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Quantum many-body systems with fracton constraints are widely conjectured to exhibit uncon-
ventional low-energy phases of matter. In this work, we demonstrate the existence of a variety
of such exotic quantum phases in the ground states of a dipole-moment conserving Bose-Hubbard
model in one dimension. For integer boson fillings, we perform a mapping of the system to a model of
microscopic local dipoles, which are composites of fractons. We apply a combination of low-energy
field theory and large-scale tensor network simulations to demonstrate the emergence of a novel
dipole Luttinger liquid phase. At non-integer fillings our numerical approach shows an intriguing
compressible state described by a quantum Lifshitz model in which charge density-wave order co-
exists with dipole long-range order and superfluidity — a ‘dipole supersolid’. While this supersolid
state may eventually be unstable against lattice effects in the thermodynamic limit, its numerical
robustness is remarkable. We discuss potential experimental implications of our results.

I. INTRODUCTION

The current advent of quantum simulation technology
is marked by rapid progress in controlling strongly in-
teracting many-body systems. In particular, the abil-
ity to engineer highly specific quantum Hamiltonians has
raised immense interest in the physics of quantum sys-
tems subjected to dynamical constraints. A particularly
exciting class of systems that has caught much atten-
tion in this regard are so-called fracton models [1-11].
These are characterized by elementary excitations with
restricted mobility (the fractons), whereas non-trivial dy-
namics can be carried by multi-fracton composites. Re-
cently, fractonic systems conserving both a global U(1)
charge as well as its associated dipole moment have suc-
cessfully been implemented in cold atomic quantum sim-
ulation platforms via the application of strong linear po-
tentials [12-15]. In this context, much effort — both in
theory and experiment — has been devoted to uncovering
the highly exotic non-equilibrium properties of fractonic
systems with dipole-conservation. These range from dy-
namical localization [13, 14, 16-20] over novel hydrody-
namic universality classes [12, 21-31] and glassy dynam-
ics [3, 32] to unconventionally slow spreading of quantum
information [33, 34].

Less attention has been devoted to understand the
ground states of fractonic systems. Nonetheless, a gap-
less Luttinger liquid has been identified as ground state
in certain strongly fragmented dipole-conserving spin
chains [18]. Furthermore, a recent duality mapping be-
tween fracton gauge theories and elasticity theory [35-
40] suggests the possible existence of new phases with
highly unconventional properties, such as dipole super-
fluids or fracton condensates [35, 41-45]. Similar phases
have recently also been predicted in a mean-field study of
a Bose-Hubbard lattice model subject to dipole conser-
vation [46]. However, in one spatial dimension, where
generically quantum fluctuations are expected to be

strong, an understanding of the phases and phase tran-
sitions has been lacking so far.

In this work, we address this challenge by studying
the Bose-Hubbard model with dipole-conservation in one
spatial dimension. The one-dimensional character of the
system enables us to employ an established toolbox of
efficient theoretical techniques. On the one hand, we re-
solve the question of a consistently-defined local dipole
density, which subsequently allows us to use bosoniza-
tion [47] for constructing effective low-energy field the-
ories of the fracton model. On the other hand, we ap-
ply tensor network techniques as efficient numerical tools
for the computation of ground state properties of one-
dimensional systems [48, 49].

The microscopic model we focus on throughout this
work consists of interacting lattice bosons on a chain sub-
ject to the conservation of both charge (i.e. the boson
particle number) and dipole moment (i.e. the boson cen-
ter of mass). In such a constrained Bose-Hubbard model
the single particle hopping term is absent and is instead
replaced by symmetric correlated hopping processes of
two bosons. Our microscopic model is described by the
Hamiltonian
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Here, t denotes the dipole hopping amplitude, U the
strength of on-site interactions, pu the chemical potential
and n; = b}bj the local boson number operator. Both
the total charge Q (or particle number N ) and its asso-
ciated dipole moment P are conserved quantities, which



we define as

(2)
L
P= Z(L —J)d; = Z(L —j) (7 —n) = const.,

Jj=1 J

were §; denotes the local deviation from the average bo-
son density n = (n). Selecting the reference position of
the dipole moment as in Eq. (2) will turn out convenient
in the following. We introduce the notation of a dipole
operator d} = b;bj_H, such that the kinetic term d;r-de
may be viewed as regular nearest-neighbor hopping for
a particle-hole dipole-like degree of freedom. We empha-
size, however, that the dé“ do not satisfy the commu-
tation relations of creation/annihilation operators. Ac-
cordingly, ci;fcf] is in general not the local dipole density.
However, under certain circumstances it can be, such
as in the low-energy subspace considered in Ref. [50].
Longer range correlated kinetic terms may in principle
be included and should not qualitatively affect the low
energy physics. In our numerical computations we re-
strict ourselves to the simplest case of Eq. (1).

Our analysis of the zero-temperature phases of Eq. (1)
yields several key results, which we present as follows. In
Sec. 11, we first establish the presence of area-law cumu-
lative charge fluctuations as a general criterion for the ex-
istence of a consistently defined local dipole density; see
Fig. 1 (a) for an illustration. Using an explicit mapping
to microscopic dipole degrees of freedom, we determine
the ground state phases of the model Eq. (1) at integer
boson filling as a function of correlated hopping strength
t/U in Sec. III. We predict that the system undergoes
a BKT (Berezinskii-Kosterlitz-Thouless) transition be-
tween a dipole Mott insulator (d-Mott) and a dipole Lut-
tinger liquid (d-Luttinger). In the dipole Mott insula-
tor both charges and dipoles are gapped, whereas in the
dipole Luttinger liquid dipoles are gapless but charge ex-
citations retain a finite energy gap. The dipole Luttinger
liquid persists when increasing ¢/U up until an instabil-
ity towards boson bunching occurs. We confirm these
analytical predictions numerically using large scale den-
sity matrix renormalization group (DMRG) calculations.
As a next step, we consider the model away from integer
filling in Sec. IV. Our numerical analysis in this regime
is consistent with an exotic ground state with vanish-
ing charge gap and thus finite compressibility, described
by a quantum Lifshitz model (see e.g. [51]). This state
spontaneously breaks the continuous dipole symmetry,
which, as has recently been shown, is allowed in princi-
ple even in one dimension, due to a modified Mermin-
Wagner theorem in systems with multipole conservation
laws [52, 53]. In Ref. [46], the quantum Lifshitz model
was proposed as low-energy effective theory for the con-
strained Bose-Hubbard model in a phase termed ‘Bose
Einstein insulator’. In our one-dimensional scenario, we
demonstrate that this state is characterized by a coexis-
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FIG. 1. Fractonic phases of matter in one dimen-

sion. (a) At low energies, area law fluctuations of the charge
g(x) permit the definition of a local dipole density gq(z)
as Ozqa(z) = g(x). This allows us to apply bosonization
to construct a low-energy effective field theory for micro-
scopic dipoles, which are composites of fractons. (b) The
grand canonical phase diagram of the dipole-conserving Bose-
Hubbard model features three distinct phases: an incompress-
ible dipole Mott insulator (d-Mott), shown in blue, within
lobes of integer filling; an incompressible dipole condensate
in form of a Luttinger liquid of dipoles (d-Luttinger), located
in the red region at the tips of lobes which extends to the
bunching instability (grey region); and a compressible su-
persolid of dipoles (d-Supersolid) at non-integer filling in the
green region. Solid black lines correspond to estimated phase
boundaries from grand-canonical iDMRG computations. The
dashed black lines indicate the energies for adding or remov-
ing a single particle (see text below). The regions between
the Mott lobes at small dipole hopping t/U (hatched region)
additionally host a Mott insulating phase at non-integer fill-
ing, which for instance at n = 3/2 is stable up to ¢t/U =~ 0.14.

tence of density-wave order and dipole superfluidity. We
thus refer to this situation as a ‘dipole supersolid’ (d-
Supersolid). Generic theoretical arguments suggest that
the dipole supersolid will eventually become unstable in
the thermodynamic limit due to lattice effects. Nonethe-
less, the full consistency of our results with a dipole su-
persolid phase within all numerically accessible system



sizes demonstrates that the phenomenology of the dipole
supersolid is remarkably robust. Our results can be sum-
marized in the phase diagram of Fig. 1 (b). We conclude
in Sec. V with a discussion of the implications of our
results for potential future experimental and theoretical
investigations.

