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The use of dissipation for the controlled creation of nontrivial quantum many-body correlated
states is of much fundamental and practical interest. What is the result of imposing number conser-
vation, which, in closed system, gives rise to diffusive spreading? We investigate this question for a
paradigmatic model of a two-band system, with dissipative dynamics aiming to empty one band and
to populate the other, which had been introduced before for the dissipative stabilization of topo-
logical states. Going beyond the mean-field treatment of the dissipative dynamics, we demonstrate
the emergence of a diffusive regime for the particle and hole density modes at intermediate length-
and time-scales, which, interestingly, can only be excited in nonlinear response to external fields.
We also identify processes that limit the diffusive behavior of this mode at the longest length- and
time-scales. Strikingly, we find that these processes lead to a reaction-diffusion dynamics governed
by the Fisher-Kolmogorov-Petrovsky-Piskunov equation, making the designed dark state unstable
towards a state with a finite particle and hole density.

I. INTRODUCTION

Recently the driven-dissipative dynamics of open quan-
tum many-body systems has become an arena of active
research [1–7]. Such open quantum systems have non-
thermal stationary states with nontrivial non-equilibrium
transient dynamics. This paves the way towards the pos-
sibility of nonequilibrium phases of matter [8–12] and of
phase transitions between them [13–19] in different uni-
versality classes as compared with their equilibrium coun-
terparts.

A central role is played by driven dissipative dy-
namics described by the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) master equation [1]. The driving and
dissipation often act to suppress quantum coherence.
However, it has been realized that, by proper tuning of
the coupling between the system and the reservoirs, one
may tailor-design an intricate dark state, and thus obtain
a many-body steady state which inherits its nontrivial
properties from the dissipation rather than from the in-
ternal Hamiltonian dynamics [20–27]. Particular effort
was centered around the dissipative creation of topolog-
ical states [28–45].

An important role in quantum many body dynam-
ics is played by symmetries and the ensuing conserva-
tion laws. In closed systems, diffusive dynamics may
then be induced by the combination of conservation laws
and disorder averaging, or, alternatively, by dephasing
caused by a coupling to a bath [46–49] or by the degrees
of freedom of the system itself [50]. But in dissipative
state preparation one tries to avoid disorder, and to im-
plement bath couplings which enforce rather than sup-
press coherence. How would the dynamics look then?
While most studies considered particle-number changing

dynamics, a recent work [37] introduced a paradigmatic
two-band model, with particle-conserving Lindblad oper-
ators which empty one band and fill the other. Mean-field
analysis shows that the system converges to the desired
dark state at a rate independent of the system size, and
leads to quantized response functions if the bands are
also topologically-nontrivial (as opposed to the particle-
nonconserving case [36]). What happens beyond mean
field? This is the problem addressed by this work.

To provide a complete characterization of the dynam-
ics, we employ a two-pronged strategy. In one direction,
we investigate the question of diffusion by introducing for
the first time beyond-mean-field vertex corrections into
the Lindblad Keldysh diagramatics, motivated by their
importance in disordered electronic systems [50]. Us-
ing this tool we demonstrate the existence of a diffusive
regime for the particle and hole density modes at an inter-
mediate range of length- and time scales. Interestingly,
in contrast to the textbook examples for Hamiltonian
dynamics, this diffusive density mode cannot be induced
by the linear response to a scalar potential. However, we
demonstrate that the diffusive mode can be excited in
the nonlinear response, cf. Eq. (70).

In the second direction we address the limitations (on
long length- and time-scales) to the diffusive behavior
of the particle-hole density mode due to transitions be-
tween the bands. In addition to the expected recombina-
tion (annihilation between particles in the emptied band
and holes in the filled band), which are second order in
the deviation of the densities from the steady state, we
surprisingly find first order contributions which actually
create particles and holes, resulting in an instability of
the desired dark state. The diffusion and transitions be-
tween the band combine to give rise to reaction-diffusion
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dynamics governed by the iconic Fisher-Kolmogorov-
Petrovsky-Piskunov (FKPP) equation, cf. Eq. (91). We
expect it to arise generically in number-conserving state
preparation.

The outline of the paper is as follows. In Sec. II we
specify the model of dissipative dynamics, then trans-
late it to Keldysh form in Sec. III. Next, in Sec. IV we
study the structure of the dark state within the mean-
field approximation, that is, a self-consistent solution for
the self-energy. The linear response of the density to an
external scalar potential is analyzed in Sec. V, followed
by nonlinear response in Sec. VI. The recombination rate
for the particles due to dissipative dynamics is computed
in Sec. VII, while in Sec. VIII the rate of change of the
number of particles due to transitions of particles from
lower band to the upper band is estimated. We end the
paper with discussions and conclusions in Secs. IX and X,
respectively. Some details of calculations are presented
in the Appendixes.

II. MODEL

We consider the dissipative model of Ref. [37], whose
time evolution is governed by the GKSL equation for the
density matrix:

𝑑𝜌

𝑑𝑡
=

∫︁
𝑥

(︁
𝑖[𝜌,𝐻0] +

4∑︁
𝛼=1

𝛾𝛼
(︀
2𝐿𝛼𝜌𝐿

†
𝛼 − {𝐿†

𝛼𝐿𝛼, 𝜌}
)︀)︁
, (1)

where
∫︀
𝑥
≡
∫︀
𝑑𝑑𝑥. The unitary part of the evo-

lution is described by the two-band Hamiltonian
ℋ=

∫︀
𝑥
𝐻0=

∫︀
𝑞

Ψ†
𝑞𝐻0(𝑞)Ψ𝑞, parameterized as

𝐻0(𝑞) = 𝑑𝑞·𝜎 , 𝑑𝑞 = {2𝑚𝑞𝑥, 2𝑚𝑞𝑦, 𝑞
2 −𝑚2} , (2)

where Ψ𝑞={𝜓1,𝑞, 𝜓2,𝑞}, and 𝜎0,𝑥,𝑦,𝑧 are the standard
Pauli matrices acting in a spin space (‘1’ and ‘2’ indexes).
We also introduced shorthand notations for momentum
integrals,

∫︀
𝑞
≡
∫︀
𝑑𝑑𝑞/(2𝜋)𝑑. Below we shall focus on the

cases of 𝑑=1 and 𝑑=2 dimensions. In the former case
the 𝑦 component of momentum vanishes, whereas in the
latter case, the Hamiltonian in Eq. (2) describes a two-
dimensional Chern insulator with a Chern number 𝜃=−1
for any finite 𝑚2. In the eigenbasis, the Hamiltonian den-
sity 𝐻0(𝑞) in Eq. (2) becomes |𝑑𝑞|𝜎𝑧, where |𝑑𝑞|=𝑞2+𝑚2

is the spectrum.
The dissipative part of dynamics in (1) is defined

through the jump operators 𝐿𝛼

𝐿1/2 = 𝜓†
1/2(𝑥)𝑙u(𝑥), 𝐿3/4 = 𝜓1/2(𝑥)𝑙†d(𝑥) , (3)

where the operators 𝑙={𝑙u, 𝑙d} bring the Hamiltonian to
a diagonal form ℋ=

∫︀
𝑞
𝑙†𝑞𝜎𝑧𝑙𝑞, and could be expressed in

terms of the original operators 𝜓 as

𝑙𝑞 =
√︀
𝑑𝑞𝑈

†
𝑞Ψ𝑞 , 𝑈𝑞 =

𝑞𝑥𝜎0 − 𝑖𝑞𝑦𝜎𝑧 − 𝑖𝑚𝜎𝑦√︀
𝑑𝑞

. (4)

Here 𝑑𝑞=|𝑑𝑞|=𝑞2+𝑚2, the unitary matrix 𝑈𝑞 diagonal-

izes 𝐻0(𝑞), and the extra factor
√︀
𝑑𝑞 in the definition of

𝑙𝑞 is introduced to ensure the locality of the operators
𝑙u/d(𝑥) in the coordinate space (i.e., 𝑙(𝑥) contains only
the first spatial derivatives of Ψ(𝑥)). The labels u/d are
referring to the ‘up’ and ‘down’ bands in the eigenbasis
of 𝐻0(𝑞). The jump operators 𝐿𝛼 not only transfer a
particle from the upper band to the lower one but also
move a particle within the bands, see Fig. 1. In real
space, the jump operators 𝐿𝛼 may transfer a particle to
a distance .1/𝑚. We note in passing that some pos-
sible ways to experimentally engineer such local jump
operators conserving the total number of particles are
discussed in Refs. [28–30, 33, 51, 52].

We are going to focus on the half-filled configuration,
corresponding to the ground state |𝐷⟩ of ℋ with a fully
occupied ‘down’ band and an empty ‘up’ band (we will be
referring to this state as the dark state). As one can easily
check, the density matrix 𝜌𝐷 = |𝐷⟩⟨𝐷| is a steady state
of the dynamics, Eq. (1), as it obeys 𝐿𝛼|𝐷⟩ = 0. In fact,
the Lindblad operators 𝐿𝛼 are designed so as to stabilize
this state, even in the absence of the Hamiltonian ℋ.

One of the crucial aspects of the model outlined above
is that the total number of particles is conserved. Indeed,
let us define the operator of the total number of particles

as �̂�=
∫︀
𝑥

[𝜓†
1(𝑥)𝜓1(𝑥)+𝜓†

2(𝑥)𝜓2(𝑥)]. Using the following
commutation relations,

[𝜓†
1/2(𝑥), �̂� ] = −𝜓†

1/2(𝑥), [𝜓1/2(𝑥), �̂� ] = 𝜓1/2(𝑥),

[𝑙†u/d(𝑥), �̂� ] = −𝑙†u/d(𝑥), [𝑙u/d(𝑥), �̂� ] = 𝑙u/d(𝑥),
(5)

one can check that [𝐿†
𝛼, �̂� ]=0. This implies that the

dynamics of the density matrix described by Eq. (1)

conserves the total number of particles, 𝑑 tr(�̂�𝜌)/𝑑𝑡=0.
As we shall see below, the conservation of the number
of particles in dissipative dynamics has important con-
sequences, reminiscent of the case of unitary evolution.
However, we stress that the number of particles in the up-
per (lower) band is not separately conserved, and thus,
the response of the associated density modes to external
perturbations is expected to decay at sufficiently long
times.

III. KELDYSH FIELD THEORY APPROACH

In order to study the long time/distance dynamics gov-
erned by Eq. (1), we re-formulate this equation as the
action on the Keldysh contour (see Ref. [1] for details).
The corresponding Keldysh partition function reads as

𝑍 =

∫︁
𝒟[Ψ,Ψ] 𝑒𝑖𝑆0[Ψ,Ψ]+𝑖𝑆L[Ψ,Ψ], (6)

which is expressed in terms of spin 1/2 fermionic an-
nihilation and creation fields on the ‘+’ and ‘−’ parts
of the Keldysh contour, Ψ={𝜓1,+, 𝜓2,+, 𝜓1,−, 𝜓2,−}𝑇 and

Ψ={𝜓1,+, 𝜓2,+, 𝜓1,−, 𝜓2,−} [we emphasize that these
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FIG. 1. Sketch of the action of the jump operators. 𝐿1/2 redistributes a particle in the upper band (panel (a)) or transfers it
to the lower band (panel (c)). 𝐿3/4 redistributes a particle in the lower band (panel (b)) or creates a particle in the lower band
by annihilating it in the upper band (panel (c)).

fields must be distinguished from their counterparts used
in the operator formalism of Eq. (1)]. The part of the
Keldysh action corresponding to the unitary (Hamilto-
nian) dynamics of the density matrix is given by

𝑆0=

∫︁
𝑞,𝑡

Ψ𝑞(𝑡)
(︀
𝑖𝜎0𝜕𝑡−𝐻0(𝑞)

)︀
𝜏𝑧Ψ𝑞(𝑡). (7)

Here 𝐻0(𝑞) is defined in Eq. (2), 𝜏0,𝑥,𝑦,𝑧 are the standard
Pauli matrices acting in Keldysh space (‘±’ indices), and∫︀
𝑡
≡
∫︀∞
−∞ 𝑑𝑡 stands for the integration in the time domain.

The dissipative part of the Keldysh action (6) reads in
the coordinate representation

𝑆L=−𝑖
∫︁
𝑥,𝑡

4∑︁
𝛼=1

𝛾𝛼

[︁
2𝐿𝛼,+(𝑡−)𝐿𝛼,−(𝑡) − 𝐿𝛼,+(𝑡)𝐿𝛼,+(𝑡−)

−𝐿𝛼,−(𝑡)𝐿𝛼,−(𝑡+)
]︁
. (8)

The times 𝑡±=𝑡±𝛿 with 𝛿=0+ take into account the spe-
cific regularization of equal time terms that is of crucial
importance for correct causality of the Keldysh action
(see Ref. [1] for details).

In order to define 𝐿𝛼,± and 𝐿𝛼,± corresponding to
the jump operators 𝐿𝛼 and 𝐿†

𝛼 of Eq. (3) on the
Keldysh contour, it is convenient to introduce two ad-
ditional sets of fermionic fields. First we define the fields
𝐶={𝑐u,+, 𝑐d,+, 𝑐u,−, 𝑐d,−}𝑇 and 𝐶={𝑐u,+, 𝑐d,+, 𝑐u,−, 𝑐d,−},
which form the eigenbasis (‘up’ and ‘down’ states) of the
Hamiltonian 𝐻0,

𝑆0 =

∫︁
𝑞,𝑡

𝐶𝑞(𝑡)
(︀
𝑖𝜎0𝜕𝑡 − 𝜉𝑞𝜎𝑧

)︀
𝜏𝑧𝐶𝑞(𝑡) . (9)

Here we introduce a parameter 𝜉𝑞≡𝑑𝑞=|𝑑𝑞|=𝑞2+𝑚2,
which is the same as 𝑑𝑞, but will allow us to distinguish
the contributions from unitary and dissipative parts of
the dynamics. In particular, it allows us to consider the
case in which Hamiltonian dynamics is absent, by setting
𝜉𝑞 to zero. We note that the two sets of fermionic fields,
Ψ and 𝐶, are related by a canonical transformation,

Ψ𝑞 = 𝑈𝑞𝐶𝑞, Ψ𝑞 = 𝐶𝑞𝑈
†
𝑞 , (10)

where the matrix 𝑈𝑞 was introduced in Eq. (4).
Second, we introduce the fermionic fields ℓ =
{𝑙u,+, 𝑙d,+, 𝑙u,−, 𝑙d,−}𝑇 and ℓ={𝑙u,+, 𝑙d,+, 𝑙u,−, 𝑙d,−} that

are related with the fields 𝐶 and 𝐶 as (cf. Eq. (4))

ℓ𝑞 =
√︀
𝑑𝑞𝐶𝑞, ℓ𝑞 =

√︀
𝑑𝑞 𝐶𝑞. (11)

Then the jump operators 𝐿𝛼 and 𝐿†
𝛼 can be written in

the Keldysh theory by (we suppress the Keldysh indices)

𝐿1/2 = 𝜓1/2(𝑥)𝑙u(𝑥), 𝐿3/4 = 𝜓1/2(𝑥)�̄�d(𝑥),

𝐿1/2 = 𝑙u(𝑥)𝜓1/2(𝑥), 𝐿3/4 = 𝑙d(𝑥)𝜓1/2(𝑥).
(12)

Expressing 𝜓, 𝜓 and ℓ, ℓ in terms of 𝑐 and 𝑐, we represent
the jump operators in the following form[53]

𝐿𝛼 =

∫︁
𝑞𝑝

𝑒𝑖(𝑝−𝑞)𝑥 𝑐𝑝ℒ(𝛼)
𝑝𝑞 𝑐𝑞, 𝐿𝛼 =

∫︁
𝑞𝑝

𝑒𝑖(𝑝−𝑞)𝑥 𝑐𝑝ℒ
(𝛼)

𝑝𝑞 𝑐𝑞,

(13)

Here ℒ(𝛼) and ℒ(𝛼)
are 2×2 matrices in the space of

up/down states, which are constructed as

[ℒ(1/2)
𝑝𝑞 ]ab =

√︀
𝑑𝑞[𝑈†

𝑝]a,1/2𝛿bu,

[ℒ(3/4)
𝑝𝑞 ]ab = −

√︀
𝑑𝑝[𝑈𝑞]1/2,b𝛿ad,

(14)

and ℒ(𝛼)

𝑝𝑞 =[ℒ(𝛼)
𝑞𝑝 ]†. For convenience, we write the matrices

ℒ(𝛼) explicitly

ℒ(1)
𝑝𝑞 =

√︃
𝑑𝑞
𝑑𝑝

(︂
𝑝𝑥+𝑖𝑝𝑦 0
−𝑚 0

)︂
, ℒ(2)

𝑝𝑞 =

√︃
𝑑𝑞
𝑑𝑝

(︂
𝑚 0

𝑝𝑥−𝑖𝑝𝑦 0

)︂
,

ℒ(3)
𝑝𝑞 =

√︃
𝑑𝑝
𝑑𝑞

(︂
0 0

−𝑞𝑥+𝑖𝑞𝑦 𝑚

)︂
, ℒ(4)

𝑝𝑞 =−

√︃
𝑑𝑝
𝑑𝑞

(︂
0 0
𝑚 𝑞𝑥+𝑖𝑞𝑦

)︂
.

