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Helical edge states in quantum spin Hall (QSH) materials are central building blocks of topo-
logical matter design and engineering. Despite their principal topological protection against elastic
backscattering, the level of operational stability depends on manifold parameters such as the band
gap of the given semiconductor system in the “inverted” regime, temperature, disorder, and crystal
orientation. We theoretically investigate electronic and transport properties of QSH edge states in
large gap 1-T’ WTe2 monolayers. We explore the impact of edge termination, disorder, tempera-
ture, and interactions on experimentally addressable edge state observables, such as local density
of states and conductance. We show that conductance quantization can remain surprisingly robust
even for heavily disordered samples because of an anomalously small edge state decay length and
additional protection related to the large direct gap allowed by glide symmetry. From the simu-
lation of temperature-dependent resistance, we find that moderate disorder enhances the stability
of conductance by localizing bulk states. We evaluate the edge state velocity and Luttinger liquid
parameter as functions of the chemical potential, finding prospects for physics beyond linear helical
Luttinger liquids in samples with ultra-clean and well-defined edges.

I. INTRODUCTION

Quantum spin Hall (QSH) insulators are a pillar of
topological matter in which helical edge states offer a
novel route towards dissipationless transport and quan-
tum computation [1–5]. The first proposals in graphene
[6, 7] quickly turned out to be insufficient for the obser-
vation of QSH effect due to small spin-orbit coupling [8]
and disadvantageous orbital composition [9], where both
shortcomings could be overcome in Bismuthene as the
realization of a Kane-Mele type QSH system at room
temperature [9–11]. It has, however, proven difficult to
perform transport experiments in Bismuthene because
of the challenging synthesis of sufficiently large homoge-
neous samples, a shortcoming which might be overcome
in other Xene monolayer/substrate compounds[12] or in
up to now less understood classes of materials such as
the jacutingaite family [13–15].

Quantum well heterostructures accomplish the QSH
insulating regime from band inversion through the reduc-
tion of the inherent point group symmetry of the core
semiconductor. By construction, these setups are suit-
able for performing transport experiments where as local
spectroscopy is nearly impossible due to their composite
layer nature. While quantum wells have provided the first
observation of QSH effect [16–18], and much subsequent
progress has been made to enhance their measurability
and operability [19–33], their large penetration depth of
edge states (in order of tens of nanometers) prevents an
ideal QSH setting. This manifests in the lack of topolog-
ical protection due to, e.g., coupling to charge puddles

[34, 35], impurities of non-magnetic [36] or Kondo [37–39]
type, incoherent electromagnetic noise [40], interaction-
mediated localization [41, 42], nuclear spins [43–45], or
axial spin symmetry breaking by Rashba effect [46, 47].
It is thus desirable to identify systems with smaller edge
state penetration depths, larger band gaps and better
thermal stability which are accessible through transport
experiments [48].

The transition metal dichalcogenide WTe2 is an in-
triguing platform which provides a promising realization
of QSH edge states accessible through both transport ex-
periments and local spectroscopy. In its 3D form, it is
a type-II Weyl semimetal [49, 50], while when thinned
down to a monolayer becomes a QSH insulator [51–55].
The signal associated with QSH edge states has been
demonstrated in transport studies [52, 54]. Scanning
tunneling microscopy/spectroscopy also revealed the ex-
istence of states on the boundaries [53, 56–58], consis-
tent with a QSH edge state scenario. Furthermore, var-
ious spectral features of a bulk gap have been detected
such as the Coulomb gap at the Fermi energy [59], NbSe2

proximity-induced superconducting gap [60, 61], strain-
induced gap [62], and CrI3 antiferromagnet exchange-
field gap [63]. As the electron concentration is increased,
transitions to metallic and superconducting bulk states
were observed [64, 65]. It is further plausible that doping
might have an influence on the nature of the many-body
ground state in WTe2 even beyond the mere metallic or
superconducting character, as it was recently claimed for
an excitonic insulator phase in WTe2 [66, 67]. Given the
evidence of electron correlation effects in the bulk, it is
plausible that the QSH edge states may also experience
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strong electron-electron interactions. While unambigu-
ous Luttinger liquid behaviour of the edge channels still
need to be explored and detected, the material’s propen-
sity towards such 1D channels is hinted at in initial re-
ports for a twisted WTe2 bilayer geometry [68].

The plethora of experimental results stimulated a sig-
nificant body of theoretical work related to analyzing
the electronic, spin, and many-body properties of WTe2.
Various intertwined methods have been used to address
the principal electronic structure in this material, includ-
ing density functional theory [51, 53, 57, 58, 62, 69–80],
tight-binding approaches [75, 76, 81–84], and low-energy
k ·p models [66, 67, 84–89]. Remarkably, theoretical mod-
els predict a small (if at all) bulk gap in WTe2 from first
principles which is superficially at odds with the rather
stable QSH behaviour observed experimentally. Since
the first identification of several 1T’ TMD’s as topolog-
ical insulators [51], understanding the nature of the d-d
band inversion process [90], general phase diagram [81],
the role of glide symmetry in strong localization of edge
states [75] and the role of edge termination [75, 76, 78, 80]
has persisted as a highly challenging task. This similarly
applies to the impact of edge roughness on conductance
[81], spin dynamics, and anomalous Hall conductivity
[89], the role of disorder on edge spin transport [83], the
edge magnetoresistance due to orbital moments [91], the
possibility of spontaneous magnetization of edge states
[74] and gate-activated canted spin texture [86, 88], the
possible pairing mechanisms and symmetries of the su-
perconducting state [79, 82, 87, 92, 93], and the nature
of the excitonic insulator [94–97].

In our article, we center the theoretical analysis around
the assertion that the standalone microscopic features of
WTe2 are rooted in its glide symmetry [75]. It implies
that the Dirac cones are not pinned in momentum space
and are hence allowed to shift, which leads to large direct
gaps experienced by the QSH edge states despite a small
bulk gap. While the large direct gaps in principle nat-
urally explain the small penetration depth of QSH edge
states in WTe2, it also renders the specific sample bound-
ary termination of WTe2 pivotal to accurately describe
the QSH profile, see Fig. 1. We study also how glide
symmetry breaking affects QSH states. We will further
assume that different microscopic sources of disorder, e.g.
Te defect states [77] or edge inhomogeneity [76], can be on
average modelled by Anderson-type disorder. In our dis-
ordered transport calculations we use different methodol-
ogy than Refs. [76, 83, and 88], namely recursive Greens
function technique, which allow us to study long, almost
realistic, edges. Our study of on-site disorder comple-
ments study of disordered edges in Ref. [76]. We confirm
the strong robustness of edge state transport, extending
findings of Refs. [83 and 88] to the case of two sample
terminations, a short-to-long sample transition and tem-
perature effects. Combined, we embark on a theoretical
analysis of local spectroscopy and transport in WTe2 re-
lated to scanning tunneling microscopy (STM) studies of
the edge (Fig. 2), longitudinal resistance measurements

(Fig. 3), and the temperature dependence of conductance
(Fig. 4). While we will leave a detailed analysis of the
correlated bulk nature of WTe2 for future studies, we will
estimate the strength of electron-electron interactions on
the edge states, and calculate the Luttinger liquid param-
eter as a function of the chemical potential, see Fig. 5.
Our calculation reveals a strong dependence on edge ter-
mination in the interaction strengths and a potential for
tuning it by changing the edge electron density.

