

Moreover, twisted TMD bilayers show various strong-
correlation phases besides 120◦ antiferromagnetic insu-
lators, and excitons therein remain unexplored. For in-
stance, systems allowing for a next-nearest-neighbor su-
perexchange could give rise to spin liquids in a half-filled
v1 band [24, 27]. Another example at the same filling is
the charge-transfer insulator [30, 93] in which Hubbard
U is larger than the gap between the first two valence
moiré bands [94]. In addition, other charge and spin or-
ders emerge at fractional fillings of the v1 band, such as
Wigner crystal and ferromagnetism [24, 27]. The prop-
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FIG. 17. Energy scales t (solid circles) and J (empty circles)
for the t-J model in Eq. (5) as a function of moiré period aM ,
taken from Ref. [24] for WSe2 on top of MoSe2. Also shown

are the nearest-neighbor Coulomb scale V1 = e2

εraM
(empty

squares), using dielectric constant εr = 10.

erties of excitons and whether they are relevant optical
excitations in these correlated phases remain open.

Finally, another field to be investigated is the multi -
exciton many-body physics in moiré TMDs. Beyond the
dilute-exciton limit, these composite particles could sig-
nificantly alter the strong correlations. This is crucial
for understanding excitonic insulators in TMD multi-
layer heterostructures [95, 96]. Nonetheless, the inter-
play between exciton occupation and correlated insulat-
ing phases is still an open question.
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Appendix A: Results in dimensionless variables

Our results apply to generic triangular lattices beyond
moiré TMDs to which the two-band model Eq. (2) ap-
plies. t and U (or J) are sufficient to set the dressed
holon properties in v1 band. For moiré TMDs, these en-
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FIG. 18. Dressed holon bandwidth W (in units of J) from
SCBA as a function of t/J (values taken from Fig. 17), at
different sublattice magnetizations m (blue and red). System
size is 3× 242 sites.
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FIG. 19. Fitting parameters t1,2,3 of the dressed holon dis-
persion (in units of J) in Eq. (24) as a function of t/J (values
taken from Fig. 17). System size is 3 × 242 sites. Solid and
empty circles represent data for m = 1 and m = 0.48 respec-
tively. Blue, red, and green denote t1, t2, and t3 respectively.

ergy scales are dependent on the moiré period aM (see
Fig. 17). We accordingly present the holon results as
functions of the t/J (instead of aM in Fig. 18 and Fig. 19)
so that the results can be generalized to generic triangu-
lar lattices. Similarly, we show how the exciton proper-
ties evolve with t/J in Fig. 20. Note that here we fix the
Coulomb energy scale V1 while varying t/J (whereas all
energy scales change with aM for moiré TMDs.)
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FIG. 20. Properties of Mott-moiré excitons at different mag-
netization (blue and red, indistinguishable at the scales of
top and middle panels) as functions of the moiré period aM .
Dielectric constant is εr = 10. System size is N = 3 × 242

sites. (a) Binding energy of the lowest internal state EB0,κ
at total momentum Q = κ, which has the largest binding

among all Q. Energies are in units of V1 ≡ e2

εraM
, where we

fix aM = 10nm while varying t/J . (b) Average diameter of
excitons at total momentum κ, in units of aM . (c) Exciton
bandwidths WX , in units of J . Values for t and J as functions
of aM are taken from Ref. [24] for WSe2 on top of MoSe2 (see
also Fig. 17).

Appendix B: Slave-fermion t-J model in the
Holstein-Primakoff representation for spin

In this section, we provide the details of Holstein-
Primakoff (HP) representation of the slave fermion t-J
model Eq. (9) and Eq. (10). Following Eq. (12), we ex-
press the spinon operator in terms of HP bosons as fol-
lows:

ŝR,τ =
1√
2
eiτ

2πθR
3

(√
2S − â†RâR − τ âR

)
, (B1)
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where θR = 0,−1, 1 for A, B and C sublattices, respec-
tively, and S is the magnitude of spin (S = 1/2 in our
problem). To simplify the problem and incorporate the
depletion of magnetization by quantum fluctuation, we

employ a mean-field approximation – â†RâR in Eq. (B1) is

replaced by 1
N

∑
R〈â

†
RâR〉, where the expectation value

is taken with respect to the mean field ground state of
Eq. (10). This leads to:

ŝR,τ →
1√
2
eiτ

2πθR
3 (ξ − τ âR) , (B2)

where ξ =
√

(1 +m)/2 and m is the sublattice magneti-
zation in the HP representation:

m = 1− 2

N

∑
R

〈â†RâR〉. (B3)

As a consequence of the transformation, the slave particle
constraint Eq. (8) in the dilute charge limit, i.e. setting
the holon occupation to zero, within the mean field ap-
proximation is expressed as:

ξ2 + â†RâR = 1, (B4)

and averaging out all moiré sites R, it becomes:

ξ2 +
1

N

∑
q

〈â†qâq〉 = 1. (B5)

The slave fermion t-J model in the HP representation
within the mean field approximation is derived as:

ĤtJ ≈ Ĥt + ĤJ

Ĥt =

(
tξ

2

) ∑
〈R,R′〉

[
ξ +
√

3εRR′ âR

]
ψ̂†Rψ̂R′ + h.c.

ĤJ = λ̄
∑
R

â†RâR

+

(
Jξ2

8

) ∑
〈R,R′〉

[
â†RâR′ − 3â†Râ

†
R′ + h.c.

