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When a static electrical field is applied to a two-dimensional (2D) Dirac material, Landau-Zener
transition (LZT) and Bloch-Zener oscillations can occur. Employing α-T3 lattices as a paradigm
for a broad class of 2D Dirac materials, we uncover two phenomena. First, due to the arbitrarily
small energy gaps near a Dirac point that make it more likely for LZTs to occur than in other
regions of the Brillouin zone, the distribution of differential LZT probability in the momentum
space can form a complicated morphological pattern. Second, a change in the LZT morphology as
induced by a mutual switching of the two distinct Dirac points can lead to irregular Bloch-Zener
oscillations characterized by a non-smooth behavior in the time evolution of the electrical current
density associated with the oscillation. These phenomena are due to mixed interference of quantum
states in multiple bands modulated by the geometric and dynamic phases. We demonstrate that
the adiabatic-impulse model describing Landau-Zener-Stückelberg interferometry can be exploited to
calculate the phases, due to the equivalence between the α-T3 lattice subject to a constant electrical
field and strongly periodically driven two- or three-level systems. The degree of irregularity of
Bloch-Zener oscillations can be harnessed by selecting the morphology pattern, which is potentially
experimentally realizable.

I. INTRODUCTION

The Landau-Zener transition (LZT) [1, 2] is a fun-
damental phenomenon in time-dependent quantum sys-
tems. The paradigmatic setting for LZT is a two-level
system in which the two energy levels do not cross each
other and vary adiabatically with time. When the en-
ergy gap between the two levels is sufficiently small, a
non-adiabatic transition from one energy level to another
can occur - leading to an LZT. The phenomenon of LZT
is relevant to quantum information science and technol-
ogy, because qubits are essentially two-level systems [3–
5]. In addition to quantum systems, LZTs can arise in
other physical situations such as optical lattices [6–8] and
electromechanical systems [9, 10]. When a two-level sys-
tem is periodically driven by an electric field, the tran-
sition probability will depend on the phase accumulated
by the two energy bands between subsequent crossings,
leading to the so-called Landau-Zener-Stückelberg inter-
ferometry [11]. In general, interference among the quan-
tum states in different energy bands is determined by
two phases: geometric and dynamic, which correspond
to the adiabatic and Stokes phases, respectively, in the
adiabatic-impulse model [11, 12] underlying the Landau-
Zener-Stückelberg interferometry, where the sum of the
adiabatic and Stokes phases gives the Stückelberg phase
- a concept originated from strongly periodically driven
two-level systems. A generalization from the two-level
setting is the three-level LZT model [13] with an addi-
tional flat band [14, 15].

In solid state physics, Bloch oscillations [16, 17] are a
fundamental phenomenon closely related to LZT, which
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occur when a static electric field is applied to a periodic
lattice, leading to a linear increase with time in the elec-
tron momentum and generating a time-dependent quan-
tum system. The basic periodicity of the momentum
space stipulates that the electron must execute oscilla-
tory motions in the physical space at a frequency de-
termined by the lattice constant and the electric field
strength (typically in the terahertz regime). In fact, in-
sofar as the electron moves in a periodic potential, Bloch
oscillations can occur, rendering them a common quan-
tum phenomenon beyond a solid-state lattice. In the
past, the oscillations have been observed in diverse sys-
tems such as semiconductor superlattices [18], photonic
structures [19–22] and plasmonic waveguide arrays [23].
The phenomenon provides a viable way to convert a di-
rect current to a high-frequency signal [24, 25].