II. ELECTRONIC STRUCTURE AND ROLE OF
GLIDE SYMMETRY

To set the stage, let us begin with the discussion of
structural and electronic properties of WTe2 bulk and
nanoribbons, focusing on two types of edge termina-
tions. In Fig. 1 (a) the top-view of two tungsten
and four tellurium atoms inside the unit cell is shown.
The lattice constants are calculated from the ab initio
DFT@PBE level giving a = 3.50 Å and b = 6.33 Å.
The real space primitive unit cell vectors are ~a1 = a(1, 0)
and ~a2 = b(0, 1). Those give reciprocal lattice vectors
~G1 = 2π/a(1, 0) and ~G2 = 2π/b(0, 1) which define a rect-
angular Brillouin zone with X, Y and M points defined
by X = (π/a, 0), Y = (0, π/b) and M = (π/a, π/b). Fur-
ther details of geometry are discussed in Appendix A.
Using terminology introduced in an earlier paper [75] by
some of us, we define two ribbon geometries with ’zigzag’
and ’armchair’ edge terminations, shown in Fig. 1 (b)
and (c), respectively. We note that in the zigzag case edge
states move parallel to the glide symmetry line, while
for an armchair they move perpendicular to it. We will
see below that the combination of larger glide-symmetry-
enabled direct gap, smaller penetration depth and differ-
ent A/B sublattice localization makes the zigzag edge
states more robust to disorder.

Throughout this work we use ab initio based tight-
binding model developed in Ref. [98] for generic tilted
Dirac-fermion and extended for massive tilted Dirac
fermion in WTe2 in Ref. [75], where the mass is re-
lated to spin-orbit coupling and Fock exchange-controlled
band gap opening. The effective Hamiltonian of the sys-
tem takes into account 4 orbitals, two dx2−y2 localized
on W atoms and two px localized on Te atoms. Choos-
ing the basis ordering for A/B sublattice and d/p orbitals
as |A, d〉 , |A, p〉 , |B, d〉 , |B, p〉 the 2D system Hamiltonian

Ĥ0(~k) with its non-zero matrix elements is,

Ĥ0(~k) =


HA
d

HA
p

HAB
dd HAB

dp

HAB
pd HAB

pp

h.c.
HB
d

HB
p

 . (1)

Precise form of the elements and parameters are listed in
Appendix B. The total spinful Hamiltonian Ĥtot. is given
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FIG. 1. Structural and electronic properties of WTe2 for two types of edge termination. (a) Schematic arrangement of atoms
inside the unit cell in the xy plane. Top-view of WTe2 ribbon with (b) zigzag and (c) armchair edge type. Rectangles and
circles denote W and Te atoms, respectively. Contacts G1−4 define the two-terminal setup. Edge states are schematically
shown as blue and red arrows. The dashed line and grey arrows help to visualize glide reflection. (d) Band structure of infinite
WTe2 along the X − Γ −M − Y line in the rectangular Brilloiun zone. Note 3 gaps ∆X−Γ (fundamental), ∆Γ and ∆M−Y .
(e-f) Band structures of (e) the zigzag and (f) the armchair of 20 nm wide ribbons, with edge and bulk states colored as in (a).
Exclamation mark ’ !’ denotes the position of 1D Dirac points.

by

Ĥtot.(~k) = σ̂0 ⊗H0(~k) + VSOC σ̂2 ⊗ ρ̂3 ⊗ τ̂2, (2)

where σ̂, ρ̂, τ̂ are Pauli matrices acting on spin, sublat-
tice A/B and orbital d/p degrees of freedom. Spin-orbit
coupling strength is defined by the parameter VSOC =
0.115 eV. The Fermi level is set at the top of the valence
band. This model has an indirect band gap of 0.165 eV
exactly on Γ −X line in the rectangular Brillouin zone,
as shown in Fig. 1 (d). The glide symmetry allows for
massive tilted Dirac fermions to be localized in k-space
away from high-symmetry points. This has an interesting
implications for relative gaps for an edge state dispersion
in both zigzag and armchair geometries, as discussed be-
low. To better understand direct band gaps for 1D Dirac
cones, in addition to fundamental gap ∆X−Γ, we also
mark gap at the Γ point (∆Γ) and the gap along M − Y
line (∆M−Y ), both calculated from the top of the valence
band.

Now we discuss the dispersion properties of the edge
states in clean ribbons, as shown in Fig. 1 (e)-(f). In
ribbon geometry the width of the system is fixed to 20
nm, order of magnitude larger than the largest edge state
penetration depth considered in a clean system. Overall,
one can clearly distinguish between two types of edge by
the position of the Dirac cone on 1D BZ. In the zigzag

ribbon it is located within the conduction bulk states, as
shown in Fig. 1 (e). In armchair ribbon, the 1D Dirac
cone overlaps with the top of the valence band, 0.008
eV below the band edge, as shown in Fig. 1 (f). We
note that in both cases the direct gap for bulk bands,
between which edge states exist, is much larger than the
fundamental one, ∆X−Γ = 0.165 eV. For the Dirac point
k-space position in zigzag ∆Γ = 1.22 eV and for the arm-
chair ∆M−Y = 0.87 eV. Those large gaps are responsi-
ble for anomalously small edge state penetration depths,
as already discussed in Ref. [75]. Focusing on energies
where the bulk is insulating and only a single helical pair
exists, their edge-localization can be related to the di-
rect gap at the given wave number k1D. However, the
simplest models in which the penetration depth λ is pro-
portional to velocity over the gap λ ∼ (∂E/∂k)/∆, fail to
properly capture quantitative behavior, which is in con-
trast to HgTe quantum wells described by the Bernevig-
Hughes-Zhang model [99]. We discuss further details of
localization properties in Appendix C.

Now let us move to the discussion of the role of glide
symmetry. It is already known[75, 98] that when spin-
orbit coupling is not included, the monolayer 1T-WTe2

is a topological semi-metal with two tilted Dirac cones
protected by glide symmetry. This means, that when
glide symmetry is even weakly broken, Dirac cones be-
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come gapped and trivial gap is opened. The situation is
more complicated when spin-orbit coupling opens non-
trivial gaps first. Then, glide symmetry breaking pertur-
bation first closes the non-trivial gap and reopens it after
reaching some critical value. To illustrate this process
quantitatively, one can choose the following form of glide
symmetry breaking perturbation HGB = (VGB/2) σ̂0 ⊗
ρ̂3 ⊗ τ̂0, which means that the potential VGB/2 is added
to sublattice A (subtracted from sublattice B). For our
choice of spin-orbit coupling strength VSOC = 0.115 eV
we checked that the glide symmetry breaking perturba-
tion closes the topological gap for VGB ≈ 0.10 eV. The
evolution of the band structure for different values of VGB
has been shown in Appendix B, Fig. 8. In order to check
how weak (VGB = 0.05 eV) and strong (VGB = 0.2 eV)
glide symmetry breaking affects the edge states in our
system, we studied the band structure of zigzag and arm-
chair type of ribbons. For weak glide symmetry breaking
we observe an overall decrease of the bandgap between
bulk bands and splitting of topologically protected edge
states in both zigzag and armchair nanoribbons (see Ap-
pendix B for Fig. 9). When glide symmetry breaking
perturbation becomes strong, in-gap edge states are still
present, however they do not connect valence and con-
duction bulk nanoribbon bands, pointing towards their
trivial origin. We have studied their robustness to disor-
der in Section IV, confirming that they are not protected
against backscattering. We also would like to point out
that glide symmetry allows for large direct gaps addition-
ally protecting edge states, as already discussed in detail
in Ref. [75]. This level of protection by direct gap is
studied e.g. in comparison between zigzag and armchair-
type ribbons robustness to disorder, presented in Section
IV.

