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We theoretically consider effect of vertex correction on spin pumping from a ferromagnetic insula-
tor (FI) into a two-dimensional electron gas (2DEG) in which the Rashba and Dresselhaus spin-orbit
interactions coexist. The Gilbert damping in the FI is enhanced by elastic spin-flipping or magnon
absorption. We show that the Gilbert damping due to elastic spin-flipping is strongly enhanced
by the vertex correction when the ratio of the two spin-orbit interactions is near a special value
at which the spin relaxation time diverges while that due to magnon absorption shows only small
modification. We also show that the shift in the resonant frequency due to elastic spin-flipping is
strongly enhanced in a similar way as the Gilbert damping.

I. INTRODUCTION

In the field of spintronics1,2, spin pumping has long
been used as a method of injecting spins into various
materials3–5. Spin pumping was first employed to inject
spins from a ferromagnetic metal into an adjacent normal
metal (NM)6–9. Subsequently, it was used on ferromag-
netic insulator (FI)/NM junctions10. Because spin injec-
tion is generally related to the loss of the magnetization
in ferromagnets, it affects the Gilbert damping measured
in ferromagnetic resonance (FMR) experiments11. When
we employ spin injection from the FI, the modulation of
the Gilbert damping reflects the properties of the spin ex-
citation in the adjacent materials, such as magnetic thin
films12, magnetic impurities on metal surfaces13, and su-
perconductors14–17. This is in clear contrast with the
Gilbert damping of a bulk FI, which reflects properties
of electrons and phonons18–20.

An attractive strategy is to combine spin pumping
with spin-related transport phenomena in semiconduc-
tor microstructures1,21. A two-dimensional electron gas
(2DEG) in a semiconductor heterostructure is an easily
controlled physical system that has been used in spin-
tronics devices22–25. A 2DEG system has two types of
spin-orbit interaction, i.e., Rashba26,27 and Dresselhaus
spin-orbit interactions28,29.

In our previous work30, we theoretically studied spin
pumping into a 2DEG in semiconductor heterostructures
with both Rashba and Dresselhaus spin-orbit interac-
tions, which can be regarded as a prototype for a 2DEG
with a complex spin-texture near the Fermi surface (see
Fig. 1 (a)). In that study, we formulated the modu-
lation of the Gilbert damping in the FI by using the
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FIG. 1. (a) Schematic picture of junction composed of a fer-
romagnetic insulator (FI) and a two-dimensional electron gas
(2DEG) realized in a semiconductor heterostructure. Stot in-
dicates the total spin of the FI. We consider a uniform spin
precession of the FI induced by microwave irradiation. (b)
Laboratory coordinates (x, y, z) and the magnetization-fixed
coordinates (x′, y′, z′). The red arrow indicates the expecta-
tion value of the spontaneous spin polarization of the FI, ⟨S⟩.

second-order perturbation with respect to the interfa-
cial coupling15,31–35 and related it to the dynamic spin
susceptibility of the 2DEG. We further calculated the
spin susceptibility and obtained characteristic features
of the Gilbert damping modulation. This modulation
contains two contributions: elastic spin-flipping, which
dominates at low resonant frequencies, and magnon ab-
sorption, which dominates at high resonant frequencies.
In addition, we clarified that these contributions have
different dependence on the in-plane azimuth angle θ of
the ordered spin in the FI (see Fig. 1 (b)).

When the Rashba and Dresselhaus spin-orbit interac-
tions have almost equal magnitudes, spin relaxation by
nonmagnetic impurity scattering is strongly suppressed
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because the direction of the effective Zeeman field gen-
erated by the spin-orbit interactions is unchanged along
the Fermi surface. Due to this substantial suppression of
spin relaxation, there emerge characteristic physical phe-
nomena such as the persistent spin helix state36–39. In
general, the vertex corrections have to be taken into ac-
count to treat various conservation laws, i.e., the charge,
spin, momentum, and energy conservation laws in cal-
culation of the response functions40–43. Therefore, for
better description of realistic systems, we need to con-
sider vertex correction, which captures effect of impurity
more accurately by reflecting conservation laws. How-
ever, the vertex corrections were neglected in our pre-
vious work30. This means that our previous calculation
should fail when the Rashba and Dresselhaus spin-orbit
interactions compete.

In this study, we consider the same setting, i.e., a
junction composed of an FI and a 2DEG as shown in
Fig. 1 (a), and examine effect of the spin conservation law
by taking the vertex correction into account. We theo-
retically calculate the modulation of the Gilbert damping
and the shift in the FMR frequency by solving the Bethe-
Salpeter equation within the ladder approximation. We
show that the vertex correction substantially changes the
results, in particular, when the strengths of the Rashba-
and Dresselhaus-type spin-orbit interactions are chosen
to be almost equal but slightly different; Specifically,
both the Gilbert damping and the FMR frequency shift
are largely enhanced at low resonant frequencies reflect-
ing strong suppression of spin relaxation. This remark-
able feature should be able to be observed experimen-
tally. In contrast, the vertex correction changes their
magnitude only slightly at high resonant frequencies.

Before describing our calculation, we briefly comment
on study of the vertex corrections in a different context.
In early studies of the spin Hall effect, there was a de-
bate on the existence of intrinsic spin Hall effect44–46. By
considering the vertex corrections, the spin Hall conduc-
tivity, which is calculated from the correlation function
between the current and spin current, vanishes in the
presence of short-range disorder for simple models even if
its strength is infinitesimally small47–49. This seemingly
contradictory result stimulated theoretical researches on
realistic modified models50,51 as well as definition of the
spin current52–56. However, we stress that the vertex
corrections for the dynamic spin susceptibility, which is
calculated from the spin-spin correlation function, have
no such subtle problem57 because it does not include the
spin current.

The rest of this work is organized as follows. In Sec. II,
we briefly summarize our model of the FI/2DEG junc-
tion and describe a general formulation for the magnon
self-energy following Ref. 30. In Sec. III, we formulate
the vertex correction that corresponds to the self-energy
in the Born approximation. We show the modulation of
the Gilbert damping and the shift in the FMR frequency
in Sec. IV and Sec. V, respectively, and discuss the effect
of the vertex correction in detail. Finally, we summa-
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FIG. 2. Schematic picture of the spin-splitting energy bands
of 2DEG for (a) β/α = 0 and (b) β/α = 1. The red and blue
arrows represent spin polarization of each band. In the case
of (b), the spin component in the direction of the azimuth
angle 3π/4 is conserved.

rize our results in Sec. VI. The six appendices detail the
calculation in Sec. III.

II. FORMULATION

Here, we describe a model for the FI/2DEG junction
shown in Fig. 1 (a) and formulate the spin relaxation
rate in an FMR experiment. Because we have already
given a detailed formulation on this model in our previous
paper30, we will briefly summarize it here.