]
,

(B6)
where εRR′ is the Levi-Civita symbol which is anti-
symmetric, i.e. εRR′ = −εR′R, and depends only on
θR, the sublattice label of R. Explicitly, εAB = εBC =
εCA = 1 and εBA = εCB = εAC = −1. The constraint in
Eq. (B5) can be incorporated through a Lagrangian mul-
tiplier λ̄, which takes the value of 3Jξ2/2, determined

by by minimizing 〈ĤJ〉. Also, λ̄ = 3Jξ2/2 gives gap-
less spin-wave excitations, consistent with the Goldstone
mode from spontaneous symmetry breaking of continu-
ous symmetry. We also ignore the processes involving

more than one HP boson, e.g. ψ̂†ψ̂â†â and â†â†ââ, since
we are interested in the magnetic ordered state. In the
main text, Eq. (19) and Eq. (14) are derived with a Bo-

goliubov rotation β̂q = uqâq − vqâ†−q, where uq and vq
are defined in Eq. (17) and Eq. (18), respectively.

To determine the equilibrium magnetization self-
consistently, we apply the Bogoliubov rotation to
Eq. (B5), giving:

ξ2 = 1− 1

N

∑
q

ν2
q

m = 1− 2

N

∑
q

v2
q.

(B7)

We calculate the equilibrium magnetization by numeri-
cally doing the sum on the right hand side of Eq. (B7)
for system size as large as possible. Here we do such
calculation for system with size N = 3L2 for L =
500, 1000, ..., 3000, following with an extrapolation using
a linear fitting between m and L−1. It turns out that
at L → ∞, the result obtained is m ' 0.47896. Hence,
in our calculation we take m = 0.48 as the equilibrium
magnetization, which is close to the value reported in
literature [78].

Appendix C: Numerical solution of the dressed
holon dispersion within SCBA

In this Appendix, we discuss the numerical procedures
for solving SCBA. To numerically solve Eq. (22), we use
the fact that all ωq are non-negative. We also exclude the
momenta with ωq = 0 since the corresponding states do
not belong to spin excitation. Therefore, from Eq. (22),
we find that Σk(ε) can be always expressed in terms of
Σk(ε′) with ε′ < ε. With a sufficiently negative ε we can
approximate the dressed holon self energy as

Σk(ε) ≈ 3t2ξ2

N

∑
q

M2
k,q

ε− ωq − tξ2γk+q
. (C1)

For numerical implementation, we pick an ε′ < 0 that
is large enough in magnitude such that Σk(ε′) satis-
fies Eq. (C1). Denoting small increment in ε as ∆ε,
Σk(ε′+∆ε) is determined by Σk(ε′) according to Eq. (22).
Hence, for ε − ε′ being multiples of ∆ε, we can generate
Σk(ε) recursively.

The dressed holon dispersion is determined by the pole
of the dressed holon propagator Gk(ε), which is given by

Gk(ε) =
1

ε− tξ2γk − Σk(ε) + i0+
, (C2)

where the infinitesimal regulator 0+ is added as (0.1t) to
implement the numerical calculation. Hence, the dressed
holon dispersion can be obtained by numerically solving
εk = Σk(εk) + tξ2γk.

A potential issue in numerically solving the self-
consistent equations is that there might be mulitple solu-
tions, and it is not guaranteed that the solution obtained
in this way is the one of interest, which is the lowest
energy one. Here we alternatively solve for the dressed
holon dispersion by finding the lowest energy peak of the
spectral function − 1

π ImGk(ε).
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Appendix D: Hartree-Fock analysis of the hole
dispersion in triangular lattice Hubbard model

In this section, we provide an alternative analysis to
the hole dispersion for the triangular lattice Hubbard
model from Eq. (2). We begin by considering a Hartree-
Fock trial Hamiltonian including the hopping term of the
Hubbard model and a sublattice Zeeman splitting field:

Ĥ0 = Ĥt + ĤZ

ĤZ = −hZ
∑
τ,τ ′

∑
R

ĥR,τ (σ̂ττ ′ · n̂R)ĥ†R,τ ′ ,
(D1)

where n̂R are sublattice unit vectors defined in Eq. (11),
and hZ is the variational parameter characterizing the
strength of the sublattice Zeeman field in the trial Hamil-
tonian. We use this Zeeman field term to capture the
effect of 120◦ spin order from the triangular lattice Hub-
bard model. Note that this trial Hamiltonian is quadratic
in fermion while the original Hubbard Hamiltonian is in-
teracting.

Next, we obtain a trial density matrix ρ̂0 = Z−1
0 e−

Ĥ0
T

from this trial Hamiltonian Ĥ0:

F [hZ ] = 〈Ĥ − Ĥ0〉ρ̂0
+ F0[hZ ], (D2)

where we write the entropy term of the free energy as
T 〈log ρ̂0〉ρ̂0 = F0[hZ ] − 〈Ĥ0〉ρ̂0 . To determine ρ̂0, and
hence hZ , we minimize the free energy with respect to
the variational parameter hZ , giving:

∂hZ 〈ĤU − ĤZ〉ρ̂ = −∂hZF0[ρ̂], (D3)

in which we set Ĥ to be the triangular lattice Hubbard
model in Eq. (2), with the on-site repulsion denoted as

ĤU . The expectation value 〈ĤU 〉 is derived as:

〈ĤU 〉ρ̂0
=
NU

3

∑
θR

1−m(θR)2

4
, (D4)

where θR ∈ {0, 1,−1} labels the sublattice of moiré site
R, as defined in Appendix B, and m(θR) denotes the
Hartree-Fock sublattice order parameter, which is ex-
pressed as:

m(θR) =
3

N

∑
τ,τ ′

∑
R∈θR

σ̂ττ ′〈ĥR,τ ĥ†R,τ ′〉ρ̂0
. (D5)