III. LOCAL DENSITY OF STATES NEAR THE
EDGE

The energetic position of 1D Dirac cones greatly influ-
ences the local density of states in both clean and disor-
dered systems. Penetration depths are calculated using
ribbon wavefunctions and local density of states (LDOS),
given by

A(~r,E) = −(1/π)Im
∑
α

Gr(~r, α,E), (3)

computed from the retarded Green’s function Gr(~r, α,E)
for both clean and disordered cases. Summation over
α is performed over the spin, orbital, and atoms inside
the block, as described in Appendix A and Appendix
D. The disorder effects are introduced using Anderson
model with disorder strength W defining on each atom
the random potential chosen from uniform distribution
[−W/2,W/2].

Fig. 2 presents the evolution of the local density of
states as a function of the energy E, the distance from
one of the edges (x/y) and the disorder strength W .

We find that due to the different positions of the Dirac
cones and localization properties of the bulk states in
two types of ribbons, the LDOS maps can clearly dis-
tinguish in the experimentally accessible energy window
(∆E = 0.3 eV) between the zigzag and the armchair type
of edge. This is also true for heavily disordered samples
(e.g. value W = 1.5 eV on the right panels of Fig. 2),
especially when the energy is tuned into the conduction
band. These results are consistent with a recent experi-
ment reported in Ref. [53], suggesting armchair type of
the edge there. We note that in our simulation we aver-
age over disorder realizations and many “scans” of edge
over different places on the sample to extract universal
features of LDOS. More details of our averaging proce-
dure and further studies of evolution of those maps as a
function of disorder are discussed in Appendix D.

IV. TRANSPORT IN DISORDERED SYSTEMS

Transport properties are calculated using standard
Landauer-Büttiker formalism [100, 101] where the two-

terminal conductance G = e2

h T is written in terms of the
transmission coefficient

T = Tr
[
ΓLG

r
1,NΓR(Gr1,N )†

]
, (4)

which is obtained using recursive Green’s function
scheme [102–104] (see Appendix E for more technical de-
tails). This method allows us to simulate edge length
∼ 1000 nm, beyond previously-studied relatively short
edge lengths [83]. The effects of disorder are included as
a random on-site potential discussed above in Sec. III, as
pioneered in studies of QSHE in quantum wells [105, 106].
Unless stated otherwise, averaging over 103 disorder real-
izations is performed (the results in Fig. 3a were averaged
up to 105 realizations).

We begin a discussion of transport by comparing clean
and disordered relatively short ribbons. The results
of two-terminal conductance as a function of disorder
strength W for the Fermi energy exactly in the middle
of the bulk band gap, EF = 0.0825 eV, are analyzed
in Fig. 3(a). As expected, strong enough disorder will
lower the conductance, localizing the edge states. We
note however a drastic difference between armchair and
zigzag edge terminations. For the same scattering re-
gion size (20 × 20 nm2) the conductance remains more
robustly quantized to G = 2 e2/h for the zigzag type rib-
bon. This behavior can be rationalized by analysing how
edge states localize on the A/B sublattices of WTe2 [98],
in relation to glide symmetry. In case of zigzag edge dis-
order first has to induce A-B sublattice mixing on given
edge and only then increasing disorder can on average
induce penetration depth increase. This is in contrast to
armchair termination, where even in a clean case the sub-
lattices are already mixed, contributing to a less robust
edge state.

We also note that due to the anomalously small pen-
etration depths of the edge states in WTe2, the quan-
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FIG. 2. The energy-position resolved local density of states near one edge of the ribbon. Top panels are for zigzag and bottom
panels are for armchair type ribbon, respectively. The left panel shows a zoom into the dispersion of edge states in a clean
system. The vertical axis of the LDOS maps (middle and right panels) begins at the edge of the system: y = 0 for zigzag,
x = 0 for armchair, with coordinates consistent with those in Fig 1 (b-c). The middle panel presents LDOS for a clean system
(W = 0.0 eV). The solid black line represents edge state penetration depth calculated using wavefunctions for the clean systems.
The right panel shows the corresponding maps for the disordered case (W = 1.5 eV). Note that the color scale encoding LDOS
is logarithmic and changes between clean and disordered maps.

tized conductance G = 2 e2/h survives up to much larger
values of the disorder strength W as compared to the
HgTe quantum well (QW). In Fig. 3(a) the blue line
shows G(W ) dependence for HgTe QW in the topolog-
ical regime [2] (well width d = 70 Å, Dirac mass pa-
rameter M = −0.010 meV). The size of the scattering
region is chosen in this case to be 500 × 500 nm. We
note that in principle we should compare systems with
the same size, however we were not yet able to perform
a 500 × 500 nm WTe2 calculation because it is too large
for atomistic calculation. On the other side, in the HgTe
system smaller than 500 × 500 nm, the edge states be-
come gapped due to size quantization, as discussed in
Ref. [107]. Since penetration depth of HgTe is approxi-
mately 50 nm and less than 2 nm in WTe2, the ratio of
width to penetration depth is similar in our comparison.
Although the precise value of W for which “Anderson lo-
calization” of the edge state begins to set in depends on
the size of the system, the edge state dispersion details

and the Fermi energy [108], in general we can observe
that for HgTe with the gap 0.020 eV the critical value of
W for which deviations from G = 2 e2/h are observed
is approximately Wcrit. = 0.2 eV, while for WTe2 (gap
0.165 eV) it is as high as Wcrit. = 1.0 eV.

Now we discuss the role of glide symmetry in robust-
ness of transport. As mentioned in Section II, glide sym-
metry protects topological gaps opened by spin-orbit cou-
pling away from high symmetry points and allows for
large direct gaps for 1D Dirac cones. Weak breaking of
glide symmetry should, therefore, change the robustness
of edge transport only by a small amount, since edge
states would still be topological and protected by a large
direct gap. We performed such a simulation for disor-
der strength W = 1.5 eV (see Fig. 13 in Appendix E)
and confirmed that for VGB = 0.05 eV Fermi energy de-
pendent conductance it is only slightly affected by such
perturbation, both for zigzag and armchair edge types.
On the other hand, for a large value of glide symmetry
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FIG. 3. Transport in disordered ribbons. (a) Two-terminal conductance G versus disorder strength W for zigzag (black squares)
and armchair (red squares) ribbons. The system size here is 20 x 20 nm2 and EF = 0.0825 eV. Contact configurations are
shown in Fig. 1. The blue curve shows the corresponding G(W ) characteristic for HgTe QW, as described in the text. (b)
Scaling of longitudinal resistance R = 1/G with increasing sample length up to 1µm for two values of disorder strength for
both types of ribbon edges. Note the logarithmic scale on the y-axis. (c-d) Evolution of resistance with respect to increasing
disorder strength W as a function of the Fermi energy tuned between the valence and the conduction bands for (c) zigzag and
(d) armchair terminations.

breaking perturbation VGB = 0.5 eV, we observe that in-
gap states (shown in Fig. 9) are no longer topologically
protected and conductance is strongly suppressed.

