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Abstract 

Elastic topological states have been receiving increased intention in numerous scientific and 

engineering fields due to their defect-immune nature, resulting in applications of vibration control 

and information processing. Here, we present the data-driven discovery of elastic topological states 

using dynamic mode decomposition (DMD). The DMD spectrum and DMD modes are retrieved 

from the propagation of the relevant states along the topological boundary, where their nature is 

learned by DMD. Applications such as classification and synthesis of wave propagation can be 

achieved by the underlying characteristics from DMD. We demonstrate the classification between 

topological and traditional metamaterials using DMD modes. Moreover, the model enabled by the 

DMD modes realizes the synthesis of topological state propagation along the given interface. Our 

approach to characterizing topological states using DMD can pave the way towards data-driven 

discovery of topological phenomena in material physics and more broadly lattice systems. 

 

 

 

 

 



I. INTRODUCTION 

Wave propagation is a typical spatiotemporal phenomenon, which is ubiquitous across science and 

engineering, especially in fluid dynamics [1,2], geoscience [3,4], plasmas [5], optics [6], atomic 

and condensed matter physics [7], as well as the more recent field of metamaterials [8–10]. 

Topological metamaterials have attracted considerable attention not only because of their 

theoretical significance but also for practical purposes related to materials applications. Wave 

propagation in elastic topological metamaterials has prominent applications, such as information 

transmission and vibration control, due to the topological protection [11–16]. 

 

The computations involving the propagation of associated waveforms rely mostly on numerical 

discretization, e.g., finite element and discrete element methods, rather than analytic closed-form 

solutions which are rarely available in exact form. This naturally generates high-dimensional 

representations of the solution to accurately reflect the underlying dynamics in both time and 

space [11,13,14,17]. However, this may occasionally be in contrast with the low-dimensional 

nature of the underlying dynamics and poses a computational challenge, especially in higher-

dimensional settings. In a concurrent study, topological wave propagation has been decomposed 

into a limited subset of closely spaced modes inside the band gap, possessing nontrivial phase 

differences. The prediction of group velocity and the application of such a method on a damped 

system are further demonstrated [18]. Although the underlying idea of a reduced-order description 

is similar to that of the present work, still, the data-driven (and possibly model agnostic) analysis 

and modeling of elastic topological states remain far less explored, in stark contrast with the 

extensive studies on experimental observation, numerical computation and theoretical modeling.  

The data-driven approach can also provide an equation-free and model agnostic way to reveal the 



spatiotemporal dynamics and underlying physics purely from data. It is the purpose of the present 

work to offer a step forward towards filling that void. 

 

Reduced-order models offer representations of the spatiotemporal wave propagation based on the 

inherently low-rank structure of the simulation data. Within the palette of relevant techniques, 

dynamic mode decomposition is a powerful dimensionality reduction method to create reduced-

order models which identifies spatiotemporal coherent structures from high-dimensional data [19]. 

DMD offers a modal decomposition, where each mode contains spatially correlated structures with 

the same linear behavior in time, such as oscillations at a certain frequency with growth or decay. 

Compared with one of the most commonly used dimensionality reduction methods, proper 

orthogonal decomposition, DMD demonstrates not only dimensionality reduction, but also a 

reduced model that accounts for how these modes evolve over time. Lately, DMD has been 

successfully applied to fluid dynamics [19,20], control [21], robotics [22] and biological 

science [23–25]. Hence, developing such an approach for wave propagation in topological 

metamaterials is highly desirable. 

 

Here, we develop a data-driven framework using DMD for identifying interpretable low-

dimensional representations for wave propagation in elastic topological metamaterials created by 

a select spring-mass system example. The low-dimensional spatiotemporal coherent structures of 

topological state propagation in our system are extracted, which correspond to the topological edge 

states inside the bandgap region. These spatiotemporal coherent structures allow for the qualitative 

reconstruction of the topological state propagation. Moreover, we first demonstrate how to classify 

the topological and traditional metamaterials using DMD modes via unsupervised clustering. 



Furthermore, a portion of the data, referred to as the training data, is used to synthesize the future 

evolution of the topological states of interest along a pre-defined interface with arbitrary shape. 

Our study provides a computationally tractable data-driven characterization of the relevant states 

and their propagation, paving the way towards the classification and synthesis of wave propagation 

in elastic metamaterials. 

 

Our presentation hereafter will be structured as follows. In section II we offer details about the 

physical system under consideration including the band structure and topological properties. In 

section III we provide a concise introduction in the mathematical and computational details of the 

DMD algorithm (including technical modifications to the standard algorithm such as the use of a 

stacking data matrix leveraged herein) and illustrate how it can be used to represent the wave 

dynamics. In section IV, we use DMD modes to classify the topological and traditional 

metamaterials. Finally, in section V, we summarize our findings and provide some directions for 

future study. The appendices offer details about further technical aspects of the DMD 

implementation, such as the DMD spectra, the application of time-delay embedding and synthesis 

of topological state propagation. 

 

II. DESIGN OF TOPOLOGICAL ELASTIC METAMATERIALS 

To demonstrate DMD on the wave propagation in the topological elastic metamaterials system of 

interest, we first construct the topological valley metamaterials using a spring-mass system, which 

is realized by alternating the masses at different sites of the unit cell of the honeycomb 

lattice [14,17,26,27]. As displayed in FIG. 1(a), the unit cell is composed of two masses 𝑚1 and 

𝑚2 connected by a spring. The length and the spring constant are a and 𝑘𝑠𝑝𝑟𝑖𝑛𝑔. Therefore, the 



basic vectors for this unit cell are �⃗�1 = [𝑎𝑥, −𝑎𝑦], �⃗�2 = [𝑎𝑥, 𝑎𝑦], where 𝑎𝑥 = 3𝑎 2⁄  and 𝑎𝑦 =

√3𝑎 2⁄ . The unit cell has four degrees of freedom specified by the displacement of 𝑚1 and 𝑚2 

(𝑈 = [𝑢𝑥
𝑚1 , 𝑢𝑦

𝑚1 , 𝑢𝑥
𝑚2 , 𝑢𝑦

𝑚2]
𝑇

). After applying the periodic boundary condition to the unit cell 

(Bloch’s theorem), equations of motion of two masses in one unit cell can be written as: 

