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The accurate computation of forces and other energy derivatives has been a long-standing chal-
lenge for quantum Monte Carlo methods. A number of technical obstacles contribute to this chal-
lenge. We discuss how these obstacles can be removed with the auxiliary-field quantum Monte
Carlo (AFQMC) approach. AFQMC is a general, high-accuracy, many-body total-energy method
for molecules and solids. The implementation of back-propagation for pure estimators allows direct
calculation of gradients of the energy via the Hellmann-Feynman theorem. A planewave basis with
norm-conserving pseudopotentials is used for the study of periodic bulk materials. Completeness of
the planewave basis minimizes the effect of so-called Pulay terms. The ionic pseudopotentials, which
can be incorporated in AFQMC in exactly the same manner as in standard independent-electron
methods, regulate the force and stress estimators and eliminate any potential divergence of the
Monte Carlo variances. The resulting approach allows applications of full geometry optimizations
in bulk materials. It also paves the way for many-body computations of the phonon spectrum in

solids.

I. INTRODUCTION

Interatomic forces and stresses are two important
structural properties of a solid-state system. As gradi-
ents of the potential energy surface under distortion and
deformation, they determine the atomic structure and are
crucial for geometry optimizations, molecular dynamics
simulations, as well as computations of phonon spectrum
and thermodynamic properties, each of which constitutes
a large and rich set of applications in physics and mate-
rials science.

Density functional theory (DFT) [IH4] has shown in-
credible success in computing a wide range of physi-
cal properties, including interatomic forces and stresses.
However, in many materials with stronger electron-
correlation effects, computations based on approximate
DFT functionals are sometimes not sufficiently accurate
to determine structural properties [5l[6]. Many methods
are being actively pursued which can better describe elec-
tron correlations while allowing systematic and realistic
calculations to describe molecules and bulk materials.

Quantum Monte Carlo (QMC) methods [7] are one
class of such methods, which often show a good balance of
accuracy and computational scaling. Indeed QMC meth-
ods have seen broad applications in molecules, liquids,
and solids, and are one of the primary modern tools for
post-DFT calculations in electronic structure. However,
while total energies are straightforward to compute and
have been the focal point of QMC methods, computa-
tions of observables and correlation functions have been
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less common with QMC in electronic structure. There
have been growing recent efforts to compute properties
other than the total energy. Of crucial importance among
these are forces and stresses, without which the many-
body computations must often rely on DFT (or experi-
ment, if available) predictions of geometry, and thus can-
not be truly predictive in many strongly correlated sys-
tems. Of course one could compute derivatives by finite
difference of the total energy, including the use of corre-
lated sampling [8] and space warp techniques [9, [10] for
acceleration. However, these have not achieved the de-
sired low computational scaling to allow efficient struc-
tural optimization involving many parameters. QMC
methods are faced with varying degrees of technical hur-
dles for direct, systematic computations of forces; to our
knowledge no computation of stress tensors has been per-
formed to date.

There are two main forms of QMC methods in elec-
tronic structure which have algebraic scaling with sys-
tem size. The first includes diffusion Monte Carlo
(DMC) [1I] and the closely related variational Monte
Carlo (VMC) [12] 13], which treat the first-quantization
Hamiltonian working in electron coordinate space. In
VMC, the many-body wavefunction is often explicitly
available, so forces and stresses can in principle be com-
puted directly with a modified Hellmann-Feynman esti-
mator [I4], [I5]. This has been applied to structural op-
timizations [I6], [17] and estimations of vibrational prop-
erties in small molecules [18] and simple solids [19] [20].
The accuracy of the computed forces are determined by
the quality of the variational wave function. To date
the accuracy has not consistently reached such a level
as to make VMC by itself a routine post-DFT tool for
structural optimization, especially in strongly correlated
systems, although this could change with recent devel-
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opments of more expressive forms of variational ansatz
and better optimization techniques, including with neu-
ral networks [2IH23]. In DMC, the technical hurdles for
direct computation of forces and other energy derivatives
are more substantial. In principle evaluation of pure es-
timators by forward walking is required, which has rarely
been performed except for light elements [24, 25]. Sys-
tematic bias in the mixed estimators, as well as statisti-
cal divergences, must be dealt with before a general al-
gorithm truly becomes available for structural optimiza-
tion. (For a more complete discussion of current state of
DMC computations of forces, see for example, Ref. [26]
and references therein.)

