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Transition metal dichalcogenides (TMDs) are known to have a wide variety of magnetic structures by hosting
other transition metal atoms in the van der Waals gaps. To understand the chemical trend of the magnetic
properties of the intercalated TMDs, we perform a systematic first-principles study for 48 compounds with
different hosts, guests, and composition ratios. Starting with calculations based on spin density functional
theory, we derive classical spin models by applying the local force method to the ab initio Wannier-based tight-
binding model. We show that the calculated exchange couplings are overall consistent with the experiments, and
the chemical trend can be understood in terms of the occupation of the 3d-orbital in the intercalated transition
metal. The present results give us a useful guiding principle to predict the magnetic structure of compounds that
are yet to be synthesized.

I. INTRODUCTION

Transition metal dichalcogenides (TMDs) are two-
dimensional layered materials of the type TX2, where T is
a transition metal atom, and X is a chalcogen atom. They
offer a fascinating playground to study various physical
phenomena such as unconventional superconductivity, exotic
charge density waves, emerging spin, valley, and exciton
physics [1–4]. One of their characteristic features in bulk and
thin films with atomic-scale thickness is that they can serve
as an intercalation host. Namely, various guest elements can
be accommodated in the van der Waals (vdW) gaps between
each layer of TX2, changing the physical properties of the
system dramatically. In particular, when 3d transition metal
atoms (M ) are intercalated, a variety of magnetic states
such as helical spin states [5–10], half-metallic states [11],
noncollinear antiferromagnetic states [12, 13], anisotropic
in-plane ferromagnetic states [14, 15] emerges, for which
intriguing transport phenomena such as the anomalous Hall
effect [16–18] and crystalline Hall effect [19] have been
investigated intensively.

It is an interesting question whether such various magnetic
states and properties realized in the intercalated TMDs can
be reproduced from first principles and described/understood
in terms of a simple model. It is also a non-trivial challenge
to predict unknown magnetic properties for compounds that
are yet to be synthesized. For these problems, recently, sev-
eral ab initio studies have been performed. For example, a
calculation based on density functional theory (DFT) has suc-
cessfully shown that the most stable state in M1/3NbS2 where
M=(Fe, Co) has a noncoplanar magnetic structure for which
the topological Hall effect is expected to be observed [20]. For
M=(Cr, Mn, Fe), effective spin models were derived from first
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principles, and the origin of the characteristic helical magnetic
structure has been discussed [21]. However, the general chem-
ical trend of the host- and guest-dependence of the magnetic
property of the intercalated TMDs is yet to be fully under-
stood, and a systematic study for various host TX2 and guest
M with different composition ratios is highly desired.

To determine the most stable magnetic structure for a given
material, there are several established approaches. One is of
course a calculation based on spin DFT (SDFT), which usu-
ally works successfully for transition metal compounds [22].
However, this approach is numerically expensive and not so
efficient when the magnetic unit cell is large. Another promis-
ing approach is deriving a classical spin model from SDFT
calculation for a magnetic state (typically the ferromagnetic
state) for which the numerical cost is not so expensive. Once
a classical spin model is derived, we can determine the stable
magnetic structures even when the magnetic unit cell is large.

The local force method, equivalently called the Liechten-
stein formula [23], is often used to construct such effective
spin models. With this method, we can evaluate the exchange
interactions in the spin model by estimating the energy change
against spin rotations. This formula has been successfully ap-
plied to the calculations for the magnetic transition temper-
atures of transition metals [24], noncollinear magnets, and
magnetic alloys [25]. While it was originally formulated for
the multiple scattering theory with the Green’s functions and
implemented in SDFT calculations with the Korringa-Kohn-
Rostoker (KKR) theory, it is applicable to the tight-binding
model based on ab initio Wannier functions [26–28].

In this study, we first performed a systematic SDFT cal-
culation for MxTX2 where M = (V, Cr, Mn, Fe, Co, Ni),
T = (Nb, Ta), and X = (S, Se) with x = 1/3 and 1/4 (48
compounds in total). Starting with the calculations for the
representative ferromagnetic state of CrxTX2, we construct
classical spin models by applying the local force method to
the Wannier-based tight-binding model. We then determine
the most stable magnetic structure for each material by exam-
ining the sign of the exchange interactions. In this approach,
we discuss the possibility of the intra-layer AF states, which
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are numerically expensive to investigate by SDFT calculation.
We show that the theoretical results agree well with the mag-
netic orders experimentally reported. Moreover, we find that
a simple model can give a unified explanation for the material
dependence of the stable spin configuration in terms of the
filling of the 3d orbitals of the intercalated transition metals.
This observation gives us a useful guiding principle to predict
magnetic properties of intercalated TMDs which are yet to be
synthesized.