 −𝜔2𝑚1�⃗⃗�
(1) = 𝑘𝑠𝑝𝑟𝑖𝑛𝑔[(�⃗⃗�(2) − �⃗⃗�(1)) ∙ 𝑒𝑥]𝑒𝑥

+ 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 [(�⃗⃗�(2)𝑒𝑖𝑘∙⃗⃗⃗⃗ �⃗⃗�1 − �⃗⃗�(1)) ∙ 𝑒𝑘] 𝑒𝑘

+ 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 [(�⃗⃗�(2)𝑒𝑖𝑘∙⃗⃗⃗⃗ �⃗⃗�2 − �⃗⃗�(1)) ∙ 𝑒𝑘
′ ] 𝑒𝑘

′  

(1) 

 

 −𝜔2𝑚2�⃗⃗�
(2) = 𝑘𝑠𝑝𝑟𝑖𝑛𝑔[(�⃗⃗�(1) − �⃗⃗�(2)) ∙ 𝑒𝑥]𝑒𝑥

+ 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 [(�⃗⃗�(1)𝑒−𝑖𝑘∙⃗⃗⃗⃗ �⃗⃗�1 − �⃗⃗�(2)) ∙ 𝑒𝑘] 𝑒𝑘

+ 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 [(�⃗⃗�(1)𝑒−𝑖𝑘∙⃗⃗⃗⃗ �⃗⃗�2 − �⃗⃗�(2)) ∙ 𝑒𝑘
′ ] 𝑒𝑘

′  

(2) 

where  𝑒𝑥 = [1, 0]𝑇, 𝑒𝑘 = [−
1

2
,
√3

2
]𝑇 and 𝑒𝑘

′ = [−
1

2
, −

√3

2
]𝑇 are three unit vectors along the springs 

on one mass. The band structure 𝜔(𝑘) of our system can be obtained by solving the eigenvalue 

equation as a function of Bloch wave vector k in the first Brillouin zone.  

 [𝐷(𝑘) + 𝜔2𝑀]𝑈 = 0 (3) 

Here, 𝜔 denotes the angular frequency of the propagating wave. 𝑀 is the mass matrix and 𝐷(𝑘) is 

the stiffness matrix as a function of Bloch wave vector k. The corresponding eigenmodes 𝑈 =

[𝑢𝑥
𝑚1 , 𝑢𝑦

𝑚1 , 𝑢𝑥
𝑚2 , 𝑢𝑦

𝑚2]
𝑇
 can also be obtained. 

 

As for our specific system, we choose the equal masses on two sites (𝑚1 = 𝑚2 = 1 kg) and 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 

= 105 N/m to find the Dirac point at the corner of the Brillouin zone (K point), as shown in the 



middle panel of FIG. 1(a). After breaking spatial inversion symmetry by unequal masses on two 

sites, two bands can be opened to form a bandgap. The left and right panels exhibit the band 

structure when 𝑚1 = 0.8 kg, 𝑚2 = 1.2 kg and 𝑚1 = 1.2 kg, 𝑚2 = 0.8 kg, respectively. At the K 

valley, eigenmodes corresponding to two bands when 𝑚1  = 0.8 kg, 𝑚2  = 1.2 kg are 𝑈1 =

1

√2
[0,0,1,−𝑖]𝑇  and 𝑈2 =

1

√2
[1, 𝑖, 0,0]𝑇 , while the eigenmodes are 𝑈1 =

1

√2
[1, 𝑖, 0,0]𝑇  and 𝑈2 =

1

√2
[0,0,1,−𝑖]𝑇after alternating the masses on two sites (see the insets with black arrows that 

represent the eigenmodes). The obvious band inversion can be seen from the eigen modes of the 

unit cell.  

 

To further confirm the band inversion in this process, the topological properties of our topological 

valley system are also explored to show the topological phase transition. After obtaining the band 

structure 𝜔(𝑘) and the corresponding eigenmode 𝑈(𝑘), we calculate the Berry curvature Ω(𝑘) =

𝑖∇𝑘 × ⟨𝑢(𝑘)|∇𝑘|𝑢(𝑘)⟩ using a numerical discretization method (in momentum space) [11,12]. For 

our two-dimensional system, the Brillouin zone is discretized to numerous small patches centered 

at 𝐴(𝑘𝑥, 𝑘𝑦)  with vertices 𝐴1(𝑘𝑥 − 𝛿𝑘𝑥 2⁄ , 𝑘𝑦 − 𝛿𝑘𝑦 2⁄ ) , 𝐴2(𝑘𝑥 − 𝛿𝑘𝑥 2⁄ , 𝑘𝑦 + 𝛿𝑘𝑦 2⁄ ) , 

𝐴3(𝑘𝑥 + 𝛿𝑘𝑥 2⁄ , 𝑘𝑦 + 𝛿𝑘𝑦 2⁄ ) and 𝐴4(𝑘𝑥 + 𝛿𝑘𝑥 2⁄ , 𝑘𝑦 − 𝛿𝑘𝑦 2⁄ ), where the Berry curvature for 

each small patch can be expressed as: 

 
Ω(𝐴) =

𝐼𝑚[⟨𝑈(𝐴1)|𝑈(𝐴2)⟩ + ⟨𝑈(𝐴2)|𝑈(𝐴3)⟩ + ⟨𝑈(𝐴3)|𝑈(𝐴4)⟩ + ⟨𝑈(𝐴4)|𝑈(𝐴1)⟩]

𝛿𝑘𝑥 × 𝛿𝑘𝑦
 

(4) 

As shown in the inset of FIG. 1(b), the nonzero Berry curvatures are distributed near the corners 

of the Brillouin zone (K points) and different valleys possess opposite Berry curvatures. Due to 

our system with time reversal symmetry, the integration of the Berry curvature around the whole 

Brillouin zone is expected to be zero. However, the local integration around the valleys of the 



Berry curvature converges to nonzero quantized value, which is referred to as valley Chern number 

𝐶𝑣 =
1

2𝜋
∫ Ω(𝑘)𝑑2𝑘
𝑣

, representing the valley topology. The obvious inversion of Berry curvature 

distribution and the sign of the valley Chern number after alternating the masses on two sites 

clearly shows the topological phase transition (compare the insets of the right and left panels in 

Fig. 1(b)). 