II. CONSTRUCTING A LOCAL DIPOLE
DENSITY

The ground state phases studied in this work require
the existence of a bounded local density of microscopic
dipoles. This property will be instrumental for us in
devising an appropriate low energy description for the
model Eq. (1). Such a local dipole density can be seen as
an emergent property whose definition is consistent only
at low energies and does not extend to high energy states
of such dipole-conserving systems. In the following, we
express the conserved global dipole moment in terms of a
local density that will remain bounded if charge fluctua-
tions can be shown to be bounded. The most natural way
to satisfy this criterion is the presence of a finite charge
gap, corresponding to an incompressible state. In such a
scenario, the low-energy theory of the system is naturally
given in terms of effective dipole degrees of freedom as
described in [52]. Here, we show how this applies even to
a microscopic description of the system.

A. In the continuum

Let us first consider the scenario of a continuum charge
density ¢(z) in a closed system of length L. We require
both the total charge and the associated dipole moment
to be conserved

L
Q= [ deaw)=0
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P= /0 dx (L — z) q(z) = counst.

Here, g(z) = n(xz) — n denotes again the deviation of
the local particle density n(z) from the average den-
sity m. Our goal is to express the dipole moment as
P = fOL dx qq(z) in terms of a local and bounded dipole
charge density g4(z). We emphasize that the naive choice
gda(x) = xq(x) suggested by Eq. (3) is not suitable since
2 q(x) is manifestly unbounded. Instead, we can use
Cauchy’s formula for repeated integration to rewrite the
dipole moment as

P:/OLd:v(L—x)q(x)z/Ode/Owd:r'q(x'), (4)

Based on Eq. (4) we define the local dipole charge density
as

qa(z) = /01 dr’ q(2'), (5)

or alternatively, in differential form,

92qa(x) = (). (6)

The field g4(x) is thus related to a ‘height field’ repre-
sentation of the dipole constraint [54]. We now see that
while zg(x) is unbounded, ¢4(z) defined in Eq.(5) re-
mains bounded if the charge fluctuations within a region
of size x remain of order O(1) as * — oco. As the fluc-
tuations do not scale with the ‘volume’ z of the region
but originate solely from its boundaries, we will refer to
these fluctuations as ‘area-law’ in the following. Such
area-law-type charge fluctuations are guaranteed for the
ground state in the presence of a finite charge gap, which
induces a finite correlation length for charged degrees of
freedom. We therefore obtain a consistently defined local
dipole density upon which we can construct an effective
model of the low energy behavior.

B. On the lattice

The description of the system in terms of a finite den-
sity of microscopic dipole charges introduced in Eq. (6)
can also be realized on a lattice. For this purpose, we
substitute the continuum derivative with a discrete lat-
tice derivative, Ayqa = q4,241/2—qd,e—1/2- We have thus
defined the local dipole charge as a local bond degree of
freedom.

For simplicity, we focus on integer filling n € IN, where
any occupation number basis state |n) = |ni,...,nr)
gives rise to a charge density |q) = |n1 —n,..,np —n)
in terms of the local deviation from average filling. The
corresponding local dipole charge density state |qq) =
|qa,3/2, -+ 4a,1.—1/2) can thus be obtained by sweeping
through the system from left to right and applying the
relation

Qd,z+1/2 = 9d,z—1/2 + 4z, (7)

where we for now set gq1/2 = 0. The so-defined local
dipole charge can assume both positive and negative val-
ues. Much like the conventional charge density, we would
like to rewrite the local dipole charge in terms of a non-
negative local occupation number 14 ;11 /2 of microscopic
dipoles. This can be achieved simply by adding a suitable
integer constant m € IN to the local dipole charge

Ndz41/2 = Qdz+1/2 + M = Ngg_1/2 + ) (8)

where now ng4 1o = m. Note that the addition of such a
constant leaves the differential relation Eq. (6) invariant.
The constant m can be chosen arbitrarily, and we obtain
non-negative local dipole occupation numbers ng ;1,2 >
0 for all x when

m > Mpin = — min{O,min{qd7m+1/2}}. (9)

An illustration of the mapping between n, and ng, is
provided in Fig.2. We emphasize that in the presence
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FIG. 2. Microscopic dipole density. Mapping between
product states in the boson occupation number basis (up-
per panel) and microscopic dipole occupation numbers on the
bonds of the lattice (lower panel). Here, n, and ng y41/2 are
non-negative, whereas ¢, and g4 .41/2 are defined with re-
spect to the average densities (dashed line). For a state at
integer boson filling within the same dipole moment sector
as the uniform state |n), the resulting dipole model exhibits
integer filling as well. See main text for a detailed description
of the mapping.

of a finite charge gap the local dipole charge is always of
order O(1), and thus the required muy;, in Eq. (9) remains
bounded as well.

The mapping between boson occupation numbers and
bounded dipole occupation numbers can in principle also
be performed for states at non-integer boson fillings, pro-
vided the charge fluctuations are bounded. In such a
case, however, the dipole density Eq. (5) is defined with
respect to a non-translationally invariant reference state
no(z), such that g(z) = n(z) — no(x). The resulting
model for microscopic dipoles is then not translation-
ally invariant. It is an interesting open question how
an analysis of such a model can prove useful. Formally,
the mapping could even be performed for arbitrary states
|n) in the Hilbert space. However, for most states this
will lead to an unbounded local dipole density that di-
verges with system size. The presence of a finite charge
gap then ensures that only such occupation number ba-
sis states that yield a bounded local dipole density con-
tribute significantly to the ground state wave function.
The contribution of states requiring high local dipole
density decays exponentially with my;, and can thus be
safely discarded. Furthermore, while the presence of a
finite charge gap is a sufficient condition to ensure area-
law charge fluctuations, it is not a necessary one. We will
encounter such a situation in Sec. IV in which the charge
gap vanishes but cumulative charge fluctuations obey an
area law. We further emphasize that the resulting de-
scription in terms of microscopic dipole bond degrees of
freedom remains valid for dipole-conserving systems with
longer-range terms than in the present microscopic model

Eq. (1).

III. INTEGER FILLING: LOW ENERGY
DIPOLE THEORY

We start our analysis of the constrained Bose-Hubbard
model of Eq. (1) by considering the system at a fixed in-
teger filling n € IN as a function of the relative strength
t/U of the correlated hopping. For ¢/U being sufficiently
small, we expect a Mott insulating state with gapped
charge (i.e. single particle) excitations. We then perform
the mapping to a system of microscopic dipoles and con-
struct a low-energy effective theory by bosonization of
these lattice dipoles.

A. Effective action of dipoles

In order to determine the proper low-energy model
in the dipole language, we extract the resulting aver-
age dipole density ng that results at integer boson filling
n € IN. In particular, in the following we fix the sector
of the total dipole moment P = 0 that is associated with
the homogeneous boson state n = |n,...,n). For this
state, the local deviation from the average boson filling
is ¢, = 0 for all z, and therefore the local deviation from
the average dipole filling is g4 ,41/2 = 0 for all z as well
according to Eq. (7). As a result of Eq. (8), the average
dipole density is thus given by

ng=m €N, (10)

i.e., microscopic dipoles are at integer filling as well. This
feature will become relevant upon constructing an appro-
priate low-energy theory. We emphasize that the states
in the sector connected to the homogeneous root state
|n) = |n,...,n) are obtained by simple hopping processes
of the microscopic dipoles, and thus feature the same in-
teger dipole filling.