II. METHOD

A. Spin density functional theory

In our calculation scheme, the SDFT calculation is per-
formed first. Then, based on the results, we construct a tight-
binding Hamiltonian using the Wannier function. After that,
we apply the local force method to the tight-binding Hamil-
tonian and derive the effective spin model. Finally, the stable
magnetic order was determined. The results of magnetic order
based on the effective spin model were compared with the ex-
perimental results and SDFT calculations for each compound.

We show the crystal structures of intercalated TMDs in
Fig. 1. There are two intercalated transition metals per unit
cell, which are located in different vdW gaps. The interca-
lated transition metals are surrounded by a distorted octahe-
dron formed by chalcogen atoms. We can also see that inter-
calated transition metals form a hexagonal close-packed lat-
tice when x = 1/3 and a triangular lattice stacked along the
c-axis when x = 1/4. In the SDFT calculation, we performed
structural optimization for all target compounds. In this opti-
mization, we assumed that the spin configuration is ferromag-
netic (FM), and the lattice parameters and internal coordinates
were optimized, keeping the original space group symmetries
P6322 for x = 1/3 and P63/mmc for x = 1/4.

The results of the stable magnetic order of the SDFT calcu-
lation were obtained by comparing the energies of the FM and
AFM states for optimized structures of each compound. As
mentioned before, there are two intercalated transition metals
per unit cell (see, Fig. 1). In the SDFT calculations, we focus
on the magnetic structures that do not expand the unit cell.
Thus, we consider only the antiferromagnetic (AFM) state
having the interlayer antiferromagnetic and intralayer ferro-
magnetic structure.

B. Local force method

In the local force method, each exchange interactions (Jij)
are perturbatively evaluated by rotating a spin from the fer-
romagnetic state and examining the changes of the total en-
ergy. Here, we summarize a formulation based on the Wannier
tight-binding models following Ref. 26. Let us first consider
the classical Heisenberg Hamiltonian:

Hs = −2
∑
〈i,j〉

Jijsi · sj (1)

where 〈i, j〉 means all combinations of i, j(i 6= j). We then
introduce δEij as the energy change when we rotate the spin
at site i by θi and site j by θj on the same rotation axis from
the ferromagnetic state. It should be noted that δEij is directly
related with the exchange interaction :

∂2δEij
∂θi∂θj

= −2Jij (2)

Next, we consider the tight-binding Hamiltonian defined as
follows,

HTB =
∑
1,2

A12c
†
1c2 (3)

where the indices 1, 2 run over all degrees of freedom that
specify the Wannier functions, namely, site i, atomic or
molecular orbital `, and spin σ indices. Using the Green’s
function for the tight-binding Hamiltonian, we can calculate
the energy change due to the spin rotation. In the Green’s
functions formalism, the free energy F of the system (4) is
expressed as,

F = −T
∑
ωn

eiωn0
+

Tr ln[G−1(iωn)]. (4)

where ωn = (2n + 1)π/β denotes the electronic Mat-
subara frequency, and the Green’s function G is given by
G−112 (iωn) = (iωnδ12 − A12). Generally, A12 can be divided
into a time-reversal symmetric term t12 and anti-symmetric
term v12. Here, following Ref. 26, we assume that v12 is local
and can be expressed as vi1`1σ1,i2`2σ2

= δi1i2B
i
`1`2

σzσ1σ2
in

a collinear magnetic phase, where Bi stands for the effective
magnetic field, namely, the spin splitting in the tight-binding
model. Here we use the atomic unit, i.e., the Bohr magneton
µB=1/2.

If we rotate the spins as in the case of the Heisenberg model,
the changes in the free energy, i.e., δFij , is given by the fol-
lowing equation:

∂2δFij
∂θi∂θj

= T
∑
ωn

Tr`
[
BiG

↑↑
ij (iωn)BjG

↓↓
ji (iωn)

]
. (5)

Here, Gσσij (iωn) is defined as a submatrix of G12(iωn) with
(i, j) site and (σ, σ) spin components. Tr` is a restricted trace
for the ` index. By comparing these expressions with equation
(2), we can evaluate Jij for the itinerant Hamiltonian (eq. (4)):

Jij = −T
2

∑
ωn

Tr`
[
BiG

↑↑
ij BjG

↓↓
ji

]
. (6)

III. COMPUTATIONAL DETAILS

A. DFT calculation

We used the Vienna Ab initio Simulation Package code [29]
for SDFT calculations of intercalated TMDs. The Perdew-
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FIG. 1. Crystal Structures of intercalated TMDs MxTX2 (a) for
x = 1/3 and (b) for x = 1/4. Green, yellow and blue spheres
represent T , X and M elements, respectively.