A. Two-dimensional electron gas

We consider a 2DEG whose Hamiltonian is given as
HNM = Hkin +Himp, where Hkin and Himp describe the
kinetic energy and the impurity, respectively. The kinetic
energy is given as

Hkin =
∑
k

(c†k↑ c†k↓) ĥk

(
ck↑
ck↓

)
, (1)

ĥk = ξkÎ − heff(k) · σ, (2)

where ckσ is the annihilation operator of conduction elec-
trons with wavenumber k = (kx, ky) and z component

of the spin, σ (=↑, ↓), Î is a 2 × 2 identity matrix, σa

(a = x, y, z) are the Pauli matrices, ξk = ℏ2k2/2m∗−µ is
the kinetic energy measured from the chemical potential,
and m∗ is an effective mass. Hereafter, we assume that
the Fermi energy is much larger than the other energy
scales such as the spin-orbit interactions, the tempera-
ture, and the ferromagnetic resonance energy. Then, the
low-energy part of the spin susceptibility depends on the
chemical potential µ and the effective potential m∗ only
through the density of states at the Fermi energy, D(ϵF).
The spin-orbit interaction is described by the effective

Zeeman field,

heff(k) = |k|(−α sinφ− β cosφ, α cosφ+ β sinφ, 0)

≃ kF(−α sinφ− β cosφ, α cosφ+ β sinφ, 0), (3)
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where α and β respectively denote the amplitudes of the
Rashba- and Dresselhaus-type spin-orbit interactions and
the electron wavenumber is expressed by polar coordi-
nates as (kx, ky) = (|k| cosφ, |k| sinφ). In the second
equation of Eq. (3), we have approximated |k| with the
Fermi wavenumber kF assuming that the spin-orbit inter-
action energies, kFα and kFβ, are much smaller than the
Fermi energy58. When only the Rashba spin-orbit inter-
action exists (β = 0), the energy band is spin-splitted as
shown in Fig. 2 (a). The spin polarization of each band
depends on the azimuth angle φ because it is determined
by the effective Zeeman field heff which is a function of
φ as seen in Eq. (3). In the special case of β/α = 1, the
spin polarization always becomes parallel to the direction
of the azimuth angle 3π/4 in the xy plane as shown in
Fig. 2 (b). Then, the spin component in this direction is
conserved. This observation indicates that effect of the
spin conservation may become important when the two
spin-orbit interactions compete (α ≃ β).

The Hamiltonian of the impurity potential is given as

Himp = u
∑

i∈imp

∑
σ

Ψ†
σ(ri)Ψσ(ri), (4)

where Ψσ(r) = A−1/2
∑

k ckσe
ik·r, A is the area of the

junction, u is the strength of the impurity potential, and
ri is the position of the impurity site.

The finite-temperature Green’s function for the con-
duction electrons is defined by a 2 × 2 matrix ĝ(k, iωm)
whose elements are

gσσ′(k, iωm) =

∫ ℏβ

0

dτ eiωmτgσσ′(k, τ), (5)

gσσ′(k, τ) = −ℏ−1⟨ckσ(τ)c†kσ′⟩, (6)

where ckσ(τ) = eHNMτ/ℏckσe
−HNMτ/ℏ, HNM = Hkin +

Himp, ωm = π(2m + 1)/ℏβ is the fermionic Matsubara
frequency, and β is the inverse temperature. By em-
ploying the Born approximation, the finite-temperature
Green’s function can be expressed as

ĝ(k, iωm) =
(iℏωm − ξk + iΓsgn(ωm)/2)Î − heff · σ∏

ν=±(iℏωm − Eν
k + iΓsgn(ωm)/2)

,

(7)

where E±
k = ξk±|heff(φ)| is the spin-dependent electron

dispersion,

Γ = 2πniu
2D(ϵF) (8)

is level broadening, and ni is the impurity concentration
(see Appendix A and Ref. 30 for detailed derivation).

As already mentioned, the case of β/α = 1 is special
because the spin component parallel to the direction of
the azimuth angle 3π/4 in the xy plane is conserved (see
Fig. 2 (b)). By defining the spin component in this di-

rection as

s
3π/4
tot ≡ 1

2

∑
k

(c†k+ck+ − c†k−ck−), (9)(
ck+
ck−

)
=

(
1/
√
2 eiπ/4/

√
2

e−iπ/4/
√
2 −1/

√
2

)(
ck↑
ck↓

)
, (10)

we can prove [Hkin+Himp, s
3π/4
tot ] = 0. When the value of

β/α is slightly shifted from 1, the spin conservation law
is broken slightly and this leads to a slow spin relaxation.
As will be discussed in Sec. IV and Sec. V, this slow spin
relaxation, which is a remnant of the spin conservation at
β/α = 1, strongly affects the spin injection from the FI
into the 2DEG. To describe this feature, we need to con-
sider the vertex correction to take the conservation law
into account in our calculation as explained in Sec. III.

B. Ferromagnetic insulator

We consider the quantum Heisenberg model for the FI
and employ the spin-wave approximation assuming that
the temperature is much lower than the magnetic tran-
sition temperature and the magnitude of the localized
spins, S0, is sufficiently large. We write the expectation
value of the localized spins in the FI as ⟨S⟩, whose direc-
tion is (cos θ, sin θ, 0) as shown in the Fig. 1 (b). Using
the Holstein-Primakov transformation, the Hamiltonian
in the spin-wave approximation is obtained as

HFI =
∑
k

ℏωkb
†
kbk, (11)

where bk is the magnon annihilation operator with
wavenumber k, ℏωk = Dk2 + ℏγhdc is the energy
dispersion of a magnon, D is the spin stiffness, γ is
the gyromagnetic ratio, and hdc is the externally ap-
plied DC magnetic field. We note that the exter-
nal DC magnetic field controls the direction of the or-
dered spins. We introduce new coordinates (x′, y′, z′)
fixed on the ordered spins by rotating the original co-
ordinates (x, y, z) as shown in Fig. 1 (b). Then, the
magnon annihilation operator is related to the spin lad-
der operator by the Holstein-Primakov transformation

as Sx′+
k ≡ Sy′

k + iSz′

k = (2S0)
1/2bk. The spin correlation

function is defined as

G0(k, iωn) =

∫ ℏβ

0

dτ eiωnτG0(k, τ), (12)

G0(k, τ) = −1

ℏ
⟨Sx′+

k (τ)Sx′−
k (0)⟩, (13)

where ωn = 2nπ/ℏβ is the bosonic Matsubara fre-
quency. The spin correlation function is calculated from
the Hamiltonian (11), as

G0(k, iωn) =
2S0/ℏ

iωn − ωk − αG|ωn|
, (14)



4

where αG > 0 is a phenomenological dimensionless pa-
rameter that describes the strength of the Gilbert damp-
ing in the bulk FI.

C. Effect of the FI/2DEG interface

The coupling between the FI and 2DEG can be ac-
counted for by the Hamiltonian,

Hint =
∑
k

(TkSx′+
k sx

′−
k + T ∗

k sx
′+

k Sx′−
k ), (15)

where Tk is an exchange interaction at a clean interface,
for which the momentum of spin excitation is conserved.

The spin ladder operators for conduction electrons, sx
′±

k ,
are obtained using a coordinate rotation as30

sx
′±

k =
1

2

∑
σ,σ′

∑
k′

c†k′σ(σ̂
x′±)σσ′ck′±kσ′ , (16)

σ̂x′± = − sin θ σx + cos θ σy ± iσz, (17)

where σ̂x′± ≡ σ̂y′ ± iσ̂z′ andσ̂x′

σ̂y′

σ̂z′

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

σx

σy

σz

 .

Assuming that the interfacial exchange interaction is
much smaller than the spin-orbit interactions, kFα and
kFβ

59,60, we perform a second-order perturbation theory
with respect to the interfacial exchange interaction Hint.
Accordingly, the spin correlation function of the FI is
calculated as

G(k, iωn) =
1

(G0(k, iωn))−1 − Σ(k, iωn)
, (18)

Σ(k, iωn) = |Tk|2Aχ(k, iωn), (19)

where Σ(k, iωn) is the self-energy due to the interfacial
exchange coupling and χ(k, iωn) is the spin susceptibility
for conduction electrons per unit area, defined as

χ(k, iωn) =

∫ ℏβ

0

dτ eiωnτχ(k, τ), (20)

χ(k, τ) = − 1

ℏA
⟨sx

′+
k (τ)sx

′−
k (0)⟩, (21)

where sx
′±

k (τ) = eHNMτ/ℏsx
′±

k e−HNMτ/ℏ. Within the
second-order perturbation, we only need to calculate the
spin susceptibility for pure 2DEG without considering
the junction because the interfacial coupling is already
taken into account in the prefactor of the self-energy in
Eq. (19). The uniform component of the retarded spin
correlation function is obtained by analytic continuation

(a)

(b)