Bloch oscillations arise from the time evolution of the
electron in a single energy band. When there are multi-
ple energy bands, LZTs can occur at the avoided crossing
points between the bands. Driven by the static electric
field, a quantum state initialized in the lower energy band
evolves with time. At certain time, the state will reach an
avoided crossing point between distinct energy bands and
possibly experience an LZT. Thus, in systems with mul-
tiple energy bands, a combination of LZTs and Bloch os-
cillations can occur, leading to the so-called Bloch-Zener
oscillations [15, 26–28], which have applications in, e.g.,
matter-wave beam splitters and Mach-Zender interferom-
etry [29, 30]. In the past, Bloch-Zener oscillations were
extensively studied in one-dimensional (1D) gapped peri-
odic lattices [29–32] and were demonstrated to be sensi-
tive to the size of the energy gap. In particular, if the gap
is relatively large, LZTs are inhibited so the Bloch-Zener
oscillations are restricted to within a single energy band.
For a smaller gap, interband LZTs can occur, which de-
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stroys the periodicity of the Bloch-Zener oscillations [29–
31, 33, 34]. In a 2D lattice with multiple energy bands,
in the first Brillouin zone, different subregions can arise
that can inhibit or excite LZTs, resulting in irregular
Bloch-Zener oscillations [35, 36]. For example, in pure
graphene, when a constant electric field is applied in a
lattice-rational direction, the oscillation amplitude can
decay with time rapidly in a non-adiabatic fashion [37].
When the electric field is in an irrational direction with
respect to the lattice structure, Bloch oscillations of com-
plicated patterns can arise [38].

In this paper, we study the effects of a constant and
uniform electric field on a broad class of 2D Dirac ma-
terials, the α-T3 lattice [39, 40], which has an additional
atom at the center of each unit cell of the honeycomb
graphene lattice. The interaction between the central
atom and any of its nearest neighbors is characterized
by the parameter 0 ≤ α ≤ 1 - effectively the strength
relative to that between two neighboring atoms at the
vertices of the graphene cell. For α = 0, the lattice
reduces to that of graphene with quasiparticles being
pseudospin-1/2 Dirac fermions. As α increases from
zero, a flat band through the conic interaction of the
two Dirac cones emerges [39, 40]. The maximal value
α = 1 gives a pseudospin-1 lattice where, because of the
extra atom, the low energy excitations need to be de-
scribed by the pseudospin-1 Dirac-Weyl equation with a
three-component spinor [41]. A distinct feature of the
entire spectrum of α-T3 lattices is the existence of two
distinct valleys centered about the two non-equivalent
Dirac points of the backbone hexagonal lattice, denoted
as +K and −K.

Depending on the direction and magnitude of the elec-
tric field, electrons initiated from distinct valleys can ex-
hibit characteristically different LZTs. As the dynamic
phases associated with different valleys cancel each other
exactly, the distinct LZTs are due to the different adia-
batic phases of the quantum states in the energy bands
between consecutive crossings. This can be understood
by considering the reciprocal periodic momentum space
with the hexagonal Brillouin zone, as shown in Fig. 1.
Now apply an electric field in the x direction. The x
component of the momentum will then increase linearly
with time under the premise of the same energy value. As
a result, the Dirac points +K and −K will shift towards
the right. At an original Dirac point (+K or−K), the en-
ergy will increase from zero, reach a maximum, and then
decrease to zero when the next Dirac point arrives, gener-
ating a time-periodic behavior. Because of the hexagonal
structure of the momentum space, the energy variations
associated with +K and −K are distinct, as indicated
in Fig. 1(b). The LZT probability depends on the accu-
mulated phase between subsequent crossings, where the
adiabatic phase is the integral of the energy variation
over time. In the specific setting of Figs. 1(a) and 1(b),
the integral associated with the Dirac point +K will have
a much larger value than that associated with the other
Dirac point −K. As a result, if an electron initiates with

a momentum value near +K, the adiabatic phase will be
nearly constant for a large range of energy gaps deter-
mined by the momentum deviation from the trajectory
of Dirac points ±K in the py direction. However, if an
electron starts with a momentum value near −K, the adi-
abatic phase will depend sensitively on the energy gap.
Based on this property, it is possible to generate specific
destructive or constructive interference for a large range
of momentum deviation from the trace of the Dirac point
+K, whereas there is mixed interference associated with
all possible phases for electrons with initial momentum
near −K.

Our first finding is the emergence of complicated LZT
morphological patterns in the vicinity of distinct Dirac
points, which is associated with mixed quantum interfer-
ence among the quantum states in multiple bands. Say
we apply an electric field in the x direction, initialize
electrons in the lower Dirac cone (the lower band), and
calculate the differential LZT probability, defined as the
difference between the probability that an electron is in
the upper band and that in the lower band. Different mo-
mentum values about a Dirac point and the magnitudes
of the electric field give distinct interference phases. As
a result, in the momentum plane, the differential LZT
probability displays different values, giving rise to some
morphological pattern that can be complex. During its
temporal evolution, the pattern can be maintained for
some time but it can change from time to time due to
the switching of two two distinct Dirac points ±K in the
Brillouin zone as caused by the external electric field and
the periodic structure of the momentum space. Specif-
ically, during one period of the Bloch-Zener oscillation,
the two valleys go through a complete cycle in the sense
that they are switched and then returned to their respec-
tive original positions.