 

The projected band structure is then calculated using a sandwiched supercell shown in the right 

panel of FIG. 1(a). The sandwiched supercell combines the metamaterials of three arrangements: 

(i) 𝑚1 = 0.8 kg and 𝑚2 = 1.2 kg, (ii) 𝑚1 = 1.2 kg and 𝑚2 = 0.8 kg, and (iii) 𝑚1 = 0.8 kg and 𝑚2 = 

1.2 kg, which has two opposite Berry curvature distributions in the Brillouin zone. When two 

systems are interfaced with opposite Berry curvature, the bulk-boundary correspondence principle 

ensures that two topological states with different pseudospins corresponding to two types of 

interfaces emerge inside the bandgap, as shown in FIG. 1(c). The bulk featured by K and K’ valleys 

can also be observed from the projected band structure. In the following study, the excitation 

frequency of our simulation is 400 rad/s as indicated by the black dashed line in FIG. 1(c). 



 

FIG. 1. The band structure of the valley topological metamaterials. (a) The schematic of our elastic 

metamaterials based on the spring-mass system. The basic vectors of unit cell are shown in �⃗�1 and 

�⃗�2. The length of the spring is a. The first Brillouin zone with high symmetry points , M and K 

is shown in the middle panel. The sandwiched supercell for the calculation of projected band 

structure is shown in the right panel. (b) The band structure when (left) 𝑚1 = 0.8 kg, 𝑚2 = 1.2 kg, 

(middle) 𝑚1 = 1 kg, 𝑚2 = 1 kg and (right) 𝑚1 = 1.2 kg, 𝑚2 = 0.8 kg are shown. The eigenmodes 

corresponding to the K valley are shown in the first panel and the third panel. Motions along 

horizontal and vertical directions are marked on the two sites. The Berry curvatures around the 

valley of the first band for each case are shown in the inset. (c) The projected band structure with 



two topological states inside the bandgap. The black dashed line indicates the excitation frequency 

of the simulation setup. 

 

III. CHARACTERIZATION BY DYNAMIC MODE DECOMPOSITION 

As shown in FIG. 2(a), our system bears a Z-shaped interface which is formed by combining 

metamaterials with two opposite topological phases. In FIG. 2(a), one such interface is formed by 

𝑚1 = 0.8 kg (blue), 𝑚2 = 1.2 kg (red) shown in the bottom, while the other is formed by 𝑚1 = 1.2 

kg (red), 𝑚2 = 0.8 kg (blue) shown in the top, i.e., with the masses flipped. The spring constant is 

fixed to be 105 N/m. As analyzed in the previous section, with such a configuration, the topological 

states will emerge along the interface formed by two metamaterials.  

 

The system is excited by an oscillating force with the angular frequency of 400 rad/s at the input 

port of the Z shape interface shown in FIG. 2(a). The masses at the boundaries of the system are 

connected to springs fixed to the wall, i.e., �⃗�𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = −𝑘𝑠𝑝𝑟𝑖𝑛𝑔�⃗⃗�, where �⃗⃗� contains horizontal 

displacement 𝑢𝑥  and vertical displacement 𝑢𝑦 . Because of the topological protection of wave 

propagation, the elastic wave can travel through the sharp bend robustly, the horizontal 

displacement 𝑢𝑥 of which is visualized as the time-series snapshots in FIG. 2(b).  

 

Next we attempt to reconstruct this wave propagation phenomenon using the DMD approach. Let 

us present the result of the DMD approach first. Fig. 2(c) shows the reconstruction of the horizontal 

displacement 𝑢𝑥. We find the trend of the DMD-based approach is similar to the one by the original 

evolution dynamics. Particularly, the DMD technique successfully captures the robust propagation 

of topological waves around the sharp corners, which is the signature characteristic of the 



topological waveguide. The difference of the color intensity between the original and the 

reconstructed results is due to inherent deficiency of the DMD to capture transient dynamics which 

will be elaborated later.  

 

As introduced in the section I, DMD serves as the dimensionality reduction method to generate 

low-dimensional model. The basic idea of DMD is to find a matrix representation A to relate two 

matrices 𝑋 and 𝑋′. In our case, two data matrices are constructed for standard DMD by stacking 

the horizontal displacement 𝑢𝑥 and vertical displacement 𝑢𝑦 as follows, resulting in two 2n  (m 

 1) matrices, where n is the number of masses and m is the number of used snapshots over time 

(n = 2700 and m = 379 for Z-shape interface based on the numerical simulations of 758 ms duration 

with 2 ms time interval). 

 

𝑋 = [
| | |
𝑥1 𝑥2 ⋯ 𝑥𝑚−1

| | |
]     𝑋′ = [

| | |
𝑥2 𝑥3 ⋯ 𝑥𝑚

| | |
] (5) 

where [
|

𝑥𝑚

|
] =

[
 
 
 
 
 

|
𝑢𝑥𝑚

|
|

𝑢𝑦𝑚

| ]
 
 
 
 
 

 for simplicity of description. 𝑋 and 𝑋′ may be related by a best-fit linear 

operator A that minimizes the Frobenius norm error ‖𝑋′ − 𝐴𝑋‖𝐹  given by: 

 𝑋′ = 𝐴𝑋 ⟹ 𝐴 = 𝑋′𝑋† (6) 

where 𝑋† is the Moore-Penrose pseudo-inverse [28]. Because 2n ≫ m for our systems, so, instead 

of obtaining A directly, we seek for the eigen decomposition of A. After X is decomposed using 

singular value decomposition (SVD) and the proper rank-r truncation is chosen so that �̃� = �̃�Σ̃�̃�𝑇, 

where �̃� ∈ ℝ2𝑛×𝑟, Σ̃ ∈ ℝ𝑟×𝑟 and �̃� ∈ ℝ(𝑚−1)×𝑟 are the left unitary matrix, diagonal matrix with 



singular values, and right unitary matrix, respectively, the matrix representation �̃� can be written 

as: 

 �̃� = �̃�∗𝑋′�̃�Σ̃−1 (7) 

where the  denotes the conjugate transpose. The eigen-decomposition of �̃� results in the matrix 

of eigenvectors 𝑊 and eigenvalues 𝜆, which are the DMD eigenvalues. This further derives the 

corresponding DMD mode 𝜙, which is the column of Φ = 𝑋′�̃�Σ̃−1𝑊. 