With these expressions, we reduce Eq. (D3) to

hZn̂R =
U

2
m(θR). (D6)

To continue, we need to diagonalize the trial Hamil-
tonian Ĥ0. The convenient way to do this is to apply a
spin rotation ÛR from ez to n̂R, which is defined previ-
ously in Eq. (12), and define the rotated fermion opera-

tor
ˆ̃
h†R,τ̃ =

∑
τ [ÛR]τ̃ ,τ ĥ

†
R,τ , where τ̃ = {+,−} labels the

spin state aligned and anti-aligned to n̂R, respectively.
We take:

ÛR ≡ Û(θR) =
1√
2

[
ei

2π
3 θR e−i

2π
3 θR

−ei 2π
3 θR e−i

2π
3 θR

]
. (D7)

This makes the Hartree-Fock trial Hamiltonian become:

Ĥ0 =

(
− t

2

)∑
τ̃

∑
〈R,R′〉

ˆ̃
hR,τ̃

ˆ̃
h†R′,τ̃

+
i
√

3t

2

∑
τ̃ ,τ̃ ′

∑
〈R,R′〉

εRR′
ˆ̃
hR,τ̃ (σ̂τ̃ ,τ̃ ′ · ex)

ˆ̃
h†R′,τ̃ ′

− hZ
∑
τ̃ ,τ̃ ′

∑
R

ˆ̃
hR,τ̃ (σ̂τ̃ ,τ̃ ′ · ez)ˆ̃h†R,τ̃ ′ ,

(D8)

where εRR′ is the anti-symmetric tensor defined in Ap-
pendix B. In momentum space representation, we have:

Ĥ0 =
∑
τ,τ ′

∑
k

ˆ̃
hk,τ

[
− tγk − hZ(σ̂ττ ′ · ez)

−
√

3thk(σ̂ττ ′ · ex)

]
ˆ̃
h†k,τ ′ ,

(D9)

with hk defined in Eq. (21). The spectrum of Ĥ0 fol-
lows directly as εk,ζ = −tγk+ζΥk with the Hartree-Fock
bands labeled by ζ = ±1. The energy splitting is given
by:

Υk =
√
h2
Z + 3t2h2

k. (D10)

The eigen-modes
ˆ̃
hk,ζ are described by

ˆ̃
h†k,τ =∑

ζWτζ(k)
ˆ̃
h†k,ζ with the following transformation coef-

ficients:

Wτζ(k) = (ζsgn[hk])
1−τ

2

√
1

2

[
1− τζ hZ

Υk

]
. (D11)

These relations simplfies Eq. (D6) to:

hZ =
U

2N

∑
k

hZ
Υk

, (D12)

which allows for determination of hZ . As U � t, we have
hZ ' U

2 .
The dressed holon dispersion discussed in the main

text should correspond to a particle-hole transformation
to the ζ = −1 band in the context of Hartree-Fock cal-
culation, which gives:

ε
(HF)
k = tγk +

U

2

√
1 + 12

(
thk
U

)2

' U

2
+

(
t− 3J

2

)
γk +

3J

4
γ̃k −

3J

4
γ2k

(D13)

in the limit U � t. This dispersion is equivalent to
Eq. (24) up to an overall constant, and we identify that
2t1 = −t+ 3J/2, 2t2 = −3J/4 and 2t3 = 3J/4.
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Appendix E: Current operator and Optical
conductivity for Mott-moiré exciton

In this section, we discuss the derivation of current
operator Eq. (29) in Section III.

To start with, the low-energy physics for Bloch elec-
trons near the valleys within monolayer TMDs is modeled
by the massive Dirac fermion model [2]. Hence, we de-
scribe twisted TMD bilayer as a monolayer system expe-
riencing the moiré potentials from the other layer, mean-
ing that the low-energy physics of valley τ and layer l is
given by:

Ĥl,τ =

[
Egl /2 vFl (τ p̂l,x − ip̂l,y)

vFl (τ p̂l,x + ip̂l,y) −Egl /2

]
+∆l(rl)+ĤSO,

(E1)
where the basis states for the matrix are the orbitals of
electrons in the conduction and valence bands, respec-
tively. vFl , Egl and ∆l(rl) are the Fermi velocity, the
band gap and the moiré potential of layer l, respectively.
p̂l denotes the momentum operator measured from the
valleys and rl is the position variable for each layer. Note
that rl is discretized by al, the lattice spacing of layer l,
it is often treated as continuous since al is much smaller
than the periodicity of the moiré potential aM for small
twist angles [20]. ĤSO denotes the spin-orbit coupling
term that is responsible for spin-valley locking of low en-
ergy degrees of freedom in TMD.

The moiré length scale aM splits the Brillouin zone for
the monolayers into small mBZs. Hence, it is sufficient
to consider pl within the first mBZ such that Eq. (E1)
reduces to the decoupled moiré-Hamiltonians for the va-
lence and conduction bands, which are folded by the
moiré potential into valence and conduction moiré bands
respectively. Focusing on c1 and v1 bands, which can be
described by tight-binding/Hubbard models [24, 35], we
see that Eq. (E1) becomes Eq. (1).

To derive the expression Eq. (29), we replace the mo-
mentum operator with p̂l → p̂l + (e/c)A, where c is the
speed of light and A is the vector potential, and take the
functional derivative of the Hamiltonian Eq. (E1) with
respective to A. Next, we outline the derivation from
Eq. (29) to the optical conductivity Eq. (30). We con-
sider LSW to linearize Eq. (B1) for simplicity, and ignore
all spin fluctuations in the current. In other words, we
consider only the classical 120◦ spin-ordered state for the
spin sector, since this dominates in the light-matter cou-

pling Ĥopt ∼ ĵ ·A, as long as the strength of the vector
potential A is small.