Burke-Ernzerhof exchange-correlation functional [30] and
the projector augmented wave method [31, 32] were used.

For materials having no magnetization in the SDFT calcu-
lations, we performed SDFT+U calculations. The value of U
was set as U = 3 eV for Fe1/4XSe2 (X = Nb and Ta), the
Co-, and Ni-intercalated compounds. The effects of the value
of U are discussed in Appendix A. The energy cut-off for the
plane-wave basis set was set to 500 eV, and a 12×12×8 k-
point grid for the primitive cell of the intercalated TMDs was
used in the structural optimization and the calculations of the
ground state energies.

B. Construction of Wannier-based tight-binding model

Wannier functions were constructed by using the Wan-
nier90 code [33]. In Fig. 2, we show the band structures of
Cr1/3NbS2 as a representative example. The inner window
to fix the low energy band dispersion was set from -8 to 2 eV.
The energy cut-off for the plane-wave basis was set to 500 eV.
A 12×12×8 k-point grid was used in calculating FM refer-
ence states, and a 6×6×4 sampling k-point grid was used for
constructing Wannier functions.

C. Evaluation of exchange interactions

We applied the local force method to the Cr-intercalated
compounds, and the exchange interactions for the other tran-
sition metal-intercalated compounds were evaluated by shift-
ing the Fermi level, which corresponds to the rigid band ap-
proximation. In order to validate this approximation, we show
the band structures of MxNbS2 in Appendix B. According to
the results of the DFT calculation, only intercalated transi-
tion metals have a sizeable magnetic moment, and those of
the other atoms are negligibly small in the FM order. Thus
we ignored interactions other than those between intercalated
transition metals and extracted the spin model, whose inter-
actions are finite only between intercalated transition metals.
This approach works most successfully for the case in which
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FIG. 2. Band structures of (upper) majority spin and (lower) mi-
nority spin of Cr1/3NbS2 in the ferromagnetic state. The energy is
measured from the Fermi level. Blue lines are calculated from DFT
calculations, and red lines are from the Wannier functions.

Cr is intercalated. In other cases, spin polarization in the host
TMD makes the applicability of the rigid-band approximation
worse.

An 8×8×8 k-point grid was used in the evaluation of Eqs.
(5) and (6). Inverse temperature β was set to 500 eV−1. In
order to reduce the computational cost, we use the intermedi-
ate representation of the Green’s function [34, 35] in the local
force method.

IV. RESULTS AND DISCUSSION

A. Stable magnetic order according to DFT calculation

We first summarize the experimentally observed mag-
netic structures in Table I(a). Table I(b) shows the re-
sults of the DFT calculations, where we compare the en-
ergies of the FM and AFM states. We can see from Ta-
ble I(a) and I(b) that the experimental magnetic structures
in 13 out of the 23 compounds are successfully reproduced
in the DFT calculations. For three compounds that exhibit
helimagnetic structures, namely Cr1/3NbS2, Mn1/3NbS2,
Cr1/3TaS2, and Mn1/4NbSe2, the discrepancy is due to the
non-relativistic approximation where the spin-orbit coupling
is absent. The remaining 6 compounds except for Fe1/4TaS2
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(namely, Co1/3NbS2, Co1/3TaS2, Cr1/4NbS2, Cr1/4NbSe2,
and Fe1/4NbSe2) are known to be AFM in the experiments
but predicted to be FM in the DFT calculation. It should be
noted that we did not consider intralayer AFM states in the
DFT calculation because the magnetic unit cell becomes too
large. Thus the intralayer magnetic structure is always FM,
and only the interlayer magnetic structure can be AFM. We
will see later in Table I(c) that we obtain the correct AFM
ground states in Cr1/4NbS2 and Cr1/4NbSe2 based on the
spin model calculations derived by the local force method. On
the other hand, in the case of Fe1/4TaS2, the AFM state is
more stable than the FM state in the DFT calculation, while it
is FM in the experiment. We will discuss this discrepancy in
Sec. IV B.