 

 

FIG. 2. Setup for simulation and for the numerical DMD implementation. (a) Simulation of wave 

propagation along the Z-shaped interface in a valley topological metamaterial built by means of a 

spring-mass system. Two different unit cells with two different topological phases are shown on 

the two sides. A magnified view of the topological boundary (black line) is shown in the inset. (b) 

(c) Snapshots of original and reconstructed wave propagation represented by the horizontal 

displacement 𝑢𝑥 along Z-shape interface at t = 2 ms, 192 ms, 380 ms, 570 ms and 758 ms (with 

the time evolving from the bottom to the top), respectively. 

 

As discussed in Appendix A, the rank-r truncation is chosen to be r = 131 to minimize the 

reconstruction error and also to eliminate the noise in the simulation data. Each DMD mode 𝜙 



corresponds to eigenvalue 𝜆. The temporal dynamics, referring to growth/decay and the frequency 

of oscillation of each DMD mode 𝜙, is reflected through the magnitude and phase of eigenvalue 

𝜆, respectively. In our case, because the raw data is strictly real valued, the decomposition yields 

complex conjugate pairs of eigenvalues and modes.  

 

In FIG. 3(a), the eigenvalues 𝜆 are visualized on the unit circle in the complex plane, suggesting 

the corresponding modes are oscillating with certain frequencies. The frequencies are defined as 

𝜔 = |imag(
log𝜆

∆𝑡
)| and the mode amplitudes are defined as 𝑃 = |𝜙|2

2, which is the squared ℓ2-norm 

of the DMD modes. FIG. 3(b) gives the DMD spectrum which provides specific spatial modes in 

our system for different frequencies. It is obvious that there is a region with large mode amplitudes 

corresponding to the bandgap region (shaded area). The mode with the largest amplitude inside 

the bandgap region is chosen as the prototypical mode used to visualize the motion of our system. 

The horizontal displacement 𝑢𝑥 is chosen for the description below. Note that there are two small 

peaks outside the bandgap region due to the resonance of the masses at the boundary, 

corresponding to the resonant frequencies 𝜔 = √7−√33

4
𝜔0  and 𝜔 = √

1

2
𝜔0  approximated by a 

simple model that one mass is connected to two walls and two masses on nearest honeycomb 

corners by springs. 

 

FIG. 3(c) exhibits the magnitude of this most dominant DMD mode of our system, also showcasing 

the interface-involving dynamics. The decaying magnitude from the input along the Z-shape 

interface is due to the constant force excitation at the input. The characteristics of interface states 

present concentrated displacement along the Z-shape interface and rapid decay away from the 



interface. Moreover, the DMD modes showcase the fact that the elastic wave can travel along an 

interface featuring bends. Apart from the magnitude, the phases of the DMD mode also reflect the 

important characteristics of our topological valley metamaterials, as shown in FIG. 3(d). The 

distribution of phase along the interface has a certain alignment, where the magnified view around 

the interface clearly shows the phase difference around the corners of the honeycomb, indicating 

specific valley polarization along a certain topological interface. The counterclockwise and 

clockwise phase evolutions are shown on three corners and the other three corners of the 

honeycomb, suggesting the valley pseudospin of the excited valley in our system. The valley 

pseudospin here refers to the phase difference of DMD modes around the corners of honeycomb. 

Note that the other DMD modes inside the bandgap have a similar pattern and it is these modes 

that will be primarily used to reconstruct the dynamical evolution below. 

 

The DMD spectra of wave propagation in topological metamaterials with a straight interface and 

a cross-shaped interface will be further illustrated in Appendix B. Similarities between the DMD 

spectra and modes can be found in topological state propagation along different interfaces 

including the high amplitude inside the bandgap and the topological interface states reflected by 

the DMD modes. This demonstrates the ability of the DMD to robustly show the frequency 

spectrum of the system purely from the data and to discover the nature of topological state 

propagation. 

 



 

FIG. 3. DMD spectrum and DMD modes. (a) Eigenvalues are visualized on the complex plane 

located around the unit circle. (b) The mode amplitude varies as a function of frequency. The 

shading area indicates the bandgap region. (c) The magnitude of the DMD mode with the largest 

amplitude inside the bandgap region. (d) The phase of the DMD mode with the largest amplitude 

inside the bandgap region. The inset shows the magnified view around the interface (black line) 

illustrating the phase difference and valley pseudospin. The black and green arrows show the 

pseudospin up and pseudospin down indicated by the phase evolution around hexagon corners, 

respectively. 

 

Using the extracted DMD modes and corresponding time dynamics, we can reconstruct the wave 

propagation in topological metamaterials using the following expression: 

 �̂� = ΦΛ𝑡−1𝑍 (8) 



where the diagonal entries of Λ  contains DMD eigenvalues and 𝑍 = Φ\𝑥1 . 𝑥1  is the initial 

condition of our system and backslash is to solve the linear system following the MATLAB 

notation. Here, we only use the DMD modes inside the bandgap region (10 pairs of DMD modes) 

and the corresponding eigenvalues to reconstruct the whole process of wave propagation, as 

displayed in FIG. 2(c) with several time-series snapshots representing the wave propagation in our 

system. Similar patterns can be found compared with the original snapshots of wave propagation.  

 

In FIG. 4, we quantify the reconstruction error as a function of duration (black line) calculated by 

𝐸(𝑡) =
|𝑋(𝑡)−�̂�(𝑡)|2

|𝑋(𝑡)|2
, where |∙|2 represents ℓ2-norm that is the square root of the sum of the absolute 

squares of the vector entries. Most relative errors are around 0.97 and oscillating over time. This 

nontrivial relative error may result from the reduction of inessential modes with extremely small 

singular values by the SVD, the significant reduction of DMD modes when considering solely 

modes within the bandgap, the ℓ2-norm error requiring the high accuracy of displacement for 

every mass and, most importantly, the inherent deficiency for DMD method to capture transient 

phenomena [23,29,30]. This is caused by the fact that temporal dynamics cannot be well 

approximated by 𝑒ω𝑡  where the imaginary number ω =
lnΛ

∆𝑡
.  The SVD-based method also 

performs poorly on handling translational symmetry of the wave propagation due to the coupling 

between time and space. Although the relative error is rather nontrivial, the wave propagation 

along the Z-shape interface can be clearly observed from the FIG. 1(c) and Supplemental 