The second finding is that changes in the LZT mor-
phology can lead to irregularities in Bloch-Zener oscilla-
tions in α-T3 lattice. To explain this, we recall the two
typical cases where periodic Bloch oscillations are gener-
ated. One case is a single-band material, such as a normal
conductor, where the Bloch oscillations are characterized
by a perfect temporally periodic behavior in the electrical
current density. Another case is where an LZT causes all
electrons initialized in one band to transition completely
to another band, i.e., the transition probability is one -
the so-called ideal LZT. In this case, the resulting Bloch-
Zener oscillations behave as if the electrons were in a
single band. In the three-band α-T3 lattice, LZTs are
typically not ideal. The mutual switchings of the two
Dirac points ±K in the Brillouin zone changes the LZT
morphology, which can produce an abrupt, nonsmooth
change in the current density, thereby leading to ape-
riodic, irregular Bloch-Zener oscillations. More specifi-
cally, the coexistence of a variety of LZT possibilities in
the momentum space generates complex, mixed quantum
interference between the states in the upper, lower, and
flat bands, disrupting the originally periodic Bloch-Zener
oscillation rhythm before the Dirac point switch. While
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aperiodic Bloch oscillations [29–31, 33, 34] and irregular
Bloch-Zener oscillations [35, 36] have been noted before,
to our knowledge, the physical mechanisms underlying
these irregular behaviors were not clear. Especially, it
has not been reported previously that LZTs can form a
complicated morphology in α-T3 lattice and a change in
the morphology can lead to irregular Bloch-Zener oscil-
lations.
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FIG. 1. Illustration of the α-T3 lattice and its positive en-
ergy band structure. (a) The lattice structure [42, 43] as
defined by the three base atoms (A, B and C) in physical
space spanned by the two primitive translation vectors aaa1
and aaa2. The nearest-neighbor hopping energy between A and
B sites is tε and that between B and C sites is αtε, where
0 ≤ α ≤ 1 characterizes the coupling strength. (b) Zero-field
energy-band structure [42] of the positive dispersion band as a
function of the wave vector kkk for an arbitrary value of α in the
hexagonal Brillouin zone. The zero energy points correspond
to two classes of non-equivalent contact points at the corners
ξK with the valley index ξ = ±1. A reference rectangular re-
gion (dashed line) for numerical integration is indicated, with
the boundaries of the hexagonal Brillouin zone specified by
the red solid lines.

In Sec. II, we describe the α-T3 lattice model and derive
the current density associated with the Bloch-Zener os-
cillations from the adiabatic basis in the hexagonal Bril-
louin zone. In Sec. III, we present a general treatment of
LZTs in the α-T3 lattice, display the LZTs morphology

in the long time, and analyze the relationship between
morphology and irregular Bloch-Zener oscillations. In
particular, in Sec. III A, we linearize the Hamiltonian
about the Dirac points to obtain the effective Landau-
Zener Hamiltonian for the two limiting cases: α = 0 and
α = 1. For 0 < α < 1, we numerically demonstrate
the occurrence of LZT. In Sec. III B, we elucidate the
interplay between LZT morphological changes and irreg-
ular Bloch-Zener oscillations. In Sec. IV, we focus on the
Landau-Zener-Stückelberg interferometry in α-T3 lattice,
where in Sec. IV A, we establish the equivalence of the α-
T3 lattice to two- or three-level time-dependent systems
and provide an understanding of the LZT based on the
Stückelberg phase. In Sec. IV B, we address the problem
of harnessing irregular Bloch-Zener oscillations through
selection of the LZT morphology and discuss the experi-
mental feasibility of this scheme. A discussion is offered
in Sec. V.