From Eq. (B1), within LSW treatment, the slave
fermion substitution Eq. (7) for the v1 hole creation op-
erator follows as:

ĥ†R,τ =
1√
2
eiτ

2πθR
3 (1− τ âR) ψ̂†R (E2)

with θR for the three sublattices as defined in Ap-

pendix B. The current operator Eq. (29) then becomes:

ĵ(cv) ' evF
c

∑
k,τ

eτ ĉ
†
k,τ ψ̂

†
−k−τκ + h.c., (E3)

in which we neglect the spin-fluctuation term ĉ†ψ̂†â, as
mentioned previously, and we use the properties of the

sublattice plane-wave factor, eiτ
2πθR

3 = e−iτκ·R with κ =
− 4π

3 ex the momentum labeling κ in mBZ (in units of

a−1
M ), assuming the origin R = 0 takes θR = 0. We

proceed to rewrite Eq. (E3) in terms of exciton operator
Eq. (3):

ĵ(cv) '
√
NevF
c

∑
n,τ

eτΦ
(n)
−τκX̂n,τ (−τκ) + h.c., (E4)

in which we use Φ
(n)
Q = 1√

N

∑
p φ

(n)
Q (p). The optical

matrix element [17] for the Mott-moiré exciton state

X̂n,τ (Q), denoted as Jn,τ (Q), is then:

Jn,τ (Q) ≡ 1√
A
〈GS|ĵ(cv)X̂†n,τ (Q)|GS〉

=

√
N

A
evF
c
δQ,−τκeτΦ

(n)
−τκ,

(E5)

where A denotes the system area such that A/N gives
the area of unit moiré cell, and |GS〉 is the exciton ground
state. The optical conductivity from linear response the-
ory [87] follows as σij(ω) = σ(ω)δij , where

σ(ω) ' i

ω

∑
n,τ,Q

|Jn,τ (Q)|2

ω − EXn,Q + iδ+
, (E6)

where we neglect the branch with ω + EXn,Q + iδ+ since

we are interested near resonance, i.e. ω ' EXn,Q. Putting

Eq. (E5) into Eq. (E6), we arrive at Eq. (30).

Appendix F: Optical conductivity for moiré exciton

For moiré excitons (i.e., the absence of intra-band cor-
relation), the inter-band current operator at zero momen-
tum is:

ĵ(cv) =

√
2evF
c

∑
k,τ

êτ ĉ
†
k,τ ĥ

†
k,τ + h.c. (F1)

and with similar to Eq. (3) for Mott-moiré exciton, we
define the moire exciton operator as:

X̂n,τ (Q) =
∑
p

φ
(n)
Q (p)ĥ−Q

2 +p,τ ĉQ
2 +p,τ , (F2)

where φ in this section denotes the moire exciton wave-
function. The current from moire exciton follows as:

j(cv) =

√
2NevF
c

∑
n,τ

êτΦ
(n)
0 X̂†n,τ + h.c., (F3)
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FIG. 21. Ratio between V0 and V1 from Eq. (26) for different
system sizes N = 3L2. As q is summed over mBZ, V0/V1

asymptotically approaches a specific value.

where X̂†n,τ ≡ X̂†n,τ (0) and Φ
(n)
0 = 1√

N

∑
p φ

(n)
0 (p). Simi-

lar to the calculation presented in Appendix E, we obtain
the optical conductivity for moiré exciton as σij(ω) =
σ(ω)δij with:

σ(ω) ∼ i

ω

∑
n,τ

|Φ(n)
0 |2

ω − EXn,0 + i0+
, (F4)

where in this section EXn,0 denotes the energy of moire
exciton at zero total momentum.

Appendix G: Perturbation theory on Wannier
equation for excitons in TMD heterobilayer

In this section, we discuss the perturbation theory on
Eq. (27) in detail. First, we point out that the total
momentum Q is a good quantum number of the Hamil-
tonian operator in Eq. (27), meaning that the energy
eigen-states are also eigen-states of Q. Thus, these en-
ergy eigen-states can be labeled as |n,Q〉, with n labeling
the internal states. We suppress the valley degeneracy
throughout the discussion in this section.

We consider the strong interacting limit for perturba-
tion, i.e. 〈εQ(p)〉n,Q � 〈V (q)〉n,Q. We also emphasize
that such a limit is of interest in our work as the ex-
citon dispersion is flat compared to the Coulomb bind-
ing for both Mott-moiré and moiré excitons, as indicated
by Fig. 3. The unperturbed term in the Hamiltonian
for Eq. (27) is then the Coulomb attraction term V (q),
which gives unperturbed states as eigenstates of the rel-
ative distance operator r̂ according to the position space
representation of V (q). Hence, we have |n,Q〉 ' |j,Q〉
in the strong interacting limit, where j are non-negative
integers that label |r| in non-descending order.
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FIG. 22. Center-of-mass motion for the lowest internal states
for the free two-particle system, i.e. not affected by mutual
Coulomb attraction, of a lattice of size 3× 24× 24 in the case
with (top) and without (bottom) Mott physics. The moiré pe-
riod is set as aM = 10(nm). In the case without Mott physics,

the hole motion is described by Ĥv → (−2t)
∑

k γkĥ
†
k,τ ĥk,τ

in Eq. (2).