The other form of algebraic-scaling QMC methods in
electron structure is phase-free auxiliary-field quantum
Monte Carlo (AFQMC) [27, 28], which is the focus of
the present work. AFQMC works in second-quantization,
using random walks of non-orthogonal Slater determi-
nants in orbital space. This formalism provides a non-
perturbative, post-DFT method which shares the same
Hamiltonian and uses much of the same machinery [29]
as in standard electronic structure. The method has
had a shorter history of development, but has seen grow-
ing applications in lattice models of interacting fermions
[30, BI], quantum chemistry [32] B3], and solid-state
physics [34H36]. In a number of recent benchmark stud-
ies, AFQMC has demonstrated consistently high accu-
racy for total energies in both extended systems [37, [3§]
and molecules [39], including large transition metal sys-
tems [40]. In addition to total energies, expectation
values of other observables that do not commute with
Hamiltonian can be computed by a back-propagation
(BP) technique [28, 41, [42]. For molecular systems,
computations of forces using a Gaussian basis set have
been performed, with geometry optimization on small
molecules [43]. In this work we present the computation
of forces and stress tensors in AFQMC using planewaves
and pseudopotentials, to allow full structural optimiza-
tion of periodic bulk systems.

The remainder of this paper is organized as follows.
In Section [} we first briefly review the AFQMC method
and the back-propagation technique for the so-called pure
estimators to compute observables. We then describe the
formulation of the atomic forces and stress tensors within
the planewave AFQMC (PW-AFQMC) framework. Sec-
tion [[TI presents systematic benchmarks of the calculated
forces and stresses against explicit computations by finite
differences, which validates our method and further illus-
trates its characteristics. In Section [[V] we show appli-
cations in two different examples of full structural opti-
mization in solids, one a geometry optimization of atomic
positions in a fixed supercell using atomic forces, and the
other a structural optimization of the cell shape and size
using the stress tensors. We then conclude in Section [V]

II. FORCES AND STRESSES IN PLANE-WAVE
AFQMC

A. Basic formalism of AFQMC

AFQMC [27, 28] approaches the many-body ground
state of a system with imaginary time propagation
limpy o0 e NATH| W) — |Wg), where H is the many-
body Hamiltonian whose ground state |¥y) is targeted,
|¥r) is a trial wave function that is not orthogonal with
|¥o). The propagation is separated into N steps, each of
which of imaginary time length A7, making the propa-
gation an iterative process. The size of the time-step At
must be chosen to be sufficiently small to minimize com-
mutator errors, known as Trotter errors. The algorithm
takes the form of an open-ended random walk, such that
there is little restriction on N, which typically takes very
large values.

An interacting electronic Hamiltonian, such as the
ones in electronic structure under the Born-Oppenheimer
approximation, contains one-body and two-body terms.
Propagating with the exponential of one-body terms
takes a Slater determinant to another Slater determi-
nant [44]. Two-body propagators, which do not preserve
the form of a Slater determinant, are treated in AFQMC
via the Hubbard-Stratonovich transformation [45, 40]:
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This formula rewrites the propagator of any two-body
Hamiltonian term, after it has been expressed in the
form of the sum of squares of one-body operators: Hy =
> a;0?, into an integral of one-body propagators. The
integral over the auxiliary fields, {«;}, can be then eval-
uated with Monte Carlo.
The iterative process of imaginary time propaga-
tion then transforms into a random walk process of

a population of Slater determinants (walkers) {|<I),(€")>},
where n indicates the imaginary-time step count, and
k is an index of the random walker at each time
n. BEach walker |<I>(")> is a Slater determinant prop-
agated from the initial determinant, and is dependent
on its specific path history in auxiliary-field (AF) space,
Ha ™ {230 oo {23 (omitting the walker in-
dex k). The wavefunction at each step is represented
by a weighted average of all the random walkers at that
step, [¥(™) oc 3, \@fcn)ﬂ(\I/T\fP,(cn)) and it approaches
the ground state after a sufficiently large number of steps
n > Neq. The value ney depends on |¥r) and the system,
and is such that neqA7 allows the imaginary-time projec-
tion from |¥r) to reach |¥) within the desired statisti-
cal accuracy. After convergence, both ensemble and time
averages together give a representation of the ground-
state wave function, |¥g) Zn>neq | T (™)) whose statis-
tical accuracy can be improved with increasing sample
size, following the behavior dictated by the central limit
theorem. The actual AFQMC algorithm is augmented



by several additional ingredients, including importance
sampling (which is embedded in the form of |¥(™) we
used above), and the use of a force bias in proposing
Monte Carlo moves to improve efficiency [41], as well as
the phaseless approximation to control the phase prob-
lem [27].

The open-ended random walk scheme yields a form to
conveniently evaluate observables that commute with the
Hamiltonian, using the mized estimator. For example,
the total energy can be computed through

(Ur|H[Wo)
H) =B (Ur|¥o) ®
for which we only need to propagate one side in the
estimator, the ket. The numerator and the denomina-
tor can be computed with the random walk averages,
and the final estimator for the energy involves weighted
averages of “local energies" of the form EL(‘I),(:)) =
(Wl H|D}") /(Ur|@)”).