Next, we address the transition from short to long
channel behavior in WTe2 samples, in analogy to the
experiment reported in Ref. [54]. In Fig. 3 (b) we show
that the edge resistance R = 1/G grows approximately
exponentially with the edge length, signifying Anderson
localization. This transition is analogous to the Ander-
son transition of QSH states coupling two edge states by
a sufficiently strong disorder in sufficiently long devices.
A detailed study of G(W,Ly) is shown in Appendix F.
By studying ribbons with 20 nm width and lengths up
to 1000 nm we show in Fig. 3 (b) that in general re-
sistance of long armchair samples should be much larger
than zigzag samples, with differences increasing for more
disordered samples. Focusing on two cases of disorder
W = 1.0 eV andW = 1.5 eV we predict that the response

of two types of edge should be clearly distinguishable, at
least in a device of 20 nm width (realistic ones are much
wider > 1000 nm, however those system sizes are cur-
rently not reachable using the atomistic approach). Next,
we extract the localization lengths of the edge states de-
fined as G(L) = G0 exp(−L/ξ). For W = 1.5 eV in
the zigzag and armchair we obtain ξ ≈ 750 ± 10 nm
and ξ ≈ 150 ± 10 nm, respectively. For smaller value of
disorder one can expect large enhancement of those val-
ues, which, for example, for W = 1.0 eV are for zigzag
ξ ≈ 15200± 200 nm and for armchair ξ ≈ 1380± 20 nm.
We note that our initial scaling results suggest that in
much wider ribbons (Ly → 1000 nm width) it is still pos-
sible to localize edge states via edge-edge coupling with-
out a significant increase in the disorder strength value
W . We leave this interesting topic for a future study.

In realistic experiments, the disordered sample should
be described by one average disorder strength parameter
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FIG. 4. Temperature dependence of conductance for clean
and disordered samples. Different colors of G(T,W ) for
zigzag (a) and armchair (b) denote different values of disorder
strength.

W . In Fig. 3 (c-d) we show general trends for resistance
vs EF when the disorder strength is increased. For longi-
tudinal resistance R one can distinguish between zigzag
and armchair edge response in experiment in which Fermi
energy is tuned by the top gate. Notably, in both cases
for the Fermi energy in the middle of the gap R ≈ 0.5
h/e2 up to W ≈ 1 eV. However, when EF is tuned away,
the armchair edge signal exhibits resistance peaks (close
to the band edges) and a comparably larger asymmetry
between the bulk valence and the conduction band re-
sponse compared to zigzag ribbon orientation. We con-
clude that two sets of perpendicular contacts (shown in
Fig. 1 (b-c)) should in principle be able to discriminate
between edge types for a realistic small sample of WTe2.
We note that the relation between Fermi energy in Fig. 2
and gate voltage in experiment [52] is difficult to estimate
and in general might be strongly sample-dependent.

V. TEMPERATURE DEPENDENCE OF
CONDUCTANCE ON A DISORDERED EDGE

We now consider a disordered quantum spin Hall edge
in the presence of a non-zero temperature. The effect of
increased resistance (decreased conductance) close to the
band edges (see Fig. 3) is important in understanding
the temperature stability of the approximately quantized
conductance. In our simulation of free electrons, temper-
ature will broaden the distribution of occupied electron
states. To model this, we calculate for both clean and dis-
ordered 20 × 20 nm2 system the temperature-dependent
conductance, given by the integral,

G(T ) =
e2

4hkBT

∫ +∞

−∞
T (E) cosh−2

(
E − EF
2kBT

)
dE, (5)

using 0.001 eV energy E discretization and again setting
the Fermi level to middle of the bulk gap, EF = 0.0825
eV. The dependence of the integration kernel on energy
and disorder is studied in Appendix G. In more intuitive
terms, the broadening of the electron states as a function
of the energy couples the edge states with the bulk states,
therefore increasing the conductance. We also note that
the role of bulk states becomes more pronounced in wider
samples, since the number of bulk states near the band
edge increases with the width of the nanoribbon. We
conclude that due to the reduced conductance of the
bulk states close to the edge of the band, the temper-
ature stability of G = 2 e2/h conductance quantization
is enhanced in realistic samples with moderate disorder,
as shown e.g. for the response of G(T ) in Fig. 4 for
W = 0.5 eV compared to W = 0. When the disorder
strength is further increased, the zero-temperature con-
ductance is no longer quantized but falls below 2 e2/h
and the minimum conductance moves to a non-zero tem-
perature, see the largest values of W in Fig. 4. Interest-
ingly, the density of bulk states near the band edge can
be also reduced by nanostructuring, i.e. by decreasing
the width of the ribbon. Scaling of G(T ) with respect
to ribbon width (and increasing number of bulk states)
in clean systems is shown in Appendix G, Fig. 16. Lin-
ear extrapolation of our results for large ribbon widths
leads to close match with recently measured values [54],
suggesting low to moderate level of disorder in those ex-
periments.

VI. HELICAL 1D LIQUID PROPERTIES

In the last part we discuss the role of strong electron-
electron interactions. Because of the strong 1D local-
ization, one may expect effects related to the helical
Tomonaga-Luttinger liquid (TLL). It is well established
that in two-dimensional semiconductors Coulomb inter-
actions screening is reduced as compared to 3D. This
may lead to strong electron-electron interactions in quasi-
1D channels in such systems, as recently reviewed in
Ref. [109]. In TLL theory, the short-range interaction
strength is characterized by the dimensionless parame-
ter K which equals 1 in the absence of interactions while
K < 1 for repulsive interactions. Although in general it
is difficult to predict the value of K theoretically [110],
several attempts are available in literature [37, 111, 112].
Following Ref. [11] we estimated a value of K for edge
states in both zigzag and armchair ribbons by using the
formula

K =

[
1− e2

π2~vF ε0 (εr + 1)
×

ln

(
e−

1
2 2−εr

w

L
+ e1−γ2−1λpen.

L

)]− 1
2

,

(6)

where for hBN encapsulated WTe2 the relative static di-
electric constant of hBN is εr = 4.5. The effective thick-
ness of the system is taken as w = 0.7 · 10−9 m. The
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FIG. 5. Luttinger liquid parameter K estimation in ribbons.
Top panels correspond to zigzag termination and bottom ones
to armchair. From left to right: EF vs kF dispersion, corre-
sponding Fermi velocity vF , penetration depth λpen. and K
parameter is presented for different Fermi energies EF on the
y-axis. Two different lengths of channels used for K estima-
tion are given by red and blue curves on the rightmost panels.
Blue crosses represent K estimation using microscopic ribbon
wave functions, as described in the text.

Fermi velocity vF and the edge state penetration depth
λpen. both depend on the Fermi energy. They are calcu-
lated in Appendix C and shown in Fig. 5. We compare
two lengths of the channel, L = 10−8 m and L = 10−6

m, and plot the Fermi energy dependent K for the zigzag
and armchair in-gap edge states in the rightmost panels
of Fig. 5. Contrary to usual case [41], K varies strongly
as a function of Fermi energy, stemming from the energy
dependent Dirac velocity and penetration depth of the
edge states. For zigzag termination monotonic decrease
of K (0.6 → 0.3) with increasing EF is predicted, while
for armchair maximal value of K ≈ 0.2 is obtained in the
middle of bulk band gap and decreases slightly when EF
is tuned towards either band edge.

We confirm the trends obtained from Eq. (6) by calcu-
lating K using microscopic ribbon wavefunctions, follow-
ing K estimation in nanowires and nanotubes [113, 114],
where effective 1D channel radius is introduced. When
radius is chosen to reproduce one value ofK in the middle
of bulk band gap, the trends predicted by Eq. 6 are nicely
reproduced, as shown by blue crosses in Fig. 5. Further
details of this method are presented in Appendix H.