The presence of a charge gap allows us to rewrite the
constrained Bose-Hubbard model at integer boson filling
in terms of microscopic bond dipoles at integer filling
ng € IN. The Hamiltonian may then be expressed in this
basis, leading to a hopping of bond dipoles as well as
dipole density interactions. In order to understand the
low energy properties of this system we may then proceed
by standard bosonization [47] of the newly found dipole
objects. In particular, we introduce a counting field ¢4
for the bond dipoles, in terms of which the local dipole
density reads

na(e) = [ — 2 V6u(a))] 3o 2rrmas—oae ()

We further introduce a conjugate dipole phase field 6,4,
which satisfies the relation

[%qud(x), ba(z")] = —id(z — 2'). (12)

The low-energy effective Hamiltonian for the system is
generically given by the kinetic energy (V4)? as well as



(a)
. i
P
(§ -
5
o -
()
©
2
a i
50 100 150 200 250
Distance r
3 [ T ] T ]
d-Luttinger (c)
S
S
(4»; 2
= r
S 10 10> 10°
2 T T T
o
2
a
1 - -
10?
Distance r
FIG. 3.

. 107t (b) A
<-;\S
& 10°° 1
§ 1075 tu g
2 0.07 — 0.09
2 107 — 0.08 — 0.10 A
3
[} —
5 10 9 E
2
o 10—11 4
25 50 75 100 125 150
Distance r
_1 I T T ]
10 d-Luttinger (d)
(_.;\g tu
&3 0.115 — 0.125
Z 102+ J
= 10 — 0.120 — 0.130
5]
(8]
% xr? E
5 1 1072
@ 110 (v/\g
g 106 T
a T ~
4 10—8 i
102
Distance r

Decay of spatial correlation functions at integer filling. We probe dipole and dipole-current correlations

at fixed integer filling n = 2. (a) and (b) In the Mott insulating phase (¢ < tsxr), dipole correlations and dipole-current
correlations decay exponentially. (c) Dipole correlations in the Luttinger liquid phase (¢ > tpkr) show a power law decay
with the non-universal exponent 1/2K4, where K4 is the dipole Luttinger parameter. (d) Dipole-current correlations decay

universally with the square of the distance oc 2.

The data are obtained with iDMRG, and the insets in (¢) and (d) depict

the convergence of the correlation functions with bond dimension for ¢t/U = 0.115 towards the power law decay.

the dipole density interactions (V¢g)?. Crucially, since
the dipole filling ny is integer with respect to the original
lattice spacing, a cosine term cos(2¢d (x)) induced by the
underlying lattice needs to be included. Accordingly, the
effective Hamiltonian is

1 U
H=— /dm {é(wd(:ﬂ))? FugKa(Va(x))>+ )

+g cos(2¢d(x)) },

with the dipole Luttinger parameter K, as well as the

velocity ug. The corresponding Lagrangian for the ¢g4-
field then reads

1

L= QWKL{{U%(@%)Z*-M(@%)Q} +gcos(20q4). (14)

B. Dipole Mott insulator to dipole Luttinger liquid
transition

The model Eq.(14) constitutes the standard low en-
ergy theory for interacting lattice bosons at integer fill-

ing, and can thus be treated in complete analogy to the
usual Bose-Hubbard model. In particular, the ground
state of the model Eq. (14) undergoes a BKT transition
between a gapped Mott insulating phase and a gapless
Luttinger liquid at a critical value

K:=2 (15)

of the dipole Luttinger parameter. Above this value the
cosine term becomes irrelevant and the system enters a
Luttinger liquid of dipoles. Accordingly, only correla-
tions of the dipole variables ¢4, 0; decay algebraically at
long distances in the dipole Luttinger liquid. In partic-
ular, the vortex operators e?4(") that create a dipole at
position r decay asymptotically for large distances as

<ei9d(7')e—i9d(0)> ~ |’I“|_1/2Kd. (16)

We will use the characteristic algebraic decay of these cor-
relations in the following to numerically verify the above
prediction of a K = 2 transition between a dipole Mott
insulator (d-Mott) state and a dipole Luttinger liquid (d-
Luttinger). We emphasize that while dipole excitations



become gapless, charged particle excitations retain a fi-
nite energy gap in the dipole Luttinger liquid.

We use tensor network techniques to numerically study
the ground state phase diagram of our microscopic model
(1) at integer boson filling. Matrix Product States (MPS)
allow us to obtain an unbiased variational approxima-
tion to the many-body ground state wave function, uti-
lizing the well-established density matrix renormalization
group (DMRG) algorithm [48, 49, 55]. Formally, the lo-
cal Hilbert space of bosons is infinite. In our numeri-
cal simulations we impose a cutoff of ny.x = 8 parti-
cles. While MPS are an efficient representation for one-
dimensional gapped system, gapless phases such as the
expected dipole Luttinger liquid pose a significant numer-
ical challenge. To best utilize the numerical technique,
we implemented both U(1) particle number conservation
and dipole conservation [56] in our DMRG algorithm,
enabling us to perform simulations with high bond di-
mensions. Resolving dipole conservation in our DMRG
approach further allows us to numerically determine the
energy gap of dipole-like particle-hole excitations. In ad-
dition, in order to eliminate the boundary effects of finite
systems we will work directly in the thermodynamic limit
using infinite DMRG (iDMRG) whenever suitable [57].
A detailed description of our numerical approach is pro-
vided in Appendix A.

Dipole and dipole-current correlations.— A di-
rect signature of the transition between a Mott state and
a dipole Luttinger liquid is provided by the dipole cor-
relations of Eq. (16). These decay exponentially in the
Mott phase and algebraically, as in Eq. (16), in the Lut-
tinger liquid. We probe these correlations numerically in
iDMRG by computing

{dldo) ~ (1= 0a0) (17)

which is proportional to the correlation of vortex opera-
tors €'%(") that locally create dipoles. Fig. 3 (a,c) demon-
strate that such dipole correlations indeed change from
an exponential decay in the Mott insulating phase for
t < tpkT to power law decay for t > tggr. We deter-
mine the numerical value of the transition point tgkr
below. As can be inferred from Fig. 3 (c), the exponent
of the power law changes with hopping ¢ and is thus non-
universal as expected for a Luttinger liquid.

Besides the dipole correlations, a clear signature of the
Luttinger liquid can be obtained by probing the correla-
tions of the dipole current iV6,(r), which in the dipole
Luttinger liquid decay at long distances as

1

(IV0(r)iV64(0)) ~ 5.

(18)

Thus, their power law is independent of the Luttinger
parameter K;. Within our microscopic model, the dipole
current can be defined and evaluated numerically via the
operators

3¢ =—i(dld,

3541

h.c.). (19)
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FIG. 4. Energy gaps. Finite size flow of the excitation gaps
at integer filling n = 2 (a) in the Mott insulator (¢/U = 0.050)
and (b) the Luttinger liquid (¢t/U = 0.115). Both in the
Mott and Luttinger liquid phase the charge gap converges to
a finite value A. — const. as L — oco. By contrast the dipole
gap remains finite only in the Mott insulator, but vanishes
in the Luttinger liquid as Ag < 1/L. (c) Charge and dipole
excitation gap across the BKT transition. The dipole gap
closes at the critical hopping tgxr/U =~ 0.113.

Our numerical results in Fig. 3 (b,d) show that correla-
tions (j¢5¢) of this dipole current decay exponentially in
the Mott state for ¢ < tgxT and indeed fall off as the
inverse square of the distance r for ¢ > tgx. The slight
vertical shift of the corresponding curves in Fig. 3 (d) is
nonuniversal and depends on the Luttinger parameter
Ky.