Material [31], which can be considered as the qualitative representation of the original wave 

propagation. To measure the qualitative reconstruction using DMD, we propose an additional 

quantity, namely the correlation coefficient, to show the similarity between reconstructed and 

original wave propagation at each time point: 



 
𝑟(𝑡) =

∑ (𝑥𝑖,𝑡 − �̅�∗,𝑡)(�̂�𝑖,𝑡 − �̂�∗,𝑡)
2𝑛
𝑖=1

√∑ (𝑥𝑖,𝑡 − �̅�∗,𝑡)22𝑛
𝑖=1 √∑ (�̂�𝑖,𝑡 − �̂�∗,𝑡)22𝑛

𝑖=1

 
(9) 

where the hat indicates the reconstructed data and the bar indicates the mean. The correlation 

coefficient as a function of time shown in blue line in FIG. 4 is over 0.8, suggesting the high 

similarity between reconstructed and original wave propagation. Therefore, the DMD 

reconstruction using the modes inside the bandgap region qualitatively captures the evolution 

dynamics despite the substantially reduced dimensionality of the system. 

 

DMD can accurately capture the frequency range and characteristics of topological states of elastic 

topological metamaterials. The nature of the valley pseudospin in our valley system can also be 

revealed, suggesting that DMD, functioning as a data-driven method, is able to learn the 

topological nature. In stark contrast with the original transient displacement data, the DMD spatial 

mode can explicitly show the topological nature. In addition, the propagation of topological states 

can be reconstructed qualitatively only by the DMD modes inside the bandgap and the 

corresponding time dynamics. The additional study in APPENDIX C is carried out on the 

topological metamaterial excited by a transient force, which further demonstrates the ability of 

DMD to qualitatively reconstruct the dynamics under different forms of excitations. Note that we 

use standard DMD based on SVD in the main text, but another variant, DMD with time-delay 

embedding, has demonstrated the ability of increasing the accuracy of reconstruction in several 

applications [23,24,32–34]. In APPENDIX D and the associated figure, we also show the partial 

decrease of reconstruction error using the augmented data matrix formed by shift-stacking the 

original data matrix. 

 



 

FIG. 4. Reconstruction error and correlation coefficient between reconstructed and original wave 

propagation. The relative error and correlation coefficient between the ground truth and 

reconstruction as a function of duration are shown in black and blue, respectively.  

 

IV. CLASSIFICATION OF TOPOLOGICAL AND TRADITIONAL 

METAMATERIALS 

Compared with the topological metamaterials, traditional metamaterials function by defect states 

that cannot support robust transport of elastic waves [35–38]. By using the transient displacement 

data, it is difficult to classify the topological and traditional metamaterials using simple 

classification methods because of the high-dimensional nature. Here, we demonstrate how to use 

the extracted DMD modes from topological and traditional metamaterials to classify them. The 

topological metamaterial is in the aforementioned configuration and the traditional metamaterial 

is constructed based on the defect states by the metamaterial with 𝑚1 = 0.8 kg, 𝑚2 = 1.2 kg, where 

the masses are replaced by 𝑚2 = 1.2 kg along the Z-shape interface to create defects. Because of 

the defect state, the traditional metamaterial serves as a waveguide similar to the topological 

metamaterial but without the topological protection. 

 



The original DMD modes are high-dimensional and thus difficult to classify using a classification 

algorithm directly. Therefore, the feasible way is to find a feature space to project the DMD modes 

on, resulting in a low-dimensional representation. Specifically, we construct a library of DMD 

modes inside the bandgap from topological metamaterials and traditional metamaterials 𝐿: 

 

𝐿 = [

| | |
𝜙1 𝜙2 ⋯ 𝜙𝑁

| | |

] (10) 

For the purpose of classification, we consider the absolute value of every element of normalized 

DMD modes and denote the resulting matrix as |𝐿| . To simplify this problem, clusters are 

determined in one-dimensional principal component space, using the projections of each column 

of |𝐿| onto the proper principal components of |𝐿|: 

 |𝐿| = 𝑈𝐿Σ𝐿𝑉𝐿
∗ (11) 

With this expression yielding the SVD of the matrix |𝐿| and using 

 𝑃 = 𝑈𝑖
𝑇|𝐿| = Σ𝑖𝑉𝑖

𝑇 (12) 

where 𝑈𝑖
𝑇 , Σ𝑖  and 𝑉𝑖

𝑇  are the transpose of the 𝑖𝑡ℎ  column of 𝑈𝐿 , 𝑖𝑡ℎ  singular value and the 

transpose of the 𝑖𝑡ℎ column of 𝑉𝐿, respectively. Note that the transpose of 𝑉𝐿 is the same as the 

conjugate transpose of 𝑉𝐿 due to the real value. 

 

The principal components can explain a significant proportion of the variance in the features in 

topological and traditional metamaterials. Therefore, finding a proper principal component 𝑈𝑖
𝑇 is 

key to distinguish two types of metamaterials. Also, the proper principal component is physically 

interpretable to contain the features differentiating two types of metamaterials. After examining 

all principal components, we have found that the second principal component is a suitable feature 

towards the classification task at hand (classification results are same with the labeled dataset). 



The second principal component of |𝐿| is shown in FIG. 5(a) (The second principal components 

of |𝐿| for straight and cross interfaces are shown in FIG. 10(a) and FIG. 10(b) in Appendix E). The 

reason why the second principal component is optimally suited to serve as the feature space is that 

this pattern of the principal component shows the difference between topological and traditional 

metamaterials at the beginning of the input port (positive vs. negative values, respectively). We 

find that it corresponds to the distinction of backscattering in topological and traditional 

metamaterials. In the traditional metamaterial, due to the interference of elastic waves traveling in 

opposite directions, elastic waves experience strong backscattering when encountering bends, 

obstacles or even traveling along the straight interface. Therefore, when |𝐿| is projected onto this 

principal component, the two types of metamaterials can be classified whereas they cannot be 

classified when |𝐿| is projected onto other principal components. The relevant diagnostic allows 

us to distinguish topological and traditional metamaterials purely from the wave propagation 

phenomena represented by the displacement, corresponding to topologically protected wave 

propagation and non-topological wave propagation, and hence, accordingly classify them. Note 

that from the perspective of the underlying topological physics, the topological invariants of the 

bulk and the bulk-edge correspondence are principles to classify topological and traditional 

systems. 

