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We consider the origin of superconductivity found recently in Bernal bilayer graphene at the onset
of isospin-polarized order. The superconductivity is induced by a parallel magnetic field and persists
well above the Pauli limit, indicating an unconventional scenario of quantum-critical pairing, where
soft fluctuations of isospin give rise to a spin-triplet superconductivity. We argue that the pairing
interaction in this case is entirely repulsive, which stands in contrast to the typical quantum-critical
pairing mechanisms. Superconductivity emerges through a “transformer” mechanism where the
incipient valley polarization converts a frequency-independent repulsion into one with a strong non-
monotonic frequency dependence in the presence of an in-plane magnetic field. Such interaction
enables a non-zero solution for the pairing gap function that changes sign as a function of frequency.
The same mechanism holds at zero fields in the presence of spin-orbit coupling, providing a likely
explanation for the recently observed superconductivity in bilayer graphene on WSe2 monolayer.

The quest for unconventional superconductivity (SC)
governed by Coulomb repulsion rather than phonon
attraction gained new momentum with the advent of
graphene-based SC. In the SC phases found initially in
moiré graphene [1–7], a flat-band system hosting strongly
interacting electrons [8], delineating these mechanisms
has proven to be a challenging task[9]. In some experi-
ments, the SC appears to be clearly associated with cor-
related orders[6, 7, 10], suggesting non-phononic pairing
scenarios[11–14]. Yet, other experiments report on SC
that can be isolated (and thus decoupled) from other or-
dered phases[4, 15, 16], supporting phonon mechanism
[17–19]. So far, no consistent picture has emerged, and
presently, there is no clear verdict on the pairing mech-
anism. System complexity, such as the peculiar form of
moiré flatband electron wavefunction[8, 20] and multiple
kinds of moiré-related disorder, in particular the twist-
angle disorder, strain, and buckling, make this debate
difficult to settle.

Fortunately, recent research has uncovered two non-
moiré systems that exhibit intertwined superconducting
orders and correlated electronic orders — the field-biased
Bernal bilayer graphene [21, 22] (BBG) and rhombo-
hedral trilayer graphene [23, 24] (RTG). These systems
present distinct benefits for studying strongly-correlated
physics owing to the simplicity of their bandstructure and
exceptional cleanness due to the absence of strain. It is
noteworthy that superconducting phases are observed in
both BBG and RTG systems in close proximity to inter-
faces between phases with different isospin polarization.
The superconducting phases track these interfaces when
the system parameters are being varied, see Fig.1.

Given these findings, it is almost inevitable to con-
clude that this behavior indicates presence of a pairing
glue that is being mediated by a soft mode directly asso-
ciated with isospin ordering. Interestingly, as discussed
below, this pairing mechanism yields a superconducting
phase near the onset of isospin polarization and general
properties that closely match the observations. In partic-

FIG. 1. a) Phase diagram schematic for isospin orders in BBG
following Ref.[21]. In phases PIP1 and PIP2 only one and
two isospin-polarized sub-bands are populated, respectively.
Labels indicate isospin polarization in each phase at B‖ = 0.
b) Predicted phase diagram for superconductivity governed by
critical mode at the phase boundary between isospin-valley-
polarized and unpolarized phases. Here ↑ and ↓ label spin-up
(majority) and spin-down (minority) subbands, respectively.
c) The measured phase diagram [21] strongly resembles the
phase diagram predicted in b) [see text].

ular, superconductivity appears at a finite in-plane mag-
netic field B‖ and survives well beyond the Pauli limit,
in agreement with the experiment. The superconduc-
tivity is spin-triplet, induced by a B‖ that creates spin
imbalance as shown in Fig.1 b) insets. Another interest-
ing property that follows from this analysis is that, per-
haps somewhat unexpectedly, the minority-spin carriers
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(spin-down in Fig.1) dominate pairing, whereas the con-
tribution of the majority-spin carriers, despite a higher
density, is negligible.

We stress that this pairing scenario is distinct from
the existing mechanisms of pairing mediated by critical
modes [25–32]. In previously studied instances of pair-
ing near a quantum-critical point, soft quantum-critical
modes associated primarily with spin fluctuations [33]
generated an effective e-e attraction by exchange-type
scattering of Cooper pairs either between different Fermi
surfaces [34, 35] or between different hotspots on a sin-
gle Fermi surface [36]. In graphene, to the contrary, the
exchange component of (antisymmetrized) Coulomb in-
teraction arising due to intervalley e-e scattering is weak-
ened because the Fermi surface size in each valley is much
smaller than the momentum transfer K −K ′ for such
e-e scattering processes. This renders pair scattering ap-
proximately valley-conserving, weakening the attractive
exchange-type pairing interaction [37]. Likewise, the pair
hopping interaction, known to be relevant for pairing in
Fe-based materials, is absent in our case because in BBG
the low-energy fermions are located near Dirac points K
and K ′, but 2(K−K ′) is not a reciprocal lattice vector.
As a result, the soft-mode-mediated pairing interaction,
while being strong, is repulsive rather than attractive.
Therefore, understanding this unusual superconductivity
requires a mechanism that converts a strong repulsion
mediated by the soft modes into an attraction.

Another clue comes from the observed unique depen-
dence of Tc on a magnetic field B‖: unlike textbook SC
which is suppressed by a magnetic field, here SC is in-
duced by B‖ field. A finite threshold in B‖ above which
SC is observed (see Fig. 1c) suggests a pairing mecha-
nism different from those studied in moiré [11–14] and
RTG systems [23, 38, 39]. Since B‖ only couples to spin
when applied in-plane, the B‖-induced SC indicates that
spin imbalance is essential for pairing. Moreover, SC
is found to persist in a high field, surviving well above
the Pauli limit. The resilience of SC in a B‖ field un-
ambiguously points to a spin-triplet pairing and thus an
unconventional pairing mechanism.

Here we demonstrate that superconducting pairing can
be achieved through an attraction-from-repulsion sce-
nario that ties together these key factors: a soft mode,
repulsive Coulomb coupling, broken spin degeneracy, and
pairing in the spin-triplet channel. The predictions of
this scenario are in agreement with the observations [21].
In essence, at a finite B‖, the pairing interaction, while
remaining repulsive at all bosonic frequencies ν, becomes
strongly retarded, thereby helping an effective attraction
to emerge from bare repulsion. Namely, the pairing inter-
action acquires a non-monotonic frequency dependence
for minority-spin carriers due to field-induced suppres-
sion of the pairing interaction at small ν. We show that
this suppression is ”universal,” meaning it is not affected
by the bandstructure, and enables the emergence of a su-
perconducting state with a dispersive gap that changes
sign as a function of frequency. The superconducting

order parameter is of a spin-triplet and valley-singlet
character, featuring an s-wave momentum dependence.
The predicted critical temperature sharply peaks near
the isospin polarization threshold. Similar scenarios for
conventional s-wave pairing in the presence of strong re-
pulsive Coulomb repulsion have been discussed repeat-
edly in the literature both early on [40–43] and recently
[44–46].