The unperturbed ground state is the state with |r| =
0, denoted as |0,Q〉. We denote the unperturbed en-
ergy for this state as −V0, which we estimate to be
A−1

∑
q V (q) ' 3.7V1 with q summed over mBZ and

N = 3 × 242 (see Fig. 21), since we are assuming the
electrons and holes are tightly-bound to moiré sites. We
expect this estimation to capture the correct qualitative
properties with this perturbation scheme, since we have
V0 � t using the above expression. In reality, we expect
a smaller V0 due to the finite width of Wannier functions
of the quasi-particles, but we expect V0 to be of order U
in this case and hence V0 � t is still valid.

The first-order correction on ground state energy

δE
X,(1)
0,Q = 〈εQ(p)〉0,Q is zero. This comes from the fact

that the momentum space wavefunction of the unper-
turbed ground state 〈p,Q|0,Q〉 = N−1/2 is just a con-
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stant, and that εQ(p) is composed of sinusoidal functions,
for both Mott-moiré and moiré excitons. Hence, the lead-
ing order correction to the ground state energy is at least
second order.

Calculations of the second order correction δE
X,(2)
0,Q re-

quire the information of unperturbed excited states. The
first few unperturbed excited states are labeled as |1,Q〉,
|2,Q〉 and |3,Q〉, which has well-defined relative distance

|r| = 1,
√

3 and 2 (in units of aM ), respectively. We
denote the corresponding energies as −V1,2,3, of which
magnitude are much smaller than V0. Note that we
suppress the label for the six-fold degeneracy for each
|j > 0,Q〉 for simplicity. We then proceed for the second

order correction δE
X,(2)
0,Q , which involves matrix elements

〈j,Q|εQ(p)|0,Q〉 for j > 0.
We start with the perturbation for moiré excitons. For

moiré excitons, only j = 1 contributes since the posi-
tion space representation of εQ(p) contains only nearest
neighboring hopping terms. We then obtain

〈1,Q|εQ(p)|0,Q〉 = (−2t) cos

(
±Q

2
· ei
)
, (G1)

where ei are nearest neighboring vectors defined below
Eq. (18). The second order correction for moiré excitons
follows as:

δE
X,(2)
0,Q = − 4t2

V0 − V1
γQ −

12t2

V0 − V1
. (G2)

The situation is slightly more complicated for Mott-
moiré excitons, in which terms with j = 1, 2, 3 would

contribute to δE
X,(2)
0,Q . Nevertheless, only the j = 1 term

contribute to the exciton bandwidth WX . Direct evalu-
ation gives:

〈1,Q|εQ(p)|0,Q〉 = (−t− t1) cos

(
±Q

2
· ei
)

+ i(t− t1) sin

(
±Q

2
· ei
)
, (G3)

〈2,Q|εQ(p)|0,Q〉 = (−2t2)ei
Q
2 ·r2 , (G4)

〈3,Q|εQ(p)|0,Q〉 = (−t3)ei
Q
2 ·r3 , (G5)

where r2,3 denotes the relative separation for states with
j = 2, 3, respectively. Consequently, the second order
correction for Mott-moiré excitons is:

δE
X,(2)
0,Q = −6(t2 + t21)

V0 − V1
− 6t22
V0 − V2

− 6t23
V0 − V3

− 4tt1
V0 − V1

γQ.

(G6)

Comparing the results for moiré exciton and Mott-moiré
exciton, the ratio between their bandwidths is:

WMm
X

Wm
X

=

∣∣∣∣ t1t
∣∣∣∣� 1, (G7)

where WMm
X and Wm

X denotes the bandwidths of low-
est Mott-moiré exciton and moiré exciton, respectively.
Comparison between numerical and perturbation results
is shown in Fig. 12.

Next, we continue to use this perturbative analysis to
investigate the exciton binding energy. We start from the
qualitative observation that correction to exciton energy
EX0,Q is at most of order t2/V0 for both Mott-moiré and
moiré excitons. Hence, up to linear order in t, we can ap-
proximate EX0,Q ' −V0−µ, where µ denotes the chemical
potential that is set differently for the two types of ex-
citons. Recall that we define the exciton binding energy
as the energy reduction from the lowest-branch unbound
two particle kinetic energy to the exciton energy, i.e.
EB0,Q ≡ minp εQ(p) − EX0,Q with εQ(p) as the unbound

two particle kinetic energy defined in Eq. (28). This def-
inition reflects that the Coulomb binding conserves the
total momentum Q. An example of minp εQ(p) is plot-
ted in Fig. 22, suggesting that the width of minp εQ(p)
in Q is of order J for Mott-moiré exciton and of order
t for moiré exciton. From direct calculations, we find
that to the linear order in t, minp εQ(p) is −6t − µ for
Mott-moiré exciton and −2tγQ−6t−µ for moiré exciton.
Hence, to the linear order in t, the Mott-moiré exciton
binding energy is EB0,Q ' V0−6t, while for moiré exciton

it is EB0,Q ' V0−6t−2tγQ, which is V0−3t atQ = κ. This
explains the slightly larger binding for moiré exciton, as
illustrated in Fig. 3(a). We end by pointing out that
the non-negligible dependence of binding energy on total
momentum Q for moiré exciton is very different from the
case for hydrogenic exciton [73]. This is because the cen-
ter of mass degrees of freedom can be separated from the
relative motion for hydrogenic exciton, while these de-
grees of freedoms are not separable for excitons derived
from the moiré superlattice [88].