II. BASICS OF α-T3 LATTICE, LANDAU-ZENER
TRANSITION, AND BLOCH-ZENER

OSCILLATIONS

The α-T3 lattice interpolates between the graphene
honeycomb lattice (α = 0) and the dice lattice (α = 1)
with the parametrization tanϕ = α ∈ [0, 1] with the du-
ality [42] α → 1/α. The tight-binding Hamiltonian is
given by

H =

 0 fkkk cosϕ 0
f∗kkk cosϕ 0 fkkk sinϕ

0 f∗kkk sinϕ 0

 , (1)

where

fkkk = −tε
(

1 + e−ikkk·aaa1 + e−ikkk·aaa2
)
, (2)

kkk = (kx, ky), and tε is the nearest-neighbor hopping
energy between A and B sites, as shown in Fig. 1(a).

The primitive translation vectors are aaa1 = a
(√

3/2, 3/2
)

and aaa2 = a
(
−
√

3/2, 3/2
)

with a being the lattice con-
stant. The corresponding primitive translation vectors
in the hexagonal Brillouin zone of the reciprocal lattice
are bbb1 =

(√
3/3, 1/3

)
2π/a and bbb2 =

(
−
√

3/3, 1/3
)

2π/a.
The eigenenergy spectrum of the α-T3 lattice is indepen-
dent of α, which consists of two conic dispersive bands
ελ = λ |fkkk| distinguished by the band index λ = ± and
a zero energy flat band ε0 = 0, as shown in Fig. 1(b).
The eigenstates of the α-T3 lattice in the whole hexago-
nal Brillouin zone can be obtained through the following
effective Hamiltonian about the Dirac points:

|ψ0〉 =

 sinϕ eiθkkk

0
− cosϕ e−iθkkk

 , |ψλ〉 =
1√
2

 cosϕ eiθkkk

λ
sinϕ e−iθkkk

 ,
(3)

where θkkk is the angle of fkkk associated with the specific
momentum.
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We describe the Hamiltonian underlying Bloch-Zener
oscillations. Apply a uniform and constant electric field
to the α-T3 lattice in the +x direction, which is switched
on at t = 0. With the time-dependent vector poten-
tial [44, 45]AAA (t) = [A (t) , 0, 0], where A (t) = EtΘ (t) /~,
the Hamiltonian becomes

H (t) =

 0 fkkk (t) cosϕ 0
f∗kkk (t) cosϕ 0 fkkk (t) sinϕ

0 f∗kkk (t) sinϕ 0

 , (4)

where fkkk(t) is given by

fkkk(t) = −tε

(
1 + 2e−i

3
2 k̃y cos

(√
3

2
k̃x (t)

))
, (5)

with kx (t) ≡ kx− eEt/~. For convenience, we define the
dimensionless quantities

k̃x (t) ≡ kx (t) a, (6)

k̃y ≡ kya, (7)

so that fk(t) has the same dimension as the hopping en-
ergy tε.

In the presence of the electric field, the eigenenergy
spectrum of the positive dispersion band in the whole
hexagonal Brillouin zone is determined by

εkkk(t) = |fkkk(t)|

= tε
√

1 + 4 cosXkkk(t) (cosYkkk + cosXkkk (t)) (8)

where Xkkk (t) = k̃x (t)
√

3/2 and Ykkk = k̃y3/2. Because the
function fkkk(t) includes cos(L(t)), where L(t) is a linear
function of time, the Hamiltonian becomes time-periodic.
Consider the special case of α = 0 (graphene). Expand-
ing the Hamiltonian around the Dirac points yields the
standard Landau-Zener Hamiltonian [46]:

H̃ ≈ 3δk̃y
2

σx ∓
3Ẽt̃′

2
σz. (9)

That is, when the electrons are near the Dirac points,
LZTs between distinct energy bands can arise.

The quantum dynamics are governed by

i~∂tψkkk (t) = H (t)ψkkk (t) . (10)

On the adiabatic basis, the evolution of a quantum state
is under an infinitesimal electric field [44, 47]:

U† (t)H (t)U (t) = Szεkkk (t) , (11)

where Sz is the z-component of the vector of spin-1 ma-
trices. The transformed quantum dynamics are governed
by

i~∂tΦkkk (t) =

[
Szεkkk (t)− S̃x

at2εeE

ε2kkk (t)
C0 (t)

]
Φkkk (t) , (12)

through the time-dependent unitary transformation U(t)
given by

1√
2

cosϕ eiθkkk(t) sinϕ eiθkkk(t) 1√
2

cosϕ eiθkkk(t)