(15)

Now we can write the dissipative part of the action in
terms of the 𝐶 and 𝐶 fields explicitly,
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𝑆L=−𝑖(2𝜋)𝑑
∫︁

𝑝𝑗 ,𝑡

𝛿(𝑝1−𝑝2+𝑝3−𝑝4)

4∑︁
𝛼=1

𝛾𝛼

[︁
2𝑐𝑝1,−(𝑡)ℒ(𝛼)

𝑝1𝑝2
𝑐𝑝2,−(𝑡+𝜖𝛼)𝑐𝑝3,+(𝑡−𝛿)ℒ(𝛼)

𝑝3𝑝4
𝑐𝑝4,+(𝑡−𝛿−𝜖𝛼) − 𝑐𝑝1,+(𝑡+𝜖𝛼)

×ℒ(𝛼)

𝑝1𝑝2
𝑐𝑝2,+(𝑡)𝑐𝑝3,+(𝑡−𝛿)ℒ(𝛼)

𝑝3𝑝4
𝑐𝑝4,+(𝑡−𝛿−𝜖𝛼) − 𝑐𝑝1,−(𝑡−𝜖𝛼)ℒ̄(𝛼)

𝑝1𝑝2
𝑐𝑝2,−(𝑡)𝑐𝑝3,−(𝑡+𝛿)ℒ(𝛼)

𝑝3𝑝4
𝑐𝑝4,−(𝑡+𝛿+𝜖𝛼)

]︁
. (16)

Here we indicate regularization at coinciding times ex-
plicitly by 𝜖1,2=0+ and 𝜖3,4=0−. We note that, as a
consequence of the conservation of the total number of
particles, the Keldysh action 𝑆0+𝑆L ((9) and (16)) has a
strong symmetry being invariant under global U(1)×U(1)
transformations, 𝑐𝜎→𝑒−𝑖𝛼𝜎𝑐𝜎 and 𝑐𝜎→𝑒𝑖𝛼𝜎𝑐𝜎, where
𝜎=±. At the same time, translation invariance is only a
weak symmetry in this model [1, 54, 55], meaning that
the Keldysh action 𝑆L is invariant only under transla-
tions acting simultaneously on the forward and backward
branches of the Keldysh contour. As a consequence, the
jump operators 𝐿𝛼 can lead to momentum relaxation, as
depicted in Fig. 1.

It is worth noting that the interaction in Eq. (16)
could be formally decoupled by introducing some aux-
iliary bosonic fields which represent bath degrees of free-
dom. The latter, however, can be shown to be far from
thermal equilibrium, as they would violate the principle
of detailed balance. In particular, the correlation func-
tions of such auxiliary bath fields disobey the fluctuation-
dissipation theorem reflecting the non-Hermitian nature
of the jump operators 𝐿𝛼.

IV. SELF-CONSISTENT SOLUTION FOR THE
DARK STATE

We now demonstrate how the dark state appears
within the Keldysh field theory, see Eqs. (9) and (16).

A. Definitions

We are interested in the single-particle Green function
for the theory (9) and (16). The structure of the exact
Green functions in the Keldysh space has the standard
form [50]:

⟨𝑐𝑞,+(𝑡)𝑐𝑞,−(𝑡′)⟩ = 𝑖𝒢<
𝑞 (𝑡, 𝑡′),

⟨𝑐𝑞,−(𝑡)𝑐𝑞,+(𝑡′)⟩ = 𝑖𝒢>
𝑞 (𝑡, 𝑡′),

(17)

and

⟨𝑐𝑞,±(𝑡)𝑐𝑞,±(𝑡′)⟩=𝑖𝒢𝑇/𝑇
𝑞 (𝑡, 𝑡′)=𝑖

{︃
𝒢>/<
𝑞 (𝑡, 𝑡′), 𝑡>𝑡′,

𝒢</>
𝑞 (𝑡, 𝑡′), 𝑡<𝑡′.

(18)
We note that the Green functions are 2×2 matri-
ces in the ‘up/down’ space. The standard relation

𝒢𝑇 +𝒢𝑇 =𝒢>+𝒢< holds to preserve causality.

Using the action 𝑆0, Eq. (9), we find that the bare
Green functions are diagonal in the ‘up/down’ space,

𝑖𝐺>
u/d,𝑞(𝑡, 𝑡′) = (1 − 𝑛u/d,𝑞)𝑒∓𝑖𝜉𝑞(𝑡−𝑡′),

𝑖𝐺<
u/d,𝑞(𝑡, 𝑡′) = −𝑛u/d,𝑞𝑒∓𝑖𝜉𝑞(𝑡−𝑡′).

(19)

Here 𝑛u,𝑞 (𝑛d,𝑞) denotes the momentum distribution func-
tion for the particles in the upper (lower) band.

As usual, in order to proceed further it is convenient
to make the Keldysh rotation from 𝑐± to classical and
quantum components 𝑐cl/q [50, 56],(︂

𝑐cl
𝑐q

)︂
=

1√
2

(︂
1 1
1 −1

)︂(︂
𝑐+
𝑐−

)︂
,

(︀
𝑐cl 𝑐q

)︀
=
(︀
𝑐+ 𝑐−

)︀ 1√
2

(︂
1 1
−1 1

)︂
.

(20)

After the Keldysh rotation, the Green function acquires
the familiar form

− 𝑖⟨𝑐𝑞(𝑡)𝑐𝑞(𝑡′)⟩ = 𝒢𝑞(𝑡, 𝑡′) =

(︂
𝒢𝑅
𝑞 (𝑡, 𝑡′) 𝒢𝐾

𝑞 (𝑡, 𝑡′)
0 𝒢𝐴

𝑞 (𝑡, 𝑡′)

)︂
.

(21)
The bare retarded and advanced Green functions are
given by (in the energy representation)

𝐺𝑅/𝐴
𝑞 (𝜀) =

1

𝜀− 𝜉𝑞𝜎𝑧 ± 𝑖0+
. (22)

The exact and bare Green functions are related to each
other via the Dyson equation,

[𝒢𝑅/𝐴
𝑞 ]−1 = [𝐺𝑅/𝐴

𝑞 ]−1 − Σ𝑅/𝐴
𝑞 , (23)

where Σ
𝑅/𝐴
𝑞 stands for the self-energy. The Keldysh com-

ponent of the Green function is given by

𝒢𝐾
𝑞 (𝜀) = 𝒢𝑅

𝑞 (𝜀)Σ𝐾
𝑞 (𝜀)𝒢𝐴

𝑞 (𝜀). (24)

B. Self-consistent equation for the self-energy

The self-energy is induced by the dissipative part of
the action, Eq. (16). In order to compute it we consider
the simplest (Born-type) diagram shown in Fig. 2. We
apply a self-consistent scheme, assuming that the inter-
nal line is the exact Green function (we will refer to this



5

FIG. 2. Self-energy diagrams of the Fock- and Hartree-type
in the self-consistent Born approximation. The solid blue line
is the full Green function. The dashed orange semicircle indi-
cates the parameter 𝛾𝛼 controlling dissipation-induced inter-

action. The orange filled circles correspond to operators ℒ(𝛼)
,

while the empty circles denote operators ℒ(𝛼). There are sim-

ilar diagrams with the operators ℒ(𝛼)
and ℒ(𝛼) interchanged.

approximation as the “self-consistent Born approxima-
tion”, SCBA, in analogy with the theory of disordered
systems [50]). Then we find the following expressions for
the retarded/advanced self-energy,

Σ𝑅/𝐴
𝑞 =

2∑︁
𝛼=1

𝛾𝛼

∫︁
𝑝

[︁
ℒ(𝛼)
𝑞𝑞 tr ℒ̄(𝛼)

𝑝𝑝 𝒢<
𝑝 (𝑡, 𝑡) − ℒ̄(𝛼)

𝑞𝑞 trℒ(𝛼)
𝑝𝑝 𝒢<

𝑝 (𝑡, 𝑡)
]︁

+

4∑︁
𝛼=3

𝛾𝛼

∫︁
𝑝

[︁
ℒ(𝛼)
𝑞𝑞 tr ℒ̄(𝛼)

𝑝𝑝 𝒢>
𝑝 (𝑡, 𝑡) − ℒ̄(𝛼)

𝑞𝑞 trℒ(𝛼)
𝑝𝑝 𝒢>

𝑝 (𝑡, 𝑡)
]︁

∓
4∑︁

𝛼=1

𝛾𝛼

∫︁
𝑝

[︁
ℒ(𝛼)
𝑞𝑝 𝒢<

𝑝 (𝑡, 𝑡)ℒ̄(𝛼)
𝑝𝑞 − ℒ̄(𝛼)

𝑞𝑝 𝒢>
𝑝 (𝑡, 𝑡)ℒ(𝛼)

𝑝𝑞

]︁
.

(25)

We stress that the Keldysh structure of terms produced
by the jump operators 𝐿1/2 and 𝐿3/4 are different. The
Keldysh component of the self-energy becomes

Σ𝐾
𝑞 = 2

4∑︁
𝛼=1

𝛾𝛼

∫︁
𝑝

[︁
ℒ(𝛼)
𝑞𝑝 𝒢<

𝑝 (𝑡, 𝑡)ℒ̄(𝛼)
𝑝𝑞 + ℒ̄(𝛼)

𝑞𝑝 𝒢>
𝑝 (𝑡, 𝑡)ℒ(𝛼)

𝑝𝑞

]︁
.

(26)

We note that the self-energy in the steady state is inde-
pendent of time 𝑡, as expected. Taking into account the

relation 𝒢>/<
𝑞 =(𝒢𝐾

𝑞 ±𝒢𝑅
𝑞 ∓𝒢𝐴

𝑞 )/2, Eqs. (25) and (26) are
self-consistent equations for the self-energies.

In order to solve Eqs. (25) and (26) we parametrize
the exact Green functions at equal times as follows,

𝒢<
𝑝 (𝑡, 𝑡) = 𝑖

(︂
𝑛u,𝑝 𝜂𝑝
𝜂*𝑝 𝑛d,𝑝

)︂
, 𝒢>

𝑝 (𝑡, 𝑡) = −𝑖+ 𝒢<
𝑝 (𝑡, 𝑡),

(27)
and, consequently,

𝒢𝐾
𝑝 (𝑡, 𝑡) = −𝑖ℱ𝑝, ℱ𝑝 =

(︂
1 − 2𝑛u,𝑝 −2𝜂𝑝
−2𝜂*𝑝 1 − 2𝑛d,𝑝

)︂
. (28)

Here 𝑛u,𝑝 and 𝑛d,𝑝 denotes the momentum distribution of
particles in the ‘up’ and ‘down’ states, respectively. The
off-diagonal parameter 𝜂𝑝 describes possible correlations
between particles in the upper and lower bands.

Using the ansatz (27) and the expressions (15), we
straightforwardly find a somewhat lengthy expression for
the self-energy in the self-consistent Born approximation
(see Fig. 2),

Σ𝐾
𝑞 =2𝑖

∫︁
𝑝

{︃
𝑑𝑝
𝑑𝑞

(︂
𝛾[1,3]𝑞

2+𝛾[2,4]𝑚
2 (𝛾[2,4]−𝛾[1,3])𝑚𝑞+

(𝛾[2,4]−𝛾[1,3])𝑚𝑞− 𝛾[1,3]𝑚
2+𝛾[2,4]𝑞

2

)︂

−𝑑𝑞
𝑑𝑝

(︃
Γ
(12,>)
𝑝 0

0 −Γ
(34,<)
𝑝

)︃

−2𝑚Re(𝑝−𝜂𝑝)
𝑑𝑞
𝑑𝑝

(︃
𝛾
(−)
1,2 0

0 𝛾
(−)
4,3

)︃}︃
. (29)

Here for the sake of a brevity we introduced short-hand

notations, 𝛾[𝛼,𝛽]=𝛾𝛼𝑛u,𝑝−𝛾𝛽(1−𝑛d,𝑝), 𝛾
(±)
𝛼,𝛽=𝛾𝛼±𝛾𝛽 , and

Γ
(𝛼𝛽,<)
𝑝 =𝛾𝛼[𝑝2𝑛u,𝑝+𝑚2𝑛d,𝑝]+𝛾𝛽 [𝑝2𝑛d,𝑝+𝑚2𝑛u,𝑝]. The

quantity Γ
(𝛼𝛽,>)
𝑝 is obtained from Γ

(𝛼𝛽,<)
𝑝 by replacing

𝑛u/d,𝑝 with 1−𝑛u/d,𝑝.

The retarded component of the self-energy reads

Σ𝑅
𝑞 =𝑖

∫︁
𝑝

(︃
2𝑖𝛾1[𝑝× 𝑞]𝑛u,𝑝+2𝑖𝑚 Im[(𝛾1𝑞−−𝛾2𝑝−)𝜂𝑝] (𝛾{1,4}𝑝+−𝛾{2,3}𝑞+)𝑚−(𝛾

(+)
1,4 𝑚

2+𝛾
(+)
2,3 𝑞+𝑝−)𝜂𝑝

(𝛾{2,3}𝑞−−𝛾{1,4}𝑝−)𝑚+(𝛾
(+)
1,4 𝑚

2+𝛾
(+)
2,3 𝑞−𝑝+)𝜂*𝑝 −2𝑖𝛾4[𝑝× 𝑞](1 − 𝑛d,𝑝)−2𝑖𝑚 Im[(𝛾4𝑞−−𝛾3𝑝−)𝜂𝑝]

)︃

−𝑖
∫︁
𝑝

{︃
𝑑𝑝
𝑑𝑞

(︂
𝛾{1,3}𝑞

2+𝛾{2,4}𝑚
2 (𝛾{4,2}−𝛾{3,1})𝑚𝑞+

(𝛾{4,2}−𝛾{3,1})𝑚𝑞− 𝛾{1,3}𝑚
2+𝛾{2,4}𝑞

2

)︂
+
𝑑𝑞
𝑑𝑝

[︃(︃
Γ
(12,>)
𝑝 0

0 Γ
(34,<)
𝑝

)︃
+2𝑚Re(𝑝−𝜂𝑝)

(︃
𝛾
(−)
1,2 0

0 𝛾
(−)
4,3

)︃]︃}︃
,

(30)

where 𝛾{𝛼,𝛽}=𝛾𝛼𝑛u,𝑝+𝛾𝛽(1 − 𝑛d,𝑝). The expression for

the advanced self-energy Σ𝐴
𝑞 can be obtained from Eq.

(30) by hermitian conjugation.

The self-consistent Green functions can be then written



6

as follows

[𝒢𝑅/𝐴
𝑞 (𝜀)]−1 = 𝜀− 𝜉𝑞𝜎𝑧 − Σ𝑅/𝐴

𝑞 ,

𝒢𝐾
𝑞 (𝜀) = 𝒢𝑅

𝑞 (𝜀)Σ𝐾
𝑞 𝒢𝐴

𝑞 (𝜀). (31)

Taking into account the parameterization (28), the self-
consistent equation for 𝑛u/d,𝑞 and 𝜂𝑞 becomes

𝒢𝐾
𝑞 (𝑡, 𝑡) =

∫︁
𝑑𝜀

2𝜋
𝒢𝑅
𝑞 (𝜀)Σ𝐾

𝑞 𝒢𝐴
𝑞 (𝜀). (32)

C. The dark state solution

Using Eqs. (29) and (30), one can check that the self-
consistent equations (25) and (26) have the solution

𝑛u,𝑝 = 𝜂𝑝 = 0, 𝑛d,𝑝 = 1, (33)

corresponding to the dark state. In the self-consistent
Born approximation the retarded/advanced Green func-
tions become

𝒢𝑅/𝐴
𝑞 (𝜀) =

(︃
1

𝜀−𝜉𝑞±𝑖𝛾u𝑛𝑑𝑞
0

0 1
𝜀+𝜉𝑞±𝑖𝛾d𝑛𝑑𝑞

)︃
, (34)

where we introduced

𝛾u/d =

∫︁
𝑝

𝛾1/4𝑝
2 + 𝛾2/3𝑚

2

𝑛(𝑝2 +𝑚2)
, 𝑛 =

∫︁
𝑝

1. (35)

We note that the total particle density 𝑛 is determined
by the ultra-violet scale (lattice spacing). The dimension-
less quantity 𝛾u/d𝑛 determines the decay rate for single-
particle excitations in the upper and lower bands, respec-
tively. In what follows, we take for simplicity 𝛾𝛼=𝛾 for
all 𝛼, so that 𝛾u/d=𝛾. We note though that our main re-
sults do not depend on this simplification. In Appendix
A we demonstrate that the dark state, cf. Eq. (33), is the
only solution for the Green function in the self-consistent
Born approximation.

It is worth emphasizing that the same single-
particle decay rate as in Eq. (34) can be formally
reproduced by means of the following replacement:

𝐿1/2→𝑙u, 𝐿3/4→𝑙†d, 𝛾→𝛾𝑛, which was initially suggested
in Ref. [37] as some sort of “mean-field” (MF) approach
to the present problem. However, the underlying physical
mechanism for such a decay rate is different: in the MF
model, the decay rate corresponds to the fact that parti-
cles can escape the system completely, and has nothing to
do with transitions between the upper and lower bands
(in fact, the MF model does not couple them at all).
On the other hand, in the full model, the SCBA single-
particle decay rate is purely elastic, and corresponds to
momentum relaxation within the upper (lower) band,
analogously to the single-particle decay rate induced by
disorder in closed systems [50].

The Keldysh component of the Green function for the
dark state can be expressed in terms of retarded and
advanced Green functions as

𝒢𝐾
𝑞 (𝜀) = 𝒢𝑅

𝑞 (𝜀)𝜎𝑧 − 𝜎𝑧𝒢𝐴
𝑞 (𝜀). (36)

In Appendix B we compute the self-energy to the
second-order in 𝛾, thus going beyond the self-consistent
Born approximation. This analysis demonstrates that
the dark state solution (33) exists beyond the self-
consistent Born approximation as expected, since, as
noted above, the Lindbladian dynamics (1) was designed
so as to have 𝜌𝐷 = |𝐷⟩⟨𝐷| as a steady state. We further
find that corrections to the self-consistent Born approxi-
mation are controlled by the small parameter 𝑚𝑑/𝑛≪1.

In the next section, we consider relaxation dynamics
induced by perturbing the dark state with external fields.
As we shall see below, the total numbers of particles in
the upper and lower bands (denoted as 𝑁u and 𝑁d, re-
spectively) are both approximately conserved within the
self-consistent Born approximation at the linear order in
the density deviations from the dark state, precluding
exponential decay of 𝑁u. However, at the quadratic or-
der in the density deviations, recombination of particles
in the upper band and holes in the lower band emerges
(see Sec. VII), favouring eventual slow decay of 𝑁u at
late times. This behaviour is strongly opposed to the
“mean-field” predictions, which imply exponentially fast
decay of 𝑁u irrespective of the density of holes in the
lower band. In addition, the effect of corrections beyond
the SCBA on the time evolution of 𝑁u is discussed in
Sec. VIII.