Appendix H: Exciton exchange interaction

In this appendix, we discuss the role of exchange in-
teraction on the Mott-moiré exciton spectrum following
standard procedures [64]. Such vertex emerges micro-
scopically from the Coulomb potential between electrons:

V̂C =
1

2

∫
r1,r2

ψ̂†(r1)ψ̂(r1)V (r12)ψ̂†(r2)ψ̂(r2), (H1)

where r12 = |r1 − r2|,
∫
r1,r2

=
∫
d2r1d

2r2, and r1,2 de-

note continuous position variables. V (r12) characterizes
the electrostatic interaction, which we take as the Fourier
transform of Eq. (26). We consider Eq. (H1) on top of the
superlattice. According to Bloch theorem, the electron

field operator ψ̂(r) in the moiré band basis is:

ψ̂(r) =
∑
P ,λ,τ

ψλ,P ,τ (r)f̂λ,P ,τ , (H2)

where λ denotes the moiré band index and P is the su-
perlattice momentum. f̂λ,P ,τ represents the electron an-
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FIG. 23. Feymann diagram for exchange scattering between
Mott-moiré (and moiré) excitons at different valleys. Black
and white circles connected to solid lines indicate electrons
and holes, respectively. Dotted line connects charges that
eventually bind into an exciton. Dashed line represents
Coulomb interaction V (Q). The vertex originates Eq. (H3)
with λ = c1, λ′ = v1, τ =↑ and τ ′ =↓, contributing to
Eq. (H10) in the exciton basis.

nihilation operator for a specific moiré-Bloch state and
ψλ,P ,τ (r) stands for the associated wavefunction. The
exchange interaction between charges in λ 6= λ′ bands,
V̂ λ,λ

′

exc +V̂ λ
′,λ

exc , emerges as one of the terms appearing after
plugging Eq. (H2) into Eq. (H1), where:

V̂ λ,λ
′

exc =
∑
ττ ′

∑
PP ′Q

Jτ,τ
′;λ,λ′

P ,P ′;Q Π̂λ,λ′†
P ,τ ;QΠ̂λ,λ′

P ′,τ ′;Q, (H3)

where the electron-hole-pair operator (with total and rel-
ative momentum Q and P ) is:

Π̂λ,λ′†
P ,τ ;Q = f̂†

λ,P+ Q
2 ,τ

f̂λ′,P−Q
2 ,τ

, (H4)

and the exchange matrix element has the following ex-
pression:

Jτ,τ
′;λ,λ′

P ,P ′;Q =
1

2A
∑
G

V (Q+G)Πλ,λ′∗
P ,τ ;Q(G)Πλ,λ′

P ′,τ ′;Q(G),

(H5)
where G denotes reciprocal superlattice vectors and A
is the system area. V (Q) follows Eq. (26) and the pair
function is:

Πλ,λ′

P ,τ ;Q(G) =

∫
d2re−iG·ruλ,P+ Q

2 ,τ
(r)u∗

λ′,P−Q
2 ,τ

(r),

(H6)
with uλ,P ,τ (r) = e−iP ·rψλ,P ,τ (r) being moiré-Bloch
functions. We further separate the G summation in
Eq. (H5) into two sectors — The Long-ranged (LR) and
short-ranged (SR) parts with G = 0 and G 6= 0, respec-
tively. We assume the short-ranged sector is dominant
by the terms with Q � G and accordingly take Q → 0
as an approximation. Hence, we have:

Jτ,τ
′;λ,λ′

P ,P ′;Q ' J
τ,τ ′;λ,λ′

LR;P ,P ′(Q) + Jτ,τ
′;λ,λ′

SR;P ,P ′ , (H7)

Jτ,τ
′;λ,λ′

LR;P ,P ′(Q) =
1

2A
V (Q)Πλ,λ′∗

P ,τ ;Q(0)Πλ,λ′

P ′,τ ′;Q(0), (H8)

Jτ,τ
′;λ,λ′

SR;P ,P ′ =
1

2A
∑
G6=0

V (G)Πλ,λ′∗
P ,τ ;0(G)Πλ,λ′

P ′,τ ′;0(G), (H9)

where Eq. (H8) captures the long-range exchange pro-
cesses while Eq. (H9) describes similar but short-range
scattering.

We first discuss the role for exchange on moiré excitons
from c1 and v1 bands, modeled by the full Hamiltonian
Ĥ = ĤX+V̂ c1,v1

exc (We drop V̂ v1,c1
exc for its suppression with

dilute c1-electrons). ĤX involves the single-particle ener-
gies of electrons and holes and density-density attraction
between them, which eventually gives an exciton Hamil-
tonian diagonal in Q and τ [similar to the expression in
Eq. (4)]. We also assume such sector to predominantly
determine the profile of exciton wavefunctions such that
the the associated operators still follow Eq. (F2). Upon
a basis transformation from electron-hole pair to exciton

(We relate the fermion operators by f̂c1,P ,τ = ĉP ,τ and

f̂v1,P ,τ = ĥ†−P ,τ ), the exchange interaction is:

V̂ c1,v1
exc =

∑
ττ ′

∑
n,Q

Jτ,τ
′

n,QX̂
†
n,τ (Q)X̂n,τ ′(Q), (H10)

where we drop the off-diagonal terms in n since their
energy corrections are suppressed by the splittings be-
tween these levels (which are significant for the first few
states due to the large binding). Notably, it provides not
only intravalley but also intervalley exciton scattering in
general (see Fig. 23). The exchange couplings for moiré
excitons are:

Jτ,τ
′

n,Q =
∑
PP ′

Jτ,τ
′;c1,v1

P ,P ′;Q φ
(n)
Q (P )φ

(n)∗
Q (P ′). (H11)

We focus on the s-wave states, which are bright atQ = 0.

Importing Eq. (H7) into Jτ,τ
′

n,Q , its expression separates
into LR and SR pieces. Upon a k · p approximation
on the moiré-Bloch functions, the LR sector becomes
∼ Q2V (Q), similar to the results for excitons in mono-
layer TMDs [5, 64]. Notably, the gap between c1 and v1
bands participate in the denominator of the proportion-
ality constant [64].