B. Exchange constant

We show the filling (the number of electrons in the unit cell)
dependence of the interlayer (Figs. 3(a), (b)) and intralayer
(Figs. 3(c), (d)) exchange constants evaluated by the local
force method. Jintra, Jinter are defined as the nearest-neighbor
inter- and intra-layer exchange interactions, respectively. It
should be noted that we can calculate long-range interactions,
including Jintra, even though we start with the calculation for
a unit cell with one atom per plane because the spin rotation
in evaluating Jij is infinitesimally small. We here apply the
nearest-neighbor approximation to the effective spin model
and thereby only consider Jintra and Jinter. The effect of dis-
tant interactions is discussed in Appendix C. As we described
in Sec. III C, we start with the most representative case, i.e.,
the ferromagnetic state for M=Cr. We shift the position of the
Fermi level and look at the energy change due to a spin rota-
tion. While we neglect the detail of the guest (M ) dependence
on the electronic structure, as we see below, the rigid-band
approximation successfully reproduces the overall chemical
trend of the experimental results.

Figures 3(a) and 3(c) are the results for x = 1/3, and 3(b)
and 3(d) are those for x = 1/4. Let us first look at the former.
We see that both the intralayer and interlayer interactions have
a similar filling dependence. When the number of electrons is
small or large, the exchange constants tend to take a positive
small value (FM). On the other hand, when the filling is close
to half-filling (as in the cases of Mn, Fe, and Co), the interac-
tions tend to be negative (AFM). This result is consistent with
the previous study for the Fe- and Co-intercalated x = 1/3
system in which noncoplanar AFM structures were shown to
be favored [20] since the hexagonal close-packed lattice is
magnetically frustrated when all the nearest neighbor interac-
tions are negative. Note that higher-order exchange interac-
tions could be important for this compound and discussed in
Appendix D. Our result is also consistent with Ref. 21 where
the fully relativistic Korringa-Kohn-Rostoker (KKR) Green’s
function method was employed, indicating that the present
computational method works successfully and the effect of
spin-orbit coupling is irrelevant.

Next, let us move on to the case of x = 1/4. We see that the
interlayer exchange constant shown in Fig. 3(b) does not show

a significant host (TX2) dependence for M=(V, Cr, Mn, Fe).
We see a similar behavior for the intralayer exchange constant
(Fig. 3(d)). Another distinct feature is that the energy scale
of the intralayer exchange constant is much smaller than that
of the interlayer exchange constant. Namely, the system has a
strong coupling along the c axis rather than in the ab plane.

In Table. I(c), we summarize the stable magnetic structures
determined by the sign of the nearest neighbor exchange con-
stants. In both x = 1/3 and 1/4 cases, the ferromagnetic
order is stable only if both Jinter, Jintra are positive, and oth-
erwise, antiferromagnetic order become stable. Among 23
compounds for which the magnetic structure is determined
experimentally, we can say that the theoretical magnetic struc-
tures of 14 compounds are consistent with the experiment.
Unlike SDFT calculations, we reproduce the stable mag-
netic order consistent with the experiment for Cr1/4NbS2 and
Cr1/4NbSe2. As mentioned in Sec. IV A, when we do not
expand the unit cell, we can only consider the simplest in-
terlayer antiferromagnetic structure so that SDFT calculations
take into account only the interlayer magnetic interactions. In
the case of these three compounds, by including antiferromag-
netic interactions in the intralayer direction, the accurate or-
der was obtained. Here, let us note that both the interlayer
and intralayer exchange constants change their sign around
M=Mn. Thus we do not determine which magnetic order is
stable for six compounds with M=Mn. Similarly, in the case
of Ni1/3NbS2 and Ni1/3TaS2, at least one of the intralayer
or interlayer interactions is close to zero, indicating that these
materials are located near the boundary between the FM and
AFM states.

On the other hand, for the case of FexTaS2, our approach
does not reproduce the experimental results. For x = 1/3, we
should note that while SDFT apparently reproduces the fer-
romagnetic ground state in the experiment [17], the intralayer
AFM state is not considered in the calculation. For x = 1/4,
neither the SDFT calculation nor the local force approach re-
produces the experimental ferromagnetic ground states. One
possible reason is the contribution of the orbital magnetization
of the intercalated Fe atoms. While it is shown that interca-
lated Fe atoms have a finite orbital moment of about 33% of
the spin moment [54], the orbital moment is not taken into
account in the present calculation. Regarding the reason for
the disagreement between theory and experiment, we leave it
for future study.