FIG. 3. Feynman diagrams of (a) the uniform spin susceptibil-
ity and (b) the Bethe-Salpeter equation for the ladder-type
vertex function derived from the Born approximation. The
cross with two dashed lines indicates interaction between an
electron and an impurity.

iωn → ω + iδ, as

GR(0, ω) =
2S0/ℏ

ω − (ω0 + δω0) + i(αG + δαG)ω
, (22)

δω0

ω0
≃ 2S0|T0|2A

ℏω0
ReχR(0, ω0), (23)

δαG ≃ −2S0|T0|2A
ℏω0

ImχR(0, ω0), (24)

where the superscript R indicates the retarded compo-
nent, ω0 = ωq=0 (= γhdc) is the FMR frequency, and
δω0 and δαG are respectively the changes in the FMR
frequency and Gilbert damping due to the FI/2DEG in-
terface. We note that in contrast with the bulk Gilbert
damping αG, the increase of the Gilbert damping, δαG,
can be related directly to the spin susceptibility of 2DEG
as shown by Eq. (24). In fact, measurement of δαG

has been utilized as a qualitative indicator of spin cur-
rent through a junction61,62. In Eqs. (23) and (24), we
made an approximation by replacing ω with the FMR
frequency ω0 by assuming that the FMR peak is suffi-
ciently sharp (αG + δαG ≪ 1). Thus, both the FMR
frequency shift and the modulation of the Gilbert damp-
ing are determined by the uniform spin susceptibility of
the conduction electrons, χ(0, ω). In what follows, we
include the vertex correction for calculation of χ(0, ω),
which was not taken into account in our previous work30.

III. VERTEX CORRECTION

We calculate the spin susceptibility in the ladder
approximation42,43 that obeys the Ward-Takahashi re-
lation with the self-energy in the Born approximation57.
The Feynman diagrams for the corresponding spin sus-
ceptibility and the Bethe-Salpeter equation for the ver-
tex function are shown in Fig. 3 (a) and (b), respectively.
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The spin susceptibility of 2DEG is written as

χ(0, iωn) =
1

4βA
∑

k,iωm

Tr
[
ĝ(k, iωm)Γ̂(k, iωm, iωn)

ĝ(k, iωm + iωn)σ̂
x′−

]
, (25)

where the vertex function Γ̂(k, iωm, iωn) is a 2×2 matrix
whose components are determined by the Bethe-Salpeter
equation (see Fig. 3 (b)),

Γσ′σ(k, iωm, iωn)

= (σ̂x′+)σ′σ +
u2ni

A
∑
q

∑
σ1σ2

gσ′σ2
(q, iωm)

× Γσ2σ1(q, iωm, iωn)gσ1σ(q, iωm + iωn). (26)

Since the right-hand side of this equation is indepen-
dent of k, the vertex function can simply be described
as Γ̂(iωm, iωn). We express the vertex function with the
Pauli matrices as

Γ̂(iωm, iωn) ≡ EÎ +Xσ̂x′ + Y σ̂y′ + Zσ̂z′ , (27)

where E, X, Y , and Z will be determined self-
consistently later. The Green’s function for the conduc-
tion electrons can be rewritten as

ĝ(q, iωm) =
AÎ +Bσ̂x′ + Cσ̂y′

D
, (28)

A(iωm) = iℏωm − ξq +
iΓ

2
sgn(ωm), (29)

B = −heff cos(ϕ− θ), (30)

C = −heff sin(ϕ− θ), (31)

D(iωm) =
∏
ν=±

(iℏωm − Eν
q +

iΓ

2
sgn(ωm)), (32)

where ϕ is the azimuth angle by which the effective Zee-
man field is written as heff = (heff cosϕ, heff sinϕ, 0).

This heff is written as heff ≃ kF
√
α2 + β2 + 2αβ sin 2φ

using the Fermi wavenumber kF. By substituting
Eqs. (27) and (28) into the second term of Eq. (26) and
by the algebra of Pauli matrices, we obtain

u2ni

A
∑
q

ĝ(q, iωm)Γ̂(q, iωm, iωn)ĝ(q, iωm + iωn)

= E′Î +X ′σ̂x′ + Y ′σ̂y′ + Z ′σ̂z′ , (33)

whereE′

X ′

Y ′

Z ′

 =

Λ0 + Λ1 0 0 0
0 Λ0 + Λ2 Λ3 0
0 Λ3 Λ0 − Λ2 0
0 0 0 Λ0 − Λ1


E
X
Y
Z

 ,

(34)

and Λj(iωm, iωn) (j = 0, 1, 2, 3) are expressed as

Λ0(iωm, iωn) =
u2ni

A
∑
q

AA′

DD′ , (35)

Λ1(iωm, iωn) =
u2ni

A
∑
q

h2
eff

DD′ , (36)

Λ2(iωm, iωn) =
u2ni

A
∑
q

h2
eff cos 2(ϕ− θ)

DD′ , (37)

Λ3(iωm, iωn) =
u2ni

A
∑
q

h2
eff sin 2(ϕ− θ)

DD′ , (38)

using the abbreviated symbols, A = A(iωm), A′ =
A(iωm + iωn), D = D(iωm), and D′ ≡ D(iωm + iωn).
Here, we have used the fact that the contributions of the
first-order terms of B and C become zero after replacing
the sum with the integral with respect to q and perform-
ing the azimuth integration. We can solve for E, X,
Y , and Z by combining Eq. (34) and the Bethe-Salpeter
equation (26), which we rewrite as

EÎ +Xσ̂x′ + Y σ̂y′ + Zσ̂z′

= σ̂x′+ + E′Î +X ′σ̂x′ + Y ′σ̂y′ + Z ′σ̂z′ , (39)

with σ̂x′+ = σ̂y′ + iσ̂z′ . The solution is

E = 0, (40)

X =
Λ3

(1− Λ0)2 − Λ2
2−Λ2

3

, (41)

Y =
1− Λ0 − Λ2

(1− Λ0)2 − Λ2
2 − Λ2

3

, (42)

Z =
i

1− Λ0 + Λ1
. (43)

By replacing the sum with an integral as ξ ≡ ξq,

1

A
∑
q

(· · · ) ≃ D(ϵF)

∫ ∞

−∞
dξ

∫ 2π

0

dφ

2π
(· · · ), (44)

Eqs. (35)-(38) can be rewritten as

Λj(iωm, iωn) = θ(−ωm)θ(ωm + ωn)Λ̃j(iωn), (45)

Λ̃j(iωn) =
iΓ

4

∫ 2π

0

dφ

2π

×
∑

ν,ν′=±

fj(ν, ν
′, φ)

iℏωn + (ν − ν′)heff(φ) + iΓ
,

(46)

where we have used Eq. (8), θ(x) is a step function, and

f0(ν, ν
′, φ) = 1, (47)

f1(ν, ν
′, φ) = νν′, (48)

f2(ν, ν
′, φ) = νν′ cos 2(ϕ(φ)− θ), (49)

f3(ν, ν
′, φ) = νν′ sin 2(ϕ(φ)− θ). (50)
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For detailed derivation, see Appendix B. Substituting the
Green’s function and the vertex function into Eq. (25),
we obtain

χ(0, iωn) =
1

4βA
∑

k,iωm

2

DD′

[
2BCX

+ (AA′ −B2 + C2)Y − i(AA′ −B2 − C2)Z
]
. (51)

By summing over k and ωm and by analytical continu-
ation, iωn → ω + iδ, the retarded spin susceptibility is
obtained as63

χR(0, ω)

=
D(ϵF)ℏω

2iΓ

[
Λ̃R
0 (1− Λ̃R

0 )− Λ̃R
2 (1− Λ̃R

2 ) + (Λ̃R
3 )

2

(1− Λ̃R
0 )

2 − (Λ̃R
2 )

2−(Λ̃R
3 )