1√
2

0 − 1√
2

1√
2

sinϕ e−iθkkk(t) − cosϕ e−iθkkk(t) 1√
2

sinϕ e−iθkkk(t)

 ,
(13)

where Φkkk(t) = U†(t)ψkkk(t) and the term incorporating
C0(t) contributes to the time dependence of U(t) through
−i~U†∂tU . Specifically, we have

C0 (t) =
√

3 sinYkkk sinXkkk (t) (14)

S̃x = Sx sin 2ϕ− SL cos 2ϕ, (15)

where

Sx =
1√
2

 0 1 0
1 0 1
0 1 0

 , SL ≡
 − 1

2 0 − 1
2

0 1 0
− 1

2 0 − 1
2

 . (16)

For α = 1, S̃x reduces to Sx, the x component of spin-
1 matrix and Eq. (12) becomes the quantum evolution
equation for a dice lattice. This form of Eq. (12) is
consistent with that reported in a previous work [45]
except for a periodic factor in C0(t) due to the intrin-

sic lattice structure. For α = 0, S̃x become −SL and
Eq. (12) describes the graphene lattice, which is consis-
tent with a previous work [44] except for the identity
term I exp(−iθ(t)/2)∂t exp(iθ(t)/2)/2 due to the differ-

ent form of the basis. Overall, S̃x reflects the different
coupling strength among the three bands and the peri-
odic term in C0(t) originates from the intrinsic property
of the α-T3 lattice.

We set the initial state as one corresponding fully oc-
cupied lower band:

Φkkk (t = 0) = [0, 0, 1]
T
. (17)

The average current density associated with the momen-
tum 〈Jx〉kkk (t) in the hexagonal Brillouin zone is given by

〈Jx〉kkk (t) ≡ Φ†kkk (t) Jx, kkk (t) Φkkk (t) (18)

where the current density matrix with the definite mo-
mentum is

Jx, kkk (t) = −eU† (t) ∂kx(t)H(t)U (t) (19)

and Φkkk (t) in the adiabatic basis can be written as

Φkkk (t) =
[
αkkk (t) , γkkk (t) , βkkk (t)

]T
. (20)

Due to the periodic structure of the energy band (referred
to as the Bloch band), the average current density will
exhibit Bloch oscillations.

The average current density 〈Jx〉kkk (t) can be decom-
posed into two components, the intraband and interband
currents, respectively [44]:

〈Jx〉kkk (t) = 〈Jx〉intrakkk (t) + 〈Jx〉interkkk (t) , (21)
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which can be written as

〈Jx〉intrakkk (t) = J11
x, kkk (t)

(
|αkkk (t)|2 − |βkkk (t)|2

)
, (22)

〈Jx〉interkkk (t) = 2<
[
J13
x, kkk (t)α∗kkk (t)βkkk (t)

]
+ 2<

[
J12
x, kkk (t)α∗kkk (t) γkkk (t) + J23

x, kkk (t) γ∗kkk (t)βkkk (t)
]
. (23)

The matrix Jx,kkk(t) provides insights into the current den-
sity 〈Jx〉kkk(t). In particular, the intraband component
consists of both electrons and holes, corresponding to

J11
x, kkk (t) ≡ J0

x, kkk (t) cos Θkkk (t) (24)

J33
x, kkk (t) = −J11

x, kkk (t) , (25)

respectively, where the minus sign comes from the op-
posite sign of the equivalent charge in the electron-hole
pair. The zero group velocity of the flat band results
in zero intraband contribution. The interband contribu-
tion arises from the interference between the transition
from the lower to the flat band or the upper band and
that from the flat to the upper band, corresponding to
J23
x, kkk (t) , J13

x, kkk (t) and J12
x, kkk (t), respectively, which are

given by

J13
x, kkk (t) ≡ iJ0

x, kkk (t) cos 2ϕ sin Θkkk (t) , (26)

J12
x, kkk (t) = J23

x, kkk (t) ≡ iJ0
x, kkk (t) /

√
2 sin 2ϕ sin Θkkk (t) ,

(27)

where

Θkkk (t) ≡ θkkk (t) + Ykkk (28)

and J0
x, kkk(t) is the common factor with the dimension of

the current density:

J0
x, kkk (t) = −

√
3eatε sinXkkk (t) . (29)