C. Interpretation of the material dependence of the exchange
constant

As we have seen in Figs. 3, the energy scale of the inter-
layer and intralayer exchange constants are similar to each
other for x = 1/3 but very different for x = 1/4. This re-
sult indicates that while the intercalated TMDs are crystallo-
graphically two-dimensional, they are magnetically isotropic
(three-dimensional) for x = 1/3 but anisotropic (quasi-one
dimensional) for x = 1/4. In this subsection, let us discuss
whether the material dependence of the exchange constant
for intercalated TMDs can be understood in terms of a sim-
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x=1/3 x=1/4

(a) Exp.

Exp. V Cr Mn Fe Co Ni

NbS2 AF[36,
37]

HM[5,
8, 9]

HM[9] AF[38,
39]

AF[12,
40, 41]

AF[42]

NbSe2 - F[6] - AF[43] - -

TaS2 AF[37] HM[10,
14]

F[44] F[17] AF[12] AF[45]

TaSe2 - - - - - -

Exp. V Cr Mn Fe Co Ni

NbS2 - AF [46] F[47,
48]

AF[49,
50]

- -

NbSe2 - AF[51] HM[47] AF[51,
52]

- -

TaS2 - - F[47,
52]

F[18,
53, 54]

- -

TaSe2 - - - - - F[55]

(b) DFT

DFT V Cr Mn Fe Co Ni

NbS2 AF F * F * AF F * AF

NbSe2 AF F F AF AF AF

TaS2 AF F * F F F * AF

TaSe2 F F F AF AF AF

DFT V Cr Mn Fe Co Ni

NbS2 F F * F AF AF F

NbSe2 F F * F * F * AF F

TaS2 F F F AF * AF F

TaSe2 F F F F AF F

(c) Model

Model V Cr Mn Fe Co Ni

NbS2 AF F * F/AF * AF AF F *

NbSe2 AF F F AF AF F

TaS2 AF F * F/AF AF * AF F *

TaSe2 F/AF F AF AF AF F

Model V Cr Mn Fe Co Ni

NbS2 AF AF F AF AF AF

NbSe2 AF AF F * AF AF AF

TaS2 AF AF F AF * AF AF

TaSe2 AF AF F/AF AF AF AF *

TABLE I. Stable magnetic structure in the (a) experiments, (b) DFT calculations, and (c) classical spin model derived by the local force
method. Letters with an asterisk(*) denote that the theoretical results are inconsistent with the experimental results in (a). F, HM, and AF
stands for ferromagnetic, helimagnetic, and antiferromagnetic structures, respectively. It should be noted that AF in (b) denotes the interlayer
antiferromagnetic configuration. In addition, F/AF in (c) means we do not specify stable magnetic order because at least |Jinter| or |Jintra| is
smaller than 0.2 meV, and the Fermi level is located near the sign change of Jij .

ple single-orbital Hubbard model on the Bethe lattice. When
the Coulomb repulsion (the Hubbard U ) is absent, the system
has a semicircular DOS (see the inset of Fig. 4). We set the
bandwidth W = 2D and U = W . In Fig. 4, we show the
filling dependence of J0(=

∑
i 6=0 J0i) [56]. When the filling

is closed to 1 (half-filling), the super-exchange mechanism is
dominant, and thus J0 takes a negative value. On the other
hand, when the filling is very low or high, the double exchange
mechanism makes J0 positive. Namely, the system is FM for
low- and high-filling but AFM for half-filling. Interestingly,
this behavior can be seen for both the interlayer and intralayer
exchange constant for x = 1/3 (see Figs. 3(a) and (c)).

In Fig. 4, we also plot the spin polarization (i.e., the differ-
ence between the filling of the majority and minority spins)
as a function of the filling. We see that AFM interaction is
strongest when the spin polarization is the largest. It is inter-
esting to see whether this behavior can also be seen for the
exchange constants of M1/3TX2. As a typical case, let us
look into the case of Cr1/3NbS2. In Fig. 5, we show the total
DOS and partial DOS (PDOS) of the 3d orbitals. The vertical
black dotted lines in Fig. 5(b) denote the Fermi level (EF ) for
M=V, Cr, Mn, Fe, Co, and Ni from the left, respectively. We
see that when EF = 0 (i.e., the case of M=Cr), the minor-

ity spin is almost empty. When EF is higher than that of Mn
(∼ 0.4eV), the majority spin starts to be occupied. Thus the
spin polarization takes its maximum between M=Mn and Fe.
To clarify this situation, in Fig. 6, we plot the spin polarization
for M1/3NbS2 together with the results for other M1/3TX2.
From these plots, we expect that the AFM interaction becomes
strongest for M=Mn or Fe, and indeed, it is the case seen in
Figs. 3(a) and (c).