 

Then, in order to test whether this feature space can be generalized to classify topological and 

traditional systems, we apply the feature space (of the second principal component) obtained above 

to the topological and traditional metamaterials under the excitation of different forces 𝐹0 and 

different angular frequencies 𝜔0. As shown in FIG. 5(b), it is obvious that the projected values for 

topological and traditional metamaterials under the excitation of different forces can be separated 



well and can be simply classified using the k-means unsupervised clustering [39]. Likewise, under 

the excitation of different frequencies, the projected values for topological and traditional 

metamaterials are separated well, leading to good classification results. Using the same method, 

the wave propagation along different interfaces (straight and cross interfaces) in topological and 

traditional metamaterials under the excitation of different forces and frequencies can also be 

classified, as detailed in APPENDIX E. The classification results for straight and cross interfaces 

are demonstrated in the relevant figure therein. The case for the straight interface indicates that 

elastic waves in the traditional metamaterial experience backscattering without the bend because 

of the interference of guided waves propagating to opposite directions. The classification results 

and ground truth have excellent agreement. The DMD modes with improved accuracy calculated 

by DMD with time-delay-embedding (APPENDIX D) can also be used in the classification, 

resulting in better separation of topological and traditional metamaterials in the feature space. It 

should be expected that with the decrease of the Berry curvature in the topological metamaterials 

induced by the decrease in degree of broken inversion symmetry, the classification of two types 

of metamaterials would become progressively more difficult. This is because the intervalley 

scattering becomes larger in the topological metamaterials, resulting in the similar wave 

propagation in topological and traditional metamaterials [12,16]. 

 



 

FIG. 5. Classification of topological and traditional metamaterials. (a) The feature space formed 

by the second principal component of DMD modes with Z-shape interface. (b) The projected 

values of each DMD mode from the topological and traditional metamaterials excited by different 

forces (left panel) and different excitation frequencies (right panel). Red and blue regions indicate 

topological and traditional DMD modes, respectively. The error bars indicate the range of the 

minima and maxima of projected values. 

 

V. CONCLUSIONS AND FUTURE CHALLENGES 

In this paper, we provide a guide towards the potential impacts of the application of the DMD 

method on the wave propagation in topological elastic metamaterials. The analysis of DMD 

eigenvalues and spectrum show the oscillation and frequency of the DMD modes. The notable 



topological interface states and valley pseudospin of the valley system can be reflected by the 

DMD modes. Furthermore, the reconstruction of topological state propagation is achieved by the 

low-dimensional model constructed only by the DMD modes inside the bandgap and the 

corresponding time dynamics. Apart from the fundamental characterization by DMD, we 

demonstrate the potential that the method bears as concerns the tasks of classification and synthesis 

of wave propagation along the given interface using DMD modes and associated reduced 

dynamical descriptions (Appendix F). We find a feature space with particular characteristics to 

project the DMD modes on for the classification of topological and traditional metamaterials. The 

synthesis of wave propagation along the given interface can be achieved by the extension and shift 

of DMD modes, where the ℓ2-norm error and correlation coefficient are at an acceptable level to 

visualize the future wave propagation. The DMD provides a data-driven method to explore the 

wave propagation in topological metamaterials and to reveal the potential topological nature, 

filling an important research void at the interface of the corresponding fields. It also opens up an 

avenue to classify and synthesize the wave propagation through a purely data-driven approach. 

 

Naturally, this is only a first step along this direction and raises several questions that still merit 

further addressing. One key aspect of interest concerns how to reduce the error and overcome the 

inherent deficiency of DMD. While the results presented herein represent adequate reconstructions 

(and even synthetic wave propagation along the given interface) of the time evolution dynamics, 

it would be highly desirable for such examples to match far more adequately, in a quantitative 

sense, the real system dynamics. From the point of view of applications, it would be relevant to 

explore the method in other classes of systems including in ones stemming from higher dimensions 

and to explore how adequately the method can fare in such more data-intensive settings. 



Additionally, the characterization of the topological metamaterials with different Berry curvatures 

by DMD can be conducted through the same process. Similar results, such as DMD spectrum, 

modes and low-dimensional model, are expected but classification between two types of 

metamaterials can be less efficient as discussed in section IV. Such topics are presently under 

consideration and associated potential progress will be reported in future publications. 
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APPENDIX A: THE TRUNCATION OF SINGULAR VALUES OF THE DATA MATRIX 

Choosing the proper truncation of the singular value decomposition of X is important to obtain the 

best-fit linear operator A. To identify the truncation r of the singular values, we wish to ensure the 

minimization of the reconstruction error. The reconstruction �̂� is conducted by DMD modes inside 

the bandgap region and corresponding time dynamics and is compared with the original wave 

propagation. In FIG. 6(a), the map of the reconstruction error calculated by 𝐸(𝑡) =
|𝑋(𝑡)−�̂�(𝑡)|2

|𝑋(𝑡)|2
 is 

given as a function of the number of singular values (truncation r) and duration. The singular value 

spectrum shows that singular values decay slowly, indicating that many modes are needed. 

Accordingly, with the increase of the number of singular values in a certain range (1~140), the 



reconstruction error does not change significantly in the logarithm scale. However, when the 

number of singular values further increases, the reconstruction error will significantly increase. 

 

Therefore, the proper truncation is in the range of 1 to 140, which we magnify in the FIG. 6(b). As 

the number of singular values increases, the reconstruction error will decrease to a minimum. We 

choose the r = 131 as the number of singular values corresponding to the inflection point in the 

singular value spectrum. 

 



Fig. 6. (a) The reconstruction error as a function of truncation and duration. The error is shown on 

a logarithmic scale. (b) The zoom-in reconstruction error as a function of truncation from 1 to 140 

and duration. The vertical dashed lines in (a) and (b) correspond to the selected r = 131. 