To facilitate numerical calculations, we define the dimen-
sionless quantities:

t̃ = t/t0, (30)

Ẽ = E/E0, (31)

ε̃k(t) = εk(t)/ε0, (32)

J̃x, kkk(t) = Jx, kkk(t)/J0. (33)

where t0 ≡ ~/tε, E0 ≡ tε/(ea), ε0 = tε and J0 = eatε.
We use the fourth-order Runge–Kutta method to calcu-
late the adiabatic evolution of the particle. The discrete
step sizes in time and momentum are chosen according
to Eq. (12) with the error tolerance 10−2 and normalized
wavefunction error within 10−4. Figure 1(b) indicates
that the ±K correspond to zero energy, which results in
numerical divergence of Eq. (12), so we set a minimum
energy cut-off to be ε̃k ≥ 10−5.

The dimensionless current density J̃ is the result of in-
tegrating 〈Jx〉kkk(t)/J0 over the rectangular reference area
in the hexagonal Brillouin zone, as shown in Fig. 1(b),
which contains three Dirac points and is 3/2 times larger
than the first Brillouin zone. In addition, we divide the

current density J̃ by the electric field Ẽ and a constant
3π2/4, which normalizes the current density in the weak
field regime [37] for α = 0.

III. MORPHOLOGICAL CHANGES IN LZTS
AND IRREGULAR BLOCH-ZENER

OSCILLATIONS

A. Landau-Zener transition

To gain insights, we first consider the special case α = 0
(graphene), where the Hamiltonian of the α-T3 lattice lin-
earized about the Dirac points ±K corresponds to that
of a standard two-level system. Using the unitary trans-
formation

U = exp (−iπ/4σy) exp (−iπ/4σz) , (34)

we can write the linearized Hamiltonian as (Appendix C)

U†H̃U ≈ 3δk̃y
2

σx ∓
3Ẽt̃′

2
σz (35)

where δk̃y is an infinitesimal deviation from a Dirac point

and t̃
′

= 0 denotes the starting time from the Dirac point.
Recall the standard Landau-Zener Hamiltonian for a two-
level system [46]:

HLZ = (g/2)σx + (st)σz, (36)

with the two underlying adiabatic energy levels

ε̃± = ±1

2

√
(2st)

2
+ g2, (37)

where g is the energy gap and s is the slope of the two-
level band about the LZT point. The linearized Hamil-
tonian for graphene in Eq. (35) can thus be cast in the
standard two-level LZT Hamiltonian with the following
parameter correspondences:

α = 0, g = 3δk̃y, and s = 3Ẽ/2. (38)

For a finite ∆k̃y in α-T3 lattice, the exact energy gap is

g = 2

√
1− cos2

(
3

2
∆k̃y

)
. (39)

The gap size increases monotonically with the momen-

tum deviation ∆k̃y from a Dirac point. [For α 6= 0 (a
flat band), the gap between the lower band and the flat
one is half of the gap between the lower and the upper

bands.] For ∆k̃y = π/3, the gap size g reaches the maxi-
mum value of two in the energy unit ε0 in the hexagonal
Brillouin zone.

In a two-level quantum system, for electrons initial-
ized in the lower band, after the electric field is turned
on, the first LZT to the upper band occurs with the prob-
ability [46]

PLZ ≡ |αkkk|2 = exp (−πr) , (40)
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and the one remaining in the lower band is 1−PLZ , where
r is the ratio between the energy gap and the slope (in
the standard unit ~ ≡ 1) given by

r ≡ (g/2)2/s =
3

2

δk̃2y

Ẽ
, (41)

which can be treated as a parameter characterizing the
possible occurrence of LZTs. Note that PLZ ≈ 4% for
r = 1, so this provides a numerical criterion for deter-
mining if an LZT can occur: 0 < r ≤ 1.