On the other hand, the filling dependence of the exchange
interaction for x = 1/4 is apparently different from that for
x = 1/3. This behavior can be explained in terms of the
crystalline electric field (CEF) splitting. Here, it should be
noted that the electronic structure of the x = 1/4 systems
is quite anisotropic, and the amplitudes of the interlayer and
intralayer interactions are very different.

Suppose there are five orbitals in an isotropic system. The
five orbitals have the same energy level, and the system is
considered to be half-filled when there are five electrons oc-
cupying each site. However, if the electronic structure is
anisotropic, where the five energy levels are split into two
high-energy states and three low-energy states, the system is
(effectively) half-filled when eight electrons occupy each site,
with the two high-energy states being half-filled. Thus, in gen-
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FIG. 3. Exchange constants evaluated by the local force method. Figures (a) and (c) are results for x=1/3, and (b) and (d) are for x=1/4. Six
vertical black dotted lines correspond to the Fermi level of V-, Cr-, Mn-, Fe-, Co-, and Ni-intercalated compounds, respectively.
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FIG. 4. Filling dependence of J0 for the single orbital Hubbard
model on the Bethe lattice.

eral, the antiferromagnetic interaction is not necessarily strong
for Mn or Fe in anisotropic systems. Although this argument
is for the limit of large CEF, it is helpful to understand the
filling dependence of Jinter for x = 1/4. In fact, CEF plays
a crucial role in determining the spin configuration when it is
comparable to Hund’s coupling [57]. In Table II, we list the
on-site energies of the 3d orbitals in CrxNbS2 measured from
the Fermi energy for x = 1/3 and 1/4. We can see that the
energy splitting in the x = 1/4 systems is larger than that
in the x = 1/3 systems, which is a possible reason why Jinter

x d3z2−x2 dzx dyz dxy dx2−y2

1/3 0.052 0.092 0.099 0.175 0.129

1/4 -0.138 0.003 0.013 0.129 0.125

TABLE II. On-site energies (eV) of the Wannier functions for d or-
bitals of CrxNbS2 measured from the Fermi energy.

does not take its minimum atM=Mn or Fe. It should be noted
that the ferromagnetic interaction is strong in the limit of low-
and high-filling, which is a feature common to Fig. 3(a). On
the other hand, the filling dependence of Jintra (Fig. 3(b)) is
difficult to understand due to its small energy scale.

V. CONCLUSION

By means of first-principles calculations based on SDFT
and ab initio derivation of the classical spin model based on
the local force method, we systematically investigated the ma-
terial dependence of the magnetic interactions in 48 interca-
lated TMDs MxTX2, in which a variety of magnetic struc-
tures is realized. For both x=1/3 and x=1/4, our calculations
overall succeeded in reproducing the experimental results. We
give a simple interpretation on the intercalated guest-atom
dependence in terms of the filling of the 3d orbitals. The
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FIG. 5. (a) DOS and PDOS of the 3d orbitals for Cr1/3NbS2. Black
dotted line is DOS and blue (red) line is the PDOS of the 3d orbitals
with the majority (minority) spin. (b) Enlarged plot for the PDOS of
the 3d orbitals. Six vertical black dotted lines denote the Fermi level
of V-, Cr-, Mn-, Fe-, Co- and Ni-intercalated TMDs determined by
the rigid band approximation.
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FIG. 6. Spin polarization (difference between the filling of the ma-
jority and minority spins) of the 3d orbitals in M1/3TX2.

present result will provide a useful guideline to predict mag-
netic structures in compounds which have not been synthe-
sized.
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Appendix A: Effect of the value of U in SDFT calculation

In Section IV, we performed SDFT+U calculation when
SDFT did not find a ferromagnetic self-consistent solution.
While the value of U was fixed to be 3 eV in Section IV,
here we show the U dependence for the following com-
pounds: Fe1/4NbSe2, Co1/3NbS2, Co1/3TaS2, Ni1/3NbS2,
Ni1/3TaS2, and Ni1/4TaSe2, which we compared with the ex-
perimental results in Table I(a). As was done in Section IV,
we optimized the atomic configuration and calculated the to-
tal energies of the FM and AFM states for U=1,2,3,4, and 5
eV (see Fig. 7). We can see that the energy relationship be-
tween the FM and AFM states does not sensitively depend
on the U value except for Fe1/4NbSe2 and Co1/3NbS2. For
Fe1/4NbSe2 and Co1/3NbS2, as was shown for Fe1/3NbSe2
(Ref. 58), the AFM state observed in the experiment is stable
for U smaller than ∼3 eV.
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FIG. 7. U dependence of the energy differences between the ferro-
magnetic (EFM) and anti-ferromagnetic (EAFM) states.