For observables which do not commute with the Hamil-
tonian, computations with the mixed estimator in Eq.
will incur a bias. A more accurate calculation will require
propagation of the bra (Ur| to the ground state as well,
the so-called pure estimator. This is nominally not diffi-
cult to achieve. For example one could sample an entire
path of AF for a fixed length of imaginary time with
the generalized Metropolis algorithm [47]. However, this
approach would cause ergodicity problems when a con-
straint needs to be imposed along the path to control the
sign or phase problem. In the open-ended random walk
formulation with importance sampling and constraint, as
mentioned above, the projection of the left-side requires
the back propagation (BP) scheme [28| (41l 42] referred
to earlier.

We observe that
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where (O) approaches the ground-state expectation as
m,n — o0o. The denominator can be viewed as an overlap
of the trial wave function with a propagation of (m + n)
steps. If we choose to remember the last m steps of the
AFs and propagate (¥r| back with the corresponding
one-body operators in reverse order, we obtain an esti-
mate of the propagated bra (Ug| ~ (Up|e~™A7H | This is
the basic idea of BP in AFQMC, which allows a seamless
integration of the backward projection with the impor-
tance sampling scheme applied in the forward direction.
The BP scheme has been applied widely in calculations
on lattice models of strong correlations [30, 31, 48]. An
additional bias arises in BP because of the reversal of the
direction in which the constraint is applied. Such biases
are generally much smaller than the mixed-estimator bias
for observables that do not commute with the Hamilto-
nian, but can be larger than that of the purely varia-
tional estimator (which is often hard to compute) [41].

We apply the recently proposed path-restoration tech-
nique [42], which can further mitigate the BP bias. Our
implementation of the BP scheme in planewave AFQMC
is discussed in more detail in Ref. [34]. For the purpose
of the present work, the most important aspect to note
is that Eq. is reduced to weighted averages of local
estimators of the form

(@)

where k labels a walker which survives through the
(m + n)™ step of the random walk, |<I>,(€")> is the par-

ent walker of k back in the n'® step, and <<f>,(€m)| is the
back-propagated bra Slater determinant. The weighted
average over k yields the Monte Carlo estimate of the
expectation value of O given in Eq. .

Any one-body operator O = Y° Ay, cl,c, or two-body
operator O = qur s qumc:,cgcscr7 or their linear combi-
nations, can be computed with the above approach. The
estimators (cl,c,) and (cfclcscy) are the one-body and
two-body reduced density matrices (lrdm, 2rdm) G,
and Gpqrs, respectively. Computation of (O) can there-
fore be thought of as computing the 1rdm’s and 2rdm’s
(which can be obtained via Wick’s theorem [32],[49]), and
then multiply them with the corresponding coefficients
Ay and Vpgrs. This straightforward approach is ineffec-
tive with the plane wave basis, where the number of basis
functions is much larger than with a localized basis set
choice. As such, naive implementations would lead to
large storage (O(N3yy) for the 1rdm) and computational
costs (O(Ngyy) for operations like Tr(AyuyGuy))-

Instead we take a different approach in planewave
AFQMC. Recall

guv = Tr[(q)T\II)ilchguv\Ij] = [\Ij((I)T\I/)il(I)T]UU’ (5)

(4)

where ¥ and ® are the matrix form of the ket and bra
Slater determinants, and £ is a matrix with only one
nonzero element &,, = 1. We store the intermediate
matrix © = ¥(®TW¥) =1 which only requires a memory of
O(NpwN.). The 1rdm is conveniently restored from ©
and the bra determinant:

Ne
guv == Z ®vt(qﬁ)tu . (6)

t=1

The use of fast Fourier transforms (FFTs) and convolu-
tions lead to efficient evaluations. For example, the local
part of the electron-ion interaction (see next section for
further details):

VE =) uk(Q)e(Q), (7)
Q#0

with p(Q) = > ¢ CECG+Q the “density operator” in Q-
space, is given as

Ne

TVEG =D ) e > vh(Q)Oaiqr, (8
G Q

t=1



which involves a convolution in the form of (A x B)q =
Zp ApBipiq, that is conveniently computed with FFTs
and inverse FFTs on the plane-wave grid, and only
has a complexity of O(N.Npw log Npw). The sum
on the outer layer also only requires a complexity of
O(N2Npw).

B. The computation of forces and stresses in
planewave AFQMC

With BP and path restoration, pure expectation values
of observables can be computed. This allows us to then
apply the Hellmann-Feynman (HF) theorem to compute
the expectation values of the derivatives of the Hamil-
tonian directly. Computation of AFQMC forces and
stresses are then available, which are given via the HF
theorem as expectations of the derivatives of the Hamil-
tonian.