V. LINEAR RESPONSE

Let us now consider the response of the density of the
particles in the ‘up’ and ‘down’ states to an external
scalar potential 𝜑(𝑥, 𝑡) coupled to the density of origi-
nal fermions 𝜓. In the basis of the ‘up’ and ‘down’ states
such a scalar potential transforms into a matrix in the
u/d space which is non-local in coordinate space,

Φ(𝑥,𝑥′, 𝑡) =

∫︁
𝑝𝑞𝜔

Φ𝑝,𝑞;𝜔 𝑒
−𝑖𝑝(𝑥−𝑥′)−𝑖𝑞(𝑥+𝑥′)/2−𝑖𝜔𝑡,

Φ𝑝,𝑞;𝜔 = 𝑈𝑝+
𝑈†
𝑝−
𝜑𝑞,𝜔, 𝜑𝑞,𝜔 =

∫︁
𝑥𝑡

𝜑(𝑥, 𝑡)𝑒𝑖𝑞𝑥+𝑖𝜔𝑡,

(37)

where 𝑝±=𝑝±𝑞/2, and
∫︀
𝜔
≡
∫︀∞
−∞ 𝑑𝜔/(2𝜋) stands for the

integration in the frequency domain. We assume that
it has only the classical component, i.e., that it is the
same for the ‘+’ and ‘-’ parts of the Keldysh contour,
Φ±(𝑥,𝑥′; 𝑡)=Φ(𝑥,𝑥′; 𝑡). Under such a perturbation the
bare retarded and advanced Green functions get modified

[𝐺𝑅/𝐴]−1 → [𝐺𝑅/𝐴]−1 − Φ. (38)

In turn, the presence of Φ affects the self-energies and
the exact Green functions.
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FIG. 3. Diagrams for the linear response. (a), (b) Polarization bubbles with Green functions in the self-consistent Born
approximation. (c), (d) Polarization bubbles with vertex corrections. 𝛿𝑛 stands for either of 𝛿𝑢, 𝛿𝑑, 𝛿𝜂.

We note that due to the presence of Φ, the Green func-
tions become dependent on both spatial coordinates and
both times. For example, Eq. (24) now reads

𝒢𝐾(𝑥, 𝑡;𝑥′, 𝑡′) =

∫︁
𝑦,𝑦′,𝑡1,𝑡2

𝒢𝑅(𝑥, 𝑡;𝑦, 𝑡1)Σ𝐾(𝑦, 𝑡1;𝑦′, 𝑡2)

×𝒢𝐴(𝑦′, 𝑡2;𝑥′, 𝑡′), (39)

or 𝒢𝐾=𝒢𝑅∘Σ𝐾∘𝒢𝐴 in the short-hand notation which we
shall use below.

In this and the following section we will employ a trick
which allows to account for vertex corrections without
having to sum over an infinite series of diagrams. The
change of the retarded and advanced Green functions due
to the external potential Φ (to the linear order) is given
as, cf. Eq. (23),

𝛿𝒢𝑅/𝐴 = 𝒢𝑅/𝐴 ∘ Φ ∘ 𝒢𝑅/𝐴 + 𝒢𝑅/𝐴 ∘ 𝛿Σ𝑅/𝐴 ∘ 𝒢𝑅/𝐴. (40)

The shift of the Keldysh Green function due to the ex-
ternal potential reads

𝛿𝒢𝐾=𝒢𝑅 ∘ 𝛿Σ𝐾 ∘ 𝒢𝐴+𝛿𝒢𝑅 ∘ Σ𝐾 ∘ 𝒢𝐴+𝒢𝑅 ∘ Σ𝐾 ∘ 𝛿𝒢𝐴

=𝒢𝑅 ∘ Φ ∘ 𝒢𝐾+𝒢𝐾 ∘ Φ ∘ 𝒢𝐴+𝒢𝑅 ∘ 𝛿Σ𝐾 ∘ 𝒢𝐴

+𝒢𝑅 ∘ 𝛿Σ𝑅 ∘ 𝒢𝐾+𝒢𝐾 ∘ 𝛿Σ𝐴 ∘ 𝒢𝐴. (41)

Here we used the relation (40) in the last line. The vari-
ation of the self-energy can be read from Eqs. (25) and
(26). First, one needs to rewrite them in the coordinate
representation. Second, one needs to take into account
that 𝛿𝒢𝑅/𝐴(𝑡, 𝑡)=0. This follows from Eq. (40) since,
as we shall see below, the variation of the self-energy
is non-zero at coinciding times only. Therefore, we can

write 𝛿𝒢>/<(𝑥, 𝑡;𝑥′, 𝑡) = 𝛿𝒢𝐾(𝑥, 𝑡;𝑥′, 𝑡)/2. Thus we find
the following change of the Keldysh self-energy

𝛿Σ𝐾(𝑥,𝑡;𝑥′,𝑡′)=𝛾

∫︁
𝑦,𝑦′,𝑧

[︁
ℒ(𝛼)(𝑥−𝑧,𝑦−𝑧)𝛿𝒢𝐾(𝑦,𝑡;𝑦′,𝑡)

×ℒ̄(𝛼)(𝑦′−𝑧,𝑥′−𝑧) + (ℒ ↔ ℒ̄)
]︁
𝛿(𝑡− 𝑡′). (42)

Here and afterwards the summation over repeated index
𝛼 is assumed. We introduced the coordinate representa-
tion for the matrices ℒ(𝛼) and ℒ̄(𝛼):

ℒ(𝛼)(𝑥,𝑦)=

∫︁
𝑞𝑝

𝑒𝑖𝑝𝑦−𝑖𝑞𝑥ℒ(𝛼)
𝑞𝑝 , (43)

and similarly for ℒ̄(𝛼)(𝑥,𝑦). The variations of the re-
tarded/advanced self-energies are given by

𝛿Σ𝑅/𝐴(𝑥, 𝑡;𝑥′, 𝑡′)= − 𝛾

2

∫︁
𝑦,𝑦′,𝑧

[︁
ℒ̄(𝛼)(𝑥−𝑧,𝑥′−𝑧)

× trℒ(𝛼)(𝑦−𝑧,𝑦′−𝑧)𝛿𝒢𝐾(𝑦′, 𝑡;𝑦, 𝑡) ± ℒ(𝛼)(𝑥−𝑧,𝑦−𝑧)

×𝛿𝒢𝐾(𝑦, 𝑡;𝑦′, 𝑡)ℒ̄(𝛼)(𝑦′−𝑧,𝑥′−𝑧) − (ℒ ↔ ℒ̄)
]︁
𝛿(𝑡− 𝑡′).

(44)

We note that the variation of the Keldysh Green function
determines the change in the density of the particles in
the upper and lower bands due to the application of the
external potential,

𝛿�̂�(𝑥, 𝑡) = − 𝑖

2
𝛿𝒢𝐾(𝑥, 𝑡;𝑥, 𝑡). (45)

Next we obtain the closed-form equation for the change
of the Keldysh component of the Green’s function due to
the presence of the external potential

Π𝑝,𝑞;𝜔=𝛿𝒢𝐾
𝑝,𝑞;𝜔−𝛾

∫︁
𝑘,𝜀

𝒢𝑅
𝑝+,𝜀+

[︁
ℒ(𝛼)
𝑝+𝑘+

𝛿𝒢𝐾
𝑘,𝑞;𝜔ℒ̄

(𝛼)
𝑘−𝑝−

+ℒ̄(𝛼)
𝑝+𝑘+

𝛿𝒢𝐾
𝑘,𝑞;𝜔ℒ

(𝛼)
𝑘−𝑝−

]︁
𝒢𝐴
𝑝−,𝜀−+

𝛾

2

∫︁
𝑘,𝜀

𝒢𝑅
𝑝+,𝜀+

[︁
ℒ̄(𝛼)
𝑝+𝑝−

trℒ(𝛼)
𝑘−𝑘+

𝛿𝒢𝐾
𝑘,𝑞;𝜔

−ℒ(𝛼)
𝑝+𝑝−

tr ℒ̄(𝛼)
𝑘−𝑘+

𝛿𝒢𝐾
𝑘,𝑞;𝜔+ℒ(𝛼)

𝑝+𝑘+
𝛿𝒢𝐾

𝑘,𝑞;𝜔ℒ̄
(𝛼)
𝑘−𝑝−

−ℒ̄(𝛼)
𝑝+𝑘+

𝛿𝒢𝐾
𝑘,𝑞;𝜔ℒ

(𝛼)
𝑘−𝑝−

]︁
𝒢𝐾
𝑝−,𝜀−+

𝛾

2

∫︁
𝑘,𝜀

𝒢𝐾
𝑝+,𝜀+

[︁
ℒ̄(𝛼)
𝑝+𝑝−

trℒ(𝛼)
𝑘−𝑘+

𝛿𝒢𝐾
𝑘,𝑞;𝜔

−ℒ(𝛼)
𝑝+𝑝−

tr ℒ̄(𝛼)
𝑘−𝑘+

𝛿𝒢𝐾
𝑘,𝑞;𝜔−ℒ(𝛼)

𝑝+𝑘+
𝛿𝒢𝐾

𝑘,𝑞;𝜔ℒ̄
(𝛼)
𝑘−𝑝−

+ ℒ̄(𝛼)
𝑝+𝑘+

𝛿𝒢𝐾
𝑘,𝑞;𝜔ℒ

(𝛼)
𝑘−𝑝−

]︁
𝒢𝐴
𝑝−,𝜀− . (46)
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Here, we introduced for brevity, 𝑝±=𝑝±𝑞/2, 𝑘±=𝑘±𝑞/2
and 𝜀±=𝜀±𝜔/2. Also we used the following represen-
tation for the spatial and temporal dependence of the
Keldysh component of the Green’s function,

𝛿𝐺𝐾(𝑥, 𝑡;𝑥′, 𝑡)=

∫︁
𝑝𝑞𝜔

𝛿𝐺𝐾
𝑝,𝑞;𝜔𝑒

−𝑖𝑝+𝑥+𝑖𝑝−𝑥′−𝑖𝜔𝑡. (47)

The bare density-density bubble (retarded polarization
operator) is given by

Π𝑝,𝑞;𝜔 =

∫︁
𝜀

[︁
𝒢𝑅
𝑝+,𝜀+Φ𝑝,𝑞;𝜔𝒢𝐾

𝑝−,𝜀− +𝒢𝐾
𝑝+,𝜀+Φ𝑝,𝑞;𝜔𝒢𝐴

𝑝−,𝜀−

]︁
.

(48)
We note that the terms proportional to 𝛾 on the right-
hand side of Eq. (46) describe vertex corrections (see
Fig. 3).

Replacing the Green functions in the density-density
bubble by their expressions in the self-consistent Born
approximation, cf. Eqs. (34) and (36), we find

Π𝑝,𝑞;𝜔 =

⎛⎝ 0
2𝑖Φ(ud)

𝑝,𝑞;𝜔

𝜔−𝜉𝑝,𝑞+𝑖𝛾𝑑𝑝,𝑞

−2𝑖Φ(du)
𝑝,𝑞;𝜔

𝜔+𝜉𝑝,𝑞+𝑖𝛾𝑑𝑝,𝑞
0

⎞⎠ , (49)

where 𝜉𝑝,𝑞=𝜉𝑝+
+𝜉𝑝− and 𝑑𝑝,𝑞=𝑑𝑝+

+𝑑𝑝− , while, as be-
fore, 𝛾=𝛾𝑛. We also represented Φ𝑝,𝑞;𝜔 as an auxiliary
2×2 matrix in 𝑢/𝑑-space,

Φ𝑝,𝑞;𝜔 =

(︃
Φ

(uu)
𝑝,𝑞;𝜔 Φ

(ud)
𝑝,𝑞;𝜔

Φ
(du)
𝑝,𝑞;𝜔 Φ

(dd)
𝑝,𝑞;𝜔

)︃
. (50)

We emphasize that the matrix Π𝑝,𝑞;𝜔 has vanishing diag-
onal elements, which follows from the fact that the distri-
bution function for the dark state ℱ𝑝=𝜎𝑧 (see Eq. (28))
is momentum independent. As a result, both poles of
the integrand in Eq. (48) are always in the same com-
plex half-plane, and the integral vanishes. Note that this
cancelation has nothing to do with the symmetries of
the Hamiltonian or with the relation between the exter-
nal frequency and the spectral gap (the latter becomes
important for linear response of the off-diagonal modes
𝜂𝑝,𝑞,𝜔 since they have a finite lifetime). In the case of an
external scalar potential applied to the 𝜓-particles, cf.
Eq. (37), the off-diagonal components of Φ𝑝,𝑞;𝜔 read

Φ(ud)
𝑝,𝑞;𝜔 = −𝑚(𝑞𝑥 + 𝑖𝑞𝑦)√︀

𝑑𝑝+
𝑑𝑝−

𝜑𝑞,𝜔, Φ(du)
𝑝,𝑞;𝜔 =

𝑚(𝑞𝑥 − 𝑖𝑞𝑦)√︀
𝑑𝑝+

𝑑𝑝−

𝜑𝑞,𝜔.

(51)
In order to solve Eq. (46), we use the following param-

eterization

𝛿𝒢𝐾
𝑝,𝑞;𝜔 = 2𝑖

(︂
𝛿𝑢𝑝,𝑞;𝜔 𝛿𝜂𝑝,𝑞;𝜔
𝛿𝜂*𝑝,𝑞;𝜔 𝛿𝑑𝑝,𝑞;𝜔

)︂
. (52)

In addition, we replace all the Green functions by their
expressions in the self-consistent Born approximation, cf.

Eqs. (34) and (36). We then arrive at the following equa-
tion for 𝛿𝑢𝑝,𝑞;𝜔,

2𝑖𝛿𝑢𝑝,𝑞;𝜔+
4𝛾√︀

𝑑𝑝+
𝑑𝑝−

𝑑𝑝−𝑞2/4+𝑖[𝑝×𝑞]

[𝜔+𝜉𝑝−−𝜉𝑝+
+𝑖𝛾(𝑑𝑝−+𝑑𝑝+

)]

×
∫︁
𝑘

√︁
𝑑𝑘+

𝑑𝑘− 𝛿𝑢𝑘,𝑞;𝜔 = Π(uu)
𝑝,𝑞;𝜔 ≡ 0. (53)

Therefore, the external potential does not induce a
change in the density of the ‘up’ band, 𝛿𝑢𝑝,𝑞;𝜔=0, and
similarly for the ‘down’ band, 𝛿𝑑𝑝,𝑞;𝜔=0. We emphasize,
however, that linear response is absent only for the densi-
ties of the eigenmodes (i.e. 𝛿𝑢𝑝,𝑞;𝜔 and 𝛿𝑑𝑝,𝑞;𝜔). In con-
trast, the response of the density of original 𝜓-fermions

𝜓†
1𝜓1+𝜓†

2𝜓2 is non-zero because it also involves contri-
butions from the off-diagonal mode (i.e. the matrix ele-
ment 𝜂𝑝,𝑞,𝜔 in the Keldysh Green function, 𝛿𝒢𝐾

𝑝,𝑞;𝜔, see
Eq. (52)). The decay of this mode is governed by the
following equation

[︁
𝜉𝑝+

+𝜉𝑝−−𝑖𝛾(𝑑𝑝+
+𝑑𝑝−)−𝜔

]︁
𝛿𝜂𝑝,𝑞;𝜔−𝑖𝛾

∫︁
𝑘

𝛿𝜂𝑘,𝑞;𝜔

[︃(︁
𝑚2

+𝑘+𝑝++𝑖[𝑘+×𝑝+]
)︁√︃𝑑𝑘−𝑑𝑝−

𝑑𝑘+
𝑑𝑝+

+
(︁
𝑚2+𝑘−𝑝−

+𝑖[𝑘−×𝑝−]
)︁√︃𝑑𝑘+

𝑑𝑝+

𝑑𝑘−𝑑𝑝−

]︃
= − Φ(ud)

𝑝,𝑞;𝜔. (54)

Taking the limit 𝑞→0, we find the following solution

𝛿𝜂𝑝,𝑞;𝜔≃
1

𝜔−2𝜉𝑝+2𝑖𝛾𝑑𝑝

[︃
Φ(ud)

𝑝,𝑞;𝜔−
∫︀
𝑘

2𝑖𝛾𝑚2Φ
(ud)
𝑘,𝑞;𝜔

𝜔−2𝜉𝑘+2𝑖𝛾𝑑𝑘

1+
∫︀
𝑘

2𝑖𝛾𝑚2

𝜔−2𝜉𝑘+2𝑖𝛾𝑑𝑘

]︃
.

(55)

We mention that the second term in the square brackets
on the right-hand side of Eq. (55) describes the effect of
vertex corrections. They correspond to the summation
of the infinite series of ladder-type diagrams (see Fig. 4).
However, these vertex corrections for 𝛿𝜂 disappear in the
limit 𝛾→0. Eq. (55) has clear physical meaning: In or-
der to excite a particle from the filled ‘down’ band to
the empty ‘up’ band, the external potential has to over-
come the energy gap equal 2𝜉𝑝. The decay rate of such
an exciting state is finite and is given by 1/𝜏𝑝=2𝛾𝑑𝑝. In
the time domain Eq. (55) translates into exponential de-
cay of the linear response with the rate 1/𝜏=2𝛾𝑚2 (cf.
Ref. [37]).

VI. NONLINEAR RESPONSE

Since the external potential Φ does not lead to finite 𝛿𝑢
and 𝛿𝑑 within linear response, let us compute the second
order response. The variations of the Green function to
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FIG. 4. Sketch of the diagrams for the density-density response corresponding to Eqs. (53) and (54). 𝛿𝑛 stands for either of
𝛿𝑢, 𝛿𝑑, 𝛿𝜂. The response is given by the bubble diagram (a), with the density vertex (b) Here the blue curves correspond to
the Green functions computed in the self-consistent Born approximation.

second order in Φ can be written straightforwardly,

𝛿𝒢𝐾=𝛿𝒢𝑅∘Σ𝐾∘𝒢𝐴+𝒢𝑅∘Σ𝐾∘𝛿𝒢𝐴+𝒢𝑅∘𝛿Σ𝐾∘𝒢𝐴

+𝛿𝒢𝑅∘Σ𝐾∘𝛿𝒢𝐴+𝛿𝒢𝑅∘𝛿Σ𝐾∘𝒢𝐴+𝒢𝑅∘𝛿Σ𝐾∘𝛿𝒢𝐴, (56)

and

𝛿𝒢𝑅=𝒢𝑅∘Φ∘𝒢𝑅+𝒢𝑅∘Φ∘𝒢𝑅∘Φ∘𝒢𝑅+𝒢𝑅∘𝛿Σ𝑅∘𝒢𝑅

+𝒢𝑅∘Φ∘𝒢𝑅∘𝛿Σ𝑅∘𝒢𝑅+𝒢𝑅∘𝛿Σ𝑅∘𝒢𝑅∘Φ∘𝒢𝑅

+𝒢𝑅∘𝛿Σ𝑅∘𝒢𝑅∘𝛿Σ𝑅∘𝒢𝑅. (57)

The expression for 𝛿𝒢𝐴 can be obtained from Eq. (57)
after replacing all the retarded Green functions by the
corresponding advanced ones.