We also investigate an alternative, yet closely associ-
ated, pairing mechanism, which involves majority-spin
electrons subject to a finite B‖. In this scenario, the
pairing interaction between majority-spin electrons, gov-
erned by the soft mode, acquires a dependence on the
soft-mode momentum arising due to the 2kF singular-
ity in polarization function. Under a parallel magnetic
field the 2kF values for the spin-up and spin-down Fermi
seas become unequal and, as a result, the pairing interac-
tion for the majority-spin Fermi sea is modulated by the
strength of the B‖ field. This interaction induces an at-
traction in non-s-wave channels via the Kohn-Luttinger
(KL) mechanism [47]. As a result, we obtain pairing in
a spin- and valley-triplet, p-wave channel.

Pairing in either the minority-spin or majority-spin
channel accounts for all the salient features observed in
the experimentally determined phase diagram in BBG
[see Fig.1 c)]: First, superconductivity occurring at a
phase boundary is natural for a scenario that relies on
critical isospin modes. Second, the predicted supercon-
ductivity has a threshold in B‖ field as a finite B‖ is
required to overcome bare repulsion. At a lower B‖, we
predict a strong repulsive interaction. This interaction is
expected to produce a correlated insulator state, in line
with the observations [Fig.1 c)].

Another aspect of the measured phase diagram that
supports this scenario is the dependence of the onset of
the isospin order (PIP2 order in the notations of [21]).
In experiment [21], the B‖ field merely pushes the onset
of the order to lower carrier densities, producing a phase
boundary with a constant slope marked by the dashed
line in Fig.1 c). As we will see, this behavior follows di-
rectly from our model (see Eq.(34) below and accompany-
ing discussion). We note that in Fig.1 c), borrowed from
the experimental work [21], the x axis is drawn from high
carrier density to low carrier density. The experimental
and theoretical slopes of the phase boundary match both
in sign and value, lending further support to the theory.

Further support for this mechanism comes from a re-
cent experiment [22] that reports the observation of su-
perconductivity in a BBG placed on top of a monolayer
of WSe2. In this system, superconductivity arises even
when the magnetic field strength B‖ is zero, and persists
even when B‖ values exceed the Pauli limit. This be-
havior can be explained within the same framework as
described above by considering the influence of interfa-
cial spin-orbit coupling (SOC) induced in graphene due
to the presence of WSe2. Such SOC effectively induces a
valley-odd Zeeman field, which acts for SC in the same
way as the magnetic field B‖. Naturally, at a finite B‖
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the actual and effective B fields combine to induce SC
above the Pauli limit. Further details of this scenario are
discussed in Sec.VII.

I. PAIRING NEAR THE ONSET OF VALLEY
POLARIZATION

Motivated by the observed relation between valley po-
larization instability and the emergence of superconduc-
tivity, here we employ a minimal model for the former
and discuss its implications for the latter. We consider
susceptibilities for the valley and spin imbalances, the
quantities that diverge near the onset of valley or spin
polarization. These quantities can be linked to the free-
fermion density-density response function in a standard
manner. With this framework established, we are able to
investigate the “transformer” pairing glue that emerges
at the onset of instability, and analyze its distinctive
characteristics and the properties of the resulting super-
conducting state.

First, we describe the hierarchy of energy scales in
our problem. In the regime where superconductivity oc-
curs, the bandgap created by the displacement field is
approximately 100 meV [21]. Bandstructure calculations
[48, 49] predict a Fermi energy of roughly 10 meV at the
carrier density and D field values where superconductiv-
ity occurs. This Fermi energy is much smaller than the
bandgap of D. The electron-electron interaction energy
is expected to be comparable to the Fermi energy, as the
system is close to an isospin Stoner instability. The ex-
periment reports a relatively small superconducting tran-
sition temperature (Tc) of 30 mK, which is comparable to
the minimal Zeeman energy ≈ 1× 10−2 meV required to
create superconductivity upon increasing B‖[21]. Since
this value is much smaller than the interaction and ki-
netic energies, we will ignore the Zeeman energy at first
and account for it perturbatively later.

We model the interacting electrons in BBG using a
short-range interaction

H =
∑
i

εi(p)ψ†ipψip +
∑
ii′

V0

2
ψ†ip+qψ

†
i′p′−qψi′p′ψip, (1)

where i, i′ = K ↑, K ↓, K ′ ↑, K ′ ↓ are isospin indices. A
single-band model εi(p) will be used as a proxy for a more
realistic Dirac band. This single-band model Eq.(1) is ob-
tained by projecting the two-band model of BBG[48, 49]
on the conduction band, which in the regime of D � EF
is well isolated from the valence band. This band projec-
tion in general yields wavefunction formfactors 〈up|up+q〉,
where |up〉 is the cell-periodic part of the Bloch function.
In Eq.(1), we take the form factors to be unity, as appro-
priate for the case D � EF [50]. Indeed, for the states
obtained from a simple two-band Hamiltonian [48, 49]
the formfactors at small energies EF � D are close to
unity, with the deviation being as small as EF /D. There-
fore, Eq.(1) provides a reasonable approximation so long
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FIG. 2. Ladder diagrams describing the valley-polarization
instability in a mean-field approximation. Here v and s are
valley and spin indices K, K′ and ↑, ↓ The lines with arrows
represent Green’s functions, the wavy line is the electron-
electron interaction, vertices represent the τ3 Pauli matrix
in valley subspace. No summation over v and s is assumed.

as D � EF , regardless of the bandstructure details such
as the trigonal warping[48, 49].

In Eq.(1), the momentum-independent electron-
electron interaction V0 represents a repulsion short-
ranged as compared to Fermi wavelength. This interac-
tion mimics Coulomb 1/r interaction screened out at mo-
mentum transfers smaller than 2kF , taken here as an es-
timate for the screening parameter in the Thomas-Fermi
model. Eq.(1) only accounts for the intravalley scattering
processes. The inter-valley carrier scattering processes
mediated by the 1/r interaction can be ignored because
the 1/r interaction form factor drops rapidly for momen-
tum transfers 2kF < q < qmax ∼ |K −K ′|, where the
ratio qmax/2kF can be as large as a 100 for BBG.

In the graphene bilayer, an isospin-polarization in the
valley (τ) and spin (σ) subspaces can conceivably occur
through various routes, with the main scenarios being:

1. A q = 0 instability towards valley-only polarization
(M = τ3, σ0)

2. A q = 0 instability towards intra-valley ferromag-
netism (FM) (M = τ0 ± τ3, σn)

3. An instability with momenta K − K ′ in either
charge channel (τ±, σ0) or spin channel (M = τ±,
σn) (see e.g. Refs.[51, 52]).