In the plane-wave basis, the second-quantized Born-
Oppenheimer eleetronie Hamiltonian H can be written
as a sum of following components [50]:

H:K+‘/:3i+’YEwald+‘/;e7 (9)

which are the kinetic energy, the electron-ion interaction
(represented by pseudopotentials), the Ewald energy (a
system-related constant coming from the interaction of
the ions, including with their images due to the periodic
cell), and the electron-electron interaction, respectively.
A kinetic energy cutoff |G|?> < E.u is imposed on the
plane waves, limiting the total number of plane waves to
a finite number Npw. The pseudopotential can be sepa-
rated into local (L) and nonlocal (NL) components [50]:

Vi = vi(QA7He(Q) + Y v (G, G {TH)egea
Q+#£0 G,G/

(10)
where G and G’ are planewaves within the cutoff E.,
Q = G’ — G, the operator p is the Fourier transform
of the real-space electronic density, and 7 denotes the
positions of ions. We have omitted the spin index in
the operators. The electron-electron interaction is Vee =
V¢ + N¢, where the constant second term (with N being
the number of electrons) is similar to the Ewald term
from the ions and can be treated together with the latter
for convenience, and

ve=" am Z Z @cpcqcsq7 (11)

pqrs Q70

where each of the indices p, ¢, 7, s denotes a combina-
tion of plane-wave vector G and spin ¢. In Eq. ,
momentum conservation G, + G5 = G, + G, and spin
invariance o, = 0p, 04 = 0, are imposed, and a sum over
the spin indices is implicit.

Interatomic forces are derivatives of the total energy
with respect to ion positions {7}, which are only present

in the pseudopotential and ion-ion Ewald energy. From
Hellmann-Feynman theorem:

OF _ | _ OH
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where i marks each atom and @ marks each of the 3 Carte-
sian directions. The force observable that will replace O
in Eq. [4is therefore written as:

F = Fryaa + Foi, (13)

where the Ewald force Fgyaq is a constant [51]. For
the electron-ion contribution, the dependence on ion po-
sitions is only in the coefficients v.;, as seen in Eq. .
The computation of the electron-ion forces therefore re-
quires only a replacement of the coefficients ve; in the
total energy computations by —0vei/07;,. As all depen-
dencies of {7} in ve; are in the form of structure factors
(of the form e’G7 — see Appendix , computations of
—0We;/OTiq are straightforward. There is no dependence
of the ion positions in the plane-wave basis, hence no
Pulay terms from the basis set here.

The stress tensors o, are derivatives of total energy
with respect to a strain €,;, which describes the deforma-
tion U of any crystal point with respect to its (Cartesian)
coordinates X, €., = OU,/0X}. The stress tensor is then
defined as

1 OF
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where € is the supercell volume. As the strain tensor is
transpose symmetric, so is the stress tensor. Because of
statistical errors, this symmetry only holds in a statistical
sense in AFQMC. We apply an explicit symmetrization
of the stress tensor after the AFQMC calculation: 7., =
(Uab + Uba)/2-

Unlike forces, the Hamiltonian terms are not directly
dependent on the strain tensor so a chain rule has to be
applied through all real-space and reciprocal-space vec-
tors, as well as the lattice volume. This is based on a
list of transforms under strain: r, — >, (dap + €ap)Ts,
ko = D>, (0ab — €ap)kp, and Q — (1 + Xgeqq)Q2, where
r and k represent, respectively, any real- and reciprocal-
space vectors in the Hamiltonian. The observable to eval-
uate by Eq. []is therefore:

oH oH
60,(: 6ack (Sa Q
Z " Z b ok, + T
(15)
Every term in the Hamiltonian in Eq. () is affected by
the change of the space metric, which means a derivative
is needed for each. We write it as

&ab:_

&:&K"‘a—ei"i'&Ewald"'a-ee- (16)

The kinetic and Ewald terms are formally the same as
in the corresponding DFT calculations [5I]. Dependen-
cies on G and Q arise in the electron-ion contribution in



Eq. , which result in derivatives of the pseudopo-
tential function and the spherical harmonics (see Ap-
pendix [B| for details.) For the electron-electron interac-
tion, the contribution to the stress from the Ewald term
is readily available (by setting Z; — —1,7 — 0 in [51]).
The remaining contribution, from Eq. m, is

dab QaQy
T Q Ve — E - L ;cscr, (17)
pqrs Q#0 |Q|

where the second term can be computed similarly to the
first term which is already present in the total energy
calculation.

We comment on the computational cost of forces and
stresses, compared with a total-energy computation. BP
is performed occasionally in AFQMC, so it only adds a
small additional cost. The computational scaling of BP is
also the same as energy computations; in both cases the
major cost is in estimating lrdms. The computational
scaling for forces and stresses is therefore the same as
total-energy-only computations, with an additional pref-
actor (~1.2x in the examples we tested in this work).