Using Eq. (56) and (57), we obtain the following equa-
tion for the second order contribution 𝛿𝒢𝐾

2 to the varia-
tion of the Keldysh Green function:

𝛿𝒢𝐾
2 −𝒢𝑅∘𝛿Σ𝐾

2 ∘𝒢𝐴−𝒢𝑅∘𝛿Σ𝑅
2 ∘𝒢𝐾−𝒢𝐾∘𝛿Σ𝐴

2 ∘𝒢𝐴=𝑇+𝑉.
(58)

Here 𝛿Σ
𝑅/𝐴/𝐾
2 are expressed in terms of 𝛿𝒢𝐾

2 in accor-
dance with Eqs. (42) and (44). The bare triangle dia-
gram (see Fig. 5) is given as,

𝑇=𝒢𝑅∘Φ∘𝒢𝑅∘Φ∘𝒢𝐾+𝒢𝐾∘Φ∘𝒢𝐴∘Φ ∘ 𝒢𝐴

+𝒢𝑅∘Φ∘𝒢𝐾∘Φ∘𝒢𝐴. (59)

The contribution 𝑉 describes vertex corrections [see
Fig. 5(b)–(d).]

𝑉=𝒢𝑅∘𝛿Σ𝑅
1 ∘𝒢𝐾∘Φ∘𝒢𝐴+𝒢𝑅∘Φ∘𝒢𝐾∘𝛿Σ𝐴

1 ∘𝒢𝐴

+𝒢𝑅∘𝛿Σ𝑅
1 ∘𝒢𝐾∘𝛿Σ𝐴

1 ∘𝒢𝐴+𝒢𝑅∘Φ∘𝒢𝑅∘𝛿Σ𝐾
1 ∘𝒢𝐴

+𝒢𝑅∘𝛿Σ𝐾
1 ∘𝒢𝐴∘Φ∘𝒢𝐴+𝒢𝑅∘𝛿Σ𝐾

1 ∘𝒢𝐴∘Φ∘𝒢𝐴

+𝒢𝑅∘𝛿Σ𝑅
1 ∘𝒢𝑅∘𝛿Σ𝐾

1 ∘𝒢𝐴+𝒢𝑅∘𝛿Σ𝐾
1 ∘𝒢𝐴∘𝛿Σ𝐴

1 ∘𝒢𝐴

+𝒢𝑅∘Φ∘𝒢𝑅∘𝛿Σ𝑅
1 ∘𝒢𝐾+𝒢𝐾∘Φ∘𝒢𝐴∘𝛿Σ𝐴

1 ∘𝒢𝐴

+𝒢𝑅∘𝛿Σ𝑅
1 ∘𝒢𝑅∘Φ∘𝒢𝐾+𝒢𝐾∘𝛿Σ𝐴

1 ∘𝒢𝐴∘Φ∘𝒢𝐴

+𝒢𝑅∘𝛿Σ𝑅
1 ∘𝒢𝑅∘𝛿Σ𝑅

1 ∘𝒢𝐾+𝒢𝐾∘𝛿Σ𝐴
1 ∘𝒢𝐴∘𝛿Σ𝐴

1 ∘𝒢𝐴. (60)

Here 𝛿Σ1 is the contribution to the self-energy due to the
correction to the 𝛿𝜂 in the first order in Φ. However, as we
have seen in the previous section, the mode 𝛿𝜂 decays at
long times, 𝑡≫𝜏=1/(2𝛾𝑚2). Therefore, for the study of
the long-time dynamics, we can safely neglect the mode
𝛿𝜂 and, consequently, by all contributions involving 𝛿Σ1.
In other words, we can omit 𝑉 on the right-hand side of
Eq. (58).

Using parametrization (52), we then obtain the follow-
ing equation for 𝛿𝑢𝑝,𝑞;𝜔, cf. Eq. (53),

2𝑖𝛿𝑢𝑝,𝑞;𝜔 +
4𝛾(𝑑𝑝−𝑞2/4 + 𝑖[𝑝× 𝑞])√︀

𝑑𝑝−𝑑𝑝+
[𝜔 + 𝜉𝑝− − 𝜉𝑝+

+ 𝑖𝛾(𝑑𝑝− + 𝑑𝑝+
)]

×
∫︁
𝑘

√︁
𝑑𝑘+

𝑑𝑘− 𝛿𝑢𝑘,𝑞;𝜔 = 𝑇 (uu)
𝑝,𝑞;𝜔. (61)

The 𝑢𝑢-component of the triangle diagram evaluated
with the Green functions computed in the self-consistent
Born approximation, Eqs. (34) and (36), becomes

𝑇 (uu)
𝑝,𝑞;𝜔 = − 2𝑇

(uu)
𝑝,𝑞;𝜔

𝜔 + 𝜉𝑝− − 𝜉𝑝+
+ 𝑖𝛾(𝑑𝑝− + 𝑑𝑝+

)
. (62)

Here we singled out the denominator which vanishes in
the limit 𝑞→0, 𝜔→0, and 𝛾→0; the remainder,

𝑇 (uu)
𝑝,𝑞;𝜔 = 𝑖

∫︁
𝑄,Ω

Φ
(ud)
𝑝++𝑄−/2,−𝑄−;Ω+

Φ
(du)
𝑝−+𝑄+/2,𝑄+;−Ω−

(𝜉𝑝+
+ 𝜉𝑝+𝑄 − 𝑖𝛾(𝑑𝑝+

+ 𝑑𝑝+𝑄) − Ω+)

×
(𝜉𝑝+

− 𝜉𝑝− − 𝑖𝛾(𝑑𝑝+
+ 𝑑𝑝− + 2𝑑𝑝+𝑄) − 𝜔)

(𝜉𝑝− + 𝜉𝑝+𝑄 + 𝑖𝛾(𝑑𝑝− + 𝑑𝑝+𝑄) − Ω−)
. (63)

Solving Eq. (61) we obtain

𝛿𝑢𝑝,𝑞;𝜔 =
𝑖

𝜔 + 𝜉𝑝− − 𝜉𝑝+
+ 𝑖𝛾(𝑑𝑝− + 𝑑𝑝+

)

[︃
𝑇 (uu)
𝑝,𝑞;𝜔

−
𝑖𝛾(𝑑𝑝 − 𝑞2/4 + 𝑖[𝑝× 𝑞])

∫︀
𝑘
𝑇

(uu)
𝑘,𝑞;𝜔

√︂
𝑑𝑘−𝑑𝑘+

𝑑𝑝−𝑑𝑝+

1 − 2𝑖𝛾
∫︀
𝑘

(𝑑𝑘−𝑞2/4+𝑖[𝑘×𝑞])
𝜔+𝜉𝑘−−𝜉𝑘+

+𝑖𝛾(𝑑𝑘−+𝑑𝑘+
))

]︃
. (64)

We emphasize that the second line of Eq. (64) describes
the effect of vertex corrections. A striking feature of the
latter is the divergence of the denominator at 𝑞=𝜔=0.

The solution for 𝛿𝑑𝑝,𝑞;𝜔 is obtained from Eq. (64) by
the following steps. At first, one reverses the sign of the

vector 𝑞. Secondly, one replaces 𝑇
(uu)
𝑘,−𝑞;𝜔 by 𝑇

(dd)
𝑘,𝑞;𝜔 and

𝑇
(uu)
𝑘,𝑞;𝜔 by −𝑇 (dd)

𝑘,𝑞;𝜔. The expressions for 𝑇
(dd)
𝑘,𝑞;𝜔 and 𝑇

(dd)
𝑘,𝑞;𝜔

are obtained from Eqs. (62) and (63) by interchanging
the indices 𝑢 and 𝑑 and changing the signs in front of
𝜉𝑝+

, 𝜉𝑝− , and 𝜉𝑝+𝑄. These relations between solutions
for 𝛿𝑢𝑝,𝑞;𝜔 and 𝛿𝑑𝑝,𝑞;𝜔 imply that

𝛿𝑛(u)𝑞,𝜔 + 𝛿𝑛(d)𝑞,𝜔 = 0, (65)
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FIG. 5. Diagrams for the nonlinear response. (a) The triangle diagram with Green functions in the self-consistent Born
approximation. (b) The triangle diagram with the vertex correction of the density. (c),(d) The triangle diagrams with the
vertex correction of the external potential. Diagrams (c) and (d) are the analogues of the diagrams in Fig. 3(b) with the
self-energy corrected due to the presence of the external potential.

where the Fourier transforms of the density variations of
the 𝑢- and 𝑑-fermions are defined as

𝛿𝑛(u)𝑞,𝜔 =

∫︁
𝑝

𝛿𝑢𝑝,𝑞;𝜔, 𝛿𝑛(d)𝑞,𝜔 =

∫︁
𝑝

𝛿𝑑𝑝,𝑞;𝜔. (66)

We note that Eq. (65) implies the conservation of the
total density.

We now concentrate on the long wavelength and low
frequency regime, |𝑞|≪𝛾𝑚 and |𝜔|≪𝛾𝑚2. Expanding the
exact solution (64) in powers of 𝑞 and 𝜔, we find the
following result for the Fourier transform of the density
variation of the 𝑢-particles,

𝛿𝑛(u)𝑞,𝜔 =

∫︁
𝑝

𝛿𝑢𝑝,𝑞;𝜔 =
1

𝐷𝑞2 − 𝑖𝜔

∫︁
𝑘

𝑇
(uu)
𝑘,𝑞;𝜔 . (67)

We emphasize that it has a diffusive-pole structure that
comes from the vertex correction alone. The diffusion
coefficient reads

𝐷 = 𝛾+
2

𝑑𝛾

∫︀
𝑘
𝑘2/𝑑2𝑘∫︀

𝑘
1/𝑑𝑘

=
1

𝛾

[︃
1 − (𝑑− 1)

ln
(︀
1 + 4𝜋𝑛

𝑚

)︀]︃+ 𝛾. (68)

The expression (68) for the diffusion coefficient can be
expressed as

𝐷 =
1

𝑑

⟨𝑣2
𝑘𝜏

2
𝑘⟩𝑘

⟨𝜏𝑘⟩𝑘
+ 𝛾, (69)

where 𝑣𝑘=𝜕𝜉𝑘/𝜕𝑘=2𝑘 is the velocity. Here ⟨. . . ⟩𝑘 de-
notes averaging over the momentum 𝑘. We note that
the first term in Eq. (69) originates from the interplay
between the unitary (Hamiltonian) and dissipative dy-
namics in the GKSL equation (1), whereas the second
one is purely dissipative.

In the absence of any Hamiltonian (ℋ = 0), Eq. (69)
suggests that the diffusion coefficient remains finite (yet
small), 𝐷=𝛾. Physically, this stems from the fact that
the jump operators involve derivatives, and thus allow
particle transport. We verified that there are no correc-
tions to the diffusion coefficient due to the appearance of

the real part of the self-energy to the second order in 𝛾
(see Appendix B). However, it is quite possible that ad-
ditional perturbative-in-𝛾 corrections to 𝐷 could appear
from higher order vertex diagrams.

Assuming that the external potential 𝜑𝑞,𝜔 varies slowly
enough in both space and time, |𝑞|≪𝛾𝑚 and |𝜔|≪𝛾𝑚2,
we reduce Eq. (67) to the following diffusion equation(︁ 𝜕

𝜕𝑡
−𝐷∇2

)︁
𝛿𝑛(u)(𝑥, 𝑡) =

𝛾𝜒

1 + 𝛾2
𝐸2(𝑥, 𝑡) (70)

where 𝐸 = −∇𝜑 is the electric field induced by a scalar
potential and where

𝜒 =

∫︁
𝑘

𝑚2

𝜉3𝑘
=

{︃
3/(16𝑚3), 𝑑 = 1,

1/(8𝜋𝑚2), 𝑑 = 2.
(71)

For purely dissipative dynamics, one needs to set 𝐷 to
zero and replace the denominator 1+𝛾2 by 𝛾2 in the dif-
fusion equation (70). We note that the appearance of the
electric field on the right-hand side of Eq. (70) is not ac-
cidental, but rather guaranteed by gauge invariance [57].
Let us also note that for a static field 𝐸, the right hand
side of Eq. (70) would seem to lead to an unbounded
growth of the density 𝛿𝑛(u). This is countered by the
recombination term discussed in the next Section.

There is a similar equation for 𝛿𝑛(d)(𝑥, 𝑡) to ensure the
conservation of the total particle density, cf. Eq. (65),

𝛿𝑛(u)(𝑥, 𝑡) + 𝛿𝑛(d)(𝑥, 𝑡) = 0. (72)

The range of applicability of this constraint deserves a
separate comment. In this section, Eq. (72) is derived
assuming the non-crossing approximation (correspond-
ing to ladder diagrams depicted in Fig. 4(b)). However,
strictly speaking, the total density mode 𝑛(u)(𝑥)+𝑛(d)(𝑥)
is not conserved beyond this approximation, since the
jump operators 𝐿𝛼 involve derivatives. As a consequence,
Eq. (72) holds in a “coarse-grained” sense only, i.e. for
distances greater than 1/𝑚 (which is much shorter than
the averaged mean-free path). In other words, local de-
viations of the total density mode (and their coupling to
the particle-hole mode) emerge only at the higher order
in the spatial gradients.
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Our result (70) demonstrates that one does not need a
time-dependent potential with a characteristic frequency
greater than the spectral gap 2𝑚2 to induce a finite den-
sity response by the applied external field. The rea-
son is that the density operator of the 𝜓−fermions has
off-diagonal matrix elements in the u/d−representation.
These off-diagonal components of Φ, cf. Eq. (51), allow
for hybridization between the states from the upper and
down bands, and thus, effectively induce a non-zero oc-
cupation in the upper band. The corresponding density
appears even in the absence of dissipation, 𝛾=0, and can
be estimated as (see Appendix C)

𝛿𝑛
(u)
0 (𝑥, 𝑡) ∼ 𝜒𝐸2(𝑥, 𝑡)/𝑚2. (73)

This deviation of the density stems from the first term in
Eq. (64). Diagrammatically, it corresponds to the bare
triangle with no ladder insertions (see Fig. 5(a)), and
thus, it does not contain a diffusive pole (only the sec-
ond term in Eq. (64) does), but it remains finite in the
limit 𝑞=𝜔=0, 𝛾=0. Therefore, the density deviations in
Eq. (70) should be understood as deviations from this

zeroth-order density shift 𝛿𝑛
(u)
0 . We emphasize, however,

that 𝛿𝑛
(u)
0 is much smaller than the density variation ob-

tained from the solution of Eq. (70).

We note that this behavior of Eq. (73) can be under-
stood from the toy example of a 2×2 Hamiltonian

𝐻TM =

(︂
𝑚2 Φ
Φ −𝑚2

)︂
. (74)

The Hamiltonian 𝐻TM has two eigenstates |±⟩Φ with en-

ergies ±
√
𝑚2+Φ2. Let us consider the case of a fully

occupied lowest energy band and a fully empty upper
energy band. Then the occupancy of the upper state for
the Hamiltonian (74) is nonzero once Φ̸=0. In the limit
|Φ|≪𝑚2 this occupancy is proportional to Φ2/𝑚4. This
well-known result is fully analogous to Eq. (73).

VII. RECOMBINATION

The above analysis of the linear and nonlinear response
of the particle density to an external scalar potential has
been restricted to the linear order in 𝛿𝑛(u). Terms of
the second order in the density variation describe the
recombination of the particles from the ‘up’ and ‘down’
bands. According to the Lindblad dynamics, cf. Eq.
(1), such processes appear already to the first order in
𝛾, but only in the quadratic order in the deviation of
the density from the steady state. Thus, their analysis
requires appropriate modifications of the linear integral
equation (46).

There is, however, a slightly more convenient way to
account for recombination. One can make use of the
following exact equation governing the time decay of the

total number of particles in the ‘up’ band,

𝑑𝑁u

𝑑𝑡
= 𝛾

∑︁
𝛼

∫︁
𝑥

Tr 𝜌
{︁

[𝐿†
𝛼, �̂�u]𝐿𝛼 − 𝐿†

𝛼[𝐿𝛼, �̂�u]
}︁
. (75)

Here we introduced the operator of the total number of
particles in the upper band, �̂�u=

∫︀
𝑥
𝑐†u(𝑥)𝑐u(𝑥) (the def-

inition of the operators 𝑐u/d is analogous to the defini-
tion of the fields 𝑐u/d in the Keldysh formulation, see
Eq. (10)). Employing the following commutation rela-
tions

[𝑙†u(𝑥), �̂�𝑢] = −𝑙†u(𝑥), [𝑙u(𝑥), �̂�u] = 𝑙u(𝑥),

[𝑙†d(𝑥), �̂�𝑢] = [𝑙d(𝑥), �̂�u] = 0, (76)

[𝜓†
1/2(𝑥), �̂�u] = −𝜓†

1/2;u(𝑥), [𝜓1/2(𝑥), �̂�u] = 𝜓1/2;u(𝑥),

we obtain the exact equation

𝑑𝑁u

𝑑𝑡
= −𝛾

∑︁
𝛽=1,2

∫︁
𝑥

Tr 𝜌
{︁
𝑙†u[𝜓𝛽,d𝜓

†
𝛽 + 𝜓𝛽𝜓

†
𝛽,d]𝑙u

+𝑙d[𝜓
†
𝛽𝜓𝛽,u + 𝜓†

𝛽,u𝜓𝛽 ]𝑙†d

}︁
. (77)

Here the subscript u (d) in 𝜓1/2;u (𝜓1/2;d) denotes the
part of 𝜓1/2 that involves 𝑐u (𝑐d) operators only.