Our prediction of values ofK (which can beK < 3/8 in
both types of edge termination) suggests that when dis-
order is present, insulating behavior may be expected due

to Anderson localization of the edge state [115]. Because
in armchair K < 1/4 one may expect that even a sin-
gle magnetic impurity will destabilize the edge state [41].
These effects should be observable in transport exper-
iments as interaction-induced localization of the edge
state. However, we note that when different dielectric
environment is used we expect that K may increase due
to additional screening of electron-electron interactions.
Observation of edge state transport together with zero-
bias anomaly and characteristic scaling [11] of DOS near
Fermi level would support the scenario of a delocalized
TLL in WTe2.

Interestingly, non-linear contribution to edge disper-
sion, complicating significantly the Luttinger liquid pic-
ture [116], should in principle be taken into account in
both edge terminations (see Fig. 5), at least for well-
defined, perfectly clean edges. Moreover, as expected
from the Fermi energy dependence of the Luttinger pa-
rameter K, the microscopic two-particle interaction am-
plitudes’ dependence on the Fermi energy and momen-
tum transfer has to be accounted for in realistic studies
of edge physics [117]. Further studies combining Fermi
energy dependence of the velocity and interaction param-
eters together with disorder and temperature effects are
necessary to establish phase diagram and response func-
tions in such realistic 1D quantum liquid [37, 116, 118].

Note added: During the preparation of this
manuscript, we became aware of the experimental results
of the group of B. Weber [119] that confirm different K
parameters for different edges of WTe2 and support sce-
nario of strong interactions (K < 0.5) in the studied
system. We note also that data and codes used in this
work are available upon reasonable request.

VII. CONCLUSIONS

We have analyzed the response of disordered WTe2

ribbons with a focus on possible experimental differences
due to two types of edge terminations. Our study sug-
gests that careful sample preparation with respect to edge
termination can serve as an additional tuning knob to
optimize properties of quantum spin Hall edge states in
WTe2 and related compounds. We have theoretically
rationalized that even for heavily disordered samples,
WTe2 states are identifiable in STM and transport mea-
surements, due to their short penetration depth into the
bulk. From the modelling of several types of observables
such as edge state tunneling spectra, gate tunable lon-
gitudinal resistance, length dependence of channel resis-
tance, and temperature dependence of conductance, we
conclude that the edge termination crucially determines
the robustness of topological protection (with zigzag edge
termination being more robust) and also impacts a pos-
sible helical Luttinger liquid description of the QSH edge
modes.
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FIG. 6. Atom arrangement in 1T’ unit cell of the WTe2 mono-
layer for (a) xy, (b) xz, and (c) yz projections. (d) Latice of
atoms in a W-terminated ”zigzag” ribbon; the gray region
shows one ”stripe” of the ribbon. (e) Corresponding arrange-
ment of atoms and stripes in a ”armchair”-type ribbon. The
red and blue arrows on (d-e) denote counterpropagating quan-
tum spin Hall states along the edges.
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APPENDIX A: DETAILS OF GEOMETRY

Now we elaborate further on the geometric properties
of WTe2. Six relevant atom positions inside the unit cell
of W2Te4 are given in Table I. The z=0 plane chosen be-
tween W atoms. In Fig. 6 (a-c) we show three projections
of those atoms inside the unit cell.

We stress that in effective tight-binding theory only
four orbitals are used. Ribbons dubbed ”zigzag” have
W-W or Te-Te chains along the edge, analogous to A-A
or B-B carbon chains in graphene ribbons. The ”arm-

TABLE I. Positions of atoms inside the unit cell.
x (Å) y(Å) z(Å)

W1 1.754 4.447 -1.479
W2 0.000 5.376 1.479
Te1 1.754 0.633 -0.102
Te2 0.000 2.878 0.102
Te3 1.754 2.267 2.105
Te4 0.000 1.244 -2.105

FIG. 7. Band structure of bulk and nanoribbons. (a) Band
structure near the Fermi level of WTe2 obtained from a tight-
binding Hamiltonian. (b) Joint energy-resolved density of
states in a periodic system (without edge states). Band struc-
tures of (c) zigzag and (d) armchair ribbons. The color bar on
(c-d) describes where along dimension perpendicular to peri-
odicity (from one edge to the other) the wavefunction density
is localized (green - bulk states, red/blue = edge states on
opposite edges).

chair” edges are effectively W-Te chains, analogous to
A-B chains in graphene armchair ribbons. Their con-
struction is shown in Fig. 6 (d) for zigzag and (e) for
armchair. We opt for choosing ”uniform” basic build-
ing ”block” for both consisting of eight atoms. For the
clean, translationally invariant case, the zigzag ribbon is
chosen to be periodic along the x direction with period-
icity 2a1, while the armchair ribbon is periodic along the
y direction with periodicity a2.

APPENDIX B: TIGHT-BINDING MODEL,
RIBBON ELECTRONIC STRUCTURE AND

GLIDE SYMMETRY BREAKING

Now we discuss further details of the tight-binding
model. We recall the low-energy effective Wannier or-
bital model derived in Refs. [75 and 98] takes into ac-
count only 4 orbitals, two dx2−y2 localized on W1 and
W2 atoms and two px localized on atoms Te1 and Te2,
see Fig. 6 (a-c). Non-zero matrix elements of the 2D
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FIG. 8. Evolution of the band structure with spin-orbit cou-
pling along X − Γ −M line for different values of the glide
symmetry breaking perturbation VGB . Closure of the gap for
VGB = 0.1 eV signals the topological phase transition from
the Z2 = 1 to the Z2 = 0 insulator.

system Hamiltonian Ĥ0(~k) given by Eq. (1) are

HA
d = HB

d = Ed + 2td cos(kxa) + 2t
′

d cos(2kxa),

HA
p = HB

p = Ep + 2tp cos(kxa) + 2t
′

p cos(2kxa),

HAB
dd = tABd exp(i~k · ~RW−W )(1 + exp(−ikxa)) exp(−ikyb),

HAB
dp = tABd−p exp(i~k · ~RW−Te)(1− exp(−ikxa)),

HAB
pd = −tABd−p exp(i~k · ~RW−Te(1− exp(−ikxa))),

HAB
pp = tABp exp(i~k · ~RTe−Te)(1 + exp(−ikxa)).

(7)

The vectors defining atoms inside the unit cell are
~RW−W = (1.750, 4.081) Å, ~RW−Te = (1.750, 1.588) Å,
~RTe−Te = (1.750,−0.905) Å. The parameters (in eV)
of this model are Ed = 1.3265, Ep = − 0.4935,

td = −0.2800, t
′

d = 0.0750, tp = 0.9300, t
′

p = 0.0750,

tABd = 0.5200, tABp = 0.4000, tABd−p = 1.0200,
VSOC = 0.1150. Note that we did not include Rashba
SOC in this work. The bandstructure of the Hamiltonian
Ĥtot. along the high-symmetry X−Γ−M line is plotted
in Fig. 7 (a). We checked that in the system without
edges (periodic 2D system) there are no in-gap states, as
shown by density of states in Fig. 7 (b).

The band structures of the quasi-1D ribbon (width 200
Å) for the zigzag and armchair are given in Fig. 7 (c)
and (d), respectively. The color bar denotes the position
of the center of density |ψ|2 for a given (k1d, E) point.
Bulk states are in green and states localized on opposite
edges are in red/blue.