C. Sources of errors and their mitigation

At the top level, the formalism we have presented
for computing atomic forces and stress tensors have two
sources of systematic errors. The first is from the phase-
less constraint of AFQMC, which controls the sign or
phase problem. In other words, the ground-state wave
function sampled from the AFQMC, |¥y), deviates from
the exact |Wp). This bias is reflected in the computed
total energy (from the mixed estimator), and is generally
very small, as seen through many studies and in the large
body of benchmark results [37, 40]. Additional reduction
of the systematic errors can be achieved by better trial
wave functions or the use of self-consistent constraints
52].

The other source of error is the BP bias. If |¥p) can
be used on both sides to compute a variational estimate
of (O), the result is expected to be of a quality consis-
tent with the total energy [4I]. However, we cannot do
this very efficiently in general, and instead use the BP
approach, in which the backward walker paths in Eq.
do not satisfy the rigorous constraining sign or gauge
condition, which is imposed in the forward-propagating
direction [53]. This bias is mitigated (but not fully sup-
pressed) by the path-restoration scheme, as discussed and
illustrated in [42]. The accuracy of the BP result can
still be below that expected from the total energy. One
very useful way to quantify this error is via explicit cal-
culations of (O), by finite difference using multiple total
energy calculations. (This approach has seen many ap-
plications in lattice models [31].) The benchmark results
below in Sec. [[TT]are precisely in this mode, and the excel-
lent agreement between our direct results and the target
finite-difference values indicates negligible BP error.

Other sources of errors are present but can be sys-
tematically removed. These for example includes Trotter
errors, population control bias (both of which are also
present in total-energy-only calculations), and BP equili-
bration time bias, all of which can be handled in standard
ways [32].

We comment on two other errors which require a
bit more attention for forces and especially stress ten-
sors, namely finite-size error and residual basis set er-
ror. First, AFQMC computations are performed in fi-
nite systems, and the results must be extrapolated to
the thermodynamic limit for bulk systems. This ap-
plies to the forces and stresses we compute as well. To
help reduce finite-size effects, we apply a post-processing
correction from a finite-size DFT functional parameter-
ized in Ref. [54] (referred to as KZK in the literature).
The KZK finite-size correction is for the total energy.
Since forces and stress tensors are both energy deriva-
tives, we can in principle apply a post-processing to them
in the same way as to the total energy [54]. However,
for the stress tensors, coefficients appearing in the KZK
finite-size functional are dependent on the lattice volume,
whose derivatives must therefore be accounted for. A
simple way to treat this problem and avoiding additional
Pulay terms is to use the finite-difference KZK stress
oKzK,ab = —AFkzk /(QA€q). After that, the usual way
of finite-size correction o e = 05%40 — OKzZK + 0Rpr
can be applied.

The second point worth noting concerns finite basis set
errors, or rather the (lack of) balance between the plane
wave basis sets in different supercells. As mentioned, the
plane-wave basis set, which is independent of ionic posi-
tions in the supercell, has essentially no finite basis error
for force calculations within a fixed supercell. It does de-
pend on the space metric, and the number of plane waves
varies with the supercell size. A Pulay term thus arises
for stress tensors. We find this Pulay term to be minimal
(“kbar™-level) for a suitable PW cutoff. If a higher ac-
curacy is desired, common solutions from DFT, such as
increasing or smoothing the cutoff [55], can be adopted
straightforwardly in PW-AFQMC and works well. An
even simpler scheme, in the spirit of KZK, is to correct
QMC results with the correspondlng DFT cutoff error:
VTS O'(gﬁtc ofe 4 open="°. Although approx-
imate, this scheme works well for moderately correlated
materials.

III. BENCHMARK AND ILLUSTRATION

To validate our formalism and implementation, and
test the accuracy of force and stress computed with PW-
AFQMC, we performed a number of benchmark calcu-
lations. We compare the forces and stress tensors com-
puted directly by the approach outlined in Sec. [[IB|with
the corresponding finite difference results obtained from
AFQMC total energies. The comparison is made in a
finite system under identical conditions. The total en-



ergy calculations are fully converged with respect to any
systematic errors except for the phaseless error, which
is expected to be negligibly small in these systems [56].
We ensure that the error from finite difference is smaller
than the statistical error in the reference data. Trotter
step sizes are extrapolated to zero from three separate
finite step-size computations. As discussed in Sec. [[TC]
this comparison thus quantifies all the errors in the forces
and stress tensors except that from the phaseless con-
straint.