2

+
Λ̃R
0 − Λ̃R

1

1− Λ̃R
0 + Λ̃R

1

]
−D(ϵF), (52)

where

Λ̃R
j = Λ̃R

j (ω) = Λ̃j(iωn → ω + iδ)

=
iΓ

4∆0

∫ 2π

0

dφ

2π

×
∑
νν′

fj(ν, ν
′, φ)

ℏω/∆0 + (ν − ν′)heff/∆0 + iΓ/∆0
. (53)

A detailed derivation is given in Appendix C. Here, we
have introduced a unit of energy, ∆0 = kFα, for the con-
venience of making the physical quantities dimensionless.
Using Eqs. (23) and (24), we finally obtain the shift in
the FMR frequency and the modulation of the Gilbert
damping as

δω0

ω0
= αG,0 ReF (ω0), (54)

δαG = −αG,0 ImF (ω0), (55)

F (ω) =
∆0

2πiΓ

[
Λ̃R
0 (1− Λ̃R

0 )− Λ̃R
2 (1− Λ̃R

2 ) + (Λ̃R
3 )

2

(1− Λ̃R
0 )

2 − (Λ̃R
2 )

2−(Λ̃R
3 )

2

+
Λ̃R
0 − Λ̃R

1

1− Λ̃R
0 + Λ̃R

1

]
− ∆0

πℏω
, (56)

where αG,0 = 2πS0|T0|2AD(ϵF)/∆0 is a dimensionless
parameter that describes the coupling strength at the
interface. This is our main result.

The spin susceptibility without the vertex correction
can be obtained by taking the first-order term with re-

spect to Λ̃R
j :

χR(0, ω) ≃ ℏωD(ϵF)

2iΓ

[
2Λ̃R

0 − Λ̃R
1 − Λ̃R

2

]
−D(ϵF)

= ℏωD(ϵF)

∫
dφ

2π

[ 1

ℏω + iΓ

1− cos2(ϕ(φ)− θ)

2

+
1

ℏω − 2heff(φ) + iΓ

1 + cos2(ϕ(φ)− θ)

4

+
1

ℏω + 2heff(φ) + iΓ

1 + cos2(ϕ(φ)− θ)

4

]
−D(ϵF).

(57)

The imaginary part of χR(0, ω) reproduces the result of
Ref. 30. Using this expression, the shift in the FMR
frequency and the modulation of the Gilbert damping
without the vertex correction are obtained as

δωnv
0

ω0
= αG,0 ReFnv(ω0), (58)

δαnv
G = −αG,0 ImFnv(ω0), (59)

Fnv(ω) =
∆0

2πiΓ

[
2Λ̃R

0 − Λ̃R
1 − Λ̃R

2

]
− ∆0

πℏω
, (60)

IV. MODULATION OF THE GILBERT
DAMPING

First, we show the result for the modulation of the
Gilbert damping, δαG, for β/α = 0, 1, and 3 and dis-
cuss the effect of the vertex correction by comparing it
with the result without the vertex correction in Sec. IVA.
Next, we discuss the strong enhancement of the Gilbert
damping near β/α = 1. Sec. IVB.

A. Effect of vertex corrections

First, let us discuss the case of β/α = 0, i.e., the
case when only the Rashba spin-orbit interaction exists64.
Figure 4 (a) shows the effective Zeeman field heff along
the Fermi surface. Figure 4 (b) and (c) show the mod-
ulations of the Gilbert damping without and with the
vertex correction. The horizontal axes of Fig. 4 (b) and
(c) denote the resonant frequency ω0 = γhdc in the FMR
experiment. Note that the modulation of the Gilbert
damping, δαG, is independent of θ, i.e., the azimuth angle
of ⟨S⟩. The four curves in Fig. 4 (b) and (c) correspond
to Γ/∆0 = 0.1, 0.2, 0.5, and 1.065. We find that these two
graphs have a common qualitative feature; the modula-
tion of the Gilbert damping has two peaks at ω0 = 0 and
ω0 = 2∆0 and their widths become larger as Γ increases.
The peak at ω0 = 0 corresponds to elastic spin-flipping
of conduction electrons induced by the transverse mag-
netic field via the exchange bias of the FI, while the peak
at ℏω0 = 2∆0 is induced by spin excitation of conduc-
tion electrons due to magnon absorption30. In the case of
β/α = 0, the vertex correction changes the modulation
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Without vertex corrections

Without vertex corrections

Without vertex corrections With vertex corrections

With vertex corrections

With vertex corrections

 

Without vertex corrections With vertex corrections With vertex corrections

FIG. 4. (Left panels) Effective Zeeman field heff on the Fermi surface. (Middle panels) Modulation of the Gilbert damping,
δαnv

G , without vertex correction. (Right panels) Modulation of the Gilbert damping with vertex correction, δαG. In the middle
and right panels, the modulation of the Gilbert damping is plotted as a function of the FMR frequency, ω0 = γhdc. The
spin-orbit interactions are as follows. (a), (b), (c): β/α = 0. (d), (e), (f): β/α = 1. (g), (h), (i): β/α = 3. We note that (b),
(e), (h) are essentially the same result as Ref. 30.

of the Gilbert damping moderately (compare Fig. 4 (c)
with (b)). The widths of the two peaks at ω0 = 0 and
ω0 = 2∆0 become narrower when the vertex correction
is taken into account (see Appendix D for the analytic
expressions).

The case of β/α = 1 is special because the effective
Zeeman field heff always points in the direction of (−1, 1)
or (1,−1), as shown in Fig. 4 (d). The amplitude of heff

depends on the angle of the wavenumber of the conduc-
tion electrons, φ,

heff(φ) = 2∆0| sin(φ+ π/4)|, (61)

and varies in the range of 0 ≤ 2heff ≤ 4∆0. Figures 4 (e)
and (f) show the modulation of the Gilbert damping
without and with the vertex correction for Γ/∆0 = 0.5.

The five curves correspond to five different angles of ⟨S⟩,
θ = −π/4,−π/8, 0, π/8, and π/4. The most remarkable
feature revealed by comparing Fig. 4 (f) with (e) is that
the peak at ω0 = 0 disappears if the vertex correction is
taken into account (see Appendix E for the analytic ex-
pressions). In the subsequent section, we will show that
δαG(ω0) has a delta-function-like singularity at ω0 = 0
for β/α = 1 due to the spin conservation law along the
direction of heff .

In the case of β/α = 3, the direction of the effec-
tive Zeeman field heff varies along the Fermi surface
(Fig. 4 (g)). Figures 4 (h) and (i) show the modula-
tion of the Gilbert damping without and with the ver-
tex correction for Γ/∆0 = 0.5. For β/α = 3, a peak
at ω0 = 0 appears even when the vertex correction is



8

Without vertex corrections

Without vertex corrections

Without vertex corrections With vertex corrections

With vertex corrections

With vertex corrections

 

Without vertex corrections With vertex corrections With vertex corrections

FIG. 5. Modulation of the Gilbert damping calculated for β/α = 1.1 (a) without the vertex correction and (b) with the vertex
correction. The horizontal axis is the FMR frequency ω0 and the five curves correspond to five different angles of ⟨S⟩, i.e.,
θ = −π/4,−π/8, 0, π/8, and π/4. (c) Enlarged plot of the modulations of the Gilbert damping as a function of the FMR
frequency ω0. The angle of ⟨S⟩ is fixed as θ = π/4 and the three curves correspond to β/α = 1.03, 1.05, and 1.1. In all the
plots, we have chosen Γ/∆0 = 0.5.

taken into account. The broad structure in the range
of 4∆0 ≤ ℏω0 ≤ 8∆0 is caused by the magnon absorp-
tion process where its range reflects the distribution of
the spin-splitting energy 2heff along the Fermi surface.
By comparing Fig. 4 (h) and (i), we find that the vertex
correction changes the result only moderately as in the
case of β/α = 0; the peak structure at ω0 = 0 becomes
sharper when the vertex correction is taken into account
while the broad structure is slightly enhanced.