 

APPENDIX B: DMD SPECTRA AND MODES OF WAVE PROPAGATION ALONG 

INTERFACE WITH DIFFERENT SHAPES 

FIG. 7(a) gives the DMD spectrum indicating the relation between the frequency and the mode 

amplitude for the topological states propagation along the straight interface (configuration shown 

in the inset). Similar to FIG. 2(b), it is clear that the region with high mode amplitude corresponds 

to the bandgap region (shaded area). The mode inside the bandgap region with the largest 

amplitude is chosen as the prototypical mode of interest (and of relevance to the dynamics). FIG. 

7(b) exhibits the magnitude and phase of this dynamic spatial mode of our system. The interface 

state can be observed from the magnitude of the DMD modes. The displacement is concentrated 

along the straight interface and decays rapidly away from the interface. The elastic waves can 

travel along the interface with bends. The phases of the DMD modes also reflect the characteristics 

of topological states. The distribution of phase along the interface has a certain pattern, 

representing the valley pseudospin of our system as described in the main text. Likewise, in FIG. 

7(c) and FIG. 7(d), we calculate the DMD spectrum and DMD modes inside the bandgap region 

with the largest amplitude for the topological states propagation along the cross interface 

(configuration shown in the inset). The DMD mode in FIG. 7(d) shows that the elastic wave travels 

along the path at the beginning and when it arrives at the intersection, it propagates to two sides 

instead of the straight path. Because of the valley-locking effect, the wave will propagate along 

certain interface with same valley projection [11,40–42]. The generated elastic wave is projected 



by the K valley according to the group velocity in projected band structure (FIG. 1(c)). Therefore, 

the elastic wave will only propagate along the K-valley-projected topological interfaces. Note that 

apart from DMD modes shown in FIG. 7(b) and FIG. 7(d) which have the largest amplitudes in 

the DMD spectra, other DMD modes inside the bandgap region are also interface states. 

 

 

FIG. 7. DMD spectrum and DMD modes of straight interface and cross interface are shown in (a), 

(b) and (c), (d), respectively. The insets in (a) and (c) are the configurations of elastic topological 

metamaterials. 

 

APPENDIX C: DMD IMPLEMENTATION ON THE TOPOLOGICAL STATE 

PROPAGATION EXCITED BY A TRANSIENT SOURCE 

In the main text, our system with Z-shape interface is excited by a constant harmonic force. Now 

we explore the system excited by a transient source. In our example, we use the Gaussian tone 

burst 𝐹 = 𝐹0𝑒
−(

𝜔𝑡

30
)2 cos(𝜔𝑡) to excite our system and follow the procedure introduced in the main 



text to analyze the system’s response using DMD. FIG. 8(a) shows several snapshots of wave 

propagation along the Z-shape interface; we can observe that an elastic wave can propagate 

through the shape bend smoothly due to the topological protection. FIG. 8(b) exhibits the 

reconstructed wave propagation by DMD reconstruction, which is visually similar to the original 

evolution dynamics though it starts to blow up at the input port at the end of the reported time 

horizon, suggesting the qualitative nature of the reconstruction. Similar to the situation in the main 

text, FIG. 8(c) exhibits the magnitude of DMD modes showing that an elastic wave can travel 

along an interface featuring bends. As shown in FIG. 8(d), the phase of the DMD mode indicates 

the phase difference around the corners of the honeycomb and the valley pseudospin of the excited 

valley in our system. This demonstrates the ability of DMD to learn the topological nature of the 

wave propagation in topological metamaterials. 

 

 

FIG. 8. The DMD implementation. (a) (b) Snapshots of original and reconstructed wave 

propagation excited by the Gaussian burst represented by the horizontal displacement 𝑢𝑥 along a 

Z-shaped interface at t = 2 ms, 192 ms, 380 ms, 570 ms and 758 ms (with the time evolving from 

the bottom to the top), respectively. (c) The magnitude of the DMD mode with the largest 



amplitude inside the bandgap region. (d) The phase of the DMD mode with the largest amplitude 

inside the bandgap region. The inset shows the magnified view around the interface (black line) 

illustrating the phase difference and valley pseudospin. The black and green arrows show the 

pseudospin up and pseudospin down indicated by the phase evolution around hexagon corners, 

respectively. 

 

APPENDIX D: DYNAMIC MODE DECOMPOSITION WITH TIME-DELAY 

EMBEDDING 

Recently, the approach of time-delay embedding has been shown to be a general method to 

generate proper observable measurements to render the reconstruction more accurate as discussed 

in the main text. By embedding future temporally consecutive snapshots into the current snapshot, 

time-delay embedding augments the limited spatial observables and provides extra observables. 

The DMD with time-delaying embedding can be achieved by the augmented data matrix 𝑋𝑎𝑢𝑔 by 

shift-stacking the original data matrix as shown below: 

 

𝑋𝑎𝑢𝑔 =

[
 
 
 
 
 
 
 
 
 
 
| | |
𝑥1 𝑥2 ⋯ 𝑥𝑚−ℎ

| | |

| | |
𝑥2 𝑥3 ⋯ 𝑥𝑚−ℎ+1

| | |

| | |
𝑥ℎ 𝑥ℎ+1 ⋯ 𝑥𝑚−1

| | | ]
 
 
 
 
 
 
 
 
 
 

 
(14) 

where ℎ is the number of stacks. 𝑋′𝑎𝑢𝑔 can be induced likewise. Using the augmented data matrix 

to conduct DMD, the reconstruction error can be reduced. As shown in FIG. 9, the relative error 

calculated by 𝐸 =
|𝑋−�̂�|𝐹

|𝑋|𝐹
 decreases with the increase of the number of stacks and becomes 

saturated at around 0.65 even with a larger number of stacks. The error may come from the inherent 



deficiency of DMD on the wave propagation problem as discussed in Section III. However, when 

the number of stacks increases, the augmented data matrix becomes large, leading to a heavy 

computation cost. Therefore, there is a tradeoff balance between accuracy and efficiency in the 

case of real-world applications and practitioners should seek to strike a relevant balance to that 

effect. 

 

FIG. 9. The relative error of reconstruction as a function of number of stacks. 

 

APPENDIX E: CLASSIFICATION OF TOPOLOGICAL AND TRADITIONAL 

METAMATERIALS WITH DIFFERENT INTERFACES 

For classification of topological and traditional metamaterials with different interfaces, we follow 

the method we introduce in the main text. The topological metamaterial is composed of the 

metamaterial with 𝑚1 = 0.8 kg, 𝑚2 = 1.2 kg and the metamaterial with 𝑚1 = 1.2 kg, 𝑚2 = 0.8 kg. 