We consider a diamond-structured Si in the primitive
face-centered cubic (FCC) cell. To benchmark forces, we
displace one Si atom along the Cartesian z-axis of the
cell. We compare the directly computed forces with the
reference result from total energies across a range of dis-
placement, from -1.5% to 1.5% of the experimental lat-
tice constant (10.263 Bohr) with a 0.5% step interval. To
obtain the reference data, we compute the total energies
with AFQMC across a wider range (-2% to 2% of the lat-
tice constant). We then fit the computed total energy to
the quadratic function E = 1ka?+ Ey. (We have verified
that this form is sufficient, as expected for the vicinity
of the equilibrium.) The fit is performed in a stochas-
tic way to account for the statistical error bars in the
computed total energy: a value is selected randomly at
each data point from a Gaussian distribution centered at
the mean, with variance given by the Monte Carlo error
bar; the set of values for the entire displacement range
forms a “sample” which can be fitted to obtain a {k, Fy};
a large number of samples are used to estimate the value
and uncertainty of {k, Ey} through the sample average
and standard deviation. As a positional derivative of the
total energy, the fitted force is then given by F' = —kuz,
with statistical uncertainty from the value of k. (This
is seen in the linearly growing statistical uncertainty in
the reference data in the inset of Fig. [[{a).) This refer-
ence force Fgt is then compared with the force directly
computed from AFQMC using the algorithm in Sec. [[TB]
Fyivect- As shown in Fig. (a), excellent agreement is seen
across the entire range.

To benchmark the computed stress tensors, we pro-
ceed in a similar fashion, by deforming the lattice to vary
the cell volume and shape, and computing the deriva-
tives of the equation of state to obtain reference data.
Here we show an example on the diagonal stress terms,
which are associated with lattice volume changes. We use
the same silicon structure, varying the lattice constant a
around the experimental equilibrium value and calculat-
ing the total energy for a range of lattice constants (9.8
to 10.6 Bohr). Similar to the force benchmark, this range
is larger than that targeted in the direct stress calcula-
tions, in order to obtain a reliable fit across the range
of the benchmark. We then fit the computed equation
of state with the Murnaghan equation [57] following the
same stochastic procedure described above, and obtain
estimates of the the four free parameters { Ey, Vo, Ko, K}
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Figure 1. Benchmark of the computed forces (top panel) and
stress tensors (bottom panel) in the Si diamond structure.
Forces/stresses directly computed by AFQMC are shown by
blue diamonds with error bars, and the reference data, from
differentiating the AFQMC total energies, are shown by the
red solid curve with error bar as shades. The insets show a
zoomed view of the difference between the two. In (a), the
horizontal axis gives the displacement of one atom along one
direction. In (b) it is the lattice constant as the cell is varied.

and their statistical uncertainties. Noting that

304 OF 3.1 0E
_ﬁ%__gﬁaqi = Trlo], (18)

we can evaluate the strain derivative in the middle by
the left-hand side from the Murnaghan equation with the
fitted parameters, and compare it with the trace of the
directly computed stress matrix on the right-hand side.
The results are presented in Fig. b). In the main graph,
Pulay corrections have been applied to both sets of data.
The position in a where either result intercepts 0 shows a
small discrepancy from the experimental equilibrium lat-
tice constant. This arises from residual finite-size error
(which should vanish when extrapolated to the thermo-
dynamic limit) and has no effect for the purpose here.
Excellent agreement is again seen between the computed
stress and the benchmark data.
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Figure 2. Optimization of all atomic positions in a supercell
of diamond Si. The starting structure (A) is a 50:50 mix of
atomic positions in diamond and (-tin structures, placed in-
side a supercell of equilibrium volume of the diamond struc-
ture. The target is the global minimum diamond structure
(D). The X axis shows the SOAP similarity kernel [58]. The
Y axis shows the AFQMC total energy per Si atom. The
scale of statistical uncertainty in the energy is indicated by
the error bars at selected steps. The black dashed line shows
the energy computed at the target diamond structure, with
the gray shades indicating the statistical error. The insets
A-D show the atomic positions in the y-z plane for four steps
along the optimization trajectory, as indicated. Structures C
and D are very close and are shown as overlapping images.

IV. APPLICATIONS IN GEOMETRY
OPTIMIZATION

The ability to compute accurate force and stress from
AFQMC can potentially enable many applications. One
of these is geometry optimization. A full degree-of-
freedom (DOF) geometry optimization is possible when
we have both forces and stresses available. Interatomic
forces allow for optimizations in atom positions, and the
stress tensors allow for optimizations of the lattice vol-
ume and shape. Here as a first test, we apply these capa-
bilities to two different bulk systems: Si and aluminium
nitride (AIN).