B. Strong enhancement of the Gilbert damping

Here, we examine the strong enhancement of the
Gilbert damping for β/α ≃ 1. As explained in Sec. IIA,
the spin component in the direction of the azimuth angle
3π/4 in the xy plane is exactly conserved at β/α = 1 (see
also Fig. 4 (d)). When the value of β/α is shifted slightly
from 1, the spin conservation law is broken but the spin
relaxation becomes remarkably slow. To see this effect,
we show the modulation of the Gilbert damping without
and with the vertex correction for β/α = 1.1 in Fig. 5 (a)
and (b), respectively. The five curves correspond to five
different azimuth angles of ⟨S⟩, and the energy broaden-
ing is set as Γ/∆0 = 0.5. Fig. 5 (a) and (b) indicate that
the Gilbert damping is strongly enhanced at ω0 = 0 only
when the vertex correction is taken into account. This is
the main result of our work.

Figure 5 (c) plots the modulation of the Gilbert damp-
ing with the vertex correction for Γ/∆0 = 0.5 and
θ = π/4, the latter of which corresponds to the case of
the strongest enhancement at ω0 = 0. The three curves
correspond to β/α = 1.03, 1.05, and 1.1. As the ratio of
β/α approaches 1, the peak height at ω0 = 0 gets larger.

Without vertex corrections

Without vertex corrections

Without vertex corrections With vertex corrections

With vertex corrections

With vertex corrections

Without vertex corrections With vertex corrections With vertex corrections

 

 

 

 

 

 

FIG. 6. Modulation of the Gilbert damping as a function
of β/α. The five curves correspond to ℏω0/∆0 = 0, 0.005,
0.01, 0.02, and 0.05. We have taken the vertex correction into
account and have chosen Γ/∆0 = 0.5. The inset illustrates
maximum values of the modulation of the Gilbert damping,
δαG,max, in varying β/α for a fixed value of ℏω0/∆0.

For β/α ≃ 1, δαG is calculated approximately as

δαG

αG,0
≃ ∆0

2π

Γs

(ℏω0)2 + Γ2
s

sin2
(
θ +

π

4

)
, (62)

Γs ≡
2

Γ

∫ 2π

0

dφ

2π

(hx + hy)
2

1 + (2heff/Γ)2
, (63)

where Γs gives the peak width in Fig. 5 (b) and (c) (see
Appendix F for a detailed derivation). For β/α = 1 + δ
(δ ≪ 1), Γs is proportional to δ2 and approaches zero in
the limit of δ → 0. This indicates that Γs corresponds
to the spin relaxation rate due to a small breakdown of
the spin conservation law away from the special point of
β/α = 1. Note that the peak height of δαG at ω0 = 0
diverges at β/α = 1. This indicates that for β/α = 1,
δαG(ω0) has a delta-function like singularity at ω0 = 0,
which is not drawn in Fig. 4 (f).
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FIG. 7. (Upper panels) Modulations of the Gilbert damping, δαG/αG,0 for (a) β/α = 0, (b) β/α = 1, and (c) β/α = 3. (Lower
panels) Shifts in the FMR frequency, δω0/(αG,0ω0), for (d) β/α = 0, (e) β/α = 1, and (f) β/α = 3. The horizontal axes are
the FMR frequency, ω0 = γhdc, while the vertical axes show the azimuth angle of the spontaneous spin polarization, θ, in the
FI. In all the plots, we have considered vertex corrections and have chosen Γ/∆0 = 0.5. In (a), (c), and (e) there are regions
in which the values exceed the upper limits of the color bar located in the right side of each plot; the maximum value is about
0.45 in (a), 0.65 in (c), and about 10 in (e) (see also Fig. 8). In addition, (b) cannot express a delta-function-like singularity at
ω0 = 0 (see the main text).

Figure 6 plots the modulation of the Gilbert damping
for Γ/∆0 = 0.5 and θ = π/4 as a function of β/α. The
five curves correspond to ℏω0/∆0 = 0, 0.005, 0.01, 0.02,
and 0.05, respectively. This figure indicates that when
we fix the resonant frequency ω0 and vary the ratio of
β/α, the Gilbert damping is strongly enhanced when β/α
is slightly smaller or larger than 1. We expect that this
enhancement of the Gilbert damping is strong enough to
be observed experimentally. We note that δαG/αG,0 ap-
proaches 0.378 (0.318) for β/α → 0 (β/α → ∞). The
inset in Fig. 6 plots maximum values of δαG/αG,0 when
β/α is varied for a fixed value of ℏω0/∆0. In other words,
the vertical axis of the inset corresponds to the peak
height in the main panel for each value of ℏω0/∆0. We
find that the maximum value of δαG/αG,0 diverges as ω0

approaches zero.

V. SHIFT IN THE FMR FREQUENCY

Next, we discuss the shift in the FMR frequency when
the vertex correction is taken into account. The density
plots in Fig. 7 (a), (b), and (c) for β/α = 0, 1, and 3
summarize the modulation of the Gilbert damping, δαG.
These plots have the same features as in Fig. 4 (c), (f),
and (i). Fig. 7 (d), (e), and (f) plot the shift in the
FMR frequency δω0/ω0 with density plots for β/α = 0,
1, and 3. By comparing Fig. 7 (a), (b), and (c) with

Without vertex corrections

Without vertex corrections

Without vertex corrections With vertex corrections

With vertex corrections

With vertex corrections

Without vertex corrections With vertex corrections With vertex corrections

 

 

 

 

 

 

FIG. 8. Shift in FMR frequency, δω0/(αG,0ω0), as a func-
tion of the resonance frequency ω0 for β/α = 1.1. The in-
set shows the same quantities in the low-frequency range of
0 ≤ ℏω0/∆0 ≤ 0.05 with a larger scale on the vertical axis.
We have taken the vertex correction into account and have
chosen Γ/∆0 = 0.5.

(d), (e), and (f), we find that some of the qualitative fea-
tures of the FMR frequency shift are common to those
of the modulation of the Gilbert damping, δαG; (i) they
depend on θ for β/α > 0, while they do not depend on
θ for β/α = 0, (ii) the structure at ω0 = 0 due to elas-
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tic spin-flipping appears, and (iii) the structure within
a finite range of frequencies due to magnon absorption
appears. We can also see a few differences between δαG

and δω0/ω0. For example, δω0/ω0 has a dip-and-peak
structure at ℏω0/∆0 = 2 where δαG has only a peak.
Related to this feature, δω0/ω0 has a tail that decays
more slowly than that for δαG. The most remarkable
difference is that δω0/ω0 diverges at ω0 = 0 for β/α = 1
except for θ = 3π/4, 7π/4, reflecting the delta-function-
like singularity of δαG at ω0 = 0. These features are
reasonable because δω0/ω0 and δαG, which are deter-
mined by the real and imaginary parts of the retarded
spin susceptibility, are related to each other through the
Kramers-Kronig conversion.

The main panel of Fig. 8 shows the frequency shift
δω0/ω0 for β/α = 1.1 as a function of the resonant
frequency ω0. The five curves correspond to θ =
−π/4,−π/8, 0, π/8, and π/4. Although the frequency
shift appears to diverge in the limit of ω0 → 0 in the
scale of the main panel, it actually grows to a finite value
and then goes to zero as ω0 approaches zero (see the inset
of Fig. 8). For β/α = 1 + δ (δ ≪ 1), the frequency shift
is calculated approximately as

δω0

αG,0ω0
≃ ∆0

2π

ℏω0

(ℏω0)2 + Γ2
s

sin2
(
θ +

π

4

)
, (64)

where Γs is the spin relaxation rate defined in Eq. (63)
(see Appendix F for the detailed derivation). We expect
that this strong enhancement of the frequency shift near
β/α = 1 can be observed experimentally.