Energy gaps.— In the Mott insulating phase, both
particle excitations and dipole excitations feature a finite
energy gap. The transition to the dipole Luttinger liquid
should be accompanied by a closing of the dipole gap
while the gap for charged particle excitations remains
finite. Our numerical approach allows us to explicitly
verify these expectations.

Let us consider the system at some integer boson filling
N = nL and a dipole moment P = 0 that corresponds
to the one of the homogeneous state |n, ..., n) see Eq. (3).
The filling n can be thermodynamically stable when the
chemical potential  in Eq. (1) is located between the two

potentials
pud (L) = Eo(L, N + 1, P) — Eo(L, N, P), (20)
po (L) = Eo(L,N,P) — Eo(L,N — 1, P),

where Ey(L, N, P) denotes the ground state energy of the
system of size L at fixed particle number N, dipole mo-
ment P and vanishing chemical potential. Accordingly,
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uid at commensurate filling n = 2. (a) Luttinger param-
eter extracted from the asymptotics of the dipole correlations
(JId}Q o r~'/?Kd_ The inset demonstrates the transition
from exponential to power-law decay of the dipole correlations
around the critical point ¢tgkT, which occurs precisely at the
predicted value of the Luttinger parameter K; = 2. (b) Veloc-
ity uq obtained from the dipole compressibility kq = Kq/uam.

as for the conventional Bose-Hubbard model [58], the gap
to charged single particle excitations in such a system is
defined as

Ac(L) = pd (L) = pg (L). (21)

Analogously, the dipole gap can now be obtained via the
two potentials

4g (L) = Eo(L,N, P +1) - Eo(L, N, P),

_ (22)
pg (L) = Eo(L,N, P) — Eo(L, N, P — 1),

which yields
Ad(L) = pg (L) = pg (L). (23)

We notice that (L) = —u,; (L) holds, since by spatial
reflection symmetry the ground state energy cannot de-
pend on whether a particle-hole excitation is created by
displacing a single particle to the right or left. In the ther-
modynamic limit, the gaps Ac/q = limp N 00 Acya(L)
are obtained by keeping n = N/L and P = 0 fixed.
In our numerical simulations based on iDMRG, we ap-
proach this limit by adding/removing a single particle to
the unit cell, whose size L is increased until convergence
of the gaps is reached. This has the advantage that the
system is formally infinite and does not suffer from ef-
fects of boundary conditions. In Fig. 4 (a,b), we show the
finite size flow of the charge and dipole gaps both in the
Mott insulator and the Luttinger liquid. Both gaps re-
main finite in the dipole Mott insulator. In the dipole
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FIG. 6. Static charge structure factor. Static structure
factor in the Mott insulator and the Luttinger liquid. The
inset illustrates the power law decay of (Agfi_x) for & — 0,
which is o< k* in the Mott phase and oc |k|® in the Luttinger
liquid, respectively.

Luttinger liquid the charge gap remains finite, whereas
the dipole gap closes as 1/L.

Fig. 4 (c) shows the numerically determined charge and
dipole gaps as functions of correlated hopping ¢/U that
we extrapolate to the thermodynamic limit. We observe
a rapid closing of the dipole gap at tpxT/U =~ 0.113,
while at the same time the particle gap remains finite.
Our results are thus consistent with a transition from a
dipole Mott insulator to a dipole Luttinger liquid at a
critical strength of the correlated hopping.

Luttinger parameter and dipole velocity.— In
the dipole Luttinger liquid phase, the system is character-
ized entirely by the value K, of the Luttinger parameter
as well as the dipole velocity ug. For example, we can
verify the BKT transition between the Mott state and
the dipole Luttinger liquid, which is driven by the co-
sine term in Eq. (14). The BKT theory of this transition
predicts a critical dipole Luttinger parameter Kj = 2,
which we can verify by extracting K4(t) as a function of
the correlated hopping ¢/U from the numerically deter-
mined dipole correlations Eq. (17). Fig.5 (a) shows that
the Luttinger parameter continuously increases as a func-
tion of t/U. The lowest value of the Luttinger parameter
Kq is indeed K} = 2, which marks the onset of power-
law dipole correlations. The value of the critical hopping
is consistent with the value of tgxT obtained from the
closing of the dipole gap in Fig.4 (c).

Due to the finite charge gap, the dipole Luttinger lig-
uid is incompressible (see also the discussion below).
Nonetheless, it features gapless low-energy dipole exci-
tations w = ugy|k|, with which we associate a finite dipole
compressibility kq. The dipole velocity ug that we want
to extract in order to fully characterize the Luttinger
liquid is directly related to this dipole compressibility
via kg = Kgq/ugqm. We use this relation to obtain the
dipole velocity by numerically extracting the dipole com-
pressibility from the finite size flow of the dipole gap



A4(L) = k' /L. The resulting dipole velocity is shown
in Fig.5 (b). In addition, we have numerically confirmed
the existence of linear low energy modes consistent with
the estimated velocities of Fig. 5 (b) by computing the full
dipole spectral function. We will address such dynamical
properties in detail in future work.

Charge compressibility.— The presence of a finite
charge gap guarantees the incompressibility of the dipole
Luttinger liquid. Alternatively, the charge compressibil-
ity & can be determined via the zero-frequency density
correlations

k= lim Cpp(w = 0,k), (24)
k—0

with the structure factor
Chn(w, k) = (n(w, k)n(—w, —k)) . (25)

For the dipole Luttinger liquid, the dipole density is given
by ng ~ 0y¢q according to Eq. (11) and the correspond-
ing charge density is n ~ 92¢4 upon using Eq. (6). There-
fore, the compressibility is

r(k) = %k‘* (pa(w = 0,k)¢a(w =0, k) = —k,

(26)
which vanishes as k2 for small momenta. In our DMRG
simulations, the frequency-resolved density correlations
are challenging to obtain. However, we can efficiently
compute the equal-time density correlations Cp, (7 =
0,k). For the Luttinger liquid model of Eq.(14), the
relevant time and frequency correlations are related by

K
Coun(7 = 0,k) = %wc,m(w = 0.k) = 2 kP. (27)

We show the equal-time correlations Cy, (7 = 0,k) in
Fig. 6, which we numerically obtain from the real space
density-density correlations

A 1 k(i) 1e
(nkn,k>:ﬁ2e RO (i) (28)
id

Indeed, we find a ~ |k|> behavior at small k for the
Luttinger liquid in Fig.6, which in turn is consistent
with a compressibility vanishing as x(k) ~ k2. By con-
trast, in the Mott insulating state with finite dipole ex-
citation gap, the density correlations instead vanish as
Con(T = 0,k) ~ k*, see Fig. 6.

C. Stability of dipole Luttinger liquid at large
correlated hopping

In the previous section we analyzed the transition out
of a gapped Mott state into a gapless dipole Luttinger
liquid at integer filling upon increasing the strength ¢/U
of the correlated hopping. It is natural to ask whether a
second transition into a state with gapless charge excita-
tions appears as the hopping t is increased even further.

A natural candidate for such a phase is the (1+1)D quan-
tum Lifshitz model (see Eq.(29) below), that has been
proposed as a potential theory of gapless phases with
dipole-moment conservation.

As we discuss in the following, in the present situation
the charge gap remains finite upon increasing t. A tran-
sition to a phase described by a Lifshitz model does not
occur since such a phase is destroyed by lattice effects.
This instability of the Lifshitz model can be used to es-
timate the value of the charge gap at large values of the
dipole Luttinger parameter. The dipole Luttinger lig-
uid is therefore stable against a transition into a gapless
Lifshitz model.

Nonetheless, for the Hamiltonian of Eq. (1) the Lut-
tinger liquid will eventually become unstable for ¢ greater
than some t* towards a state in which all bosons bunch
together in space. The corresponding ground state fea-
tures a superextensive energy Ey ~ —N? and does not
correspond to a stable phase of matter unless a (unphys-
ical) cutoff on the local boson occupation is introduced.