Matrices M in spin/valley space describe the orders
through a spontaneously generated fictitious field term
in the Hamiltonian,

δH =
∑
pi

ψ†ipMii′ψi′p, (2)

where i, i′ label spin and valley degrees of freedom. Here
τm and σn (m,n = 0, 1, 2, 3) are valley and spin Pauli
matrices, and σ0 is the identity 2× 2 spin matrix. In our
simplified model, we find that these instabilities are de-
generate. However, in a more realistic scenario involving
a generic interaction, one of the instabilities will typically
dominate and lift the degeneracy (as discussed below).
Experiments identified the ordered phase PIP2 with a
valley-imbalanced phase [21]. We therefore will focus on
the τ3 valley polarization instability, and defer a discus-
sion of potential superconductivity near other instabili-
ties to a later point.



4

An instability towards valley polarization, described by
the M = τ3 matrix, can be represented diagrammatically,
as shown in Fig.2, where arrows represent the electron
Green’s functions Gs(ω,p) = 1/ (iω − εs(p)) and the
wave lines represent the interaction. Summing up ladder
diagrams in the τ3 channel yields a standard Stoner-like
condition for the instability threshold (see e.g. Ref.[51]):

V0Π3,s = −1, Π3,s =
1

2

∑
ω,p

tr (τ3Gs(ω,p)τ3Gs(ω,p)) .

(3)
where the quantity Π3,s denotes the polarization in the
valley channel. Here s =↑, ↓ denotes electron spin, tr is a
valley trace involving summation over valley indices, with
the spin indices not being summed over. The quantities
Gs(ω,p) are Green’s functions of spin-s electrons, each
being a 2× 2 matrix in valley space:

Gs(ω,p) =

(
GKs(ω,p) 0

0 GK′s(ω,p)

)
. (4)

In our notations, Π3,s is negative, so the instability
develops at a positive V0. The corresponding valley-
polarization susceptibility is

χv,s =
Π3,s

1 + V0Π3,s
, (5)

where the subscript v stands for valley polarization. It
follows directly from Eq.(3) that the free-fermion polar-
ization functions obey

Π3,s = ΠK
s = ΠK′

s , (6)

where Πv
s =

∑
ω,pGvs(ω, p)Gvs(ω, p), v = K, K ′ is the

bare polarization bubble (bare susceptibility) in valleys

K and K ′. The identity ΠK
s = ΠK′

s follows from the
mirror symmetry that maps valleys K and K ′ on each
other. Due to this symmetry, the free-fermion dispersion
behaves as ε(K + p) = ε(K ′ − p), and, therefore, ΠK

s =

ΠK′

s . Below we suppress the valley index, i.e., replace ΠK
s

and ΠK′

s by just Πs. For free electrons with parabolic
dispersion and at a zero magnetic field, Πs = −ν, where
ν is the density of states at ε = εF for one isospin species.

We emphasize that while the valley susceptibility di-
verges, the ordinary charge susceptibility χc,s, obtained
by the ladder summation similar to that in Fig.2, but
with τ3 replaced with an identity matrix and the interac-
tion being a sum of the Hartree and Fock contributions,
shows no divergence. Explicit calculation yields

χc,s =
Πs

1 + V0Πs − 2
∑
s′ V0Πs′

. (7)

The factor of 2 before the summation over spin s′ is due
to the two-fold valley degeneracy (see Eq.(6)). At zero
magnetic field, where Πs = Π, this reduces to

χc,s =
Π

1− 3V0Π
, (8)

where the factor 3 = 4 − 1 arises as a combination of
the Hartree and Fock terms in Eq.(7). The Hartree term
is four times greater than the Fock term and is of the
opposite sign, which suppresses the charge instability.

At a non-zero magnetic field, the values Π↑ and Π↓ are
different, and the analysis requires more care. Performing
the same computation as above and noting that, in the
calculation, the ↑ and ↓ spin components decouple, and
Eq. (5) holds. Then valley instability for spin ↑ occurs
at V0Π↑ = −1, whereas for spin ↓ it occurs at V0Π↓ =
−1. In experiment [21], valley polarization is pushed to
a lower density at an increasing B‖ field [see Fig.1 c)].
Comparing this to the Stoner instability picture indicates
that criticality in a finite B‖ is linked to the majority-spin
carriers. In our model, this implies that |Π↑| > |Π↓|, and
the leading instability occurs at V0Π↑ = −1.

With the valley polarization instability framework es-
tablished, we proceed to discuss how the attraction-
from-repulsion pairing mechanism arises at the onset
of valley polarization. It is instructive to outline the
physics of this mechanism before proceeding with cal-
culations. In the presence of a magnetic field, valley po-
larization first emerges for spin-up (majority-spin) car-
riers. This makes spin-up valley-polarizing excitations
gapless, whereas excitations in spin-down (minority-spin)
Fermi seas remain gapped. Softening of valley-polarizing
modes leads to a vanishing of 1 + V0Π↑, while 1 + V0Π↓
remains finite. These two combinations appear in equal-
spin pairing vertices Γs,s as Γ↑,↑ ∝ 1/(1 + V0Π↑) and
Γ↓,↓ ∝ (1 + V0Π↑)/(1 + V0Π↓)

2.

These quantities, which describe superconductivity in
the spin-up and spin-down channels, have a very differ-
ent behavior at the valley polarization instability. The
pairing vertex for spin-up carriers, Γ↑,↑, diverges at the
transition. However, it is of a repulsive sign and mono-
tonically decreases with frequency. For such a vertex, the
superconductivity selfconsistency equation has no non-
zero solution for the gap function. However, the quan-
tity Γ↓,↓ shows a different behavior because of the fac-
tor 1 + V0Π↑ that vanishes near the instability. This
gives a negative feedback effect on Γ↓,↓ and, as a re-
sult, this quantity is substantially reduced at small fre-
quencies. The frequency dependence of Γ↓,↓ then be-
comes non-monotonic, dropping from more repulsive at
high frequencies to less repulsive at low frequencies. This
frequency dependence, despite the positive sign of Γ↓,↓,
allows spin-down electrons to form spin-triplet Cooper
pairs with a sign-changing gap function ∆(ω).

Below we first discuss the pairing interaction at a zero
magnetic field B‖ = 0, where Πs=↑ = Πs=↓ = Π (see
Sec.II), and then extend the results to finite B‖, where
Πs=↑ 6= Πs=↓ and the frequency dependence of the pair-
ing interaction becomes nonmonotonic, leading to super-
conductivity (see Sec.III).
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b)
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FIG. 3. a) Diagrams describing the effective pairing in-
teraction between electrons in valleys K and K′ mediated
by quantum-critical modes, Eq.(11). These processes give a
divergent enhancement to forward scattering near the valley-
polarization instability (see text). b)The diagrammatic rep-
resentation of the irreducible part of the charge susceptibility
χc,s (the shaded ellipse), summed over s =↑, ↓.