VI. SUMMARY

We theoretically investigated spin pumping into a two-
dimensional electron gas (2DEG) with a textured effec-
tive Zeeman field caused by Rashba- and Dresselhaus-
type spin-orbit interactions. We expressed the change
in the peak position and the linewidth in a ferromag-
netic resonance (FMR) experiment that is induced by
the 2DEG within a second-order perturbation with re-
spect to the interfacial exchange coupling by taking the
vertex correction into account. The FMR frequency
and linewidth are modulated by elastic spin-flipping or
magnon absorption. We found that, for almost all of the
parameters, the vertex correction modifies the modula-
tion of the Gilbert damping only moderately and does not
change the qualitative features obtained in our previous
paper30. However, we found that the Gilbert damping at
low frequencies, which is caused by elastic spin-flipping,
is strongly enhanced when the Rashba- and Dresselhaus-
type spin-orbit interactions are chosen to be almost equal
but slightly different. Even in this situation, the Gilbert
damping at high frequencies, which is caused by magnon
absorption, shows small modification. This strong en-
hancement of the Gilbert damping at low frequencies ap-
pears only when the vertex correction is taken into ac-
count and is considered to originate from the slow spin

relaxation related to the spin conservation law that holds
when the two spin-orbit interactions completely match.
A similar enhancement was found for the frequency shift
of the FMR due to elastic spin-flipping. We expect that
this remarkable enhancement can be observed experi-
mentally.

Our work provides a theoretical foundation for spin
pumping into two-dimensional electrons with a spin-
textured Zeeman field on the Fermi surface. Although
we have treated a specific model for two-dimensional
electron systems with both the Rashba and Dresselhaus
spin-orbit interactions, our formulation and results will
be helpful for describing spin pumping into general two-
dimensional electron systems such as surface/interface
states 66–68 and atomic layer compounds 69,70.
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Appendix A: Calculation of Green’s function

In our work, Green’s function of conduction electrons
is calculated by taking effect of impurity scattering into
account. In general, the finite-temperature Green’s func-
tion ĝ(k, iωm) after the impurity average is described
by the Dyson equation with the impurity self-energy
Γ̂(k, ωm) as

ĝ(k, iωm) =
1

ĝ0(k, iωm)−1 − Γ̂(k, iωm)
, (A1)

where ĝ0(k, iωm)−1 is Green’s function of electrons in the
absence of impurities. In our work, we employ the Born
approximation in which the self-energy is approximated
by second-order perturbation with respect to an impurity
potential. In the Born approximation, the self-energy is
given as

Γ̂(k, iωm) = niu
2

∫
d2k

(2π)2
ĝ0(k, iωm), (A2)

where ni is the impurity concentration. The correspond-
ing Feynman diagram of the Dyson equation is shown in
Fig. 9. By straightforward calculation, Eq. (7) can be
derived. For a detailed derivation, see Ref. 30.
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FIG. 9. The Feynman diagram for Green’s function within
the Born approximation.

Appendix B: Derivation of Eqs. (45)-(50)

Eqs. (35)-(38) can be rewritten with Γ = 2πniu
2D(ϵF)

as

Λ0(iωm, iωn) =
iΓ

4

∫ 2π

0

dφ

2π

∑
ν,ν′

Iνν′ , (B1)

Λ1(iωm, iωn) =
iΓ

4

∫ 2π

0

dφ

2π

∑
ν,ν′

νν′Iνν′ , (B2)

Λ2(iωm, iωn) =
iΓ

4

∫ 2π

0

dφ

2π
cos 2(φ− θ)

∑
ν,ν′

νν′Iνν′ ,

(B3)

Λ3(iωm, iωn) =
iΓ

4

∫ 2π

0

dφ

2π
sin 2(φ− θ)

∑
ν,ν′

νν′Iνν′ ,

(B4)

where

Iνν′ =

∫ ∞

−∞

dξ

2πi

1

iℏωm − ξ − νheff + i(Γ/2)sgn(ωm)

× 1

iℏ(ωm + ωn)− ξ − ν′heff + i(Γ/2)sgn(ωm + ωn)
.

(B5)

We note that one needs to calculate this integral only for
ωn > 0 to obtain the retarded component by analytic
continuation. Then, we can easily prove by the residue
integral that Iνν′ = 0 for ωm > 0 and ωm + ωn > 0
(ωm < 0 and ωm+ωn < 0) because both of the two poles
in the integrand are located only in the upper (lower) half
of the complex plane of ξ. For ωm < 0 and ωm +ωn > 0,
the integral is evaluated by the residue integral as

Iνν′ =
1

iℏωn + (ν − ν′)heff + iΓ
. (B6)

By combining these results, Eqs. (45)-(50) can be de-
rived.

(a) (b)

FIG. 10. Schematic picture of the change in the contour in-
tegral. (a) The original contour. (b) The modified contour.

Appendix C: Derivation of Eq. (52)

In this appendix, we give a detailed derivation of
Eq. (52) from Eq. (51). First, we modify Eq. (51) as

χ(0, iωn) =
1

8A
∑
k

∑
ν,ν′

[
νν′ sin 2(ϕ− θ) Iνν′,1

+
{
1− νν′ cos 2(ϕ− θ)

}
Iνν′,2

− i(1− νν′)Iνν′,3

]
, (C1)

where

Iνν′,j ≡
1

β

∑
iωm

Xj

iℏωm − Eν
k + iΓ/2 sgn(ωm)

× 1

iℏωm + iℏωn − Eν′
k + iΓ/2 sgn(ωm + ωn)

, (C2)

and (X1, X2, X3) = (X,Y, Z). A standard procedure
based on the residue integral enables us to express the
sum Iνν′,j for ωn > 0 as a complex integral on the con-
tour C shown in Fig. 10 (a). This contour can be modified
into a sum of the four contours, Cl (l = 1, 2, 3, 4), shown
in Fig. 10 (b). Accordingly, Iνν′,j is written as

Iνν′,j =

4∑
l=1

ICl

νν′,j , (C3)

ICl

νν′,j = −
∫
Cl

dz

2πi

f(z)Xj(z, iωn)

z − Eν
k + iΓ/2 sgn(Im z)

× 1

z + iℏωn − Eν′
k + iΓ/2 sgn(Im z + ωn)

, (C4)

where f(z) = 1/(eβz +1) is the Fermi distribution func-
tion. The sum of the contributions from the two contours,
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C2 and C3, is calculated as

IC2

νν′,j + IC3

νν′,j

= −X̃j(iωn)

∫
dE

2πi
f(E)

×

[
− 1

E − Eν
k − iΓ/2

1

E + iℏωn − Eν′
k + iΓ/2

+
1

E − iℏωn − Eν
k − iΓ/2

1

E − Eν′
k + iΓ/2

]
. (C5)

Here, we have used the fact that Xj(z, iωn) is indepen-
dent of z for 0 < Im z < ωn from Eq. (45) and have

defined its value as X̃j(iωn) (j = 1, 2, 3). From Eqs. (41)-

(43), X̃j(iωn) are calculated as

X̃1(iωn) =
Λ̃3(iωn)

(1− Λ̃0(iωn))2 − Λ̃2(iωn)2−Λ̃3(iωn)2
, (C6)

X̃2(iωn) =
1− Λ̃0(iωn)− Λ̃2(iωn)

(1− Λ̃0(iωn))2 − Λ̃2(iωn)2−Λ̃3(iωn)2
, (C7)

X̃3(iωn) =
i

1− Λ̃0(iωn) + Λ̃1(iωn)
. (C8)

By changing the integral variable to E′ = E −Eν
k in the

first term and to E′ = −(E −Eν′

k ) in the second term in
Eq. (C5), we obtain

IC2

νν′,j + IC3

νν′,j = −X̃j(iωn)

∫
dE′

2πi

1

E′ − iΓ/2

×

[
f(−E′ + Eν′

k )− f(E′ + Eν
k)

E′ + iℏωn + Eν
k − Eν′

k + iΓ/2

]
. (C9)

Using formula (44), we replace the sum over k in Eq. (C1)
by the integral with respect to ξ and φ. We can perform
the ξ-integral by using

−
∫ ∞

−∞
dξ (f(E′ + Eν

k)− f(−E′ + Eν′

k ))

= 2E′ + Eν
k − Eν′

k . (C10)

Then, by performing the E′-integral, we obtain∫ ∞

−∞
dξ (IC2

νν′,j + IC3

νν′,j) =
iℏωnX̃j(iωn)

Eν
k − Eν′

k + iℏωn + iΓ
.