Bunching instability.— The bunching instability
can be understood by the fact that both the corre-
lated hopping term and the on-site interaction term scale
quadratically with the local occupation number n. For
a thermodynamically stable phase of matter, the asymp-
totic scaling of the ground-state energy for n > 1 de-
mands —2tn? + Un?/2 > 0, hence in a grand-canonical
setting the transition occurs precisely at t* /U = 0.25, as
for ¢t > t* the ground state is unstable toward a diverg-
ing particle number. In case of a fixed particle number,
however, the situation is somewhat richer. At low filling,
the reduced local density fluctuations increase the critical
value t*. For n = 1, we numerically obtain ¢*/U ~ 0.32,
and for n = 2 we obtain ¢t*/U =~ 0.26.

Stability of the dipole Luttinger liquid and
instability of the Lifshitz model.— For hopping
strengths below the bunching instability and at integer
filling, the system remains in the dipole Luttinger liquid
and does not enter a phase of gapless charge excitations.
Here, we argue why this is the case before determining
the asymptotic behavior of the charge gap A, for large
values of the dipole Luttinger parameter.

Introducing conjugate bosonized variables ¢(x) and
O(x) for the charge degrees of freedom [analogous to
Egs. (11,12)], the dipole-conserving yet charge-gapless
quantum Lifshitz model reads

ﬁ:%{%(aﬁ)hv(agaf}. (29)

The associated Hamiltonian is given by
_ v 1 2 2m2] _
H= /dm {K(aqu) + K (020) } -

27 (30)

v 1
= o [ dk [ R0 + KRR
o [k [0 + KR o(k)
In this model the usual kinetic term (0,0)? is quenched
and instead a dipole-conserving kinetic term (920)? in-
variant under linear shifts 6(x) — 6(x) + a + bz is the



most relevant allowed contribution. The constrained ki-
netic term induces a relative scaling z = 2 of space and
time coordinates.

Within an effective field theory approach [46], the
quantum Lifshitz model can be obtained upon consid-
ering the charge and dipole degrees of freedom as inde-
pendent, coupling them in the total Lagrangian

_Kd 1 2 2 2
E‘ﬁ[uj(wd) + ug(8,04) } + (04 + 8,0)%+
K,

2T U,

(31)

+ (0,6),

and subsequently integrating out the variables 84. This
theory was first analyzed in the context of a fracton
gauge dual formulation of classical smectics in two di-
mensions [40]. We emphasize the difference to the mi-
croscopic derivation of Sec. II. There, charge and dipole
degrees of freedom were not independent but related by
a change of variables. In Sec. II, the low energy theory
of the dipole Luttinger liquid could be postulated upon
assuming a finite gap for the charge degree of freedom.
As we will see in the following, the benefit of the ef-
fective field theory approach of Eq. (31) is to determine
whether /when this assumption can be valid.

In Eq. (31), » > 0 and K./u. quantify the density in-
teraction between charge degrees of freedom. Notice that
the term (64 + 0,0)? is also invariant under 64 — 64 — b,
0 — 0+ a + bx. Physically, one expects this term to
introduce a constraint that induces a finite stiffness for
the dipole phase field and pins it to the charge field,
04 — —0.0. Formally, after integrating out 6,4, we obtain
a Lifshitz model of the form Eq. (29) with

uch ucude
K =4/ K, =4/ — 32
uch @ ! Kc ( )

We note that K./u. and Kg/ugq quantify the density
interactions between charges and dipoles, respectively,
both of which derive from the underlying density inter-
action of the microscopic dipole Bose-Hubbard model.
We thus naturally expect the ratio ugK./u.Kq ~ O(1)
in Eq. (32) to be of order unity, and thus K ~ Kj.

We further note that expressed in terms of the ¢-field
(and in frequency and momentum space), the Lifshitz
model takes the form

1 lw? 9 9
21K [v k2 + ok }W(k)‘ ' (33)
This follows from Eq.(29) and the invariance of the
Hamiltonian Eq. (30) under K — 1/K, 0(k) — ¢(k)/k,
o(k) — kOB(k). Now if the charge degrees of freedom
¢ were to acquire a finite gap, adding a mass term
r(¢p—0,¢4)* and taking into account dipole density inter-
actions 7 -4 (0x04)? in Eq. (33) returns us to the dipole
Luttinger liquid upon integrating out ¢. Thus, the two
effective constraints ¢ — 9, ¢4 and 64+ 0,0 on density and
phase variables, driving the system either into the dipole
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FIG. 7. Charge gap in the dipole Luttinger liquid.
Numerically obtained charge gap A. in the dipole Luttinger
liquid, scaled with uq K4, as a function of the Luttinger pa-
rameter K. We compare the scaling of the charge gap to
the theoretical prediction o e~ “%¢ with some non-universal
constant c.

Luttinger liquid or the Lifshitz model, respectively, are
in fact conjugate to each other:

(6(2) — Dpba(2), Ba(a’) + 0,0(")] = 2imd(x — 2'). (34)

We now show that a finite charge gap is always present
in the Lifshitz model due to lattice effects. At integer
filling a cosine term

gcos(2¢(x)) (35)

for the charge field ¢ should be included in our descrip-
tion. The operators e**(") have long-range correlations
in the model of Eq. (33) independent of v and K. There-
fore, the cosine term is always relevant and creates a gap
for charged excitations, thus driving the system back into
the dipole Luttinger liquid.

Charge gap at large K;.— In the following, we es-
timate the size of the charge gap at large values of K; by
means of a scaling analysis for local fluctuations of the
¢-field. Extracting the charge gap allows us to verify not
only that the dipole Luttinger liquid remains stable as
the hopping is increased, but importantly also that the
mechanism behind the generation of a gap is indeed the
presence of a relevant cosine term in the Lifshitz model
in Eq. (33).

In the presence of a non-zero coupling g # 0, the cosine
is the most relevant term appearing in the action S =
[ drdzL that results from Eq.(33) and Eq.(35). It is
thus safe to expand the cosine to quadratic order and
consider the model

R Jle) 2. (36)
T orK lygz T TR '

We emphasize that the two terms cos(2¢) and ¢? indeed
have the same scaling dimension in the Lifshitz model.



We now evaluate local correlations of the ¢-field within
this model yielding

2 a K
<[¢(T=O,x=0)] >:/0 dkw, (37)

where we have included a high-momentum cutoff that is
set by the microscopic lattice spacing a. We see that for
g = 0, the term inside the integral in Eq.(37) is pro-
portional to K. Fluctuations of ¢ thus become large as
K increases. For non-zero g # 0 on the other hand,
the term inside the integral will eventually become sup-
pressed for sufficiently small momenta k, thus reducing
fluctuations of ¢ on the corresponding length scale. The
relevant length scale at which the presence of the cosine
becomes noticeable is determined by the momentum at
which the term inside the integral in Eq. (37) is reduced
from order K down to order O(1). Setting k = 1/A, this
leads to the condition

1L#~5 v (38)
N /1+>\2477Kg ) 47‘1’[(97

where we have used A Kg/v > 1 on the relevant length
scale \ for large values of K. The length scale A is thus

v
A~y —. 39
; (39)

Due to the dynamical exponent z = 2 between space and
time in the Lifshitz model, this length scale is associated
with a corresponding energy scale

9 __9
vK ude.

A~ A2~ (40)
In the last step we have inserted the values of Eq. (32)
for K and v that we have derived from the underlying
dipole Luttinger liquid.