II. REPULSION AT B‖ = 0

It is instructive to start with B‖ = 0. In this case,
the pairing interaction is repulsive and has a monotonic
frequency dependence. This behavior, which is incom-
patible with pairing, will be contrasted in Sec.III with
that arising at a finite B‖, where the interaction remains
repulsive but acquires a non-monotonic frequency depen-
dence that leads to pairing.

We start by noting that the pairing interaction with
zero total momentum occurs between fermions in differ-
ent valleys, K and K ′. At the lowest order, the pairing
interaction is just V0, however near the onset of the valley
polarization order dressing it with soft modes becomes
essential. We argue below that the relevant dressing is
the one illustrated in Fig.3. The unique property of this
dressing is that it enhances the pairing interaction by
a large factor 1/(1 + V0Π). We proceed by analyzing
how these diagrammatic series shown in Fig.3 emerge in
order-by-order expansion in V0.

To understand the pairing, we need to compute the
irreducible vertex function in the pairing channel, Γss′ .
By general rules, Γss′ is a fully dressed antisymmetrized
interaction describing scattering between fermion pair
states (k,−k) → (p,−p). The specifics of our case are
that (i) pairing involves one fermion near K and one
near K ′, and (ii) the scattering between K and K ′ is
weak in graphene and can be neglected. In this situa-
tion, the contributions to Γss from antisymmetrization
vanish, Γs,s′ becomes spin-independent Γs,s′ = Γ and we
only need to analyze how the direct pairing interaction
V0 is being dressed.

To second-order in V0, we have three topologically dif-
ferent diagrams shown in Fig.4. The first two diagrams
[see panels a) and b)] are known as bubble and “wine
glass” diagrams. Since the two intermediate electron

K + k K ′ − k

K + p
K ′ − p

a) b)

K + k
K ′ − k

K + p
K ′ − p

K + k K ′ − k

K + p K ′ − p

c)

FIG. 4. Three types of second-order diagrams: a) bubble
diagram; b) “wine glass” diagram; c) “exchange” diagram.

a)

K + k K ′ − k

K + p K ′ − p

K + k K ′ − k

K + p K ′ − p

K + k
K ′ − k

K + p
K ′ − p

b)

K + k
K ′ − k

K + p
K ′ − p

K − k

K + p

K + k

K − p

K ′ − p
K + p

K + k
K ′ − k

FIG. 5. Diagrams at 3-loop order: a) diagrams with 3 bubbles
that are maximally divergent near the Stoner instability; b)
diagrams with 0, 1, and 2 bubbles, which are subleading at
the Stoner instability.

lines in each of these two diagrams are from the same val-
ley, their contributions are the same as from irreducible
processes in Fig. (2) – the ones which give rise to valley
polarization. In comparison, the last diagram, known as
the “exchange” diagram, contains two intermediate elec-
tron lines in which one is from valley K, whereas the
other is from valley K ′ [see panel c)]. Its contribution is
not directly related to the processes leading to valley po-
larization. Because our goal is to analyze how the pairing
interaction evolves near the onset of valley polarization,
we focus on the diagrams with a leading-order divergence.
We, therefore, neglect the “exchange” diagrams at each
order of expansion in V0 and include only the bubble and
“wine glass” diagrams (see Ref. [53] for similar consider-
ation). Some examples of the leading-order diagrams at
a 3-loop order are shown in Fig.5 a). These are diagrams
with zero, one, and two bubbles. In comparison, several
typical subleading diagrams at a 3-loop order are shown
in Fig.5 b).

The sum of the bubble and wine glass diagrams can be
rewritten as illustrated in Fig.3. Below, we work out the
analytical expression. First, diagrams without bubbles
sum up into V0γ

2, where

γ =
1

1 + V0Π
. (9)



6

We next account for the polarization bubbles. Inser-
tion of one bare bubble contributes the factor −4V0Π,
where −1 is due to a fermionic loop and the factor of 4
arises due to spin and valley degeneracy. An insertion
of ladder series of interactions into each bubble further
converts Π into fully dressed irreducible Πγ. The result-
ing effective interaction described by these diagrams can
thus be written as

Γ =γ2 V0

1− 4V0Πγ
(10)

=
V0

(1 + V0Π)(1− 3V0Π)
. (11)

This vertex function contains the factor 1/(1 +V0Π) and
hence it gets enhanced near the onset of valley polariza-
tion. Near V0Π = −1, it can be approximated as

Γ ≈ V0

4

1

1 + V0Π
. (12)

Still, the interaction remains positive-valued, i.e., repul-
sive. This behavior is distinct from that found for pairing
mediated by a critical q = 0 mode in other systems, such
as a nematic QCP[25–27]. Indeed, in these systems elec-
trons with k and −k live on the same Fermi surface and
interact through exchange processes. In our case, such
a process is forbidden as it requires a fermion to scatter
from one valley to the other.

For a more accurate treatment, we should take into
consideration the fact that the valley polarization insta-
bility is the one with zero momentum transfer (q = 0)
and zero frequency transfer (ν = 0). At a finite q and a
finite ν, the polarization Π becomes the function of both,
Π = Π(ν, q), and the vertex Γ also becomes Γ(ν, q). The
static polarization bubble is a regular function of q2 and
the dominant contribution to the dynamical part comes
from the Landau damping (see e.g. Ref.[43]). Then

1 + V0Π(ν, q) ≈ |ν|
vF q

+Kq2 + δ, (13)

where δ = 1 + V0Π(0, 0) characterizes a detuning from
the valley-polarization phase boundary. The stiffness pa-
rameter K and the Fermi velocity vF are determined by
band dispersion ε(p). In writing the Landau damping
term, we assumed that |ν| � vF q. Plugging this Π(ν, q)
into Eq.(12) we obtain the vertex Γ(ν, q) at small q and
ν in the form

Γ(ν, q) =
V0

4

1
|ν|
vF q

+Kq2 + δ
. (14)

This effective interaction with the dynamical Landau-
damping term is similar to the one studied in the
context of quantum-critical pairing in metals on the
verge of an Ising-nematic or Ising-ferromagnetic instabil-
ity [29, 31, 54] and for 2D fermions coupled to emerging
gauge field in a doped Mott insulator [55–59]. However,
the sign of the interaction in our case is repulsive, and it
monotonically decreases with frequency. Such an inter-
action does not lead to superconductivity.