The right hand side of Eq. (77) can be computed by
means of the Keldysh path integral theory described in
the previous sections. To the lowest order in fluctuations
the averages over four fermionic fields could be performed
at the Gaussian level with the help of the Wick’s, theorem
but allowing for non-linear order in the deviations from
the dark state. We then find

𝑑𝑁u

𝑑𝑡
≃ −2𝛾

∑︁
𝛽=1,2

∫︁
𝑥

[︁
⟨𝑙†u𝑙u⟩⟨𝜓𝛽,d𝜓

†
𝛽,d⟩ + ⟨𝑙d𝑙†d⟩⟨𝜓

†
𝛽,u𝜓𝛽,u⟩

]︁
.

(78)

Here we omit the averages which are off-diagonal in

𝑢/𝑑−space, e.g. ⟨𝜓𝛽,u𝜓
†
𝛽,d⟩, since such averages are pro-

portional to 𝛿𝜂. Indeed, as we have shown in Sec. V,
𝛿𝜂 decays on short time scales of the order of 𝜏 . We
emphasize that at the level of the self-consistent Born
approximation, each of the averages involved in Eq. (78)
vanishes. Going beyond the self-consistent Born approx-
imation, we write

⟨𝑙†u(𝑥, 𝑡)𝑙u(𝑥, 𝑡)⟩ =

∫︁
𝑝,𝑞;𝜔

√︁
𝑑𝑝+

𝑑𝑝−𝛿𝑢𝑝,𝑞;𝜔𝑒
−𝑖𝑞𝑥−𝑖𝜔𝑡,

⟨𝑙d(𝑥, 𝑡)𝑙†d(𝑥, 𝑡)⟩ = −
∫︁

𝑝,𝑞;𝜔

√︁
𝑑𝑝+

𝑑𝑝−𝛿𝑑𝑝,𝑞;𝜔𝑒
−𝑖𝑞𝑥−𝑖𝜔𝑡,

⟨𝜓†
𝛽,u(𝑥, 𝑡)𝜓𝛽,u(𝑥, 𝑡)⟩ =

∫︁
𝑝,𝑞;𝜔

𝑑𝑝−𝑖[𝑞×𝑝]√︀
𝑑𝑝+

𝑑𝑝−

𝛿𝑢𝑝,𝑞;𝜔𝑒
−𝑖𝑞𝑥−𝑖𝜔𝑡,

⟨𝜓𝛽,d(𝑥, 𝑡)𝜓
†
𝛽,d(𝑥, 𝑡)⟩ =−

∫︁
𝑝,𝑞;𝜔

𝑑𝑝+𝑖[𝑞×𝑝]√︀
𝑑𝑝+

𝑑𝑝−

𝛿𝑑𝑝,𝑞;𝜔𝑒
−𝑖𝑞𝑥−𝑖𝜔𝑡.

(79)
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FIG. 6. Examples of diagrams for the correction to the rate
of change of the number of particles in the upper band.

Here summation over the repeated index, 𝛽=1, 2, is as-
sumed. Substituting the averages (79) into Eq. (78), we
find

𝑑𝑁u

𝑑𝑡
≃ 4𝛾

∫︁
𝑥

𝛿𝑛(u)(𝑥, 𝑡)

∫︁
𝑝,𝑞;𝜔

𝑑𝑝 𝛿𝑑𝑝,𝑞;𝜔𝑒
−𝑖𝑞𝑥−𝑖𝜔𝑡

≃ − 1

𝑛𝜏R

∫︁
𝑥

[𝛿𝑛(u)(𝑥, 𝑡)]2. (80)

Here we used the following relations

∫︁
𝑝

𝑑𝑝𝛿𝑢𝑝,𝑞;𝜔 = −
∫︁
𝑝

𝑑𝑝𝛿𝑑𝑝,𝑞;𝜔 ≃ 𝑛∫︀
𝑝

1/𝑑𝑝
𝛿𝑛(u)𝑞𝜔, (81)

that follows from Eq. (53) in the absence of the external
scalar potential. The recombination rate 1/𝜏𝑅 is given

by

1

𝜏R
=

4𝛾𝑛∫︀
𝑝

1/𝑑𝑝
= 8𝛾𝑛

{︃
𝑚, 𝑑 = 1,

𝜋/ ln
(︀
𝑛/𝑚2

)︀
, 𝑑 = 2.

(82)

We note that the obtained result, cf. Eq. (80), suggests
the existence of the additional term −[𝛿𝑛(u)(𝑥, 𝑡)]2/(𝑛𝜏R)
on the right hand side of Eq. (70). Noting Eq. (72),
this term is actually 𝛿𝑛(u)(𝑥, 𝑡)𝛿𝑛(d)(𝑥, 𝑡)/(𝑛𝜏R) , which
highlights its role as recombination of u-particles and d-
holes.

VIII. PUMPING OF THE PARTICLES INTO
THE UPPER BAND BEYOND THE

SELF-CONSISTENT BORN APPROXIMATION

Since there is no conservation of the number of par-
ticles in ‘up’ and ‘down’ bands, in general, one cannot
expect perfect cancellation between the self-energy and
vertex corrections. Within the self-consistent Born ap-
proximation, such a cancellation does occur since self-
energy and renormalized density vertex are elastic-like,
i.e., they are independent of the energy. To second or-
der in 𝛾, beyond the self-consistent Born approximation,
the self-energy becomes energy dependent (see Appendix
B). Similar energy dependence is expected for the vertex
corrections.[58] In order to account for these effects, one
can once more resort to Eq. (77). This time, however,
the averages on the right hand side should be computed
to the second order in 𝛾 (and linear order in the devia-
tions of the density from the steady state), by expanding
the dissipative part of the Keldysh action (16) and per-
forming irreducible contractions only. Examples of such
diagrams are shown in Fig. 6.

We start by rewriting Eq. (77) in the following way

𝑑𝑁u

𝑑𝑡
=−𝛾

4

∫︁
𝑘𝑗

𝛿(𝑘1−𝑘2+𝑘3−𝑘4)
√︀
𝑑𝑘1𝑑𝑘4

∑︁
𝑠=0,1

∑︁
𝑎,𝑏=u,d

{︃[︁
1 − 𝛿𝑎u𝛿𝑏u + 𝛿𝑎d𝛿𝑏d

]︁
[𝑈†

𝑘2
𝑈𝑘3 ]𝑎𝑏

⟨(︀
𝑐𝑘4,𝑢𝜏𝑠𝑐𝑘1,𝑢

)︀(︀
𝑐𝑘3,𝑏𝜏𝑠𝑐𝑘2,𝑎

)︀⟩

+
[︁
1 − 𝛿𝑎d𝛿𝑏d + 𝛿𝑎u𝛿𝑏u

]︁
[𝑈†

𝑘3
𝑈𝑘2 ]𝑎𝑏

⟨(︀
𝑐𝑘4,𝑑𝜏𝑠𝑐𝑘1,𝑑

)︀(︀
𝑐𝑘3,𝑎𝜏𝑠𝑐𝑘2,𝑏

)︀⟩}︃
. (83)

Here 𝜏0 and 𝜏1 are standard Pauli matrices acting in the Keldysh space (after Keldysh rotation). Next we perform
averaging of the correlation functions in accordance with the diagrams shown in Fig. 6. Expanding the result to the
first order in deviation of the Green functions due to the presence of 𝛿𝑢𝑝,𝑞;𝜔 and 𝛿𝑑𝑝,𝑞;𝜔, we obtain

𝑑𝑁u

𝑑𝑡
= − (2𝜋)𝑑𝛾2

2

∫︁
𝑡′

∫︁
𝑝𝑗

𝛿(𝑝1−𝑝2+𝑝3−𝑝4)𝑑𝑝1

∑︁
𝑎=u,d

[︁√︀
𝑑𝑝2𝑈

†
𝑝4
𝑈𝑝3−

√︀
𝑑𝑝4𝑈

†
𝑝2
𝑈𝑝3

]︁
𝑎�̄�

[︁√︀
𝑑𝑝2𝑈

†
𝑝3
𝑈𝑝4−

√︀
𝑑𝑝4𝑈

†
𝑝3
𝑈𝑝2

]︁
�̄�𝑎

×

{︃
𝒢𝐴
𝑎;𝑝2

(𝑡′, 𝑡)𝒢𝑅
�̄�;𝑝3

(𝑡, 𝑡′)𝒢𝐴
𝑎;𝑝4

(𝑡′, 𝑡)[𝛿𝒢𝑋
𝑝1,0](𝑎𝑎)(𝑡, 𝑡′) − 𝒢𝑅

𝑎;𝑝2
(𝑡, 𝑡′)𝒢𝐴

�̄�;𝑝3
(𝑡′, 𝑡)𝒢𝑅

𝑎;𝑝4
(𝑡, 𝑡′)[𝛿𝒢𝑋

𝑝1,0](𝑎𝑎)(𝑡′, 𝑡)

}︃
, (84)

Here we introduced �̄�=u(d) if 𝑎=d(u), respectively. Also we define

[𝛿𝒢𝑋
𝑝1,0](𝑎𝑎)(𝑡, 𝑡′) =

{︃
[𝛿𝒢<

𝑝1,0
](uu)(𝑡, 𝑡′), 𝑎 = 𝑢,

−[𝛿𝒢>
𝑝1,0

](dd)(𝑡, 𝑡′), 𝑎 = 𝑑.
(85)
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FIG. 7. An example of the process in which there is a pumping
of the particles in the upper band. The initial state of a
particle with a momentum 𝑝1 in the upper band and a particle
with a momentum 𝑝3 in the lower band is transformed into
the state with two particles with momenta 𝑝2 and 𝑝4 in the
upper band and a hole state with a momentum 𝑝3 in the down
band.

Now using Eqs. (40) and (41), we express 𝛿𝒢</>
𝑝1,0

(𝑡, 𝑡′)
in terms of 𝛿𝑢𝑝,𝑞;𝜔 and 𝛿𝑑𝑝,𝑞;𝜔 as follows

[𝛿𝒢<
𝑝1,0

](uu)(𝑡, 𝑡′) =

∫︁
𝜔

𝛿𝑢𝑝1,0;𝜔

[︁
𝒢𝐴
𝑢;𝑝1

(𝑡, 𝑡′)𝑒−𝑖𝜔𝑡

−𝒢𝑅
𝑢;𝑝1

(𝑡, 𝑡′)𝑒−𝑖𝜔𝑡′
]︁
. (86)

The expression for [𝛿𝒢>
𝑝1,0

](dd)(𝑡, 𝑡′) is obtain by substi-
tution of u and 𝛿𝑢𝑝1,0;𝜔 by d and 𝛿𝑑𝑝1,0;𝜔, respectively.
Then, integrating over 𝑡′, we find

𝑑𝑁u

𝑑𝑡
≃ 2(2𝜋)𝑑𝛾3𝑛𝑚2

∫︁
𝑝𝑗

𝛿(𝑝1−𝑝2+𝑝3−𝑝4)
𝑑𝑝1

𝑑𝑝3

⃒⃒⃒⃒
⃒
√︃
𝑑𝑝2

𝑑𝑝4

×
(︀
𝑝4𝑥−𝑝3𝑥+𝑖(𝑝4𝑦−𝑝3𝑦)

)︀
−

√︃
𝑑𝑝4

𝑑𝑝2

(︀
𝑝2𝑥−𝑝3𝑥+𝑖(𝑝2𝑦−𝑝3𝑦)

)︀⃒⃒⃒⃒⃒
2

×
∫︁
𝜔

𝑒−𝑖𝜔𝑡(𝑑𝑝1 + 𝑑𝑝2+𝑑𝑝3+𝑑𝑝4)𝛿𝑢𝑝1,𝑞=0;𝜔

(𝜉𝑝2+𝜉𝑝3+𝜉𝑝4−𝜉𝑝1)2 + 𝛾2(𝑑𝑝1+𝑑𝑝2+𝑑𝑝3+𝑑𝑝4)2
.

(87)

Here we used the relation 𝛿𝑢𝑝1,𝑞=0;𝜔+𝛿𝑑𝑝1,𝑞=0;𝜔=0 and
neglected 𝜔 in comparison with 1/𝜏=2𝛾𝑚2.

In order to estimate the integrals over momenta in
Eq. (87) we take into account that the integral over 𝑝3

is convergent in 𝑑=1 while is logarithmically divergent in
𝑑=2. The integral over 𝑝4 is determined by the ultravi-
olet. We then find

𝑑𝑁𝑢

𝑑𝑡
≃ 1

𝜏p𝑚2

∫︁
𝑝

∫︁
𝜔

𝑒−𝑖𝜔𝑡𝑑𝑝𝛿𝑢𝑝,𝑞=0;𝜔. (88)

Here the corresponding rate can be estimated as (for
𝑑=1, 2)

1

𝜏p
∝ 𝛾

𝑚𝑑+2

𝑛
ln𝑑−1(𝑛/𝑚𝑑)

{︃
𝛾2, 𝛾 ≪ 1,

1, 𝛾 ≫ 1.
(89)

We note that 𝜏p≫𝜏 due to smallness of two factors: 𝛾≪1
and 𝑚𝑑/𝑛≪1.

We emphasize the positivity of the right hand side of
Eq. (88). This implies pumping of particles into the
upper band, and suggests the presence of an additional
term, 𝛿𝑛(u)(𝑥, 𝑡)/𝜏p, on the right hand side of Eq. (70).
Similar terms will appear for the lower band. Such terms
destabilize the dark state. We turn to discuss their phys-
ical meaning, as well as the meaning of the previously-
obtained diffusive dynamics.

IX. DISCUSSION OF THE MAIN RESULTS:
DIFFUSION AND INSTABILITY OF THE DARK

STATE

The structure of the jump operators involved in the
GKSL equation, cf. Eq. (1), allows a particle to move
back and forth both in momentum space and in real
space, see Fig. 1. Such motion resembles a random walk,
leading to a diffusive dynamics of the particle density. In
the leading approximation in 𝛾 the jump processes induce
elastic-like mean free time 𝜏 for a single-particle excita-
tion. In the presence of the unitary part of evolution,
assuming the spectrum of the Hamiltonian is not flat, a
particle has a finite velocity. Together with the mean free
time this is enough to generate diffusive dynamics with
the diffusion coefficient expressed in a standard way in
terms of the velocity and the mean free path, cf. Eq.
(69). However, since the system is more complicated
than a random walk, and, strictly speaking, the jumps
are not elastic processes, the diffusive dynamics for the
GKSL equation (1) is limited to a finite range of length
and time scales. In other words, Eq. (70) cannot de-

scribe dynamics of 𝛿𝑛
(u)
𝑞,𝜔 down to 𝑞→0 and 𝜔→0. More

formally, one could anticipate this conclusion by recall-
ing the number of particles in upper and down bands are
not conserved separately by the dissipative part of the
action, cf. Eq. (16).

As we have shown in Secs. VII and VIII above, there
are two competing processes that affect diffusion: re-
combination of particles in the upper band with holes
in the lower band, and pumping of particles into the
upper band, leaving behind holes into the lower band.
Considering first the former process, and using the ex-
pression (82) for the rate 1/𝜏R, we find that the purely
diffusive kernel in Eq. (70) is limited to frequencies and
momenta 1/𝜏 ≫ |𝜔|, 𝐷𝑞2 ≫ 𝛿𝑛(u)/(𝑚𝑑𝜏). Provided that
the change in the density of the particles in the upper
band is small, 𝛿𝑛(u)≪𝑚𝑑, there is a wide interval for dif-
fusive dynamics (more on this below).

Let us now turn to the latter process. As expected from
the absence of exact cancellation between self-energy and
vertex corrections, we find a nonzero contribution to the
rate of change of the total number of the particles in
the upper band, 𝑁u, see Eq. (88). Surprisingly, this
rate is positive, i.e. particles are pumped into the up-
per band. An example of a process that results in the
growth of the number of particles in the upper band is
shown in Fig. 7. This process directly follows from the
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FIG. 8. The solution of Eq. (91) in a spatially-homogeneous
case. The red curve corresponds to the time evolution with

the initial condition 𝛿𝑛(u)(𝑥, 0)/|𝛿𝑛(u)
∞ |=0.1, and in the ab-

sence of external fields. The blue curve represents the solu-

tion with 𝛿𝑛(u)(𝑥, 0)/|𝛿𝑛(u)
∞ |=0, while the r.h.s. of Eq. (91) is

set to 0.1 in units of 𝑛𝜏R/𝜏
2
p .

so-called “non-Hermitian Hamiltonian” part of the Lind-
blad equation, involving the combinations 𝐿†

𝛼𝐿𝛼. For
instance, this operator acting on a pure state with the
lower eigenband filled and the upper eigenband occupied
by a single fermion results in a superposition of states,
one of which has one hole in the lower eigenband and two
fermions in the upper one. This stems from the fact that
in the jump operators 𝐿𝛼, one of the fermion operators is
not an eigen-operator, but a linear combination of such,
enabling additional mixed terms in 𝐿†

𝛼𝐿𝛼. In Appendix
D, we further illustrate this peculiar property within a
toy two-band model where the dissipative dynamics also
results in pumping of the population in the upper band.