Appendix B: Band structures of intercalated TMD and the
validity of the rigid band approximation

We show the band structures of the paramagnetic state of
MxNbS2 in Figs. 8 and 9, and the band structures for other
host TMDs hardly change. As we can see in Figs. 8 and 9,
in the energy window of ±2 eV, there are bands that originate
from the intercalated transition metal atoms. The dispersion
is very similar to each other, justifying the validity of the rigid
band approximation.
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FIG. 8. Band structures of M1/3NbS2. Each figure corresponds to the band structure of M=V, Cr, Mn, Fe, Co, and Ni from the upper left to
the lower right. SDFT+U was applied for M=Co and Ni cases. Black lines are the band structure of M1/3NbS2 and thickened red circles are
the weight of 3d orbitals.
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FIG. 9. Band structures of M1/4NbS2. Each figure corresponds to the band structure of M=V, Cr, Mn, Fe, Co, and Ni from the upper left to
the lower right. SDFT+U was applied for M=Co and Ni cases. Black lines are the band structure of M1/4NbS2 and thickened red circles are
the weight of 3d orbitals.

Appendix C: Effect of distant exchange interactions

In Section IV, we employed the nearest neighbor (NN) ap-
proximation to determine the stable magnetic structure. In

this Appendix, we discuss the effect of the distant exchange
interactions on the magnetic structure. In Fig. 10, we show
the distance dependence of the exchange interactions J(|R|)
for Cr1/3TX2 and Cr1/4TX2. The distance |R| between the
site i and j is normalized by the lattice constant along the
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a-axis for each compound. While only the NN exchange in-
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FIG. 10. Distance dependence of the exchange interactions in
Cr1/3TX2 and Cr1/4TX2. The horizontal axis is normalized by
the lattice constant along the a-axis for each compound.

teraction is dominant and the others are tiny in the x = 1/4
systems, the second and third NN interactions have a compa-
rable magnitude for the x = 1/3 systems. Let us now look
into the effect of these distant interactions on the stable mag-
netic structure. Note that we used 8×8×8 k-point grid in the
local force method so that the exchange interactions in the real
space J(R) up to |R| = 4 are considered. In Fig. 10, we can
confirm that |J(R)| is sufficiently small and can be neglected
for |R| > 3. The exchange interactions in the reciprocal space
J(q) are calculated as

J(q) =
∑
R

J(R)e−iq·R. (C1)

In Fig. 11, we plot the exchange interactions J(q) of the
x = 1/3 compounds at the high symmetry points in the first
Brillouin zone measured from that at the Γ point J(q = 0).
When J(q)-J(0) takes a negative value for all q, the system
favors ferromagnetic states. We can see that while the ferro-
magnetic interaction at q = 0 is dominant for the high- and
low-filling compounds, the antiferromagnetic interactions are
stronger for the Fe- and Co-intercalated compounds. For M
= Fe and Co, it should be also noted that J(q) takes similar
values at different wavenumbers, indicating that the spin con-
figuration is severely frustrated. These results are consistent
with the real-space analysis shown in Section IV B.

In Table III, we summarize the stable magnetic order de-
termined from the magnitudes of the exchange interactions in

the reciprocal space. By comparing the results with Table I(c),
we can see that the long-range exchange interactions have no
significant effects on the magnetic structure.

Model V Cr Mn Fe Co Ni

NbS2 F/AF F * F/AF * AF AF F *

NbSe2 F/AF F F AF AF F

TaS2 F/AF F * F/AF AF * AF AF

TaSe2 F/AF F F AF AF F

TABLE III. Stable magnetic structure in the classical spin model in
the reciprocal space obtained from the real space spin model con-
structed by the local force method. Letters with an asterisk(*) denote
that the theoretical results are not consistent with the experimental
results in Table I(a). F, AF stand for ferromagnetic and antiferro-
magnetic structures, respectively, and F/AF means that the stable
magnetic structure is not determined because the maximum exchange
interaction of the wavevectors other than the Γ point is very close to
that of the Γ point.