III. ATTRACTION FROM REPULSION AT
B‖ 6= 0

Here we consider how the pairing interaction, Eq.(14),
is altered at B‖ 6= 0. We show that, while it remains
repulsive, it becomes non-monotonic in frequency for
fermions with spin direction opposite to the field. This
leads to pairing for minority-spin carriers, as we demon-
strate.

At a finite B‖, the polarization bubble Πs does de-
pend on spin s =↑, ↓ and this has to be included in the
calculation of the pairing vertex Γs,s′ . We will focus on
equal-spin channel s = s′. Repeating the same calcula-
tions as above, but keeping the dependence on s in Πs,
we obtain

Γs,s = V0γ
2
s

1

1− 2V0

∑
s′ Πs′γs′

, (15)

where γs = 1/(1 + V0Πs). This can be re-expressed as

Γs,s =
(1 + V0Π↑)(1 + V0Π↓)V0

(1 + V0Πs)2 [1− V0 (Π↑ + Π↓)− 3V 2
0 Π↑Π↓]

.

(16)
As before, each polarization bubble is a function of ν and
s, such that

1 + V0Πs(ν, q) ≈ |ν|
vF q

+Kq2 + δs, (17)

Here and below, for simplicity, we take the Fermi veloci-
ties and the stiffness parameters for both spin species to
be equal, vF,↑ = vF,↓ = vF , K↑ = K↓ = K. The quan-
tities δs=↑,↓, which define the detuning from the phase
boundary, are equal in the absence of B‖-induced Zeeman
interaction but become unequal when B‖ 6= 0. Compar-
ing the two denominators in Eq.(16), we find that the
leading instability in a magnetic field occurs at either
V0Π↑ = −1 or V0Π↓ = −1. As discussed in Sec.I, exper-
iments indicate [21] that criticality at a finite B‖ occurs
first for majority-spin carriers. This translates into δ↑ =
0 at the onset of valley polarization, whereas δ↓ remains
finite. As a result, V0Π↑ ≈ −1, and in the right-hand side
of Eq.(16), 1− V0 (Π↑ + Π↓)− 3V 2

0 Π↑Π↓ ≈ 2(1 + V0Π↓).
As a result,

Γ↑,↑ ≈
V0

2

1

1 + V0Π↑
=
V0

2

1
|ν|
vF q

+Kq2 + δ↑
, (18)

and

Γ↓,↓ ≈
V0

2

1 + V0Π↑
(1 + V0Π↓)2

=
V0

2

|ν|
vF q

+Kq2 + δ↑

( |ν|vF q
+Kq2 + δ↓)2

. (19)

Both vertices remain positive (repulsive), but they now
have qualitatively different frequency dependence: Γ↑↑ is
similar to that found for B‖ = 0, and is monotonically
decreasing with ν. On the contrary, the pairing inter-
action for minority-spin electrons Γ↓↓(ν, q) has a non-
monotonic frequency dependence because at small mo-
mentum q �

√
δ/K, it is strongly suppressed at low fre-

quencies ν < vF |q|δ↓ and not suppressed at ν > vF |q|δ↓.
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FIG. 6. Frequency-dependent pairing interaction S(ν̄), Eq.
(23), describing the universal contribution of a soft mode.
The non-monotonic frequency dependence, which is a generic
property of S(ν̄) for all values of the stiffness K, allows for a
repulsive interaction to generate an attractive effective pairing
interaction. The value at ν = 0 is finite at K > 0 and zero
at K = 0. In the latter case superconducting Tc is non-zero
for any δ↓, the detuning from the critical point for spin-down
fermions.

Then Γ↓↓ increases at low frequencies and decreases at
higher frequencies.

The s-wave component of this vertex (by far the largest
one for small Fermi pockets, 2kF � |K −K ′|) is the av-
erage of Γ↓↓(ν, q) over the momentum transfers on the

Fermi surface Γ↓↓(ν) = 2
∫ ∼kF

0
dq
2πΓ↓↓(ν, q). This quan-

tity can be cast into a scaling form

Γ↓↓(ν) =
V0kF
2πδ↓

S (x, x1) , x =
ν

ν0
, x1 =

ν1

ν0
, (20)

where ν0 = EF δ↓, ν1 = EFKk
2
F , and EF = vF kF . At

ν1 � ν0, the function

S(x, 0) = x

(
log

1 + x

x
− 1

1 + x

)
(21)

is manifestly non-monotonic: it increases with x at small
x, passes through a maximum at x ∼ 0.5, and drops at
higher x. We emphasize that the non-monotonic behav-
ior is fully induced by B‖, which splits δ↑ and δ↓. The
non-monotonic dependence holds if we increase the ratio
ν1/ν0 as illustrated in Fig.6.

Below we solve the gap equation to demonstrate that a
non-monotonic frequency dependence of Γ↓↓(ν) leads to
pairing between spin-minority carriers at a non-zero Tc.
The gap function is s-wave and changes sign as a function
of frequency. For majority-spin carriers, the interaction
is monotonic in frequency [see Eq.(18)] and does not give
rise to pairing. As a result, in some range of T < Tc,
the system simultaneously hosts both metallic carriers
and superconducting pairs, unless a magnetic scattering

is introduced. The coexistence of two types of carriers
can be probed by searching for in-gap states in tunneling
spectroscopy due to metallic carriers.

We note the decoupling between fermions with oppo-
site spins no longer holds in a general setting. As we will
see later in Sec.V, in a generalized model, pairing suscep-
tibilities for spin-up and spin-down fermions are coupled.
In this case, the development of a superconducting gap
for minority-spin carriers generates a smaller, but finite
gap for majority-spin carriers. Still, tunneling experi-
ments should reveal states with energies between smaller
and larger gaps.

IV. SOLVING THE GAP EQUATION

The superconducting gap equation for the pairing of
spin-down fermions, mediated by Γ↓↓(ν), is

∆(ω) = − Tc

2vF

∑
ω′=πTc(2n+1)

∆(ω′)Γ↓↓(ω − ω′)
|ω′| , (22)

The overall minus sign reflects that the interaction is
repulsive. The gap equation takes a universal form
when expressed in terms dimensionless T̄c = Tc/ν0 and
ω̄ = ω/ν0:

∆(ω̄) = −λπT̄c
∑

ω̄′=πT̄c(2n+1)

∆(ω̄′)

|ω̄′| S (ω̄ − ω̄′, 0) (23)

where λ = kFV0/(4π
2vF δ↓). Because S (ω̄ − ω̄′, 0) is

strongly peaked at |ω̄ − ω̄′| = ν̄∗ ≈ 0.5, one can change
the overall sign in Eq.(23) by searching for gap functions
which change sign under ω̄ → ω̄+ ν̄∗. At small λ, analyt-

ical consideration yields Tc ∝ ω0e
−1/λ2

(Ref. [45]). At
λ ≤ 1, Tc ∼ ω0, but with a numerically small prefactor.
At larger λ, the prefactor increases and at λ� 1 (i.e., at
small δ↓), Tc ∼ λν0 ∼ EF .