We next consider the opposite extreme case of the α-T3
lattice: α = 1 (pseudospin-1 lattice). Because of the pres-
ence of the flat band, the Hamiltonian linearized about a
Dirac point can be related to that of the standard LZT
model [13] with three distinct energy levels. In particu-
lar, employing the unitary transformation

U = exp

(
− i
~
π

2
Sy

)
exp

(
− i
~
π

2
Sz

)
, (42)

we obtain the pseudospin-1 Hamiltonian as (Appendix C)

U†H̃U ≈ 3δk̃y
2

Sx ∓
3Ẽt̃′

2
Sz, (43)

where Sx and Sy are the components of the vector of
spin-1 matrices. The eigenenergy spectra of the upper
and lower bands have the same form as Eq. (37), with
the addition of the extra flat band in the middle of the
lower and upper bands. For an electron initialized in the
lower band, the LZT probabilities for it to transition to
the upper band, transition to the flat band and remain
in the lower band are given by [13]

|αkkk|2 = 1− 2
√
PLZ + PLZ , (44)

|γkkk|2 = 2
(

1−
√
PLZ

)√
PLZ , (45)

|βkkk|2 = PLZ , (46)

respectively. where PLZ is defined in Eq. (40). To appre-
ciate the flat band contribution to the transitions, we set
PLZ = 1/4 so that |αkkk|2 = PLZ holds for both two- and
three-level systems because 1− 2

√
PLZ = 0. Figure 2(d)

shows the numerical result for 0 ≤ α ≤ 1, where it can be
seen that, in this special case, |αkkk|2 is independent of the
coupling strength between the flat and positive/negative
bands.

We can now analyze the general α-T3 lattice as an
interpolation between the idealized two-level and three-
level systems, where the coupling between the flat band
and the other two bands varies in the range 0 < α < 1.
For convenience, we again initialize electrons in the lower
band and examine two transition probabilities: that from
the lower to the upper band denoted as |αkkk|2 and that
from the lower to the flat band denoted as |γkkk|2. To unveil
the effect of increasing the value of α from zero, we cal-
culate the two probabilities for 0 ≤ α ≤ 1 and the range

of momentum deviation ∆k̃y from the +K Dirac point

(𝑒)

time

en
er
gy

FIG. 2. LZT probabilities in the α-T3 lattice. For electrons
initiated from the lower band, there are two LZT probabilities:
|αk|2 - the transition probability from the lower band to the
upper band, and |γk|2 - the transition probability from the
lower to the flat bands. (a) Color-coded sum of |αk|2 and |γk|2

in the (∆k̃y, α) plane for Ẽ = 0.0336. The initial momenta

are k̃x = 3 and k̃y = ∆k̃y about +K, and the integration time
step is dt̃ = 0.01. (b) Time evolution of the LZT probabilities

for ∆k̃y and α values taken from the location of the pentagram
in (a) with |αkkk|2 + |γkkk|2 + |βkkk|2 = 1. (c) LZT probabilities

versus ∆k̃y for α = 1, where the arrow indicates the flat-band
induced change in the LZT probability. (d) LZT probabilities

versus α for ∆k̃y = 0.1. (e) LZT in the three-level system.
If the initial state is in the lower band, after an LZT about
the avoided crossing point, the state is a superposition of the
eigenstates associated with all three bands.

in the hexagonal Brillouin zone. Figure 2(a) shows the
color-coded sum of the two probabilities in the parame-

ter plane (∆k̃y, α), where the range of ∆k̃y to generate a
high LZT probability increases monotonically with α and
reaches maximum at α = 1, suggesting that the flat band
enhances LZT. The time evolution of the two probabili-
ties and their sum is shown in Fig. 2(b). Note that, for
α = 1, the LZT probabilities |αkkk|2 and |γkkk|2 can be deter-
mined from Eqs. (44) and (45), respectively. Figure 2(c)
shows, for α = 1, these two probabilities, together with

their sum, versus ∆k̃y, where the horizontal dashed line
specifies P = 0.8 and the arrow indicates the enhance-

ment of the LZT by the flat band. As ∆k̃y increases, the
value of the characteristic parameter r increases, lead-
ing to a decrease in the LZT probability to the upper
band. However, even when the LZT probability from the
lower to the upper bands is effectively zero, there can still
be an appreciable transition probability from the lower

to the flat band. For example, for ∆k̃y = 0.2, we have
r ≈ 1.8. In this case, we have |αkkk|2 ≈ 0 but |γkkk|2 ≈ 0.25.