The SR sector of Eq. (H11) for s-wave states are com-
pletely suppressed by the C3 rotational symmetry, which
manifests for excitons not only in monolayer TMDs [64]
but also in moiré ones [20, 22] centered around super-
sites. To discuss rotational symmetry of Bloch functions,
we adopt the envelope function approximation [73]. In
this context, Wannier functions of charges can be viewed
as product of atomic orbital (labeled by η ∈ {c, v})
and the ladders from moiré potential (labeled by Λ =
{1, 2, 3, ...}), governing spatial variation at the scales of
monolayer lattice and aM , respectively. Accordingly,
λ = ηΛ (e.g. λ = c1 is equivalent to η = c with Λ = 1).

Under C3 rotation (denoted with Ĉ3), moiré-Bloch func-
tions transform as:

uλ,Ĉ3P ,τ
(Ĉ3r) = ei

2π
3 [τlη+lΛ]uλ,P ,τ (Ĉ3r), (H12)



22

where lΛ denotes the angular momentum from the moiré-
orbital, and τ lc = τ(lv+1) and τ lc are those from atomic
orbitals [20]. Note that these angular momenta are τ -
dependent, which is the origin of valley selectivity. The
phase factors in Eq. (H12) is essential in determining
whether the SR sector of Eq. (H10) is zero. In particular,

for bright moiré excitons giving φ
(n)
0 (Ĉ3P ) = φ

(n)
0 (P ),

such matrix element is trivial unless (τ ′−τ)(lη− lη′) = 0.
Accordingly, intervalley SR exciton exchange (within
charges at c1 and v1) is absent. Combining with the re-
sults for LR exchange, we find absent exchange coupling
for bright moiré excitons at different valleys.

Derivation for exchange on Mott-moiré excitons fol-
low similar procedures. The only difference is that these
bound states are electron-holon pairs, which exhibits a
κ total momentum shift from electron-hole pairs due to
the 120◦ spin order (see Eq. (E2) and discussion be-
low). Accordingly, their LR exchange matrix elements
become ∼ (∆Q)2V (∆Q), where ∆Q is the total momen-
tum counted from the mBZ corners. In addition, since
electron-holon pairs at Q = κ and electron-hole pairs at
Q = 0 are equivalent, the absence of exchange coupling
between bright Mott-moiré excitons at different valleys
also applies.

We end this appendix by summarizing the results and
relevant experimental implications. For both Mott-moiré
and moiré excitons, the momentum dependence of energy
correction from exchange coupling (which predominantly
comes from the LR sector) would be more suppressed by
a larger bandgap. For interlayer excitons, such energy
scale is controllable with out-of-plane electric field [97].
This provides a way to reduce the effect of the LR ex-
change interaction on the exciton dispersion such that
dropping it in Eq. (1) is legitimate. Accordingly, impli-
cations from the bandwidth of interlayer moiré excitons
to the diffusion measurements [39–41] can be rendered
unaffected. Another important remark is the absence of
exchange coupling on the bright excitons, meaning that
it does not affect optical measurements on these bound
states. From these considerations, it is sufficient to ne-
glect exchange interaction in our theoretical study for
Mott-moiré excitons.

Appendix I: Spectator exciton

We formulate the spectator excitons and discuss the
consequence of spin correlation on them in this appendix.
These bound states contain a conduction electron and a
hole on generic valence moiré band except the half-filled
v1, which demonstrates spin physics. For simplicity, we
assume the electron is on c1 and denote the band index
of the hole as v2. We focus on the lowest internal states
of these composite particles. Focusing on these mini-
bands according to the discussion in section II, we take

FIG. 24. Feymann diagram for exchange scattering be-
tween bright and dark spectator excitons [see second term
of Eq. (I5)]. Notations follow Fig. 23.

the following Hamiltonian as our minimum model:

Ĥ =
∑
τ

∑
〈R,R′〉

[
−tĉ†R,τ ĉR′,τ − t

′v̂†R,τ v̂R′,τ

]
−
∑
ττ ′

∑
RR′

Ṽ|R−R′|ĉ
†
R,τ v̂

†
R′,τ ′ v̂R′,τ ′ ĉR,τ

+ ĤJ + V̂ v1,v2
exc + V̂ v2,v1

exc ,

(I1)

where v̂R,τ = f̂†v2,R,τ is the v2-hole annihilation opera-

tor and t′ denotes its hopping. We assume its orbital
to center around the same superlattice sites as the c1-
electrons and v1-holes for simplicity. Ṽ|R−R′| = V c1,v2

|R−R′|
captures the density-density interaction that binds the
spectator exciton. We suppress the direct Coulomb in-
teractions involving v1 band since they only contributes
to chemical potential shifts. ĤJ is the Heisenberg Hamil-
tonian for v1-spins, following Eq. (6). Finally, we include
exchange interactions Eq. (H3) to convey spin physics in
v1 to charges in v2 (and hence the spectator excitons, see
Fig. 24). Note that we anticipate similar processes be-
tween c1 and the valence moiré bands less dominant than
V̂ v1,v2

exc + V̂ v2,v1
exc and hence drop these contributions. This

is such terms feel suppression from the large bandgap of
order eV [1] (see discussion in Appendix H), while the gap
between v1 and v2 bands are comparable to 10meV [24].