For completeness, the analysis of the pairing problem
at large λ must also include fermionic selfenergy. This
is required because the pair-breaking effect due to self-
energy may suppress superconductivity. To gain insight,
one can start with the intravalley analog of the leading-
order diagrams for the pairing interaction Γ↓↓(ν, q) pic-
tured in Fig.3. Replacing fermions in different valleys
with fermions in identical valleys yields a divergent con-
tribution to the intra-valley interaction, which, in turn,
produces a large contribution to the selfenergy. Does this
imply that near Stoner instability the selfenergy diverges
in the same way as the pairing interaction and, through
pair-breaking effects, can suppress pairing?

This concern turns out to be unfounded because, for
an intravalley interaction, focusing solely on the intraval-
ley analogs of the diagram in Fig.3 is not justified. One
must also consider other diagrams that are allowed for
intravalley scattering. The contributions of these dia-
grams tend to suppress the divergence of the effective
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FIG. 7. Critical temperature Tc vs. the detuning from crit-
icality δ↓ for spin-down carriers, a parameter controlled by
B‖. For K = 0, Tc is finite for all δ. For K 6= 0, to the con-
trary, each curve starts at a finite threshold value δ↓ > 0. As
K grows, the threshold value first grows and then decreases,
reflecting the behavior of S(ν) at small ν shown in Fig.6 (see
text).

interaction at Stoner instability. In particular, the “ex-
change” processes pictured in Fig.4 c) that were negli-
gible for the inter-valley pairing interaction [see Sec.II] ,
can contribute to the intra-valley density-density inter-
action and impact the selfenergy. However, when these
diagrams are accounted for, every time we draw a bubble,
we must add to it an “exchange” contribution that looks
like Fig.4 c). These “exchange” diagrams tend to cancel
the contributions from the bubbles since these two types
of diagrams differ by a sign arising from a fermionic loop.
As a result, the intra-valley interaction that dominates
the selfenergy does not diverge at the Stoner instability
as strongly as the pairing interaction Γ↓↓ does.

Furthermore, in AppendixA we analyze the impact of
the selfenergy on Tc in a different way. We obtain the self-
energy accounting only for the intravalley analog of the
diagram in Fig.3. This method, as argued above, grossly
overestimates the selfenergy. Nevertheless, we find Tc

values that are still acceptable. This observation further
justifies ignoring selfenergy in our analysis.

Critical temperature values Tc, obtained by numeri-
cal solution of Eq. (23), are shown in Fig.7. We set
kFV0/(2πvF ) = 1, as required for a Stoner instability,
and set EF = 10meV. We see that at ν1 = 0, Tc mono-
tonically increases with decreasing δ↓ and at small δ↓
saturates at roughly 1K.

For a more realistic case of ν0 ∼ ν1, the momentum-
averaged Γ↓↓(ν) tends to a finite value at ν = 0, leading
to a smaller Tc and also setting a threshold on δ↓ as
an s-wave pairing by a frequency-dependent repulsion is
a threshold phenomenon [44–46], and at a small δ↓ the

non-monotonicity of Γ↓↓(ν) is too weak to give rise to

a pairing when the self-energy is included. At larger δ↓
Tc also drops because the coupling λ gets smaller. This
gives rise to a dome-like dependence of Tc on δ↓ at a given
Kk2

F value. For Kk2
F = 10−2 we obtained at Tc ∼ 35mK

at optimal δ↓ = 7 × 10−3. This value is in line with
experimental Tc.

V. ROBUSTNESS OF THE TRANSFORMER
PAIRING MECHANISM

To test the robustness of the attraction-from-repulsion
pairing mechanism, here we demonstrate that the non-
monotonic frequency dependence of the pairing interac-
tion, a property central to our pairing mechanism, is a
general behavior. To this end, we analyze a generalized
model where different types of isospin instabilities are
non-degenerate.

As a reminder, as stated in the Introduction, the mini-
mal model we studied above does not distinguish various
types of isospin instabilities. Namely, in the model with
the interactions with small momentum transfer all equal
to V0, the threshold for the valley polarization coincides
with the Stoner threshold for intra-valley ferromagnetism
and with the threshold for a charge or spin order with
momentum K − K′. Indeed, performing the same cal-
culations as we did in Sec. I, for the other two instabil-
ities, we find that all three occur at V0Πs = −1. This
degeneracy, however, does not hold beyond the model
with a single V0 interaction. To see this, we extend the
model to two types of density-density interactions: V0

for the density-density coupling in the same valley, and
V ′0 for the density-density coupling between different val-
leys. Evaluating the instability criteria, we find that the
valley-polarization instability occurs at

(2V ′0 − V0)Πs = −1, (24)

while intra-valley ferromagnetic (FM) instability occurs
at

V0Πs = −1, (25)

and charge/spin instability with momentum K−K′ oc-
curs at

V ′0Πs = −1. (26)

As a result, valley polarization is the leading instability
when V ′0 > V0. In the opposite case V0 > V ′0 , the intra-
valley FM is the leading instability.

The analysis at a finite field is a bit involved because
once V ′0 > V0, valley polarization instabilities for spin-
up and spin-down fermions do not decouple, i.e., there is
a single instability, at which both χv,↑ and χv,↓ diverge
simultaneously. The instability condition is

1 + V ′0(Π↑ + Π↓) + Π↑Π↓V0(2V ′0 − V0) = 0. (27)

Still, when |Π↑| > |Π↓|, χv,↑ > χv,↓, and the instability
predominantly involves fermions with spin-up.
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Below, we calculate the pairing vertex in the V0-V ′0
model. The bare pairing vertex in this model is V ′0 be-
cause k and k′ belong to different valleys. The fully
dressed irreducible one at B‖ = 0 is

Γ =
V ′0

(1− V0Π)2 − (2V ′0Π)2
. (28)

As expected, this vertex diverges at a valley polarization
instability, where (2V ′0 − V0)Π = −1, but remains posi-
tive, i.e., repulsive.

At a finite field, the analysis of the pairing vertex is
again more involved as the condition for the valley polar-
ization instability does not decouple between fermions
with spin-up and spin-down. Performing the calcula-
tions, we find that

Γ↑,↑ = V ′0
(1 + V0Π↓)

2

Z
, Γ↓,↓ = V ′0

(1 + V0Π↑)
2

Z
(29)

where

Z = (1−V 2
0 Π↓Π↑)

2− (V ′0)2(Π↓+ Π↑+ 2V0Π↓Π↑)
2 (30)

Both Γ↑,↑ and Γ↓,↓ are repulsive and diverge at the valley
instability at a finite B‖, Eq. (27), as we can straight-
forwardly verify. Still, for |Π↑| > |Π↓|, Γ↓,↓ is reduced at
intermediate frequencies because of the factor (1+V0Π↑)

2

in the numerator. It then still remains non-monotonic,
at least at small V ′0/V0−1, and allows a superconducting
solution with a sign-changing gap.