Now let us discuss glide symmetry breaking. In Fig.
8 we present evolution of the band structure with spin
orbit coupling parameter VSOC = 0.115 eV and increas-
ing glide symmetry breaking perturbation VGB (see Eq.
2 for definition). Up to VGB = 0.1 eV one can observe
on the X − Γ line gap closing, and then for larger VGB

FIG. 9. Zigzag (top panels) and armchair (bottom panels)-
type nanoribbons for two values of glide symmetry breaking
perturbation strength: VGB = 0.05 eV (left) and VGB = 0.2
eV (right). The color bar denotes the localization of ribbon
eigenstates, with the red one representing edge states and the
blue one representing bulk nanoribbon states.

gap re-opening process. In Fig. 9 we study zigzag and
armchair type nanoribbons for VGB before and after gap
closing. For weak glide symmetry breaking (VGB = 0.05
eV) in both cases we see Dirac cone splitting. For strong
glide symmetry breaking (VGB = 0.2 eV) one can ob-
serve that edge states no longer connect the valence and
conduction bulk bands. This suggests that they are no
longer topologically protected, as confirmed by transport
studies.

APPENDIX C: LOCALIZATION OF EDGE
STATES IN CLEAN SYSTEM

In the next step, the quantum spin Hall edge states
shown in Fig. 10 (a-b, top panels) are studied. We
first specify states of interest as: 1) non-overlapping
with ribbon bulk states; 2) non-overlapping with them-
selves. Second situation occurs in zigzag ribbon close to
bulk conduction band and kx ≈ −0.15 Å−1. The ra-
tionale behind such a choice is that we want to address
the most straightforward situation when edge states are
well protected in the topological sense and it is possi-
ble to compare numerically obtained penetration depths
with theoretical model estimation. First, we calculate
the depths λpen. of the states in the ribbon defined for
zigzag as |Ψ|2 = A0 exp (−y/λpen.) and for the armchair
as |Ψ|2 = A0 exp (−x/λpen.). Before straightforward fit-
ting of those functions to the numerical density of wave-
functions, we sum over eight-atom blocks as described
in Appendix A, assuming total density at the center of
the ”block”. We do this to avoid rapid atom to atom
oscillation of density inside these ”blocks”. The pene-
tration depth λpen values obtained using this procedure
are shown in the bottom panels of Fig. 10. They are
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FIG. 10. Localization properties of edge states. Red circles
in top panels of (a) and (b) represent choice of purely in-gap,
non-overlapping edge states. The lower panels show the corre-
sponding numerically obtained penetration depths compared
with different models λpen. for (a) zigzag and (b) armchair
ribbons.

fully consistent with the results of Ref. [75]. Analyzing
this result further, we note that these depths are related
to the direct gap between the ribbon bulk states at a
given 1D wavevector k. However, our attempt to the
model penetration depth as λpen. ∼ (dE/dk)/∆(k), us-
ing different choices of gaps does not yield satisfactory
quantitative values in the full k-space region of interest.
We checked simplified model of λpen. depending on the
following gaps: ∆0 - global indirect bandgap; ∆(k) - di-
rect gap at given k between bulk conduction and valence
band; ∆

′
(k) - direct gap from edge state to bulk conduc-

tion band; ∆
′′
(k) - similar to former one but from valence

band to edge state. This is in contrast to the BHZ model
for HgTe QW in which penetration depth could be easily
described using state velocity and the gap between bulk
states.

APPENDIX D: LOCAL DENSITY OF EDGE
STATES

FIG. 11. Energy - position LDOS maps for two different val-
ues of disorder, (a) W = 0.5 eV and (b) W = 1.0 eV. From
left to right the panels show the corresponding bandstruc-
ture of the zigzag ribbon, the energy-position resolved LDOS
map for the zigzag, then the armchair bandstructure and the
LDOS map for the armchair. The LDOS scale is given by
a pair of (Cmin, Cmax), (Cmin = 0, Cmax = 4) for (a) and
(Cmin = 0.5, Cmax = 3.0) for (b).

The ability to obtain retarded Green’s function
Gr of our 20 nm x 20 nm scattering region allows
us to study the local density of states A(i, E) =
−(1/π)Im

∑
αG

r(i, i, α, E) where i denotes respective
eight-site ”block” of ribbon. For both zigzag and arm-
chair cases we use Gr ”collapsed” on eight - atom
”blocks” to avoid the complicated sub-structure when
atom-projection is considered. Summation over α is
over the spin, orbital, and atoms inside the ”block”.
When Anderson disorder is present, we first average over
103 disorder realizations and subsequently over different
stripes of the ribbons, which corresponds to the exper-
iment in which edge LDOS is summed over many lines
scanned perpendicular to the sample edge. We motivate
this procedure by interest in general features of LDOS
in position-energy maps, e.g., the role of the Dirac cone
energy described below.
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FIG. 12. Comparison of conductance G in zigzag (black) and
armchair (red) ribbons for the clean (solid line) and disordered
(W = 1.5 eV, rectangles) case. The left panels show the
corresponding band structure of clean ribbons.

In Fig. 11 we compare energy-position LDOS maps
for two different values of disorder strength W for both
zigzag and armchair ribbons. The corresponding band
structure of clean ribbons is shown. On the x-axis we
show a zoom to one edge of the ribbon (0-4 nm) which
still has width 20 nm; therefore most of the density of
bulk ribbon states, especially in CB, is localized near
center of the map (x = 10 nm) and not visible in our
plots. We stress that each map has a different color scale.
This is because disorder broadening of LDOS introduces
a ”background” signal which can be subtracted for clar-
ity. The first striking observation is that when disor-
der is included, edge states become much more visible in
LDOS. The second intriguing feature is the behavior of
LDOS in the bulk conduction band. For zigzag, because
the edge state forming Dirac cone inside the CB there
is overlap of edge and bulk states, resulting in a strong
signal from the edge. This feature is not present in the
armchair due to the significantly different position of the
1D Dirac cone, which overlaps with the valence band.
Interestingly, this effect survives even in strongly disor-
dered samples (W = 1.5 eV, shown in the main text) and
disappears only for values of W > 2.0 eV.

APPENDIX E: CONDUCTANCE AS A
FUNCTION OF THE FERMI ENERGY

Next, we study the Fermi energy dependence of the
conductance G. First, we calculate G in clean samples.
The Landauer formula for the differential conductance is
given by G = e2

h T , where T is a transmission coefficient
between left and right contacts, calculated using the re-
cursive Green’s functions method. Remembering that we
divided our scattering region to ”slices” (shown as grey
regions in Fig. 6) enumerated from 1 to N , recursion
in this case is efficient due to the fact that only (1, N)

part of total Green’s function of the system is needed.
The inversion of the full matrix can be avoided and
only inversions of ”slices” are necessary. The coupling
between the slices is performed using the Dyson equa-
tion. Transmission T is calculated from Caroli formula
T = Tr

[
ΓLG

r
1,NΓR(Gr1,N )†

]
, where Gr1,N is a matrix rep-

resenting the retarded Green’s function between the first
and the N-th slice. ΓL(R) is defined as a difference of

semi-infinite lead self-energies (ΓL(R) = ΣL(R) − Σ†L(R)).

Electron self-energies are calculated using the Sancho-
Rubio iterative algorithm. Those calculations are per-
formed for the non-interacting case and at temperature
T = 0 K. Semi-infinite leads, attached to the edges of the
system, are considered to be made from the same mate-
rial as the studied system to avoid the contact resistance
effect. Disorder can be introduced only in the scattering
region.