(C11)

Next, let us consider the contribution from C1 and C4.
On these two contours, Xj(z, iωn) is independent of z

and its value is defined by X̃ ′
j(iωn) (j = 1, 2, 3). Because

Λj(z, iωn) (j = 0, 1, 2, 3) becomes zero for Im z < 0 or

ωn < Im z from Eq. (45), X̃ ′
j(iωn) are given as

X̃ ′
1(iωn) = 0, X̃ ′

2(iωn) = 1, X̃ ′
3(iωn) = i. (C12)

A similar calculation to that of C2 and C3 yields∫ ∞

−∞
dξ (IC1

νν′,j + IC4

νν′,j) = −X̄ ′
j(iωn). (C13)

By substituting these results into Eq. (C1), we obtain

χ(0, iωn) =
D(ϵF)

8

∑
ν,ν′

∫ 2π

0

dφ

2π

[
νν′ sin 2(ϕ− θ) x̃1(iωn)

+ (1− νν′ cos 2(ϕ− θ))(−1 + x̃2(iωn))

− i(1− νν′)(−i+ x̃3(iωn))

]
. (C14)

where

x̃j(iωn) =
iℏωnX̃j(iωn)

Eν
k − Eν′

k + iℏωn + iΓ
. (C15)

Finally, Eq. (52) is derived by substituting the expres-

sions for X̃j(iωn) and by analytic continuation iωn →
ω + iδ.

Appendix D: Analytic Expression for β/α = 0

In this appendix, we derive analytic expressions of the
modulation of the Gilbert damping when β/α = 0, only
the Rashba spin-orbit interaction exists, to see the quan-
titative effect of taking the vertex correction into account.
For β/α = 0, the spin-splitting energy 2heff = 2∆0 is con-

stant along the Fermi surface, and Λ̃R
j (ω) (j = 0, 1, 2, 3)

is simplified as

Λ̃R
0 (ω) =

iΓ

4∆0

∑
νν′

1

ℏω/∆0 + (ν − ν′) + iΓ/∆0
, (D1)

Λ̃R
1 (ω) =

iΓ

4∆0

∑
νν′

νν′

ℏω/∆0 + (ν − ν′) + iΓ/∆0
, (D2)

Λ̃R
2 (ω) = Λ̃R

3 (ω) = 0. (D3)

Then, we obtain the modulation of the Gilbert damping
with the vertex corrections,

δαG

αG,0
≃ ∆0

2πΓ
Re

[
Λ̃R
0 (ω0)

1− Λ̃R
0 (ω0)

+
Λ̃R
0 (ω0)− Λ̃R

1 (ω0)

1− Λ̃R
0 (ω0) + Λ̃R

1 (ω0)

]
.

(D4)

The modulation of the Gilbert damping without the ver-
tex correction is obtained by considering only the first-
order term with respect to Λ̃j

R(ω0),

δαnv
G

αG,0
≃ ∆0

2πΓ
Re

[
2Λ̃R

0 (ω0)− Λ̃R
1 (ω0)

]
. (D5)

When Γ ≪ ∆0, the contribution of ν = ν′ is dominant
for the peak at ω0 = 0 and the modulation of the Gilbert
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damping can be analytically calculated as

δαG

αG,0
≃ ∆0

4π
· Γ/2

(ℏω0)2 + (Γ/2)2
, (D6)

δαnv
G

αG,0
≃ ∆0

4π
· Γ

(ℏω0)2 + Γ2
. (D7)

This indicates that the peak width is halved by taking
the vertex correction into account, which is consistent
with the results shown in Fig. 4 (b) and (c).

In a similar way, we can evaluate the modulation of
the Gilbert damping near the peak at ω0 = 2∆0/ℏ as

δαG

αG,0
≃ ∆0

4π
·
[
1

2

3Γ/4

(ℏω0 − 2∆0)2 + (3Γ/4)2

+
Γ/2

(ℏω0 − 2∆0)2 + (Γ/2)2

]
, (D8)

δαnv
G

αG,0
≃ ∆0

4π
· 3Γ/2

(ℏω0 − 2∆0)2 + Γ2
. (D9)

As well, for the peak at ω0 = 2∆0/ℏ, the peak width
becomes smaller when the vertex correction is taken into
account. This observation is consistent with the results
shown in Fig. 4 (b) and (c). For a finite value of Γ, a
sum of Eqs. (D6) and (D8) (Eqs. (D7) and (D9)) gives
a better analytic form which fits the numerical result
with (without) the vertex correction. Note that δαG and
δαnv

G depend on the impurity potential strength, u, and
impurity concentration, ni, through Γ = 2πniu

2D(ϵF)
(see Eq. (8)). As shown in Eqs. (D6)-(D9), the peak
widths of the Lorentzian functions in δαG and δαnv

G are
determined by Γ (see Fig. 4 (b) and (c)). It is remarkable
that the peak width in δαG is reduced from Γ to Γ/2 by
taking the vertex correction into account. To summarize
the effect of the vertex correction, we show δαG − δαnv

G
and δω0 − δωnv

0 in Fig. 11 (a) and (d), respectively. We
find that the vertex correction modifies mainly the peak
width around ℏω0/∆0 = 0 and 2, in consistent with the
above analytic expressions.

Finally, we note that the same analytical expressions
for δαG and δαnv

G can be obtained for the case of α/β =
0, i.e., when only the Dresselhaus spin-orbit interaction
exists. We also note that for general values of β/α, δαG

and δαnv
G depend on Γ in a more complicated way.

Appendix E: Analytic Expression for β/α = 1

In this appendix, we derive analytic expressions of the
modulation of the Gilbert damping when β/α = 1. In
this case, the effective Zeeman field is parallel to the
(−1, 1, 0) direction and its amplitude is given as

heff(φ) = 2∆0| sin(φ+ π/4)|. (E1)

Then, Λ̃R
j (ω) (j = 0, 1, 2, 3) becomes

Λ̃R
0 (ω) =

iΓ

4∆0

∑
νν′

Jνν′ (E2)

Λ̃R
1 (ω) =

iΓ

4∆0

∑
νν′

νν′Jνν′ , (E3)

Λ̃R
2 (ω) = − sin 2θ Λ̃R

1 (ω), (E4)

Λ̃R
3 (ω) = − cos 2θ Λ̃R

1 (ω) (E5)

where

Jνν′(ω) ≡
∫ 2π

0

dφ

2π

∆0

ℏω + (ν − ν′)heff(φ) + iΓ
. (E6)

In the case of θ = π/4, the modulation of the Gilbert
damping with the vertex correction is expressed as

δαG

αG,0
=

∆0

2πΓ
Re

[
−2 +

1

1− Λ̃R
0 (ω0) + Λ̃R

1 (ω0)

+
1

1− Λ̃R
0 (ω0)− Λ̃R

1 (ω0)

]
. (E7)

The third term of the above equation is calculated as

1

1− Λ̃R
0 (ω0)− Λ̃R

1 (ω0)
=

1

1− iΓ
ℏω0+iΓ

=
ℏω0 + iΓ

ℏω0
. (E8)