VI. VALLEY-TRIPLET p-WAVE PAIRING.

The nominally repulsive valley-preserving interaction
V0 in Eq.(1) also gives rise to an attraction at a finite B in
another spin-triplet channel, this time valley triplet and
spatially odd. The mechanism here is the field-induced
KL effect in 2D – the development of an attractive p-
wave component of the static pairing interaction due to
screening by particle-hole polarization bubbles. This ef-
fect has been analyzed in Refs. [60, 61]. Here we apply
it to BBG.

To understand the field-induced KL effect, assume
phenomenologically that the static pairing interaction
Γss(0, q) remains proportional to valley polarization sus-
ceptibility χv,s from Eq.(5) for all q < 2kF , relevant to
superconductivity, and compute the polarization Π0,s ex-
plicitly. Let’s do this first for a parabolic εi(p) near K
and K ′. The result is well known: in 2D, Πs(0, q) =

−(m/2π) for q < 2kF,s and −(m/2π)
(

1−
√

4k2
F,s/q

2
)

for q > 2kF,s. At B = 0, kF,s = kF is the same for up-
and down-spins. In this situation, Πs(0, q) = −m/(2π)
is q-independent for relevant q < 2KF , and the effective
interaction Γss(0, q) has only an s-wave repulsive compo-
nent, like the bare V0. This is commonly known as the
absence of KL effect in 2D for a parabolic dispersion [62].
The situation changes at a finite B. Now the effective

interaction between majority-spin fermions comes from
the minority-spin fermions and vice versa. Because the
Fermi momentum kF,↑ is larger than kF,↓, there is a range
2kF,↓ < q < 2kF,↑, where the interaction Γ↑↑(0, q) for
spin-up fermions at momentum transfer on their Fermi
surface, q < 2kF,↑ acquires a momentum-dependence via
the momentum dependence of Π↓(0, q). There is no such
effect for Γ↓↓(0, q) at q < 2kF,↓.

Once Γ↑↑(0, q) becomes momentum-dependent, one
can search for spatially-odd solutions ∆(θ), subject to∫
dθ∆(θ) = 0 and ∆(θ + π) = −∆(θ), where θ is an

angle along the Fermi surface measured from, e.g., the
kx direction. These gap functions are necessarily valley
triplets. The analysis of the pairing instability is rather
standard, and we just present the result. We find that
the q−dependence of the interaction gives rise to an at-
traction for spatially-odd ∆(θ). At a small B‖ field, the
gap equation is approximately local in θ and the p−wave
transition temperature is Tc ∼ EF e−1/λKL , where

λKL =
mV0

8π2δ2

µBB

EF
. (31)

At small B, Tc increases exponentially with the field. At
a larger B, the prefactor gets smaller as the number of
minority-spin fermions decreases. As a result, Tc has a
dome-like shape as a function of B. We also note that
Eq.(31) is valid when λKL < 1. At larger λKL, the cou-
pling gets renormalized by the fermionic selfenergy and
eventually saturates. The analysis can be straightfor-
wardly extended to the physically relevant case when the
instability first develops for spin-up fermions, i.e., when
Γ↑↑(0, 0) ∝ 1/δ↑ is much larger than Γ↓↓(0, 0) ∝ 1/δ↓.
One can model this by non-equal DOS for up and down
spins. We found that Eq.(31) holds, but δ2 in Eq.(31)
has to be replaced by δ2

↓. One can also move away
from parabolic dispersion and include the q-dependence
of Π(0, q) at q < 2kF . This will (i) reduce Tc and (ii)
set a finite threshold on a B‖ field as a field-induced at-
traction has to compete with a repulsive bare interaction
in the valley-triplet channel which is activated by the q-
dependence of Π(0, q). As a result, Tc as a function of
B‖ displays a dome-like behavior above a finite thresh-
old, much like for valley-singlet s-wave pairing. We be-
lieve that both pairing mechanisms, the s-wave discussed
above and the p-wave discussed in this section, are possi-
ble in BBG, though the s-wave superconductivity is more
likely to occur. This is because s-wave superconductiv-
ity does not rely on the Fermi surface shape, while our
p-wave mechanism requires the Fermi surface to be nearly
circular.

VII. GENERALIZATION TO SYSTEMS WITH
SPIN-ORBIT INTERACTION

We argue below that the s-wave pairing mechanism
also holds in systems with spin-orbit coupling (SOC). In-
deed, the SOC interaction is similar in form to the Zee-
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FIG. 8. Fermi seas in valleys K and K′ split by a) Zeeman
interaction with an external field B‖, and b) by a spin-orbit
coupling. Red (blue) arrows represent spin polarization.

man interaction with an in-plane magnetic field. There-
fore, the pairing scenario in the case of SOC is linked to
the one described in previous sections by interchanging
the isospins. For definiteness, we consider the valley-
singlet s-wave pairing. We model SOC by adding to
Eq.(1) an Ising SOC:

Hso = −λso

(
ψ†Kασz,αβψKβ − ψ†K′ασz,αβψK′β

)
. (32)

This term plays a role of a valley-dependent effective Zee-
man field Bso,τ , (τ = K,K ′) that is directed transversely
to the plane and has opposite signs for opposite valleys:
Bso,K = λso

µB
z, and Bso,K′ = −λso

µB
z, where z is the unit

vector perpendicular to the graphene plane. As a result,
the four-fold degeneracy of Fermi pockets is lifted to two
sets of two-fold degenerate pockets larger ones K ↑ and
K ′ ↓ and smaller ones K ↓ and K ′ ↑, see Fig.8.

Based on this observation, it is straightforward to map
the scenario, described in Sec. IV, to the case of SOC –
one only needs to interchange K ′ ↑ and K ′ ↓. Like there,
we find that the electrons from smaller Fermi pockets
K ↓ and K ′ ↑, experience the same non-monotonic pair-
ing interaction as in Eq.(14), which gives rise to an s-wave
valley-singlet/spin-triplet superconductivity. It is essen-
tial that the superconducting order is still robust against
an in-plane magnetic field B‖x and exceeds the Pauli
limit [here x is a unit vector parallel to the graphene
plane]. This is so because the total effective Zeeman fields
in valleys K and K ′

BK =
λso

µB
z +B‖x, BK′ = −λso

µB
z +B‖x, (33)

have the same magnitudes in the presence of both B‖ and
λso, so the Fermi surface degeneracy holds. The fact that
Beff,K and Beff,K′ are no longer parallel or anti-parallel
does not matter as there is no exchange interactions be-
tween the electrons near K and K ′. Similarly, the analy-

sis of valley-triplet p-wave pairing in the presence of SOC
is parallel to that in Sec. VI.