Provided that 𝑚𝑑≪𝑛, the pumping time 𝜏p is paramet-
rically longer than the elastic scattering time 𝜏 . Putting
together all the above considerations, we find that the
diffusive kernel in Eq. (70) is valid in a broad range,

1

𝜏
≫ |𝜔|, 𝐷𝑞2 ≫ 1

𝜏p
,
𝛿𝑛(u)

𝑚𝑑𝜏
. (90)

Combining the results of Secs. VII and VIII suggests
that the diffusion equation (70) should be modified as(︁ 𝜕

𝜕𝑡
−𝐷∇2

)︁
𝛿𝑛(u)(𝑥, 𝑡) − 𝛿𝑛(u)(𝑥, 𝑡)

𝜏p
+

[𝛿𝑛(u)(𝑥, 𝑡)]2

𝑛𝜏R

=
𝛾𝜒

1 + 𝛾2
𝐸2(𝑥, 𝑡) . (91)

After defining appropriate dimensionless variables,
t=𝑡/𝜏p, x=𝑥/

√︀
𝜏p𝐷, f(x, t)=(𝜏p/𝜏R)𝛿𝑛(u)(𝑥, 𝑡)/𝑛, and

J(x, t)=𝛾𝜒𝜏2p𝐸
2(𝑥, 𝑡)/[𝑛𝜏R(1+𝛾2)], Eq. (91) attains the

universal form(︁ 𝜕
𝜕t

− ∇̃2
)︁
f(x, t) − f(x, t)

(︁
1 − f(x, t)

)︁
= J(x, t), (92)

where ∇̃ corresponds to derivatives with respect to
the dimensionless coordinates x. We note that the

left hand side of Eq. (92) is nothing but the fa-
mous Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP)
reaction-diffusion equation [59, 60], which appears in nu-
merous applications, including the propagation of ad-
vantageous genes and combustion fronts, the dynamics
of domain walls and fluids, chemical reactions, bacte-
rial spreading, decoherence propagation, etc.; see e.g.,
Refs. [61–65]. A striking hallmark of this equation is
the existence of two stationary solutions f(x, t)=1, and
f(x, t)=0, with the latter one being unstable due to a for-
mation of a propagating wave with a constant velocity.
Therefore, we arrive at the conclusion that the dark state
with 𝛿𝑛u≡𝑛(𝜏R/𝜏p)f=0 is unstable towards a new steady
state with a nonzero density of particles in the upper
band and holes in the lower one. The source of this in-
stability can be either the right hand side of Eqs. (91)
and (92), that is, an external electric field, or a non-
zero small initial 𝛿𝑛u, see Appendix C. In the simplest,
spatially-homogeneous case (i.e., assuming some uniform
initial density 𝛿𝑛u=𝑛(𝜏R/𝜏p)f0, and a constant external
field J), Eq. (92) can be easily solved as follows

f(t) =
1

2

{︂
1 +

√
1 + 4J tanh

[︂
arctanh

(︂
2f0 − 1

1 +
√

4J

)︂
(93)

+
t

2

√
1 + 4J

]︁}︁
.

The resulting time evolution of 𝛿𝑛(u/d)(𝑡) is depicted in
Fig. 8. The steady state density of the u-particles and d-

holes is given by |𝛿𝑛(u/d)∞ |=𝑛(𝜏R/𝜏p)(1+
√

1+4J)/2, which,
in the absence of the external constant source, J=0, re-
duces to

|𝛿𝑛(u/d)∞ |∼𝑛
(︂
𝜏R
𝜏p

)︂
∝ 𝑛𝛾2

(︂
𝑚𝑑

𝑛

)︂2

ln2(𝑑−1)
(︁ 𝑛

𝑚𝑑

)︁
, (94)

for 𝛾≪1, with 𝑑=1, 2 the dimensionality. Note also that

|𝛿𝑛(u/d)∞ |≪𝑚𝑑. The real-space propagation of the in-
stability, seeded by either initial local particle density
𝛿𝑛(u)(𝑥, 0) or a spatially-localized external field, is de-
picted in Figs. 9(a) and 9(b), respectively. After some
initial diffusive relaxation, the solution assumes the form
of a travelling kink with a constant velocity ∝

√︀
𝐷/𝜏p,

where the exact proportionality coefficient is determined
by the initial condition [59, 60]. The detailed study of
the resulting steady state with nonzero particle and hole
densities is left for future work.

Let us finally note that, if one would fine-tune the bath
couplings (beyond requiring them to vanish on the dark
state), and replace the 𝜓 operators in the definitions of
the Lindblad operators (3) by the corresponding 𝑙 opera-

tors, that is, switch 𝐿1/2→𝑙†u/d𝑙u, 𝐿3/4→𝑙u/d𝑙
†
d, the pump-

ing term would not arise and only the diffusive kernel
and the recombination term would remain on the left-
hand side of Eq. (91), hence the dark state would be
stable. However, deviations of the density from the dark
state would decay much more slowly than exponentially.
Indeed, an excitation composed of a single particle and
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FIG. 9. Numerical solution of the reaction-diffusion equation (91) in the one-dimensional case on a finite interval

𝑥/
√︀

𝜏p𝐷∈(−𝐿,𝐿) with 𝐿 = 50, and the boundary conditions 𝛿𝑛(u)(±𝐿, 𝑡)=0, (a) in the absence of external fields, and with a

spatially-localized initial condition 𝛿𝑛(u)(𝑥, 0)= exp{−100(𝑥/𝐿
√︀

𝜏p𝐷)2}; (b) with vanishing initial density, 𝛿𝑛(u)(𝑥, 0)=0, but

with a local source term 0.1 exp{−20(𝑥/𝐿
√︀

𝜏p𝐷)2} in units of 𝑛𝜏R/𝜏
2
p . The steady state density in the central region is

slightly greater than 1 due to the presence of the source. (c) The same as in (a), but the ‘pumping’ term is ignored, and only

recombination is included. In all cases, the density deviation 𝛿𝑛(u)(𝑥, 𝑡) is measured in units of 𝛿𝑛
(u)
∞ , see Eq. (94).

a single hole localized at far-away points would need a
long time (proportional to the initial distance squared)
to diffuse around till they would meet and recombine.
Since the initial distance could be of the order of the sys-
tem size, the exponential decay rate would vanish in the
thermodynamic limit. Another way to see this is to note
that, assuming spacial homogeneity, one would obtain an
equation of the form (𝜕/𝜕𝑡)𝛿𝑛(u)(𝑡)=−[𝛿𝑛(u)(𝑡)]2/(𝑛𝜏R),
which leads to an algebraic decay of 𝛿𝑛 for 𝑡≫𝜏R. In
order to emphasize the striking difference between this
pure recombination dynamics and the full propagating
instability shown in Fig. 9(a), we present a numerical so-
lution of Eq. (92) in the absence of the linear ‘pumping’
term in Fig. 9(c).

X. CONCLUSIONS

To summarize, we studied the emergence of the dif-
fusive regime within the two-band dissipative quantum
many-body state preparation dynamics proposed in Ref.
[37]. Although this dissipative model conserves the total
number of particles only, we demonstrate the existence of
a diffusive regime for the particle and hole density modes.
This diffusive mode can be induced by the second-order
response to a scalar potential. The diffusive regime per-
sists up to length- and time-scales determined by the re-
combination processes and by pumping of particles from
the ‘down’ to the ‘up’ band. The latter suggests an insta-
bility of the designed dark state, that is, the state with
fully occupied ‘down’ and empty ‘up’ bands. The kinetic
properties discussed above remain qualitatively the same
in either one or two spatial dimensions (and even in the
absence of the Hamiltonian dynamics), and as such, are

not related to the Berry curvature.
These results open up many future research directions.

It would be interesting to characterize the new steady
state with nonzero particle and hole densities. It would
also be worthwhile to study implications of the existence
of a diffusive regime for nontrivial topological properties
of the considered model (in particular, the effect of Berry
curvature on the kinetic equation in a new steady state,
similarly to [66]). In addition, one could try to derive
a non-linear sigma-model-like description of the diffusive
regime following the lines of Ref. [7, 67]. Other potential
directions include quantum absorbing phase transitions
[68], as well as the dynamics of systems with anyonic
excitations, which cannot be created or annihilated indi-
vidually even if no conservation law is imposed [69–72].
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Appendix A: Self-consistent equation for the Green function in the Born approximation

In this Appendix, we demonstrate that, in the Born approximation, the self-consistent equations admit the only
the dark state solution. We consider the case 𝛾𝛼=𝛾 for simplicity. As one can check, a solution of Eq. (32) exists
provided that the self-energies are related as

Σ𝐾
𝑞 = Σ𝑅

𝑞 ℱ𝑞 −ℱ𝑞Σ𝐴
𝑞 + 𝜉𝑞[𝜎𝑧,ℱ𝑞]. (A1)

As one can further verify, the off-diagonal element of ℱ𝑞 can be written as 𝜂𝑞 = 𝑞+𝜇𝑞. In what follows we assume
that 𝑛u/d,𝑞 and 𝜇𝑝 depend only on the length of the vector 𝑞. The self-energies (29) and (30) then become

Σ𝐾
𝑞 = −2𝑖𝛾

(︀
𝑑𝑞∆0 + ∆1 + 𝑑𝑞𝑛𝜎𝑧

)︀
(A2)

and

Σ𝑅
𝑞 = −𝑖𝛾

[︁
𝑑𝑞𝑛+ 𝛿1 + (𝑑𝑞∆0 + 𝑖2𝑚κ)𝜎𝑧

]︁
+ 𝛾 Re(𝑞+𝑤)𝜎𝑦 + 𝛾 Im(𝑞+𝑤)𝜎𝑥. (A3)

Here we introduced the following notations:

∆𝑘=

∫︁
𝑞

𝑑𝑘𝑞 (1−𝑛u,𝑞−𝑛d,𝑞), 𝛿𝑘=

∫︁
𝑞

𝑑𝑘𝑞 (1+𝑛u,𝑞−𝑛d,𝑞),

𝑤=𝑚𝛿0+

∫︁
𝑞

𝑞2𝜇𝑞, κ = Im

∫︁
𝑞

𝑞2𝜇𝑞. (A4)

Then, Eq. (A1) can be rewritten as the set of three equations:

𝛾𝑤(𝑛u,𝑞−𝑛d,𝑞)=2𝜇𝑞

[︁
𝛾(𝑑𝑞𝑛+𝛿1+𝑖2𝑚κ)+𝑖𝜉𝑞

]︁
(A5)

and

[𝑑𝑞(𝑛±∆0)+𝛿1](1−2𝑛u/d,𝑞) = 𝑑𝑞(∆0 ± 𝑛)+∆1±2𝑞2 Re𝜇𝑞𝑤
*. (A6)

Let us impose the physical constraint that the total number of particles is fixed,
∫︀
𝑞
(𝑛u,𝑞+𝑛d,𝑞)=𝑛, i.e.,∆0=0.

First, we consider the case 𝜉𝑞 ̸=0, and prove that there is no other solution independent of 𝛾 except the dark state,
cf. Eq. (33). In this case, Eq. (A5) implies that 𝜇𝑞=𝑤=𝛿0=0. Next, we express 𝑛u/d,𝑞 from Eq. (A6) as

1−𝑛u,𝑞−𝑛d,𝑞 =
∆1

𝑑𝑞𝑛+ 𝛿1
, 1+𝑛u,𝑞−𝑛d,𝑞 =

𝛿1
𝑑𝑞𝑛+ 𝛿1

. (A7)

Hence we obtain that the only consistent solution is 𝛿𝑘=∆𝑘=0, which corresponds to the dark state: 𝑛u,𝑞=0 and
𝑛d,𝑞=1.

Second, let us consider the case 𝜉𝑞=0. Then Eq. (A5) implies that we can take 𝜇𝑞 to be real. Consequently, κ=0
and 𝑤 is also real. Then Eq. (A6) results in Eq. (A7). Therefore, we find again the dark state solution. Since 𝛿0=0,
Eq. (A5) leads to 𝜇𝑞=𝑤=0.

Finally, we consider the case 𝜉𝑞 ̸=0, and demonstrate that the dark state is the only solution for 𝛾≪1. In this case,
Eq. (A7) is modified as follows

1−𝑛u,𝑞−𝑛d,𝑞 =
∆1

𝑑𝑞𝑛+ 𝛿1
,

1+𝑛u,𝑞−𝑛d,𝑞 =
𝛿1 − 2𝑞2 Re(𝜇𝑞𝑤

*)

𝑑𝑞𝑛+ 𝛿1
.

(A8)

Hence, we find ∆1=0, i.e., 𝑛u,𝑞+𝑛d,𝑞=1. The other unknowns, 𝜇𝑞, 𝑤, κ, and 𝛿0,1, satisfy the following set of nonlinear
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FIG. 10. Diagrams for the self-energy to second order in 𝛾, beyond self-consistent Born approximation.

equations

𝛿0 =

∫︁
𝑞

𝛿1 − 2𝑞2 Re(𝜇𝑞𝑤
*)

𝑑𝑞𝑛+ 𝛿1
, κ =

∫︁
𝑞

𝑞2 Im𝜇𝑞, (A9a)

∫︁
𝑞

𝛿21
𝑑𝑞𝑛+ 𝛿1

= −
∫︁
𝑞

𝑞2𝑑𝑞𝑛Re(𝜇𝑞𝑤
*)

𝑑𝑞𝑛+ 𝛿1
, (A9b)

𝜇𝑞 = − 𝛾𝑤[𝑑𝑞𝑛+ 2𝑞2 Re(𝜇𝑞𝑤
*)]

2(𝑑𝑞𝑛+ 𝛿1)[𝛾(𝑑𝑞𝑛+ 𝛿1 + 𝑖2𝑚κ) + 𝑖𝜉𝑞]
, (A9c)

𝑤 = 𝑚𝛿0 +

∫︁
𝑞

𝑞2𝜇𝑞
𝛿1 − 2𝑞2 Re(𝜇𝑞𝑤

*)

𝑑𝑞𝑛+ 𝛿1
. (A9d)

We note that 𝛿0,1 are real and nonnegative. As follows from Eq. (A9b), these conditions imply that Re(𝜇𝑞𝑤
*)<0.

Solving Eq. (A9c) to the lowest order in 𝛾, we find, indeed, Re(𝜇𝑞𝑤
*)≃−𝛾2𝑑𝑞𝑛|𝑤|2/(2𝜉2𝑞 )<0. However, according to

Eqs. (A9a) and (A9b), it results in 𝛿0,1∼𝛾. Then, as follows from Eq. (A9d), 𝑤∼𝛾. But if it is so, Re(𝜇𝑞𝑤
*)≃𝛾4

and we can neglect it in Eqs. (A9a) and (A9b). Then the only solution is simply 𝛿0,1=0. Consequently, we find
𝜇𝑞=𝑤=κ=0, i.e., the dark state again.

Appendix B: Corrections to the self-consistent Born approximation

In this Appendix, we compute corrections to the self-energy beyond the self-consistent Born approximation. The
corresponding diagrams are depicted in Fig. 10.

1. Diagram 10(a)

We start from the contributions to the self-energy to the second order in 𝛾 shown in Fig. 10(a). The corresponding
corrections to the retarded, advanced, and Keldysh components of the self-energy read

Σ𝑎,(2),𝑅
𝑞,𝜀 =

𝛾2

4

∫︁
𝑝,𝑘;𝜔,Ω

ℒ(𝛼)

𝑞,𝑝+

{︃
𝐺𝑅

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω −𝐺𝐾

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

×𝐺𝑅
𝑘+,𝜀+Ω + 2𝐺𝑅

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝑅
𝑘+,𝜀+Ω +𝐺𝐾

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐴
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω

+2𝐺𝐾
𝑝+,𝜀+𝜔ℒ

(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐴
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝑅
𝑘+,𝜀+Ω −𝐺𝑅

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐴
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝑅
𝑘+,𝜀+Ω

}︃
ℒ(𝛽)
𝑘+,𝑞, (B1)

Σ𝑎,(2),𝐴
𝑞,𝜀 = −𝛾

2

4

∫︁
𝑝,𝑘;𝜔,Ω

ℒ(𝛼)

𝑞,𝑝+

{︃
𝐺𝐴

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω −𝐺𝐾

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

×𝐺𝐴
𝑘+,𝜀+Ω + 2𝐺𝐴

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐴
𝑘+,𝜀+Ω −𝐺𝐾

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝑅
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω

+2𝐺𝐴
𝑝+,𝜀+𝜔ℒ

(𝛽)

𝑝+,𝑝+𝑘𝐺
𝑅
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω +𝐺𝐴

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝑅
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐴
𝑘+,𝜀+Ω

}︃
ℒ(𝛽)
𝑘+,𝑞, (B2)
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and

Σ𝑎,(2),𝐾
𝑞,𝜀 =

𝛾2

4

∫︁
𝑝,𝑘;𝜔,Ω

ℒ(𝛼)

𝑞,𝑝+

{︃
𝐺𝐴

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐴
𝑘+,𝜀+Ω − 2𝐺𝐾

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

×𝐺𝐴
𝑘+,𝜀+Ω + 2𝐺𝐾

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐴
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω −𝐺𝐾

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω

−𝐺𝑅
𝑝+,𝜀+𝜔ℒ

(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐴
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω + 2𝐺𝑅

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω

−𝐺𝐾
𝑝+,𝜀+𝜔ℒ

(𝛽)

𝑝+,𝑝+𝑘𝐺
𝑅
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐴
𝑘+,𝜀+Ω +𝐺𝐴

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝑅
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω

−2𝐺𝐾
𝑝+,𝜀+𝜔ℒ

(𝛽)

𝑝+,𝑝+𝑘𝐺
𝑅
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω +𝐺𝐾

𝑝+,𝜀+𝜔ℒ
(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐴
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝑅
𝑘+,𝜀+Ω

+𝐺𝑅
𝑝+,𝜀+𝜔ℒ

(𝛽)

𝑝+,𝑝+𝑘𝐺
𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)
𝑝+𝑘,𝑘+

𝐺𝑅
𝑘+,𝜀+Ω

}︃
ℒ(𝛽)
𝑘+,𝑞. (B3)

Substituting the self-consistent Green function 𝒢 for 𝐺 and using the relations [ℒ(𝛼)
𝑞𝑝 ](ud)=[ℒ(𝛼)

𝑞𝑝 ](du)=0, we find

[Σ𝑎,(2),𝑅/𝐴
𝑞,𝜀 ](uu) ≃

∫︁
𝑝,𝑘

𝛾2𝑚2(𝑑𝑞/𝑑𝑝+𝑘)(𝑘−𝑝− + 𝑖[𝑘−×𝑝−])

𝜀− 𝜉𝑝+
− 𝜉𝑘+

− 𝜉𝑝+𝑘 ± 𝑖𝛾(𝑑𝑝+
+ 𝑑𝑘+

+ 𝑑𝑝+𝑘)
, [Σ𝑎,(2),𝐾

𝑞,𝜀 ](uu) = [Σ𝑎,(2),𝑅
𝑞,𝜀 ](uu) − [Σ𝑎,(2),𝐴

𝑞𝜔 ](uu),

[Σ𝑎,(2),𝑅/𝐴/𝐾
𝑞,𝜀 ](ud) = [Σ𝑎,(2),𝑅/𝐴/𝐾

𝑞,𝜀 ](du) = [Σ𝑎,(2),𝑅/𝐴/𝐾
𝑞,𝜀 ](dd) = 0. (B4)