The computed forces and stresses can be fed into any
optimization routine for structural optimization. Here
we use an optimization algorithm that we recently de-
veloped [59], called FSSDxSET (fixed step-size descent
with staged error targeting). In a series of tests, in which
we emulated forces and stresses computed from QMC
(or any other methods which might contain stochastic
noise) by adding synthetic noise to the corresponding
DFT results, we studied the efficiency and effectiveness
of commonly applied structural optimization algorithms,
including some of the latest machine learning optimiza-
tion methods. We found that the FSSDXxSET approach

consistently performed efficiently and robustly under re-
alistic conditions. In the test examples below, we thus ap-
ply this algorithm in combination with forces or stresses
computed from AFQMC to realize fully ab initio many-
body structural optimizations.

We first perform a geometry optimization of atomic
positions in bulk Si. We consider a cubic supercell
with the experimental equilibrium lattice constant of
a = 10.263 Bohr. The initial positions of the atoms are
a 50:50 mix of their fractional coordinates in the dia-
mond structure and the S-tin structure (under strain).
Fig. [2] illustrates how the system, under PW-AFQMC
optimization, transforms into the diamond structure. Ar-
rows connect subsequent steps, and in this optimization
run, the SET includes two stages, marked by two differ-
ent colors. At the beginning of the optimization (the first
stage), the total energy drops quickly and in a few steps
the atoms change from their initial positions (depicted
in A) to form a pattern that looks like a distorted dia-
mond structure (B). The structure then converges more
slowly in the energy as the atoms move toward the con-
figuration in C. At this step (step #13), the structure re-
sembles that of the diamond (mean absolute discrepancy
of ~ 0.17 Bohr per DOF), and we obtain an AFQMC
total energy that is about 1 part in 3,100 higher than
the global minimum at the diamond structure. Conver-
gence is considered reached at this step for the first stage,
and the optimization undergoes a few steps around this
converged position, with a position averaging performed
among these converged steps [59] to yield a new start-
ing position for the next stage, as indicated by the green
oval and arrow. By refining the optimization in a second
stage of SET, with smaller targeted statistical error in the
AFQMC force computations and a reduced step size in
FSSD, we approach the correct minimum diamond struc-
ture as depicted in D. The SOAP similarity kernel [5§]
(1 — KS9APY is a measure of how similar the structure
is to the target. Our final structure in D has a SOAP
similarity kernel difference of 1072 (mean absolute dis-
crepancy of ~ 0.011 Bohr per DOF), and a total energy
within one statistical error bar or one part in 106,000 of
the energy of the ideal diamond structure.

In the second example, we optimize the lattice vol-
ume and shape in solid AIN in the wurtzite structure.
Fig. a) illustrates the setup. The fractional atomic
positions in the cell are fixed to be the values of the
wurtzite (P6smc) structure. The initial structure has
a mismatch between the atom positions and the lattice
structure, which is tetragonal supercell of a cubic NaCl
lattice (¢ = 7.64 Bohr, a = b = /2¢/2). The target
structure, which is the global minimum under ambient
condition, is the wurtzite lattice shown on the right. This
optimization procedure involves 6 degrees of freedom: the
lattice constants (a, b) and the lattice shape (¢/a; o, 3,7).
We again apply the FSSD x SET algorithm for the opti-
mization. Instead of the forces as in the example above,
this requires repeated computations of the stress tensors
with the PW-AFQMC algorithm outlined in the previ-
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Figure 3. Optimization of the lattice volume and shape
in solid AIN. (a) shows the initial and target structures.
(b)(c)(d) show the lattice constant a, b, the ratio ¢/a, and the
3 lattice angles a, 3,y, respectively. Convergence is reached
at step 10. On the right side of each plot, the average from
step 10 to step 25 is shown with the estimated statistical er-
ror bar. Experimental values are shown in dotted lines for
comparison.

ous section. Fig. Bf(b)(c)(d) demonstrate how the lattice
structure transforms towards the global minimum. Con-

vergence of all DOF is seen at step #10 with one stage
of FSSD x SET.

The evolution into a final structure of hexagonal
wurtzite lattice is evident: c¢/a increases from /2 to
~ 1.60, and v changes from 90° to 60°. The averaged lat-
tice parameters after convergence show very good agree-
ment with experimental results.

V. CONCLUSION AND OUTLOOK

We have presented a method for accurate computa-
tions of interatomic forces and stress tensors in solid
state systems, under the PW-AFQMC framework. The
approach is outlined in detail, with a discussion of the
sources of errors. Benchmark calculations were per-
formed using accurate total energies to test the formal-
ism and implementation of the direct computation under
the Hellmann-Feynman scheme. The approach is then
applied in two simple solids as examples, demonstrating
fully ab initio structural optimizations of both atomic
positions and lattice structures.

The work paves the way for structural optimizations in
realistic materials with an accurate many-body method.
This opens exciting new opportunities for more predic-
tive computations in correlated materials. A number of
questions remain to be further explored to allow system-
atic applications, including reducing finite-size effects,
quantifying the accuracy in strongly correlated materi-
als, improving computational efficiency in our formalism,
exploring the BP approach versus automatic differentia-
tion, etc.