We have already extracted the dipole Luttinger param-
eter K,(t), the dipole velocity ug(t), and the charge gap
A.(t) as functions of the correlated hopping t/U in our
numerics. We can now determine the value g(¢) of the co-
sine term in order to verify the prediction Eq. (40). Even
though, we cannot infer g(¢) directly from our numerics,
we know that the correlations of the operators e*?(") scale
in the Lifshitz model as

<€i¢(r)e_i¢(0)>gzo r—00 e_c/K _ €_CKd, (41)

with non-universal O(1) constants ¢/, ¢. It is the con-
stant value of this correlation function that turns the
cosine-term into a relevant operator of the same scaling
dimension as a conventional mass term ¢2. As the value
Eq. (41) of this constant becomes small at large K, the
prefactor of the mass term in Eq. (36) should be small as
well, and we thus infer that g(K,) decays exponentially
with K,

9(Kq) = co exp(—cKy). (42)
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With Eq.(42) at hand, we can verify our prediction
Eq. (40) for the charge gap by inverting the relation
Kq(t/U) — t/U(K,4) and verifying that

Ac(Kd)Ud(Kd)Kd ~ eXp(—ch) (43)

for large values of Ky. In Fig. 7 we display the quantity
on the left hand-side of Eq. (43) calculated from our nu-
merically obtained values for Ky, ug, and A.. We indeed
find a decay of A.uqK, consistent with an exponential
at increasing values of Ky, thus confirming Eq. (40). We
note that the range of available values for Ky in Fig.7 is
limited mostly by the numerical evaluation of the dipole
velocity uq', and a larger parameter range would be de-
sirable in order to verify Eq. (40) more accurately. Inter-
estingly, although the exponential decay of g(K4) domi-
nates at very large K, at the available intermediate val-
ues of K it is essential to take into account the prefactor
1/uqK 4 of the gap in Eq. (40) in order to be able to see
the exponential form.

We have thus directly verified that the charge gap —
produced by the instability of the Lifshitz model — re-
mains finite as the hopping strength is increased towards
the bunching transition. The dipole Luttinger liquid thus
persists as a stable phase at integer filling.

IV. NON-INTEGER FILLING

In the previous section we have seen that at integer
boson filling, the dipole Luttinger liquid remains stable
and the corresponding charge gap of single-particle exci-
tations stays finite, up to a point at t* /U where a bunch-
ing instability arises. Naturally, we can ask whether there
exists a different parameter regime of the lattice system
in which a charge-gapless and thus compressible state
described by a Lifshitz model may be realized? In this
section, we will explore this question in the regime of
non-integer boson fillings.

In particular, let us consider the bosonic lattice model
at some rational filling n = p/q ¢ W, with p,q coprime
integers. In the putative Lifshitz model of Eq. (33) and
(35) at sufficiently large hopping ¢ (but below bunching)
the cos(2¢(x)) term—which we have previously deter-
mined to destabilize the phase at integer filling—is no
longer present. Nonetheless, higher order (i.e. multiple)
vortex terms in the expansion Eq. (11) of the density op-
erator may generically still contribute. In particular, for
the given filling fraction p/q one may generally expect a
contribution

gq c0s(2q9(x)) (44)

I The dipole velocity ug is determined from a delicate finite-size
flow of the dipole energy gap, while K; can be robustly deter-
mined from the decay of correlation functions.
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FIG. 8. Transition to incommensurable densities.

Average charge density (n) for a cut through the grand-
canonical phase diagram along the line of fixed chemical po-
tential p/U = 0.95. Different unit-cell sizes L used in the
iDMRG simulations are compared. We observe an apparent
Ist-order transition into a compressible state with continu-
ously varying charge density.

to the Lagrangian. Such terms are always relevant and
open a charge gap, analogously to the analysis of the pre-
vious section. It follows that it should generically be ex-
pected that the Lifshitz model is unstable also at any ra-
tional filling. Nonetheless, it is possible in principle that
the prefactors g, in Eq. (44) become either 1) extremely
small, such that the phenomenology of the Lifshitz model
survives even in very large systems, or 2) exactly zero for
some specific microscopic lattice models, such that the
Lifshitz phase survives even in the thermodynamic limit.
We have no immediate reason to think that the pref-
actors of such higher order cosine terms should vanish
identically for our model. We note, however, that since
all cosine-terms in Eq. (44) are equally relevant, possible
cancellations between different harmonics may occur, po-
tentially generating a situation with effectively very small
prefactors.

In the following, we analyze the ground state of the
system at non-integer filling numerically using iDMRG.
Remarkably, we find that the variational ground state
obtained numerically is consistent with a compressible
phase described by the Lifshitz model in the absence of
any cosine-terms for the accessible system sizes and bond
dimensions. We first present evidence for the compress-
ible nature of this variational state, before characterizing
the physical properties of this phase. Whether the Lif-
shitz model will eventually become unstable in regimes
beyond our current numerical capacities is an intriguing
open question. However, we emphasize that already the
observed stability of this phase on our currently accessi-
ble scales is quite remarkable and surprising.

Fized chemical potential. — We explore non-integer
fillings by relaxing both charge and dipole quantum num-
bers in our numerics and by performing a grand canonical
ground state search as a function of hopping ¢/U along
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FIG. 9. Compressibility at non-integer filling. The
scaling of the static structure factor indicates finite compress-
ibility at non-integer filling. (a) Static structure factors at
filling n = 5/2. At sufficiently large t/U the structure factor
scales o k2 for small momenta, compatible with the predic-
tions from the quantum Lifshitz theory describing a compress-
ible state. (b) Static structure factors at filling for n = 3/2.
For small t/U a transition to a Mott insulating state occurs,
where we find a o k* scaling.

a line of fixed chemical potential /U = 0.95. From the
previously computed charge and dipole gaps displayed in
the phase diagram of Fig.1, we expect such a line cut
to go through the two integer-density phases of the Mott
insulator and the dipole Luttinger liquid before reach-
ing a regime of non-integer ground state density. We
show the average density expectation value (7) along
this cut in Fig. 8. Crucially, upon reaching a critical hop-
ping strength, the density appears to exhibit a first-order
jump before increasing again continuously. While narrow
density-plateaus in the regime of non-integer filling are
still visible for smaller unit cell sizes, these plateaus ap-
pear to smoothen out as the unit-cell size is increased,
an indication of a compressible state.

Charge compressibility.— To further substantiate
the evidence for a compressible state on the numerically
accessible scales, in the following we consider the com-
pressibility as determined by static density correlations.
To this end, we again return to resolving charge- and
dipole-conservation laws within our iDMRG approach.

Our goal is to first understand what to expect of a



state described by the Lifshitz model. In particular, the
compressibility of the Lifshitz model in the absence of
cosine-terms is finite,

(k) = Coon (w0 = 0,k) = =

K
v

k? <¢(w =0, k)d’(w =0, _k)>

2

(45)

As previously done for the dipole Luttinger liquid, we
can further compute the associated equal-time density
correlations. For the Lifshitz model, these are related to
their static zero-frequency counterpart via

Coun (T = 0,k) = k2 Crn(w = 0, k) = K2 (46)
2 27

The equal-time correlations of Eq. (46) can be determined
efficiently in DMRG, and we should expect a ~ k2 on-
set at small momenta when the state is described by a
Lifshitz model. In Fig.9 we present Cy, (7 = 0, k) as ob-
tained numerically at the half-integer fillings n = 3/2 and
n = 5/2. At sufficiently large hopping ¢, we indeed ob-
serve the quadratic onset ~ k2 for small momenta. This
in turn is consistent with a constant limy_,o Chpp(w =
0, k) and thus a finite compressibility, as expected in the
quantum Lifshitz model. We emphasize that indepen-
dently of specific model assumptions, the observed ~ k2
onset is markedly different from the ~ |k|? onset, that we
have previously observed in the dipole Luttinger liquid at
integer filling (¢f. Fig.3). Hence the density correlations
indicate a different ground state.