2. Diagram 10(b)

The diagram on Fig. 10(b) reads

Σ𝑏,(2),𝑅
𝑞,𝜀 =

𝛾2

4

∫︁
𝑝,𝑘;𝜔,Ω

ℒ(𝛼)

𝑞,𝑝+

{︃
𝐺𝑅

𝑝+,𝜀+𝜔

{︁
tr
[︁(︁
𝐺𝐴

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝑅
𝑘+,𝜀+Ω +𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω

)︁
ℒ(𝛽)

𝑘+,𝑝+𝑘

]︁
−2 tr

[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝑅
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁
− 2 tr

[︁
𝐺𝐴

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁}︁
−𝐺𝐾

𝑝+,𝜀+𝜔

{︁
tr
[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝑅
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁
+ tr

[︁
𝐺𝐴

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁}︁}︃
ℒ(𝛽)
𝑝+,𝑞, (B5)

Σ𝑏,(2),𝐴
𝑞,𝜀 =

𝛾2

4

∫︁
𝑝,𝑘;𝜔,Ω

ℒ(𝛼)

𝑞,𝑝+

{︃
𝐺𝐴

𝑝+,𝜀+𝜔

{︁
tr
[︁(︁
𝐺𝑅

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐴
𝑘+,𝜀+Ω +𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω

)︁
ℒ(𝛽)

𝑘+,𝑝+𝑘

]︁
+2 tr

[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐴
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁
+ 2 tr

[︁
𝐺𝑅

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁}︁
−𝐺𝐾

𝑝+,𝜀+𝜔

{︁
tr
[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐴
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁
+ tr

[︁
𝐺𝑅

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁}︁}︃
ℒ(𝛽)
𝑝+,𝑞, (B6)
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and

Σ𝑏,(2),𝐾
𝑞,𝜀 =

𝛾2

4

∫︁
𝑝,𝑘;𝜔,Ω

ℒ(𝛼)

𝑞,𝑝+

{︃
𝐺𝐾

𝑝+,𝜀+𝜔

{︁
tr
[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ω +𝐺𝑅

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐴
𝑘+,𝜀+Ω

)︁
ℒ(𝛽)

𝑘+,𝑝+𝑘

]︁
+2 tr

[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐴
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁
− 2 tr

[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝑅
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁
+2 tr

[︁
𝐺𝑅

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁
− 2 tr

[︁
𝐺𝐴

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁
+ tr

[︁
𝐺𝐴

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝑅
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁}︁
−𝐺𝐴

𝑝+,𝜀+𝜔

{︁
tr
[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐴
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁
+ tr

[︁
𝐺𝑅

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁}︁
−𝐺𝑅

𝑝+,𝜀+𝜔

{︁
tr
[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝑅
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁
+ tr

[︁
𝐺𝐴

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)
𝑝+𝑘,𝑘+

𝐺𝐾
𝑘+,𝜀+Ωℒ

(𝛽)

𝑘+,𝑝+𝑘

]︁}︁}︃
ℒ(𝛽)
𝑝+,𝑞. (B7)

Again, after substituting the self-consistent Green function 𝒢 for 𝐺, we obtain

[Σ𝑏,(2),𝑅/𝐴
𝑞,𝜀 ](uu) = −

∫︁
𝑝,𝑘

𝛾2𝑚2𝑘2
− 𝑑𝑞𝑑𝑘+

/(𝑑𝑝+𝑘𝑑𝑝+
)

𝜀− 𝜉𝑝+
− 𝜉𝑘+

− 𝜉𝑝+𝑘 ± 𝑖𝛾(𝑑𝑝+
+ 𝑑𝑘+

+ 𝑑𝑝+𝑘)
, [Σ𝑏,(2),𝐾

𝑞,𝜀 ](uu) = [Σ𝑏,(2),𝑅
𝑞,𝜀 ](uu) − [Σ𝑏,(2),𝐴

𝑞,𝜀 ](uu),

[Σ𝑏,(2),𝑅/𝐴/𝐾
𝑞,𝜀 ](ud) = [Σ𝑏,(2),𝑅/𝐴/𝐾

𝑞,𝜀 ](du) = [Σ𝑏,(2),𝑅/𝐴/𝐾
𝑞,𝜀 ](dd) = 0. (B8)

3. Diagram 10(c)

The next contribution, diagram 10(c), corresponds to diagram 10(a) with all matrices ℒ(𝛼)

𝑞𝑝 and ℒ(𝛽)

𝑞𝑝 interchanged

with ℒ(𝛼)
𝑞𝑝 and ℒ(𝛽)

𝑞𝑝 , respectively. We obtain

Σ𝑐,(2),𝑅
𝑞,𝜀 =

𝛾2

4

∫︁
𝑝,𝑘;𝜔,Ω

ℒ(𝛼)
𝑞,𝑝+

{︃
𝐺𝑅

𝑝+,𝜀+𝜔ℒ
(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω −𝐺𝐾
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+

×𝐺𝑅
𝑘+,𝜀+Ω − 2𝐺𝑅

𝑝+,𝜀+𝜔ℒ
(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝑅

𝑘+,𝜀+Ω +𝐺𝐾
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐴
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω

−2𝐺𝐾
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐴
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝑅

𝑘+,𝜀+Ω −𝐺𝑅
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐴
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝑅

𝑘+,𝜀+Ω

}︃
ℒ(𝛽)

𝑘+,𝑞, (B9)

Σ𝑐,(2),𝐴
𝑞,𝜀 = −𝛾

2

4

∫︁
𝑝,𝑘;𝜔,Ω

ℒ(𝛼)
𝑞,𝑝+

{︃
𝐺𝐴

𝑝+,𝜀+𝜔ℒ
(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω −𝐺𝐾
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+

×𝐺𝐴
𝑘+,𝜀+Ω − 2𝐺𝐴

𝑝+,𝜀+𝜔ℒ
(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐴

𝑘+,𝜀+Ω −𝐺𝐾
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝑅
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω

−2𝐺𝐴
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝑅
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω +𝐺𝐴
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝑅
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐴

𝑘+,𝜀+Ω

}︃
ℒ(𝛽)

𝑘+,𝑞, (B10)
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and

Σ𝑐,(2),𝐾
𝑞,𝜀 =

𝛾2

4

∫︁
𝑝,𝑘;𝜔,Ω

ℒ(𝛼)
𝑞,𝑝+

{︃[︁
𝐺𝐴

𝑝+,𝜀+𝜔ℒ
(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
+ 2𝐺𝐾

𝑝+,𝜀+𝜔ℒ
(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+

]︁
𝐺𝐴

𝑘+,𝜀+Ω

−2𝐺𝐾
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐴
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω −𝐺𝐾
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω

−𝐺𝑅
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐴
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω − 2𝐺𝑅
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω

−𝐺𝐾
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝑅
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐴

𝑘+,𝜀+Ω +𝐺𝐴
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝑅
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω

+2𝐺𝐾
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝑅
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω +𝐺𝐾
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+,𝑝+𝑘𝐺

𝐴
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝑅

𝑘+,𝜀+Ω

+𝐺𝑅
𝑝+,𝜀+𝜔ℒ

(𝛽)
𝑝+𝑝+𝑘𝐺

𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝑅

𝑘+,𝜀+Ω

}︃
ℒ(𝛽)

𝑘+,𝑞. (B11)

Substituting the self-consistent Green function 𝒢 instead of 𝐺, we find

[Σ𝑐,(2),𝑅/𝐴
𝑞,𝜀 ](dd) =

∫︁
𝑝,𝑘

𝛾2𝑚2(𝑑𝑞/𝑑𝑝+𝑘)(𝑘−𝑝− − 𝑖[𝑘−×𝑝−])

𝜀+ 𝜉𝑝+
+ 𝜉𝑘+

+ 𝜉𝑝+𝑘 ± 𝑖𝛾(𝑑𝑝+
+ 𝑑𝑘+

+ 𝑑𝑝+𝑘)
, [Σ𝑐,(2),𝐾

𝑞,𝜀 ](dd) = −[Σ𝑐,(2),𝑅
𝑞,𝜀 ](dd) + [Σ𝑐,(2),𝐴

𝑞,𝜀 ](dd),

[Σ𝑐,(2),𝑅/𝐴/𝐾
𝑞,𝜀 ](uu) = [Σ𝑐,(2),𝑅/𝐴/𝐾

𝑞,𝜀 ](ud) = [Σ𝑐,(2),𝑅/𝐴/𝐾
𝑞,𝜀 ](du) = 0. (B12)

4. Diagram 10(d)

The last contribution, diagram 10(d), is obtained from diagram 10(b) upon interchanging all matrices ℒ(𝛼)

𝑞𝑝 and

ℒ(𝛽)

𝑞𝑝 with ℒ(𝛼)
𝑞𝑝 and ℒ(𝛽)

𝑞𝑝 , respectively. We obtain

Σ𝑑,(2),𝑅
𝑞,𝜀 =

𝛾2

4

∫︁
𝑝,𝑘;𝜔,Ω

ℒ(𝛼)
𝑞,𝑝+

{︃
𝐺𝑅

𝑝+,𝜀+𝜔

{︁
tr
[︁(︁
𝐺𝐴

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝑅

𝑘+,𝜀+Ω +𝐺𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω

)︁
ℒ(𝛽)
𝑘+,𝑝+𝑘

]︁
+2 tr

[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝑅

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁
+ 2 tr

[︁
𝐺𝐴

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁}︁
−𝐺𝐾

𝑝+,𝜀+𝜔

{︁
tr
[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝑅

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁
+ tr

[︁
𝐺𝐴

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁}︁}︃
ℒ(𝛽)

𝑝+,𝑞,

(B13)

Σ𝑑,(2),𝐴
𝑞,𝜀 =

𝛾2

4

∫︁
𝑝,𝑘;𝜔,Ω

ℒ(𝛼)
𝑞,𝑝+

{︃
𝐺𝐴

𝑝+,𝜀+𝜔

{︁
tr
[︁(︁
𝐺𝑅

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐴

𝑘+,𝜀+Ω +𝐺𝐾
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω

)︁
ℒ(𝛽)
𝑘+,𝑝+𝑘

]︁
−2 tr

[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐴

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁
− 2 tr

[︁
𝐺𝑅

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁}︁
−𝐺𝐾

𝑝+,𝜀+𝜔

{︁
tr
[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐴

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁
+ tr

[︁
𝐺𝑅

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁}︁}︃
ℒ(𝛽)

𝑝+,𝑞,

(B14)
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and

Σ𝑑,(2),𝐾
𝑞,𝜀 =

𝛾2

4

∫︁
𝑝,𝑘;𝜔,Ω

ℒ(𝛼)
𝑞,𝑝+

{︃
𝐺𝐾

𝑝+,𝜀+𝜔

{︁
tr
[︁(︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ω +𝐺𝑅
𝑝+𝑘,𝜀+𝜔+Ωℒ

(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐴

𝑘+,𝜀+Ω

)︁
ℒ(𝛽)
𝑘+,𝑝+𝑘

]︁
−2 tr

[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐴

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁
+ 2 tr

[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝑅

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁
−2 tr

[︁
𝐺𝑅

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁
+ 2 tr

[︁
𝐺𝐴

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁
+ tr

[︁
𝐺𝐴

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝑅

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁}︁
−𝐺𝑅

𝑝+,𝜀+𝜔

{︁
tr
[︁
𝐺𝐴

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁
+ tr

[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝑅

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁}︁
−𝐺𝐴

𝑝+,𝜀+𝜔

{︁
tr
[︁
𝐺𝑅

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐾

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁
+ tr

[︁
𝐺𝐾

𝑝+𝑘,𝜀+𝜔+Ωℒ
(𝛼)

𝑝+𝑘,𝑘+
𝐺𝐴

𝑘+,𝜀+Ωℒ
(𝛽)
𝑘+,𝑝+𝑘

]︁}︁}︃
ℒ(𝛽)

𝑝+,𝑞.

(B15)

Substitution of the self-consistent Green function 𝒢 for 𝐺 yields

[Σ𝑑,(2),𝑅/𝐴
𝑞,𝜀 ](dd)=−

∫︁
𝑝,𝑘

𝛾2𝑚2𝑘2
−𝑑𝑞𝑑𝑘+

/(𝑑𝑝+𝑘𝑑𝑝+
)

𝜀+ 𝜉𝑝+
+ 𝜉𝑘+

+ 𝜉𝑝+𝑘 ± 𝑖𝛾(𝑑𝑝+
+ 𝑑𝑘+

+ 𝑑𝑝+𝑘)
, [Σ𝑑,(2),𝐾

𝑞,𝜀 ](dd) = −[Σ𝑑,(2),𝑅
𝑞,𝜀 ](dd) + [Σ𝑑,(2),𝐴

𝑞,𝜀 ](dd),

[Σ𝑑,(2),𝑅/𝐴/𝐾
𝑞,𝜀 ](uu) = [Σ𝑑,(2),𝑅/𝐴/𝐾

𝑞,𝜀 ](ud) = [Σ𝑑,(2),𝑅/𝐴/𝐾
𝑞,𝜀 ](du) = 0. (B16)

5. The total result

There are also contributions which are similar to diagrams 10(a) and (b) with ℒ(𝛼)

𝑞𝑝 interchanged with ℒ(𝛼)
𝑞𝑝 , or,

alternatively, ℒ(𝛽)

𝑞𝑝 interchanged with ℒ(𝛽)
𝑞𝑝 . However, once the self-consistent Green functions are substituted, these

diagrams vanish. Therefore, in total, we find the following non-zero components

[Σ(2),𝑅/𝐴
𝑞,𝜀 ](uu) = 𝛾2𝑑𝑞Υ±(𝑞, 𝜀), [Σ(2),𝑅/𝐴

𝑞,𝜀 ](dd) = −𝛾2𝑑𝑞Υ∓(𝑞,−𝜀), Σ(2),𝐾
𝑞,𝜀 = Σ(2),𝑅

𝑞,𝜀 𝜎𝑧 − 𝜎𝑧Σ(2),𝐴
𝑞,𝜀 ,

Υ±(𝑞, 𝜀) = −𝑚2

2𝑛2

∫︁
𝑝,𝑘

1

𝑑𝑝+𝑘

(︁
𝑘−

√︁
𝑑𝑘+

/𝑑𝑝+
− 𝑝−

√︁
𝑑𝑝+

/𝑑𝑘+

)︁2
𝜀− 𝜉𝑝+

− 𝜉𝑘+
− 𝜉𝑝+𝑘 ± 𝑖𝛾(𝑑𝑝+

+ 𝑑𝑘+
+ 𝑑𝑝+𝑘)

. (B17)

Evaluating Υ±(𝑞, 𝜀) at 𝑞=𝜀=0, we obtain

Υ±(0, 0) =
1

4𝜋

1

1 ∓ 𝑖𝛾

𝑚𝑑

𝑛

{︃
3, 𝑑 = 1,

ln
(︀
𝑛/𝑚2

)︀
, 𝑑 = 2.

(B18)

Here we assumed that 𝑛≫𝑚𝑑 for 𝑑=1, 2. This result suggests that deviations from the self-consistent Born approx-
imation (due to crossing diagrams) is fully controlled by the small parameter 𝑚𝑑/𝑛≪1 (even for 𝛾 of the order of
unity).

If the unitary dynamics is absent, 𝜉𝑝=0, we find that

Υ±(0, 0) = ± 𝑖

4𝜋𝛾

𝑚𝑑

𝑛

{︃
3, 𝑑 = 1,

ln
(︀
𝑛/𝑚2

)︀
, 𝑑 = 2.

(B19)

Again, the above result suggests that deviations from the self-consistent Born approximation are fully controlled by
the small parameter 𝑚𝑑/𝑛≪1.

In the absence of unitary dynamics, 𝜉𝑞 = 0, the real part of the self-energy (B17) could in principle have resulted
in the appearance of an effective spectrum for the particles. Let us examine this. Writing 𝜀=𝜀′+𝑖𝜀′′, we obtain the
following equation for the real part of the spectrum, 𝜀′:

𝜀′ = −𝛾2𝑑𝑞
𝑚2

2𝑛2

∫︁
𝑝,𝑘

𝜀′

𝑑𝑝+𝑘

𝑘2
−𝑑𝑘+

/𝑑𝑝+
+ 𝑝2

−𝑑𝑝+
/𝑑𝑘+

− 2𝑘−𝑝−

𝜀′2 + [𝛾(𝑑𝑝+
+ 𝑑𝑘+

+ 𝑑𝑝+𝑘) + 𝜀′′]2
. (B20)

However, since 𝑘2
−𝑑𝑘+

/𝑑𝑝+
+𝑝2

−𝑑𝑝+
/𝑑𝑘+

−2𝑘−𝑝−>0, the only solution of Eq. (B20) is 𝜀′=0.
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Appendix C: Hybridization of the ‘up’ and ‘down’ bands by an external scalar potential

Due to the presence of the off-diagonal matrix elements Φ(ud) and Φ(du), an external scalar potential results in a
non-zero density of the particles in the upper band. This effect was illustrated by a toy model at the end of Sec. VI. In

this Appendix, we estimate the corresponding density 𝛿𝑛
(u)
𝑞,𝜔 induced by transitions caused by the external potential.

Since such hybridization occurs even in the absence of dissipation we set 𝛾=0 for the sake of simplicity.
Using Eqs. (62) and (63) for 𝛾=0, we write

𝑇 (uu)
𝑝,𝑞;𝜔 = 2𝜋𝑖

∫︁
𝜀

Φ
(ud)
𝑝++𝑄−/2,−𝑄−;Ω+

Φ
(du)
𝑝−+𝑄+/2,𝑄+;−Ω−

[︃
𝐹

(u)
𝜀− 𝛿(𝜀− − 𝜉𝑝−)

(𝜀+ − 𝜉𝑝+
+ 𝑖0+)(𝜀− Ω + 𝜉𝑝+𝑄 + 𝑖0+)

+
𝐹

(u)
𝜀+ 𝛿(𝜀+ − 𝜉𝑝+

)

(𝜀− Ω + 𝜉𝑝+𝑄 − 𝑖0+)(𝜀− − 𝜉𝑝− − 𝑖0+)
+

𝐹
(d)
𝜀−Ω𝛿(𝜀− Ω + 𝜉𝑝+𝑄)

(𝜀+ − 𝜉𝑝+
+ 𝑖0+)(𝜀− − 𝜉𝑝− − 𝑖0+)

]︃
. (C1)

Here 𝐹
(u/d)
𝜀 stands for the distribution function of the ‘up’/‘down’ particles, respectively. For the dark state we have

𝐹
(u)
𝜀 =−𝐹 (d)

𝜀 =1. Integrating over 𝜀 and using Eq. (61) strictly at 𝛾=0, we obtain the following result,

𝛿𝑛(u)𝑞,𝜔 =
𝑖

2

∫︁
𝑝

𝑇 (uu)
𝑝,𝑞;𝜔 =

∫︁
𝑝,𝑄,Ω

Φ
(ud)
𝑝++𝑄−/2,−𝑄−;Ω+

Φ
(du)
𝑝−+𝑄+/2,𝑄+;−Ω−

(−Ω− + 𝜉𝑝− + 𝜉𝑝+𝑄 + 𝑖0+)(−Ω+ + 𝜉𝑝+
+ 𝜉𝑝+𝑄 − 𝑖0+)

. (C2)

The above equation suggests the following interpretation. We set 𝑞=𝜔=0 on the right-hand side for simplicity. The
matrix element Φ(ud) corresponds to the transition from a state with the energy 𝜉𝑝+

in the upper band to a virtual

state with the energy 𝜉𝑝+𝜉𝑝+𝑄−Ω in the down band. The matrix element Φ(du) corresponds to the transition back
from the virtual state with the energy 𝜉𝑝+𝜉𝑝+𝑄−Ω in the down band to a state with the energy 𝜉𝑝− in the upper
band.