Then, for the Fermi energy window 0.001 eV we cal-
culate average over 103 disorder realizations for W =
1.5 eV, producing the G(E) that is plotted in Fig. 12
and used in subsequent finite-temperature calculations
in Sec. VII. Already from the G(E) function we can ob-
serve that when the Fermi level is exactly in the middle
of the bulk gap, the QSH edge state is protected even in
the presence of strong disorder. However, when we tune
away from such Fermi level, G is no longer quantized to
2 e2/h. The deviation from this exact quantization is
more apparent for the armchair ribbon. In both cases,
the deviation is larger when EF is closer to the bulk edge.
Then, when the bulk states began to contribute to the
conductance G begins to increase. These two effects re-
sult in the appearance of drops in G, which, however, are
suspected to become smaller in wider samples, as can be
deduced from the analysis in Ref. [105]. These drops are
directly responsible for the appearance of ”cusps” in R
shown in Fig. 2 (b) in the main text.

In the next step we check also the role of glide sym-
metry breaking perturbation on conductance in presence
of strong disorder. Focusing on strong disorder W = 1.5
eV, we checked that when glide symmetry is weakly bro-
ken transport G ≈ 2.0 e2/h via QSH edge states is still
protected against backscattering, compare lines VGB = 0
and 0.05 eV in Fig. 13 (a-b) for zigzag and armchair,
respectively. On the other hand, when glide symmetry
is strongly broken (VGB = 0.2 eV) both zigzag and arm-
chair in-gap states become non-conducting, pointing to-
wards their localization by disorder and trivial origin.

APPENDIX F: SCALING IN DISORDERED
SAMPLES

Now we explain the rationale behind the short-to-long
channel transition, as shown in Fig. 4 in the main text.
Assuming system width to be constant (20 nm), we study
the conductance dependence on the disorder strength
G(W ) as a function of the system length, changing it
from 20 nm to 1000 nm. We note that this is in con-
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FIG. 13. Role of glide symmetry breaking perturbation on
conductance. (a) Fermi energy dependence of G in 20x20 nm
system with zigzag edge for 3 values of VGB : 0, 0.05 eV (weak
glide symmetry breaking) and 0.2 eV (strong glide symmetry
breaking). (b) Corresponding analysis for the armchair type
of edge. For all curves the disorder strength is set to W = 1.5
eV.

FIG. 14. Scaling of G(W ) curves as a function of the length
of the samples (20 - 1000 nm, constant width = 20 nm) for
(a) zigzag and (b) armchair type of the edge. The vertical cut
for some disorder strength W gives values of G for different
lengths used to calculate longitudinal resistance in Fig. 3 (b)
in the main text.

trast to the experimental setup in Ref. [54] in which the
system width is greater than 1000 nm (and lengths vary
between 50 and 1000 nm). In our calculations, presented
in Fig. 14, we first note the general behavior that above
some ”critical” value of disorder strength (here ≈ 0.5 eV)
we observe decrease of conductance for longer samples.
This result can be understood semiclassically as an edge
state that has more and more possibilities to percolate to
the other side of the sample and backscatter into counter-
propagating edge state with the same spin. This drop in
conductance means that the longitudinal resistance will

grow with increasing length. Interestingly, due to the dif-
ferent robustness of transport for two types of ribbon ter-
mination, in the heavily disordered case (W = 1.5 eV) it
should be possible to distinguish between zigzag and arm-
chair edge for terminal geometry proposed in Fig. 2 in
which short-to-long channel transition can be measured.
We note that precise estimation of disorder strength in
realistic samples is rather difficult, because the ”critical”
value of W for which short and long channel behavior
can be distinguished depends significantly on the width
of the sample. In wider samples we expect increase of
the value of W for which G begins to deviate from G = 2
e2/h. Also, the function G(W ) becomes more steeply
vanishing. Precise scaling studies of this effect require
rather massive computational effort and are a subject of
a future work.

APPENDIX G: TEMPERATURE EFFECT

In the next part, we focus on temperature dependence
of conductance G(T ). We include the temperature using
the standard [101] thermal broadening function

G(T ) =
e2

h

∫
T (E)FT (E − EF )dE , (8)

where

FT (E) =− ∂

∂E

(
1

exp(E/kBT ) + 1

)
=

1

4kBT
cosh−2

(
E

2kBT

) , (9)

and the transmission T (E) is averaged over 103 disor-
der realizations for each energy E. The integral is cal-
culated numerically in 0.6 eV window around center of
bulk gap with 0.001 eV discretization. In Fig. 15 we
compare the averaged transmission with the kernel of
the above integral when the Fermi energy EF is set in
the middle of the gap. The left and right panels corre-
spond to zigzag (a,c) and armchair (b,d), while the top
(a,b) and bottom (c,d) correspond to clean and disor-
dered systems, respectively. In each panel, we compare
the function f (E ) = T (E )FT (E − EF ) for two temper-
atures, T = 150 K (blue symbols) and T = 300 K (red
symbols). Immediately one can note that for tempera-
ture 150 K the coupling of thermally broadened function
to bulk ribbon states is small. On the other hand, such
coupling (red points on top panels) becomes significant at
300 K, which is an especially strong effect in a clean sam-
ple. This is related to the large change in conductance
when bulk states in a clean ribbon begin to contribute.
In the disordered case bulk states become localized and
their overall conductance sharply decrease. As a result,
the effect of thermal broadening is visibly smaller. This
explains why, paradoxically, when moderate disorder is
present the quantized plateau G = 2 e2/h is more robust
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FIG. 15. Transmission T (black solid lines) of a clean sample at T=0 K and f (E) function describing thermal broadening
in (a) clean zigzag, (b) clean armchair, (c) disordered zigzag, and (d) disordered armchair cases. In all cases we compare the
broadening for two temperatures: T=150 K (rectangles) and T=300 K (circles).

against finite temperature. In intuitive terms this is sim-
ply by suppression of the conductance of the bulk states
to which the edge states are thermally coupled.

As described above, one can expect that the density
of the states of the bulk bands will determine the tem-
perature response of the edge state. Due to the com-
putationally demanding nature of the problem we were
able to calculate the temperature dependence of G(T )
only for wider ribbons in the clean ( translationally in-
variant) case, in which we do not need to average over
disorder realizations. As expected, the number of bulk
states in both CB and VB becomes larger for wider rib-
bons. After calculating G(T ) curves (see Fig. 16) for
system widths 20, 40, 80 and 160 nm we extrapolate this
data, which seems to be well described by a linear rela-
tion. Extrapolating to the sizes investigated experimen-
tally (≈ 1000 nm), we observe a good match, compare
circles and dottes lines in Fig. 16. On the other hand,
we cannot claim that this theory can distinguish between
zigzag and armchair ribbon temperature response. This
is due to only approximate nature of linear scaling with
system size and lack of comparison of this scaling with
disordered samples.