VIII. RELATION TO EXPERIMENTS

We now discuss several points related to experiments.
We will use existing measurements to justify our under-
lying assumptions and describe how our SC scenario can
be tested experimentally. First, in our analysis of valley-
singlet SC we assumed that isospin order sets in first
for the majority-spin fermions. To verify that this in-
terpretation of the phase transition is correct, below we
calculate the slope of the phase boundary and compare
it with the experiment. According to our model, insta-
bility happens only in the majority spin. Therefore, at
the phase transition, the density of carriers in the major-
ity spin is a fixed value, while the density of carriers in
the minority spin depends on the B‖ field. Specifically,
we expect that the phase transition shifts towards lower
total carrier density under increasing B‖. The shift of
carrier density is linear in the B‖ field:

dn∗
dB

= 2µBν0, (34)

where n∗ is the total carrier density at the phase bound-
ary, µB is the Bohr magneton, ν0 is the density of states
per isospin, the factor of 2 arises from K/K ′ valley de-
generacy. Plugging in the value of the density of states
obtained numerically in Ref.[21], we find the slope is
dn∗
dB = 5 × 10−4nm−2meV−1, which matches the slope
extracted from Fig.1c).

Second, as discussed above, the two scenarios for field-
induced SC both yield dome-shaped Tc as a function of
carrier density, with a threshold on B‖. The only dif-
ference between the two scenarios is which spin compo-
nents pair: valley-singlet pairing involves minority spins,
whereas valley-triplet pairing involves majority spins.
One way to test which spin components are involved in
SC is to measure the DC voltage drop when injecting a
spin-polarized current into the system. For instance, we
can inject electrons from a ferromagnetic material that
is polarized by the same in-plane magnetic field as in
the BBG, then our theory predicts that for valley-singlet
pairing, this spin-polarized current should give a finite
DC voltage drop even when the temperature is below Tc

because the SC only occurs in the Fermi sea of minority-
spin electrons, while for valley-triplet pairing a DC volt-
age drop should disappear below Tc.

Third, valley-singlet pairing arises from small-
momentum (forward) scattering and thus should be sen-
sitive to screening. Accordingly, we expect this SC to
become suppressed when a proximal metal gate is intro-
duced to screen the Coulomb interaction. On the con-
trary, for valley-triplet pairing, SC becomes strengthened
by a proximal gate since the small-momentum scatter-
ing is harmful to this pairing channel and is strongly
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screened, whereas the large-momentum (backward) scat-
tering that helps the pairing is not so strongly screened.

Fourth, we argued that SOC plays the same role as a
magnetic field and gives rise to valley-singlet s-wave or
valley-triplet p−wave pairing. A recent experiment [22]
found SC in a BBG on a monolayer of tungsten diselenide
(WSe2), a source of interfacial SOC in graphene. The
observed SC develops already at zero fields and exceeds
the Pauli limit in the presence of a parallel field. This
fully agrees with our theory.

Finally, one might ask whether the quantum-critical
mode will contribute to resistivity through carrier scat-
tering by thermal fluctuations. While this may seem
plausible at first glance, we note that the effective inter-
action mediated by a soft boson is strong only for small
momentum transfers q � kF . This translates into near-
forward scattering processes that do not produce a cur-
rent relaxation and thus do not contribute to resistivity
[63]. These expectations are in line with a recent exper-
iment [21] where resistivity T dependence shows no sign

of critical fluctuations near the phase transition.
We are therefore led to conclude that all the unique as-

pects of the observed superconductivity are successfully
explained by the attraction-from-repulsion-based pairing
scenario. Furthermore, this mechanism is ‘natural’ as it
arises from the strong electron-electron interactions that
drive the adjacent isospin-polarized electron orders. As
such, it constitutes a unique, verifiable instance of an ex-
otic pairing. Supported by experiments, it sheds light on
the origin of spin-triplet superconductivity in BBG and
is applicable to a variety of other systems of interest.
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Appendix A: Self-energy and superconductivity

In this section, we elaborate on the effect of self-energy
correction and show that it has a marginal impact on
superconductivity. Here, we focus on the case of ν1 = 0.
The self-energy for spin-down electrons is given by

Σ↓↓(ω)=

∫
dν

2π

∫
dq⊥
2π

Γ↓↓(ν, q)

i(ω + ν)− vF q⊥
=
λ

2

∫
dν

2π
sgn(ν + ω)S(ν/ν0) (A1)

= λν0

∫ ω̄

0

dxS(x)

To see the relevant scale of ω in the pairing problem, we
look at the gap equation without self-energy correction
Eq.(23). We rewrite it as follows:

∆(n) = −λ
2

∑
n′

∆(n′)

|2n′ + 1|S
(
2πT̄c (n− n′) , 0

)
(A2)

where we have rewritten ω̄ = π(2n+ 1)T̄c, ω̄′ = π(2n′ +
1)T̄c. As shown by numerics in the main text, the crit-
ical temperature is Tc ∼ 1

2λν0 × 10−2. For extremely

large value of λ� 102 (i.e. extremely small δ↓), the rel-
evant n, n′ ∼ O(1). Replacing S(x) with its asymptotic
form 1

2x , we find numerically that the wavefunction stop
changing sign at n = 4. The self-energy relevant for this
pairing problem should be evaluated at ω = 9πTc:

Σ↓↓(ω ∼ 9πTc) ∼ λν0 ln(λ) (A3)

where logarithm comes from integrating S(x) which
scales as 1

2x at large x. Then, we find the effective cou-
pling scales with λ as

λ̃ =
λ

1 + κ lnλ
, κ ∼ 100

9π
= 3.5 (A4)

The denominator is only marginally relevant at large λ,
thus does not suppress the Tc substantially.

For a not-so-large λ value (λ < 102), the relevant value
of n, n′ the equation above is n, n′ . ν0/Tc = 102/λ.
The self-energy relevant for this pairing problem should
be evaluated at ω . ν0:

Σ↓↓(ω ∼ ν0) ∼ 0.2λν0 (A5)

where the numerical factor comes from integrating S(x)
below the turning pint x ∼ 0.5. We find the effective
coupling scales with λ as

λ̃ =
λ

1 + 0.2λ
. (A6)

In this case, carrying out the simulation as in the main
text [see Fig.7 and accompanying discussion], we get Tc ∼
10−4EF . This value is much smaller than the ones in
Fig.7 but still of an acceptable order of magnitude.
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