This indicates that the expansion with respect to Λ̃R
j can

not be allowed for ω0 ≪ Γ. This is why the modula-
tion without the vertex correction, which is obtained by
taking from the first-order term of Λ̃R

j in Eq. (E7) as

δαnv
G

αG,0
=

∆0

2πΓ
Re

[
2Λ̃R

0 (ω0)

]
, (E9)

gives a different result near ω0 ≃ 0. Actually, for θ = π/4,
δαG and δαnv

G are calculated as

δαG

αG,0
=

∆0

2πΓ
Re

[
i Γ
2∆0

(J+− + J−+)

1− i Γ
2∆0

(J+− + J−+)

]
, (E10)

δαnv
G

αG,0
=

1

4π
Re

[
i

(
J+− + J−+ + J++ + J−−

)]
. (E11)

Note that Eq.(E10) is not valid for ω0 = 0. As indicated
from the absence of J++ and J−−, the graph of δαG(ω0)
has no peak at zero frequency even though δαnv

G (ω0) has a
peak there. This observation is consistent with Fig. 4 (e)
and (f).
In the case of θ = −π/4, the modulations of the Gilbert

damping with and without the vertex correction are

δαG

αG,0
=

∆0

πΓ
Re

[
i Γ
2∆0

(J+− + J−+)

1− i Γ
2∆0

(J+− + J−+)

]
, (E12)

δαnv
G

αG,0
=

1

2π
Re

[
i(J+− + J−+)

]
. (E13)
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FIG. 11. (Upper panels) Change of the Gilbert damping due to the vertex correction, δαG−δαnv
G , for (a) β/α = 0, (b) β/α = 1,

and (c) β/α = 3. (Lower panels) Change of the FMR frequency due to the vertex correction, δω0 − δωnv
0 , for (d) β/α = 0, (e)

β/α = 1, and (f) β/α = 3. The horizontal axes are the FMR frequency, ω0 = γhdc, whereas the vertical axes are the azimuth
angle of the spontaneous spin polarization, θ, in the FI. In all the plots, we have set Γ/∆0 = 0.5.

Note that δαnv
G is obtained by taking the first-order term

in Eq. (E12). As indicated by the absence of the terms,
J++ and J−−, neither δαG nor δαnv

G has any structure
around ω0 = 0. It can be checked that these two expres-
sions give almost the same result when Γ ≲ ∆0, which is
consistent with Fig. 4 (e) and (f). Note as well that δαG

is just doubled compared with the result for θ = π/4 in
Eq. (E10).

To summarize the effect of the vertex correction, we
show δαG − δαnv

G and δω0 − δωnv
0 in Fig. 11 (b) and (e),

respectively. We find that the vertex correction modifies
mainly the peak width around ℏω0/∆0 = 0. In addition,
the broad peak in the range of 0 < ℏω0 < 2∆0 is en-
hanced or suppressed depending on the azimuth angle of
the ordered spin. These features are consistent with the
above analytic expressions. We note that similar features
are observed for β/α = 3 as seen in Fig. 11 (c) and (f).

Appendix F: Approximate Expressions near β/α = 1

In this appendix, we derive the approximate expres-
sions Eqs. (62) and (64) for β/α = 1 + δ (δ ≪ 1) and
ω ≃ 0. For β/α = 1+ δ (δ ≪ 1), we can use the approx-
imation,

cos 2(ϕ− θ) ≃ sin 2θ
(
−1 +

(hx + hy)
2

h2
eff

)
, (F1)

sin 2(ϕ− θ) ≃ cos 2θ
(
−1 +

(hx + hy)
2

h2
eff

)
. (F2)

Then, we obtain

Λ̃R
2 ≃ X sin 2θ, (F3)

Λ̃R
3 ≃ X cos 2θ, (F4)

X ≡ iΓ

4

∫ 2π

0

dφ

2π

∑
νν′

νν′
(
−1 +

(hx+hy)
2

h2
eff

)
ℏω + (ν − ν′)heff + iΓ

(F5)

in the low-frequency region. Here, the contribution of
the second term of the bracket in Eq. (56) does not have

a singularity at ω0 = 0 because Λ̃R
0 and Λ̃R

1 do not de-
pend on the effective Zeeman field heff . Therefore, the
singularity comes from the first term of the bracket in
Eq. (56) and we can approximate F (ω) as

F (ω) ≃ ∆0

2πiΓ

Λ̃R
0 (1− Λ̃R

0 )− Λ̃R
2 (1− Λ̃R

2 ) + (Λ̃R
3 )

2

(1− Λ̃R
0 )

2 − (Λ̃R
2 )

2−(Λ̃R
3 )

2

=
∆0

2πiΓ

[
−1 +

(1− sin 2θ)/2

1− Λ̃R
0 −X

+
(1 + sin 2θ)/2

1− Λ̃R
0 +X

]
.

(F6)

Finally, using the equation,

1− Λ̃R
0 +X =

Γs

Γ
+ i

ℏω
Γ

+O(ω2), (F7)

we find that the third term in the bracket in Eq. (F6) is
divergent at ω = 0 in the limit of δ → 0 since the denom-
inator vanishes. By substituting Eq. (F7) into Eq. (F6),
the most singular part is calculated as

F (ω) ≃ ∆0

2πi

sin2(θ + π/4)

Γs + iℏω
. (F8)
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Using Eqs. (54) and (55), it is straightforward to obtain
Eqs.(62) and (64).
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Ralph, D. A. Arena, H. A. Dürr, P. Fischer, J. Grollier,
J. P. Heremans, T. Jungwirth, A. V. Kimel, B. Koop-
mans, I. N. Krivorotov, S. J. May, A. K. Petford-Long,
J. M. Rondinelli, N. Samarth, I. K. Schuller, A. N. Slavin,
M. D. Stiles, O. Tchernyshyov, A. Thiaville, and B. L.
Zink, Rev. Mod. Phys. 89, 025006 (2017).

6 S. Mizukami, Y. Ando, and T. Miyazaki, Jpn. J. Appl.
Phys. 40, 580 (2001).

7 S. Mizukami, Y. Ando, and T. Miyazaki, Phys. Rev. B
66, 104413 (2002).

8 E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl.
Phys. Lett. 88, 182509 (2006).

9 K. Ando, Y. Kajiwara, S. Takahashi, S. Maekawa, K. Take-
moto, M. Takatsu, and E. Saitoh, Phys. Rev. B 78, 014413
(2008).

10 Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida,
M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando,
K. Takanashi, S. Maekawa, and E. Saitoh, Nat. 464, 262
(2010).

11 W. Han, S. Maekawa, and X.-C. Xie, Nat. Mater. 19, 139
(2020).

12 Z. Qiu, J. Li, D. Hou, E. Arenholz, A. T. N’Diaye, A. Tan,
K.-i. Uchida, K. Sato, S. Okamoto, Y. Tserkovnyak, Z. Q.
Qiu, and E. Saitoh, Nat. Commun. 7, 1 (2016).

13 T. Yamamoto, T. Kato, and M. Matsuo, Phys. Rev. B
104, L121401 (2021).

14 M. Inoue, M. Ichioka, and H. Adachi, Phys. Rev. B 96,
024414 (2017).

15 T. Kato, Y. Ohnuma, and M. Matsuo, Phys. Rev. B 102,
094437 (2020).

16 Y. Ominato, A. Yamakage, and M. Matsuo, Phys. Rev. B
106, L161406 (2022).

17 Y. Ominato, A. Yamakage, T. Kato, and M. Matsuo,
Phys. Rev. B 105, 205406 (2022).

18 I. Garate and A. MacDonald, Phys. Rev. B 79, 064403
(2009).

19 I. Garate and A. MacDonald, Phys. Rev. B 79, 064404
(2009).

20 Y. Liu, L.-S. Xie, Z. Yuan, and K. Xia, Phys. Rev. B 96,
174416 (2017).

21 D. D. Awschalom and M. E. Flatté, Nat. Phys. 3, 153
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