At the filling n = 3/2 we additionally find an appar-
ent Mott state with onset ~ k* of C,,(7 = 0,k) and
exponentially decaying dipole correlations provided the
hopping t is sufficiently small. For the n = 5/2 state,
we also find such a Mott state, but it is located at very
small t. We estimate the critical point of this transition
forn =3/2att/U ~ 0.14 and forn = 5/2 at t/U ~ 0.02.
It would be interesting in the future to map out the tran-
sition between these two phases and determine whether
an intermediate dipole Luttinger liquid exists at this fill-
ing.

Charge gap.— Both the grand canonical ground
state search and the static density correlations provide
compelling evidence of the existence of a compressible
state at non-integer filling at sufficiently large hopping
t. As a final check, we investigate the energy gap A, of
charged single particle excitations as defined in Eq. (21).

If and only if the ground state is compressible, the charge

gap vanishes in the limit of large systems: A, Lo,

Specifically, for any system of length L, we find a finite
size charge gap whose scaling upon L — oo we wish to
determine. Fig. 10 shows the scaling of A, for increasing
system sizes L at half-integer filling n = 5/2 and dipole
hopping ¢t/U = 0.125. Within our accessible computa-
tional resources, the associated finite size charge gap ap-
pears to close as A (L) ~ 1/L for large systems. Again,
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FIG. 10. Charge gap at non-integer filling. Finite size

flow of the charge excitation gap at filling n = 5/2 and dipole
hopping t/U = 0.125, in good agreement with o< 1/L up to
the accessible unit-cell sizes. A vanishing charge gap in the
thermodynamic limit indicates a finite compressibility.

this apparently vanishing charge gap provides an indica-
tion for the compressibility of the ground state. We note
that in contrast to the charge gap A, ~ 1/L, the dipole
excitation gap Ay in the Lifshitz model with dynamical
exponent z = 2 is expected to close as Ay ~ 1/L?, see
Ref. [51]. Numerically, we verified that it becomes very
small. For all probed system sizes we find Ay/U < 1077,
making it unfeasible to capture the exact finite size flow
within the numerical accuracy for accessible bond dimen-
sions.

Characterizing the compressible state: a ‘dipole
supersolid’.— The central property of the Lifshitz
model Eq. (29) is the presence of off-diagonal long range
order in the dipole-dipole correlations functions. We re-
call that the dipole phase field 6,4(x) of the Luttinger liq-
uid gets pinned to the gradient —d,60(x) of the charge
phase field in the Lifshitz model, see Eq.(31). The
off-diagonal dipole correlations are long-ranged and are
given by

<ei8m9(1)e—ia$9(0)> 200, —const. (a7)

We verify this prediction numerically by computing
(dldo) within iDMRG; Fig. 11 (a). As the bond dimen-
sion is increased, the dipole correlations indeed approach
a constant value on the accessible length scales of sev-
eral hundred sites. This indicates a spontaneous break-
ing of the dipole U(1) symmetry, which is allowed even
in one dimension due to a modified Mermin-Wagner the-
orem for systems with multipole conservation laws. Our
numerical results show that the phenomenology of long-
range dipole order is remarkably robust in the micro-
scopic model Eq. (1). In addition, we verified numerically
on finite system sizes that the dipole superfluid stiffness is
finite (as is the case in the dipole Luttinger liquid). This
can be probed by computing the sensitivity of the ground
state energy to a twist in the boundary conditions [59].
The presence of off-diagonal long range order is not
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FIG. 11. Breaking of translation invariance and dipole
long-range order at non-integer filling. (a) Upper panel:
dipole correlations (dld@ at several non-integer rational fill-
ings n = p/q =5/2,49/20, 9/4, for t/U = 0.125. The corre-
lations remain constant even at large distances. Lower panel:
convergence in bond dimension for n = 5/2. (b) Charge
density-density correlations (fi,70) exhibit a g-periodicity for
the same fillings n = p/q as in (a).

the only remarkable feature of our ground state at non-
integer filling. Quite generally, for a translation invariant
system subject to both charge and dipole conservation,
the ground state at filling n = p/q ¢ IN and p, ¢ coprime
is necessarily at least g-fold degenerate due to the non-
commutativity of translations and dipole symmetry [60].
The degenerate ground states are connected via trans-
lations. As a direct consequence, these states exhibit
charge density wave (CDW) order with wave number
27 /q. This feature is in agreement with the predictions
of the quantum Lifshitz model of Eq. (33) in the absence
of cosine terms. Since the correlator

("M e=19(0)y T22% ot (48)

exhibits long range order, the density correlations fea-
ture long range g-periodicity, cf. the expression Eq. (11)
of the density in terms of the ¢-field in bosonization. We
thus expect to find density wave order for our system at
any rational filling. Fig. 11 (b) demonstrates the presence
of a CDW in the density-density correlations for differ-
ent fillings n = 5/2, 49/20, 9/4, confirming the expected
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associated periodicities ¢ = 2, 20, 4. Interestingly, al-
though the Lifshitz model describes a compressible state
with vanishing charge gap, our mapping between boson
and dipole occupation numbers introduced in Sec. II re-
mains valid. This is because the central criterion for its
applicability, the bounded nature of charge fluctuations
[see Eq. (5)] holds in the Lifshitz model of Eq. (33). For-
mally, since n(z) —n ~ Vo(z),

<</Ox da' (n(z) — n))2> = @)
= ((¢(x) — $(0))%) === const. x K.

Hence, cumulative charge fluctuations retain an area
law. Since the dipole density remains well-defined, by
virtue of d,q4(x) = ¢(x) it inherits the DW order of the
charge density. In quantum simulation platforms, both
the bounded nature of charge fluctuations as well as the
presence of DW order could be verified by sampling par-
ticle occupation number snapshots from the ground state
wave function and using them to evaluate (ng(z)nq(0)).
In line with this picture, we numerically observed small
oscillations with period ¢ on top of the long-ranged dipole
correlations (dfdy) at non-integer rational fillings.

We conclude that a remarkable feature of this ground
state at non-integer filling is the coexistence of a finite
dipole superfluid stiffness and a charge density wave order
along with off-diagonal long range order of the vortex
operators that create local dipoles. As such, the novel
state described by the Lifshitz model may be viewed as
a ‘dipole supersolid’.

V. CONCLUSION AND OUTLOOK

In this work, we have investigated the ground state
quantum phases in the one-dimensional Bose-Hubbard
model with dipole conservation. Utilizing the area-law
nature of cummulative charge fluctuations in the ground
states of the model, we were able to construct a local
dipole density. This in turn allowed us to develop an ef-
fective low energy descriptions of the system. At fixed
integer boson densities, we found that the system under-
goes a BKT transition between a gapped Mott state and
a dipole Luttinger liquid that exhibits gapless particle-
hole-type excitations, in agreement with iDMRG compu-
tations. The charge gap remains finite at integer filling
with increasing hopping until an instability towards bo-
son bunching is reached. At non-integer filling, however,
our numerical results showed a ground state described
by the one-dimensional quantum Lifshitz model, dubbed
‘Bose-Einstein-insulator’ in Ref. [46]. This phase cor-
responds to a compressible state in which density wave
order coexists with off-diagonal long range order and fi-
nite superfluid stiffness for the dipole degrees of freedom.
We therefore refer to this regime as a ‘dipole supersolid’.
General arguments suggest that this phase will eventu-
ally be unstable towards lattice effects. Nonetheless, the



robustness of this compressible state within the unit-cell
sizes accessible in our iDMRG approach is remarkable
and suggests that the phenomenology of the dipole su-
persolid may be accessible in current quantum simulation
platforms.