The traditional metamaterial is constructed based on the defect states by the metamaterial with 𝑚1 

= 0.8 kg, 𝑚2 = 1.2 kg, where the masses are replaced by 𝑚2 = 1.2 kg along the straight and cross 

interface to create defects. Following the method in the main text, we extract the principal 



components of the library composed of DMD modes of topological and traditional metamaterials 

with different interfaces (straight and cross interfaces). As for different shapes of the interfaces, 

the feature space from the principal components for the DMD modes to project on can be 

determined as visualized in FIG. 10(a) and FIG. 10(c), corresponding to the straight interface and 

cross interface. Similarly, the feature spaces are also the second principal components in the SVD, 

in which the main difference between topological wave propagation and non-topological wave 

propagation is reflected, and hence can classify two types of metamaterials. We test the feature 

space on the case excited under different forces and different frequencies. After the DMD modes 

inside the bandgap for both topological and traditional metamaterials are projected onto the feature 

space, the DMD modes lead to a scalar value, which is separated well between the two families, 

and can be classified using the k-means unsupervised clustering, as shown in FIG. 10(b) and FIG. 

10(d). For both wave propagation along straight interface and cross interface, the classification 

results and ground truth have excellent agreement. 

 

FIG. 10. Classification of topological and traditional waveguides with different interface. (a) (c) 

The feature space of topological metamaterials with straight interface and cross interface. (b) (d) 



The projected values of each DMD mode extracted from the system under excitation of different 

forces and different frequencies, corresponding to straight interface (a) and cross interface (c). Red 

and blue regions indicate topological and traditional DMD modes, respectively. The error bars 

indicate the range of the minima and maxima of projected values. 

 

APPENDIX F: SYNTHETIC WAVE PROPAGATION ALONG THE GIVEN 

INTERFACE USING DMD 

We demonstrate another application of the usefulness of DMD modes in topological metamaterials. 

Synthetic wave propagation along the given interface is important when there is lack of data due 

to the sensor problems or measurement difficulties. DMD is capable of extracting the time 

dynamics and corresponding dynamic modes, which can help with the synthetic topological state 

propagation along the given interface. Here, we use DMD modes calculated from a part of data 

(training data) to build a low-dimensional model, and with the knowledge of the position of 

interface further to synthesize the future propagation of elastic wave. Here, as shown in FIG. 11(a), 

we use the wave propagation in topological metamaterials from 0 ms to 200 ms as the training 

data. Then, DMD is used to extract the DMD modes inside the bandgap and the corresponding 

time dynamics (two pairs of DMD modes inside the bandgap are used). Since wave propagation 

is a process with time and space variation together, the DMD modes are limited in space due to 

the nature of spatial modes, resulting in stoppage of the wave and, accordingly, failure of the 

synthesis. A feasible way that we have found relevant towards bypassing this issue is to extend the 

DMD modes along the (a priori) given interface and to approximate the future wave propagation 

using the extended DMD modes and the time dynamics from the training data. 

 



First, the least squares method is used in order to identify the time-varying wave velocity 𝑐(𝑡) by 

a set of pairs of the positions of wave front and corresponding time. Therefore, the position of 

wave front can be determined at arbitrary time. Next, after the extracted DMD modes inside the 

bandgap are reshaped to a matrix form, they are truncated based on the displacement 𝑑 = 𝑐(𝑡) ×

𝑡, corresponding to the number of matrix columns, as shown in the training data in FIG. 11(b). The 

DMD is used again to predict the DMD modes in the future when the elastic wave propagates to 

the arbitrary position. The synthesis time is determined by the length of the given interface. Note 

that extension by DMD only considers the speed of wave propagation, assuming that it is 

effectively constant during each segment of the interface, instead of other associated properties 

such as the dispersive radiation, which is found to be minimal in the present setting. Then, the 

extended DMD modes 𝜙𝑒 are shifted according to the shape of the interface, resulting in the shifted 

DMD mode 𝜙𝑠. As an example, one of the DMD modes inside the bandgap is shown in FIG. 11(b), 

where the DMD mode is constrained in space which will cause the stoppage of wave propagation 

after 200 ms. After being extended by DMD and shifted by the shape of interface, the DMD mode 

constrained in a certain space can cover the given interface (Z-shaped interface), as shown in FIG. 

11(b). Finally, after we extend and shift all DMD modes inside the bandgap from the training data, 

the time dynamics of the training data are used to synthesize the wave propagation along the Z-

shaped interface, detailed as below: 

 �̂� = Φ𝑠Λ
𝑡−1𝑍𝑠 (13) 

where Φ𝑠 is formed by 𝜙𝑠. The diagonal entries of Λ contain DMD eigenvalues from training data 

and 𝑍𝑠 = Φ𝑠\𝑥1 . 𝑥1  is the initial condition of our system. As shown in FIG. 11(c), several 

snapshots of synthetic wave propagation clearly exhibit the elastic wave traveling along the Z-

shape interface. This process is qualitatively similar to the snapshots shown in FIG. 2(b). 



According to FIG. 11(d), the relative error compared with the reconstructed results in FIG. 2(b) is 

in the range of 0.95~1. Likewise, we use the correlation coefficient to characterize the qualitative 

performance of reconstruction, which is around 0.5. This is smaller than that for the reconstruction 

due to the limited number of modes and time dynamics. Yet this synthesis of wave propagation 

along the given interface still provides a reasonable visualization of future wave propagation. It 

should be mentioned that aforementioned approach of DMD with time-delay embedding can also 

be used in the synthesis since this approach can generate the dynamics and corresponding modes. 

 

 

FIG. 11. Synthesis of topological states propagation along the given interface. (a) The snapshots 

of horizontal displacement 𝑢𝑥 from 0 ms to 200 ms used for training. (b) The top panel displays 

one of the DMD modes inside the bandgap of the training data. The bottom panel displays the 

corresponding extended and shifted DMD modes along the Z-shaped interface. (c) The snapshots 



of the horizontal displacement 𝑢𝑥 for the synthetic wave propagation at t = 2 ms, 192 ms, 380 ms, 

570 ms and 758 ms. (d) The synthesis error and correlation coefficient as a function of duration 

are shown in black line and blue line, respectively. 
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