Appendix D: Effect of Higher-order exchange interaction

We have performed spin model calculations by the Landau-
Lifshitz-Gilbert (LLG) equation, including higher-order ex-
change interactions for some compounds. Primarily we
give attention to the difference between Fe1/3NbS2 and
Co1/3NbS2. Even though nearest-neighbor interactions are
anti-ferromagnetic in both compounds, the former is reported
to have the collinear AFM[38] in the ground state and the
latter to have the non-coplanar AFM[20]. These two AFM
structures degenerate as the ground state of the classical spin
model with only quadratic interactions on the hexagonal-
close-packed lattice. We considered the classical spin hamil-
tonian with the quadratic interactions in the main text. As the
most natural extension, we consider here the following Hamil-
tonian with biquadratic exchange interaction terms,

Hs = −2
∑
〈i,j〉

Jijsi · sj − 2
∑
〈i,j〉

Bij(si · sj)2, (D1)

where 〈i, j〉 means all combinations of i, j and we take into
account only the nearest neighbor interactions again. Then
we simulated real-time and space dynamics of classical spins
by the LLG equation given below,

∂si
∂t

= −Beff
i × si −

α

s

[
si × (si ×Beff

i )
]
,

Beff
i = −∂Hs

∂si

(D2)

where α is the Gilbert damping constant.
We investigated the effects of the biquadratic term in the

spin hamiltonian by changing the initial spin configurations
and the sign of the coefficients, Bij . As the initial spin
configurations, the collinear AFM state and the non-coplanar
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FIG. 11. Exchange interactions in the reciprocal space J(q) for x = 1/3 systems.

AFM state in Fig.12 are included. In the simulations, we set
α = 0.1, kBT = 0 meV, ∆t = 1~/meV, and the total time
length to be 1.5193 × 103~/meV. In addition, for simplicity,
we fix the nearest-neighbor Jij as -1.0 meV for both interlayer
and intralayer directions and we also set the magnitude of the
biquadratic term, |Bij |, to be the same as 0.1 meV for both
directions. According to the simulations, the collinear AFM
state was stabilized if B > 0; otherwise, a non-coplanar AFM
state was stabilized. The results did not depend on the mag-
nitude of the biquadratic term. Therefore we can conclude
that the sign of the biquadratic term is crucial to break the de-
generacy of the collinear AFM and non-coplanar AFM. First-
principles derivation of higher-order interactions[59, 60], such

as the biquadratic interaction, is left for future work.

FIG. 12. Examples of initial spin configurations used for spin dy-
namics simulations by the LLG equation. 2× 2× 1 supercell of the
unit cell is considered.
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[19] L. Šmejkal, R. González-Hernández, T. Jungwirth,
and J. Sinova, Crystal time-reversal symmetry break-
ing and spontaneous hall effect in collinear antifer-
romagnets, Science Advances 6, eaaz8809 (2020),
https://www.science.org/doi/pdf/10.1126/sciadv.aaz8809.

[20] H. Park, O. Heinonen, and I. Martin, First-principles study
of magnetic states and the anomalous hall conductivity of
MNb3S6 (M=Co, Fe, Mn, and Ni), Phys. Rev. Materials 6,
024201 (2022).

[21] S. Mankovsky, S. Polesya, H. Ebert, and W. Bensch, Electronic
and magnetic properties of 2H-NbS2 intercalated by 3d transi-
tion metals, Phys. Rev. B 94, 184430 (2016).

[22] M.-T. Huebsch, T. Nomoto, M.-T. Suzuki, and R. Arita, Bench-
mark for ab initio prediction of magnetic structures based on
cluster-multipole theory, Phys. Rev. X 11, 011031 (2021).

[23] A. I. Liechtenstein, M. I. Katsnelson, and V. A. Gubanov, Ex-
change interactions and spin-wave stiffness in ferromagnetic
metals, Journal of Physics F: Metal Physics 14, L125 (1984).

[24] A. Sakuma, First principles study on the exchange constants
of the 3d transition metals, Journal of the Physical Society of
Japan 68, 620 (1999), https://doi.org/10.1143/JPSJ.68.620.

[25] A. Sakuma, First-principles study on the non-collinear
magnetic structures of disordered alloys, Journal
of the Physical Society of Japan 69, 3072 (2000),
https://doi.org/10.1143/JPSJ.69.3072.

[26] T. Nomoto, T. Koretsune, and R. Arita, Local force method
for the ab initio tight-binding model: Effect of spin-dependent
hopping on exchange interactions, Phys. Rev. B 102, 014444
(2020).

[27] T. Nomoto, T. Koretsune, and R. Arita, Formation mechanism
of the helical Q structure in gd-based skyrmion materials, Phys.
Rev. Lett. 125, 117204 (2020).

[28] Y. Nomura, T. Nomoto, M. Hirayama, and R. Arita, Magnetic
exchange coupling in cuprate-analog d9 nickelates, Phys. Rev.
Research 2, 043144 (2020).

[29] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[30] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient
approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
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