Collecting our results on the ground state properties
and charge/dipole energy gaps of the model Eq. (1) leads
us to conclude with the ¢/U — u/U — phase diagram pre-
sented in Fig. 1 (b): The system features Mott lobes with
finite charge gap and integer boson filling, within which
a transition between a fully gapped state and a dipole
Luttinger liquid occurs. The lobes do not close until
the bunching instability is reached. A special case is the
n = 1 Mott lobe which remains in a fully gapped state
up until bunching, which is why we focused mostly on
n = 2 in this work. The phase diagram shown in Fig. 1
is inferred from a parameter scan of ¢/U and p at for
systems of 100 sites in the grand canonical ensemble.

Open questions concerning the phase diagram of Fig. 1
— beyond the eventual stability of the supersolid state —
exist in the regime of non-integer boson densities at small
correlated hopping. There, we observed signatures of a
transition between fractional filling Mott states and the
compressible dipole supersolid (hatched areas). Mapping
out the details of this potential transition is an interesting
task for future work.

In addition, our results pave the way — both analyti-
cally and numerically — for tackling a number of related
systems such as fermions or spin chains with dipole con-
servation. Specifically, our mapping to a model of micro-
scopic dipoles may provide a good conceptual starting
point for addressing questions about the non-equilibrium
dynamics of excitations on top of the ground states ob-
tained here. In future work, we plan to address such dy-
namical questions, including the evaluation of dynamic
spectral functions. An additional question for future
study is the fate of the microscopic dipole mapping at
non-zero temperatures, where thermal fluctuations lead
to a violation of the area law condition for charge fluctu-
ations.

Our results furthermore provide useful indications for
potential experimental realizations of dipole phases be-
yond the simplest gapped Mott state. In particular, cold
atoms in optical lattices in the presence of a strong lin-
ear tilt give rise to effective dipole-conserving dynam-
ics and have been realized in Fermi-Hubbard systems
both in one and two dimensions [12-15]. However, the
associated correlated hopping strength t/U = (ts,/V)?
is generally suppressed by the ratio of the bare single-
particle hopping strength t,, and the strength V' of the
linear tilt [14, 24]. Nonetheless, our analysis suggests
that dipole Luttinger liquids or supersolids may already
be accessible at moderate values of the correlated hop-
ping. A more detailed investigation of the ground states
and their transitions particularly at small ¢ is needed in
order to substantiate this picture.

We emphasize further that through the mapping to
microscopic dipoles, our work suggests potentially useful
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novel observables that can be used to analyze constrained
models in experiments. In particular, quantum simula-
tion platforms such as quantum gas microscopes have
access to snapshots of the full system. This allows one
to i) verify the conservation of the global dipole moment,
ii) verify the area-law nature of cumulative charge fluctu-
ations that guarantees a consistent local dipole density,
and iii) perform the mapping to dipole degrees of free-
dom on the snapshots in order to study the dynamics of
dipoles directly.

Beyond many-body systems in the presence of a linear
tilt, dipole-conserving Hamiltonians similar to Eq. (1) are
relevant to fractional quantum Hall systems placed on a
thin cylinder [60-64]. It would be very interesting to
investigate whether the physics studied in our work can
be of direct relevance to such setups.
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Appendix A: Computational methods

Throughout this paper, we employ tensor network
methods to numerically access properties of the many-
body ground state. We use the DMRG algorithm based
on an MPS representation of the wave function, which
allows for a controlled expansion in terms of the entan-
glement encoded in this ansatz [48, 49]. Starting from an
initial product state, DMRG variationally optimizes the
energy by local updates, where only xmax most important
Schmidt states are kept. After reaching convergence, we



compute expectation values and correlation functions on
the ground state MPS by contracting the relevant tensor
networks. For finite MPS we find that, in particular for
large t/U, boundary effects become relevant to a point
where they cannot be neglected. Therefore, all our sim-
ulations utilize the infinite version of DMRG, directly
working in the thermodynamic limit [57].

1. Grand-canonical simulations

In iDMRG, by fixing the size of the unit cell, one al-
ways implicitly imposes translation invariance. Hence,
it is typically very important that the periodicity of the
ground state is commensurate with the unit cell. For
our dipole conserving model Eq. (1), we are in a special
situation when we work in the grand-canonical ensemble
where the total particle number can fluctuate. For any
given unit-cell size L, the ansatz states are automatically
at least L-periodic, however, because of the g-fold ground
state degeneracy, the ground state has a 27w /¢ periodic-
ity at filling p/q. Therefore the lowest energy state is
forced to have rational filling p/L, where p and L do not
have to be coprime. As a results, this leads to locking
of the average density to rational fillings fractions, which
appear as a staircase structure in grand-canonical cuts.
We verified that upon increasing L the size and height
of these plateaus reduce, signalling a tendency toward an
incompressible state.

2. Conservation laws

In order to reach high bond dimensions, and to be able
to resolve dipole and charge sectors, we exploit the con-
servation of total charge N and dipole moment P. The
construction of tensor networks symmetric under global
transformations has been thoroughly discussed in the lit-
erature [68, 69]. Here, we briefly sketch the idea of how
conservation laws are implemented, to then discuss how
dipole conservation can be applied to infinite MPS algo-
rithms. In the context of fractional quantum Hall physics
on thin cylinders, the momentum around the cylinder
maps to the dipole moment of the particle density, and
momentum conservation has been successfully exploited
in this case [56].

U(1) symmetries can be directly implemented on the

level of the tensors Agg’j " of the MPS representation

) = 3 [ Al gl i
{in}

] |"'7.jna.jn+17"'>7

(A1)
where for a unit cell of size L we have AM = AP+L1 This
is achieved by assigning quantum numbers, or charges, to
the legs of the tensors. Charges of contracted legs, i.e.,
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the bonds in the MPS, are required to match, and tensors
can carry charge themselves. Then, MPS tensors AZ’A’J "
are constrained by the charge rule

ol = qff — g = Qi (A2

[n]

where g¢o (q[n]) are the charges on the left (right) vir-

tual leg, q][:] the charges of the physical leg, and Q") the
total charge. Only entries of the tensor for which the
legs fulfill the charge rule can be non-zero. The charge
rule directly generalizes to tensors with any number of
legs, such as the matrix product operators used to rep-
resent the Hamiltonian. Generally, some convention for
in- and out-going legs must be defined, specifying which
legs connect to bra or ket states, which fixes the signs
in Eq. (A2). All tensor operations (e.g., permutation, re-
shaping, contractions and decompositions) can be imple-
mented to conserve the block structure imposed by the
charge rules. This can dramatically reduce the compu-
tational cost of tensor network algorithms, which in turn
allows one to consider higher bond dimensions.

For our case of particle number and dipole conserva-
tion, we assign two sets of charges (qk;], qj[g]) to the ten-
sor’s legs, and non-zero elements of any tensor are only
allowed for indices satisfying a charge rule for each set.
However, due to the fact that translations do not com-
mute with the dipole operator, translating the MPS by
r sites does act non-trivially on the charges

(@0 iy = (b g 4 v 5 g7,

(A3)
For operations within one unit cell this is not an issue,
and all operations on tensors can be carried out as usual.
However, for operations on different unit cells, e.g. when
optimizing the first or last tensor in iDMRG or for com-
puting correlation functions, we have to make sure to
apply the shift rule Eq. (A3) accordingly, and adjust the
charges at every leg of the tensor.

With this modification iDMRG can immediately be
applied to exploit dipole conservation. Additionally, we
can with that fix the dipole moment sector. One impor-
tant caveat to take into consideration is the ergodicity of
iDMRG updates. Due to the additional constraint arising
from imposing dipole conservation, the variational space
for optimizing the MPS ansatz is severely restricted, and
fragments into sectors disconnected under standard 2-site
iDMRG updates [56]. Hence, depending on the initial
state the optimization may get stuck in a local minimum.
We mitigate this problem by using a subspace expansion
method [70] in combination with 2-site iIDMRG updates.
This introduces perturbations in the state and adds fluc-
tuations to the quantum numbers, which significantly im-
proves the ergodicity of iDMRG.
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