As expected, the imaginary part of the response function (C2) is nonzero for Ω>2𝑚2 only. For the real part, we
obtain at low frequencies

𝛿𝑛
(u)
0 (𝑥, 𝑡) ≃ 𝐸2(𝑥, 𝑡)

∫︁
𝑝

𝑚2

4𝜉4𝑝
∝ 𝜒

𝑚2
𝐸2(𝑥, 𝑡). (C3)

In the derivation we took into account that a typical 𝑝∼𝑚 is much larger than both 𝑄 and 𝑞.

Appendix D: Cartoon example of the dark state instability

In this section, we consider a simple discrete 1D two-band model which mimics some aspects of the full model
investigated in the main text. Specifically, we start with the following Hamiltonian

𝐻0 = 𝑡
∑︁
𝑗

(︁
𝜓†
↑,𝑗+1𝜓↓,𝑗 + ℎ.𝑐.

)︁
. (D1)

Note that 𝐻0 is block-diagonal as only the pairs of states (↑, 𝑗 + 1) and (↓, 𝑗) for all 𝑗 are coupled. Formally, this
Hamiltonian is equivalent to the Su–Schrieffer–Heeger model [73] in the maximally-dimerized limit 𝑡′/𝑡 = 0.

One can easily check that Eq. (D1) can be brought to the diagonal form

𝐻0 = 𝑡
∑︁
𝑗

(︁
𝑙†u,𝑗 𝑙u,𝑗 − 𝑙†d,𝑗 𝑙d,𝑗

)︁
(D2)

by means of the following transformation

𝜓↑,𝑗 =
1√
2

(𝑙u,𝑗−1 − 𝑙d,𝑗−1) , 𝜓↓,𝑗 =
1√
2

(𝑙u,𝑗 + 𝑙d,𝑗) ,

𝑙u,𝑗 =
1√
2

(𝜓↓,𝑗 + 𝜓↑,𝑗+1) , 𝑙d,𝑗 =
1√
2

(𝜓↓,𝑗 − 𝜓↑,𝑗+1) . (D3)

The operators 𝑙u/d,𝑗 correspond to the hybridized orbitals belonging to a single dimer. Note that, similarly to the
operators 𝑙u/d(𝑥) introduced in the main text (cf. Eq. (4)), our 𝑙u/d,𝑗 can be expressed through linear combination of
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the lattice derivatives 𝛿𝑗 ≡ 𝜓↑,𝑗+1 − 𝜓↑,𝑗 as well as the sum and difference of the two onsite annihilation operators,
𝑛𝑗 ≡ 𝜓↑,𝑗 + 𝜓↓,𝑗 and 𝑚𝑗 ≡ 𝜓↑,𝑗 − 𝜓↓,𝑗 ,

𝑙u,𝑗 =
1√
2

(𝑛𝑗 + 𝛿𝑗) , 𝑙d,𝑗 = − 1√
2

(𝑚𝑗 + 𝛿𝑗) . (D4)

At half-filling, the ground state of 𝐻0 consists of all the d-orbitals being occupied on all sites, while all u-orbitals are
empty. Following the notation introduced in the main text, we will refer to this state as a ‘dark state’ and denote it
by |𝐷⟩.

The dynamics is governed by the GKSL equation, taking the form

𝑑𝜌

𝑑𝑡
= −𝑖[𝐻0, 𝜌] +

∑︁
𝜎=↑/↓

𝛾𝜎
∑︁
𝑗

(︀
2𝐿

(𝜎)
𝑗 𝜌(𝐿

(𝜎)
𝑗 )† − {(𝐿

(𝜎)
𝑗 )†𝐿

(𝜎)
𝑗 , 𝜌}

)︀
. (D5)

The dissipative part of dynamics is specified by the following jump operators

𝐿
(𝜎)
𝑗 = 𝜓†

𝜎,𝑗 𝑙u,𝑗 , 𝜎 =↑, ↓, (D6)

with the associated coupling constants 𝛾↑ and 𝛾↓, respectively. We emphasize that this particular choice of 𝐿
(𝜎)
𝑗 is

very similar to 𝐿1/2(𝑥) introduced in the main text (cf. Eq. (3)). It is convenient to make use of Eq. (D3) and re-write
these operators in terms of 𝑙u/d,𝑗 only. As a result, we obtain

𝐿
(↑)
𝑗 =

1√
2

(︁
𝑙†u,𝑗−1 − 𝑙†d,𝑗−1

)︁
𝑙u,𝑗 , 𝐿

(↓)
𝑗 =

1√
2

(︁
𝑙†u,𝑗 + 𝑙†d,𝑗

)︁
𝑙u,𝑗 . (D7)

The physical process represented by these operators is simple: They take a particle from the ‘up’ band on a given

site, and either dump it into the ‘down’ band, or keep it in the ‘up’ band. In both cases, 𝐿
(↑)
𝑗 also slightly shifts the

particle in real space, while 𝐿
(↓)
𝑗 keeps it on the same site. Let us now highlight some of the important features of

these jump operators (which they, in part, share with their more involved relatives 𝐿1/2(𝑥)). First of all, 𝐿
(𝜎)
𝑗 are

not products of eigen-operators of 𝐻0, but rather consist of a linear combination of such. In simple terms, 𝐿
(𝜎)
𝑗 can

be written as 𝐿
(𝜎)
𝑗 = 𝐴

(𝜎)
𝑗 + 𝐵

(𝜎)
𝑗 , where 𝐴

(𝜎)
𝑗 and 𝐵

(𝜎)
𝑗 correspond to only one of particular physical processes just

described (interband and intraband transitions). This is different from the case when 𝐴
(𝜎)
𝑗 and 𝐵

(𝜎)
𝑗 act as separate

jump operators, since the GKSL equation contains terms quadratic in 𝐿. Therefore, our choice of 𝐿
(𝜎)
𝑗 allows for

mixed operators of the form (𝐴
(𝜎)
𝑗 )†𝐵

(𝜎)
𝑗 , etc. Second, while 𝐿

(↓)
𝑗 is purely local (i.e. it only acts on a single site 𝑗),

𝐿
(↑)
𝑗 actually couples nearest neighbors 𝑗 and 𝑗 − 1. As we will see, this condition enables the mixed operators to

act non-trivially and produce additional excitations. Finally, we have 𝐿
(𝜎)
𝑗 |𝐷⟩ = 0, implying that the density matrix

𝜌𝐷 = |𝐷⟩⟨𝐷| is a possible steady state solution of the corresponding GKSL equation. Since both 𝐿
(𝜎)
𝑗 contain terms

that move particles from the ‘up’ band to the ‘down’ band (and not the other way around), one could näıvely expect
that at sufficiently long times local perturbations around the dark state 𝜌𝐷 should relax towards it. We shall now see
that this is not the case.

Our strategy will be to contrast the two limiting cases: (a) 𝑡 = 𝛾↑ = 0, and (b) 𝑡 = 𝛾↓ = 0. We will show that 𝜌𝐷
is a unique (and ‘attractive’) steady state only in the case (a), whereas (b) features a continuous family of attractive
steady state solutions with a finite occupation number in the ‘up’ band.

As a warm-up, let us start with case (a), 𝑡 = 𝛾↑ = 0. Since the dynamics is purely local, it is sufficient to consider
only the following two states

|..u..⟩ = 𝑙†u,𝑗 |.. ∘ ..⟩, |..d..⟩ = 𝑙†d,𝑗 |.. ∘ ..⟩, (D8)

where the symbol ‘∘’ denotes a completely empty site 𝑗, while the rest of the sites can have arbitrary occupation (the

density matrix is factorized). Note that the states of the form 𝑙†u,𝑗 𝑙
†
d,𝑗 |.. ∘ ..⟩ are allowed, but they cannot relax under

the dynamics introduced by 𝐿
(↓)
𝑗 (clearly, 𝐿

(↓)
𝑗 acting on these states gives zero), so we ignore them. One can make

use of the operator identity (︁
𝐿
(↓)
𝑗

)︁†
𝐿
(↓)
𝑗 =

1

2
𝑙†u,𝑗 𝑙u,𝑗

(︁
1 − 𝑙†d,𝑗 𝑙d,𝑗

)︁
, (D9)
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FIG. 11. Numerical solution of the GKSL equation for the toy two-band model on two sites (for𝑡 = 𝛾↓ = 0) prepared in the
initial state |u, d⟩ [see Eq. (D15) for the definition]. Left panel: The time dependence of the diagonal elements 𝜌𝑘,𝑘 of the
density matrix 𝜌(𝑡). Right panel: The expectation value of the total number of particles in the ‘up’ band. The red dashed line
corresponds to the steady state limit 𝑁u = 2/3.

which leads to the following matrix elements

𝐿
(↓)
𝑗 =

1√
2

(︂
1 0
1 0

)︂
𝑗

,
(︁
𝐿
(↓)
𝑗

)︁†
𝐿
(↓)
𝑗 =

(︂
1 0
0 0

)︂
𝑗

. (D10)

The index 𝑗 refers to the local basis (D8). The most general ansatz for the site-𝑗 reduced density matrix is given by

𝜌𝑗(𝑡) =

(︂
1 − 𝜌𝐷(𝑡) 𝜌𝑚(𝑡)
𝜌𝑚(𝑡) 𝜌𝐷(𝑡)

)︂
𝑗

. (D11)

After substituting this expression into the corresponding GKSL equation, and making use of the matrix representation
(D10), we obtain

�̇�𝐷(𝑡) = 1 − 𝜌𝐷(𝑡), �̇�𝑚(𝑡) = 1 − 𝜌𝐷(𝑡) − 𝜌𝑚(𝑡). (D12)

The initial condition 𝜌𝐷(0) = 𝜌𝑚(0) = 0, leads to 𝜌𝐷(𝑡) = 1 − exp(−𝑡), 𝜌𝑚(𝑡) = 𝑡 exp(−𝑡), with the attractive steady
state solution 𝜌𝐷(𝑡 = ∞) = 1, 𝜌𝑚(𝑡 = ∞) = 0. This result indeed confirms our näıve expectations regarding the
dynamics of this system.

Case (b), 𝑡 = 𝛾↓ = 0, is much more involved. To see how the complications arise, one can use the identity(︁
𝐿
(↑)
𝑗

)︁†
𝐿
(↑)
𝑗 =

1

2
𝑙†u,𝑗 𝑙u,𝑗

(︁
2 − 𝑙†u,𝑗−1𝑙u,𝑗−1 − 𝑙†d,𝑗−1𝑙d,𝑗−1 + 𝑙†u,𝑗−1𝑙d,𝑗−1 + 𝑙†d,𝑗−1𝑙u,𝑗−1

)︁
, (D13)

and act by this operator on the initial state 𝑙†u,𝑗 𝑙d,𝑗 |𝐷⟩ corresponding to a simple one-particle excitation around the

dark state (i.e., only one particle in the ‘up’ band). The result reads(︁
𝐿
(↑)
𝑗

)︁†
𝐿
(↑)
𝑗 𝑙†u,𝑗 𝑙d,𝑗 |𝐷⟩ =

1

2
𝑙†u,𝑗 𝑙d,𝑗 |𝐷⟩ +

1

2
𝑙†u,𝑗−1𝑙d,𝑗−1𝑙

†
u,𝑗 𝑙d,𝑗 |𝐷⟩, (D14)

where the last term stems from the interference between the two terms in 𝐿
(↑)
𝑗 . Crucially, this extra contribution

represents a state with two particles in the ‘up’ band. The corresponding physical process is the following: We first

use the operator 𝑙†u,𝑗−1𝑙u,𝑗 appearing 𝐿
(↑)
𝑗 to move an ‘up’ particle from the site 𝑗 to 𝑗 − 1, and then use 𝑙†u,𝑗 𝑙d,𝑗−1

from (𝐿
(↑)
𝑗 )† to move a ‘down’ particle to the ‘up’ band. Thus, this process provides a mechanism for ‘pumping’ of

particles to the ‘up’ band. Importantly, this process competes with the recombination of ‘up’ particles and ‘down’
holes (described by the remaining terms in the GKSL equation), which tends to relax the system towards the dark
state. In order to analyze this competition in more detail, we will solve a two-site version of this problem only (which
is sufficient to illustrate the general situation).

The full basis of a two-site model at half-filling consists of six states

|u, u⟩ = 𝑙†u,1𝑙
†
u,2|∘, ∘⟩, |u, d⟩ = 𝑙†u,1𝑙

†
d,2|∘, ∘⟩, |d, u⟩ = 𝑙†d,1𝑙

†
u,2|∘, ∘⟩,

|u/d, ∘⟩ = 𝑙†u,1𝑙
†
d,1|∘, ∘⟩, |∘, u/d⟩ = 𝑙†u,2𝑙

†
d,2|∘, ∘⟩, |d, d⟩ ≡ |𝐷⟩ = 𝑙†d,1𝑙

†
d,2|∘, ∘⟩. (D15)
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The matrix elements of the jump operators read as follows

𝐿
(↑)
1 =

1√
2

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎠ , 𝐿
(↑)
2 =

1√
2

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
−1 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎠ . (D16)

Here we assumed periodic boundary conditions. One can easily check that the right hand side of the corresponding
GKSL equation vanishes if evaluated with the following two-parameter density matrix

𝜌* =

⎛⎜⎜⎜⎜⎜⎝
𝜌u −𝜌u −𝜌u 0 0 𝜌𝑚
−𝜌u 𝜌u 𝜌u 0 0 −𝜌𝑚
−𝜌u 𝜌u 𝜌u 0 0 −𝜌𝑚

0 0 0 0 0 0
0 0 0 0 0 0
𝜌𝑚 −𝜌𝑚 −𝜌𝑚 0 0 1 − 3𝜌u

⎞⎟⎟⎟⎟⎟⎠ , (D17)

with the condition (1−6𝜌u)
2+12𝜌2𝑚 ≤ 1, required for the eigenvalues of 𝜌* to remain nonnegative (note that Tr 𝜌* = 1

as it should be). In fact, Eq. (D17) is the most general form of the steady state solution in this model. In particular,
the choice 𝜌𝑚 = 𝜌u = 0 gives the dark state 𝜌* = 𝜌𝐷. The expectation value of the total number of particles in the
‘up’ band can be easily computed as

𝑁u =
∑︁
𝑗

tr(𝑙†u,𝑗 𝑙u,𝑗𝜌*) = 4𝜌u. (D18)

The resulting steady state (with particular 𝜌u and 𝜌𝑚) depends on the initial conditions. Let us consider 𝜌(𝑡 = 0) =
|u, d⟩⟨u, d| (thus, 𝑁u(𝑡 = 0) = 1), and study how the system evolves with time. In Fig. 11, we demonstrate a numerical
solution of the corresponding GKSL equation. One can see that the diagonal matrix elements corresponding to the
states |u, u⟩, |𝐷⟩ and |d, u⟩ grow with time monotonically (although with different rates), while the amplitude for
|u, d⟩ decays, and eventually saturates at a finite value. At the same time, the amplitudes for |∘, u/d⟩ and |u/d, ∘⟩
initially increase, but then quickly approach zero, in full agreement with the steady state structure of Eq. (D17). We
emphasize that the competition between recombination and ‘pumping’ results in a finite expectation value for the
total number of particles in the ‘up’ band (see the right panel in Fig. 11). This aspect of the toy model resembles our
results for the full model studied in the main text. As a final remark, we note that in addition to the jump operators

𝐿
(↑)
𝑗 containing 𝑙u,𝑗 , one could include operators with 𝑙†d,𝑗 since they also annihilate the dark state. In particular, it is

easy to verify that the following choice �̃�
(↓)
𝑗 = 𝜓↓,𝑗−1𝑙

†
d,𝑗 = (𝑙u,𝑗−1 + 𝑙d,𝑗−1) 𝑙†d,𝑗/

√
2 leads to the same steady density

matrix as in Eq. (D17).

[1] L. M. Sieberer, M. Buchhold, and S. Diehl, Keldysh field
theory for driven open quantum systems, Rep. Prog.
Phys. 79, 096001 (2016).

[2] K. Le Hur, L. Henriet, L. Herviou, K. Plekhanov, A. Pe-
trescu, T. Goren, M. Schiro, C. Mora, and P. P. Orth,
Driven dissipative dynamics and topology of quantum
impurity systems, C. R. Phys. 19, 451 (2018).

[3] B. Skinner, J. Ruhman, and A. Nahum, Measurement-
induced phase transitions in the dynamics of entangle-
ment, Phys. Rev. X 9, 031009 (2019).

[4] M. S. Rudner and N. H. Lindner, Band structure engi-
neering and non-equilibrium dynamics in Floquet topo-
logical insulators, Nat. Rev. Phys. 2, 229 (2020).

[5] F. Thompson and A. Kamenev, Field theory of many-
body Lindbladian dynamics (2023).

[6] M. Fava, L. Piroli, T. Swann, D. Bernard, and A. Nahum,
Nonlinear sigma models for monitored dynamics of free
fermions, arXiv preprint arXiv:2302.12820 (2023).
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