Interatomic forces are also key ingredients for compu-
tation of the phonon spectrum. The availability of forces
from the approach we have presented thus makes possible
many-body computation of phonon spectra in solids. A
crucial new ingredient which enables systematic phonon
calculations is the use of correlated sampling [60], which
allows estimates of small differences of systems in prox-
imity, or derivatives by finite-difference. When combined
with the approach presented in this work, we can then
efficiently compute the derivatives of forces and stresses.
A recent improvement of the correlated sampling algo-
rithm has introduced population control [61], which sig-
nificantly improves its efficiency and effectiveness.
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Appendix A: The electron-ion force term

We provide some additional details on the differentia-
tion of the pseudopotential coefficients. The local pseu-



dopotential coefficient, v%:, is given by:

1 in
- 5 V@,

where i loops over atoms, VY(Q) is a function in-
terpolated from the pseudopotential (we use multiple-
projector norm-conserving pseudopotentials), and is the
same for atoms of the same species. Differentiating this
with respect to an atomic position 7}, involves multiply-
ing ¢Qd;, to each term of the sum. Since plane wave
AFQMC uses convolutions instead of matrix multiplica-
tions, an additional Fourier transform to real space is
performed and saved for repeated use.

(A1)

The nonlocal pseudopotential coefficient, v3", is given
by the Kleinman-Bylander form [62]:
1 *
wY¥(G,G) = Z n—JuJ,GuELG/ , (A.2)

J

where J loops over “projectors” and represents a com-
bination of {i,1,m}, ¢ is the atom number and [, m are
the azimuthal and magnetic quantum numbers, 7 is a
constant for each J, and

T EVIL(IGRYSL(GY),  (A3)

4
ujG = ﬁ

where G¥ is a short hand for G +k (k is the twist angle
for a twisted boundary condition). Y% are complez-
conjugated spherical harmonics taking the polar coordi-
nates angle (0, ) of the input vector.

Differentiating v} creates two terms. In each of them,
one of the ujg is unchanged, while the other will be
multiplied by —iGX§; ,:

oG, G’ 0,
_M — Z ! M[(’U/JGG )UJG’

aT,ua ny (A.4)

—ufa(Ghusa)],

where 7,,, denotes the coordinate in the a-direction of the
p-th atom.

Unlike the local electron-ion force, its nonlocal coun-
terpart is not computed with convolutions. However, by
writing the pseudopotential in the Kleinman-Bylander
form, the dimension has already been drastically reduced.
Using the notation U to represent the matrix of u s g, and
i, to represent the matrix of (Gqusc), we group Ut or
Ul with @7, and U or 4, with ©, and compute the matrix
multiplication within each group first. Sums on J and all
electrons are then performed, where ¢;, takes effect. In
summary, one computes

> Z“S“‘ WD), (U6) -

te€electrons J

(U®)];(14.0).¢]

(A.5)

where U and Y, are matrices of dimensions (J, G), © and
® are matrices of dimensions (G, t).
Appendix B: The electron-ion stress term

Based on the formulae in Appendix[A] we can also com-
pute the electron-ion contribution to the stress, for which
we now have to consider the dependency on G, Q, {2 as
well. For the local part:

181}
Q 8eb

= g SIHIQN T a1,

Q|

(B.1)
where V*(Q) = dV*(Q)/dQ is obtained by taking direct
derivative of the cubic spline function used for interpola-
tion. This entire object can be pre-computed and used
to replace v in the energy computation routine to ob-
tain the local pseudopotential stress contribution. For
the nonlocal part,

100G, @)

= 3 lsew) et
Q 3€ab - UJj,G;ab) UJ,G’

nca M (B.2)

(us,G) UG ab)

where @ @gqp is a shorthand for (—1/Q)(0ujq/O¢ca),
and contains three terms:

1. A contribution from Q71/2, which is just (d4/29) x
UJ7G.

2. A contribution from the derivative of VI&(G):

4m eixi-Gk GakG?
03/2 |GK|

Vi(IGK) - Vi, (G (B.3)

3. A contribution from the derivative of the spherical
harmonics,

4 ix; GE 8Ym
g™ Va6 - 5 Gl

(B.4)

which is computed together with the spherical har-
monics themselves, and can be obtained with any
library that computes (9Y] ,,,/90) and (0Y],1,,/0),
with a coordinate transformation from (G, 8, ¢) to

(Gz, Gy, Gy).

Written in full, for the nonlocal electron-ion stress, one
computes:

> Y

tcelectrons J

abq) tJ(U@)Jf + (U‘I))fJ( ab@)Jt] )

(B.5)
where Uy, represents the matrix of 4 q;qp-
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