APPENDIX H: ON TOMONOGA-LUTTINGER
LIQUID THEORY IN WTE2

The TLL Hamiltonian for 1D helical edge states has
to take into account the energy dependence of both the
velocity and the coupling constants. For a single edge
the Hamiltonian is given by,

Ĥ =
∑

k∈(−kF−k0,−kF+k0)

~vF (kF )(k + kF )ĉ†k,R↑ĉk,R↑

+
∑

k∈(kF−k0,kF+k0)

~vF (kF )(−k + kF )ĉ†k,L↓ĉk,L↓

+
∑
k1k2p

λ2(k1, k2, p)ĉ
†
k1,L↓ĉ

†
k2,R↑ĉ(k2+p)R↑ĉ(k1−p)L↓

+
∑
k1k2p

λ4(k1, k2, p)

2

(
ĉ†k1,L↓ĉ

†
k2,L↓ĉ(k2+p)L↓ĉ(k1−p)L↓

+ ĉ†k1,R↑ĉ
†
k2,R↑ĉ(k2+p)R↑ĉ(k1−p)R↑

)
,

(10)

where, for example, ĉk,R↑ is fermion annihilation opera-
tor for right mover with spin up. The forward scattering
interaction coupling strength is given by λ2 ( g2⊥ in the
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FIG. 16. Conductance dependence on temperature in the
range 10-300 K for (a) zigzag and (b) armchair ribbons with
different widths (20-160 nm). The dotted line shows our linear
interpolation to the system width equal to 1000 nm. The open
circles on both graphs are experimental values extracted from
Ref. [54].

standard ’g-ology’ notation [120]). The chiral interac-
tion is parametrized by λ4 (g4‖). The energy E0 and the
momentum cut-off k0 determine the applicability of the
Hamiltonian in Eq. (10). These values correspond to en-
ergy and momentum windows for which edge states are
non-overlapping with each other and with bulk ribbon
states. Such edge states are denoted by red circles in Fig.
10 on ribbon bandstructure plots. We take 2E0 = 0.150
eV and 2k0 = 0.071 Å−1 for the zigzag edge. For arm-
chair those values are 2E0 = ∆0 and 2k0 = 0.358 Å−1.
As is well known [11], interactions renormalize the Fermi
velocity as

v∗F = vF

√(
1 +

λ4

2πvF

)2

−
(

λ2

2πvF

)2

, (11)

while the Luttinger liquid parameter is given as

K =

√
2πvF + λ4 − λ2

2πvF + λ4 + λ2
, (12)

where λ2 and λ4 are calculated for k1 = k2 = kF and
p = 0.

We note that we do not take into account umklapp
scattering (2-particle backscattering) which in the clean
case becomes imporant only for very specific filling at
kF = π/(2a), although for both zigzag and armchair it is
in principle possible for the in-gap state in both zigzag
(close to the valence band) and armchair (close to the
middle of the gap) terminations. Because uniform umk-
lapp scattering is relevant when K < 1/2, it might be
important for both terminations in long and ultra clean
samples. Then, one may expect a gap opening [41] of the

order of ∆ = λ
1/2−4K
u /a, where a is the ribbon period-

icity constant and λu (g3‖) parametrizes the strength of
the umklapp processes

Hum =
∑
k1k2p

λu(k1, k2, p)

2
×

(
ĉ†k1,L↓ĉ

†
k2,L↓ĉ(k2+p−2kF )R↑ĉ(k1−p−2kF )R↑

+ ĉ†k1,R↑ĉ
†
k2,R↑ĉ(k2+p+2kF )L↓ĉ(k1−p+2kF )L↓

)
.

(13)

Finally, we note that we have also ignored the 1-particle
backscattering interaction [46, 115] which in the clean
case becomes important only near the Dirac point.

Next, we discuss in more detail how the coupling con-
stant λ2, defined in Eq. (10), depends on Bloch wave-
functions of an infinite ribbon. The simplest matrix el-
ement, calculated for the Fermi wavevector kF and the
momentum transfer p, is given by

λ2 (k1 = +kF , k2 = −kF , p) =∫∫
R3

d3rd3r′V 3D (|~r − ~r′|) Ψ∗L↓ (kF , ~r) Ψ∗R↑ (−kF , ~r′)×

ΨR↑ (−kF + p, ~r′) ΨL↓ (kF − p, ~r) .
(14)

Ribbon wavefunctions in Bloch form can be written as

Ψn (k, ~r) =

1√
NUC

NUC∑
i=1

Ny∑
α=1

eik(Ui+τα)νnα(k)ϕα (~r − Ui − ~τα) .
(15)

In the equation above, k is a 1D wavevector, n describes a
left/right mover with spin up/down, NUC is the number
of unit cells (understood as stripes described in Appendix
A) that go formally to infinity and Ny is the number of
atoms in a given slice of ribbon. The two dimensional
vector ~τ describes the position of a given localized orbital
inside the unit cell. The tight-binding coefficients ν of the
ribbon wavefunction are obtained numerically. Localized
orbitals are denoted by ϕ(~r).

Next, conceptually following the procedure known
from exciton physics where interactions need to be calcu-
lated including microscopic wavefunctions [121], we per-
form 1D Fourier transform of 3D Coulomb interaction,
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expand pairs of Bloch wavefunctions for the same coordi-
nate in Fourier series and assume structureless delta-like
localized orbitals. Then we regularize the short-range
Coulomb interaction by introducing the effective channel
radius R of the Luttinger liquid. Long-range regulariza-
tion can be performed as in the jellium model by exclud-
ing G = 0 from the summation over 1D reciprocal lattice
vectors. The final expression for the coupling constant is

λ2 (k1 = +kF , k2 = −kF , p) ≈

e2

2πε0L

Ny∑
α=1

Ny∑
α′=1

ν∗L↓α (kF )νL↓α (kF − p)×

ν∗R↑α′ (−kF )νR↑α′ (−kF + p)eip(−τx,α+τx,α)×∑
G6=0

1

εr(G, p, τ, R)
×

K0

[
(−G+ p)

√
(τyα − τy′α′)2 + (τzα − τz′α′)2 +R2

]
,

(16)

where K0 are modified Bessel functions of the second
kind. The Luttinger K parameter is then calculated (us-
ing λ2 = λ4) as K = 1/(1 + λ2/(π~vF )). We note that
K calculated in this way depends on the effective 1D
channel ”radius” R, as shown in Fig. 17.

FIG. 17. Dependence of the K parameter on the channel
radius R and the length of the channel L for the zigzag edge.

To address the Fermi energy dependence of K in this
method we first choose the channel radius reproducing
value obtained from the model in Ref. [11]. For the
energy EF = 0.075 eV we obtain the radii R = 17.52
Å(zigzag) and R = 15.81 Å(armchair) for microscopic
and Ref. [11] models to match the values of K. As shown
in the rightmost panel of Fig. 5 (blue crosses), the micro-
scopic wavefunction method gives a similar dependence
of K in function of the Fermi energy.

It is also instructive to analyze the dependence of the
coupling constant λ2 on the Fermi wavevector kF . In Fig.
18 we plot λ2 that lead to K values shown in Fig. 5. The

FIG. 18. Coupling constant λ2 dependence on the Fermi
wavevector for two types of edge termination.

qualitative behaviour of the coupling constant depends
on the edge termination. For zigzag coupling strength
λ2 changes significantly across the momentum window
analyzed, trend that can be approximately captured by
the linear function λ2 = [122−472 ·kF (1/Å)] (eV·Å). For
the armchair edge, the change of the coupling constant
with the wavevector is significantly smaller and λ2 can
be considered as constant (32 eV·Å).

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

[3] J. Alicea, Reports on Progress in Physics 75, 076501
(2012).

[4] Y. Ren, Z. Qiao, and Q. Niu, Reports on Progress in
Physics 79, 066501 (2016).

[5] D. Culcer, A. C. Keser, Y. Li, and G. Tkachov, 2D Ma-
terials 7, 022007 (2020).

[6] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801
(2005).

[7] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802
(2005).

[8] Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, and Z. Fang, Phys.
Rev. B 75, 041401(R) (2007).

[9] G. Li, W. Hanke, E. M. Hankiewicz, F. Reis, J. Schäfer,
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