We further simplify Eq. (I1) to describe spectator exci-
tons. First, in the dilute exciton limit, we anticipate the
bound states not to significantly affect spin configura-
tion in v1. This suggests spin correlation therein follows
predominantly ĤJ . Accordingly, we simplify Eq. (I1) by
averaging over the v1 spin states (denoted with 〈...〉v1):

Ĥ =
∑
τ

∑
〈R,R′〉

[
−tĉ†R,τ ĉR′,τ − t

′v̂†R,τ v̂R′,τ

]
−
∑
ττ ′

∑
RR′

Ṽ|R−R′|ĉ
†
R,τ v̂

†
R′,τ ′ v̂R′,τ ′ ĉR,τ

+ 〈V̂ v1,v2
exc + V̂ v2,v1

exc 〉v1,

(I2)

where we suppress ĤJ as it does not involve the degrees
of freedom in c1 and v2. Second, the density-density in-
teraction (assumed to be more significant than tunneling
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as for Mott-moiré excitons) should separate the bound
state levels. We focus on the lowest manifold, in which
bound charges roughly live on the same supersite. Ac-
cordingly, the bound states are:

x̂†R,τ = ĉ†R,τ v̂
†
R,τ , (I3)

ŷ†R,τ = ĉ†R,τ v̂
†
R,−τ . (I4)

If the exchange interactions are absent, these states are
degenerate, and x̂R,τ is optically bright while ŷR,τ is dark
according to valley selectivity for excitons in TMDs [20].
The effective Hamiltonian for these degrees of freedom
from Eq. (I2) becomes:

Ĥ = Ĥxy +
∑
R,τ

[
x̂R,τ
ŷR,τ

]† [
jτ,τR jτ,−τR

j−τ,τR j−τ,−τR

] [
x̂R,τ
ŷR,τ

]
, (I5)

where Ĥxy denotes the lowest spectator exciton disper-
sion from the first two lines of Eq. (I2). Notably, the
second term in Eq. (I5) only couples the degrees of free-
doms at the same R and τ . This is because exchange
interaction between v1 and v2 preserves all c1-electron
labels. With 〈n̂R+L,τ 〉v1 = 1

2 , the diagonal exchange
matrix elements jτ,τR contributes to a chemical potential
shift. In contrast, the off-diagonal ones are:

jτ,−τR = −2τe−τ ·
∑
L

JL,τ 〈ŜR+L〉v1, (I6)

recalling e−τ = −τ(ex + iτey) and ŜR+L is the v1-spin
vector [see Eq. (6)]. The position-space coefficients fol-
low:

JL,τ =
1

N2

∑
PP ′Q

ei(P−P
′)·LJτ,−τ ;v1,v2

P ,P ′;Q . (I7)

Crucially, the expectation values contain information of
v1-spins. For a magnetically disordered state, jτ,−τR = 0
and thus x̂ and ŷ are still degenerate. On the contrary, in
the presence of a 120◦ coplanar spin order with sublattice
magnetization m, Eq. (I5) becomes:

Ĥ = Ĥd +mJexc

∑
R,τ

[
e−iτκ·Rx̂†R,τ ŷR,τ + h.c.

]
, (I8)

where Ĥd collects all the terms diagonal in the (x̂, ŷ)
basis. The exchange coupling constant is:

Jexc =
∑
L

e−iτκ·LJL,τ . (I9)

Accordingly, bright and dark spectator excitons hybridize
and split into two levels with a gap ∆xy = 2m|Jexc|. Note
that although such splitting follow from a long-range spin
order, we anticipate it to manifest even with a short-
range correlation since Eq. (I8) couples only local spec-
tator excitons.

We end this appendix by estimating Jexc. Utilizing
Eq. (I7), Eq. (H5), and Eq. (H6) Eq. (I9), this coefficient
becomes:

Jexc =
∑
L

e−iτκ·L
∫
r1,r2

e2Π∗L,τ (r1)ΠL,−τ (r2)

2εrr12
, (I10)

where the position-space pair function is:

Π∗L,τ (r) = Wv1,τ (r −L)W ∗v2,τ (r), (I11)

with Wλ,τ (r) being the moiré-Wannier orbitals, Fourier-
transform of Bloch wavefunctions:

ψλ,P ,τ (r) =
1√
N

∑
R

Wλ(r −R)eiP ·R. (I12)

For further simplification, we consider tight-binding
regime where moiré period is large compared to spatial
extension of Wannier orbitals. In this situation, we ex-
pect the L = 0 term dominate over others in Eq. (I10),
giving:

Jexc '
∫
r1,r2

e2Π∗0,τ (r1)Π0,−τ (r2)

2εrr12
. (I13)

Note its similarity with the direct integral for on-site
Hubbard U — they both contain e2/εr times an inte-
gral of the product of four Wannier orbitals. Thus, Jexc

could in principle be comparable to U . We calculate this
integral with v1 and v2 hole wavefunctions from the low-
energy Hamiltonian below [24]:

Ĥ ' − p̂2

2m∗
+ ∆(r), (I14)

which follows from Eq. (E1) and discussion in Ap-
pendix E. m∗ = Egl /2(vFl )2 is the charge effective mass.
We assume v1 and v2 charges are at the same layer and
hence suppress the layer index. ∆(r) is the associated
moiré potential, captured by the harmonic approxima-
tion within the tight-binding regime:

∆(r)|r'R ' −
∆0

2a2
M

(r −R)2. (I15)

We adopt m∗ = 0.35me (me being electron mass) and
∆0 = 0.94eV [24] for calculation, taking v1 and v2 to be
the lowest and first-excited states, respectively.
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[14] T. Smoleński, O. Cotlet, A. Popert, P. Back, Y. Shi-
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induced optical nonlinearities: Single- and multiphoton
resonances,” Phys. Rev. Lett. 128, 207401 (2022).

[93] Kevin Slagle and Liang Fu, “Charge transfer excitations,
pair density waves, and superconductivity in moiré ma-
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