Figure 2(d) shows, for fixed ∆k̃y = 0.1, the two probabil-
ities versus α. Note that the probability |γkkk|2 increases
monotonically with α.
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(𝑏)
෨𝐸Δ ǁ𝑡 = ෨𝑘0

(𝑎)
෨𝐸Δ ǁ𝑡 = 0

(𝑐)

෨𝐸Δ ǁ𝑡 = 2෨𝑘0

(𝑑)

෨𝐸Δ ǁ𝑡 = 3෨𝑘0

෨𝐸
෨𝑘𝑥

−𝐾

+𝐾

FIG. 3. Schematic illustration of Bloch-Zener oscillations. (a)
Two nonequivalent Dirac points ±K in the hexagonal Bril-
louin zone at t̃ = 0, corresponding to two distinct valleys.

Driven by a static electric field in the positive k̃x direction,
both Dirac points start to move in the same direction, where
the two vertical sides of the gray rectangle denote the periodic

boundaries in k̃x. When the electric field is applied to the α-

T3 lattice, in the laboratory frame we have k̃x(t) = k̃x−Ẽt̃, for

fixed k̃x. In this “static” momentum space, an electron will

move toward the left with the momentum k̃x(t) ∝ −Ẽt̃. In

the moving frame with k̃x(t), the zero energy or Dirac points

will move toward the right with the momentum k̃x ∝ Ẽt̃, as
shown in Fig. 3 based on the energy form in Eq. (8). Since
LZTs occur around the Dirac points, it is convenient to fol-
low the movements of the Dirac points. (b-d) The locations

of ±K after ∆t̃ = k̃0/Ẽ, 2k̃0/Ẽ, and 3k̃0/Ẽ, respectively. For

∆t̃ = 3k̃0/Ẽ, the two Dirac points return to their respective
initial starting locations, completing one cycle. The period

of the Bloch-Zener oscillations is thus t̃B = 3k̃0/Ẽ. During
the Bloch period, the Landau-Zener transition occurs twice
about ±K, as indicated by the double horizontal color bars.

B. Morphology and irregular Bloch-Zener
oscillations

Under a static electric field, the intraband current den-
sity will exhibit periodic-like Bloch-Zener oscillations,
where the interband contribution can be neglected in the
long time situation [44]. Figure 3 provides a schematic
picture to explain the origin of the oscillations. Driven

by a constant electric field in the positive k̃x direction,
after t̃ = 0+, the two Dirac points ±K in the hexagonal
Brillouin zone start to move in the same direction, where
the gray rectangular region denotes a periodic area in

(𝑎) (𝑏)

(𝑐)

෨𝑘𝑥

෨ 𝑘
𝑦

෨𝑘𝑥

෨ 𝑘
𝑦

෨𝑘𝑥

෨ 𝑘
𝑦

(𝑑)
෨𝑘𝑥

෨ 𝑘
𝑦

+𝐊 −𝐊

෨𝑘𝑥

෨ 𝑘
𝑦

෨𝑘𝑥

෨ 𝑘
𝑦

(𝑓) (𝑔)

(𝑒)

FIG. 4. Emergence of distinct LZT morphology and ir-
regularities in the Bloch-Zener oscillations. (a) Morphol-
ogy of LZT after t = 0+ (immediately after the electric

field in the k̃x direction is turned on). Shown is the color-
coded values of the differential LZT probability, defined as
∆Pαβ(t) ≡ |αkkk (t)|2 − |βkkk (t)|2, in the entire Brillouin zone.
(b-d) Color-coded values of the differential LZT probability
∆Pαβ(t) at three instants of time after which a morpholog-

ical change in the LZTs occurs: ∆t̃ = k̃0/Ẽ, 2k̃0/Ẽ and

3k̃0/Ẽ. (e) Evolution of the intraband current density within
one Bloch period. At the three time instants indicated by
the vertical dashed lines and arrows, the curve is nonsmooth,
which correspond to the LZT morphology in (b-d), respec-
tively, and signify irregularities in the Bloch-Zener oscilla-
tions. (f,g) Morphology of LZT after 20 periods of Bloch-
Zener oscillations with magnification about +K, -K, respec-

tively. Simulation parameter values are α = 0, Ẽ = 0.1200,

dt̃ ≈ 0.01, and dk̃x ≈ dk̃y ≈ 0.012.

the momentum space, as shown in Fig. 3(a). The edge

length of the hexagonal Brillouin zone is k̃0 = 4π/(3
√

3)
in units of 1/a, the inverse of the lattice constant. After

the time ∆t̃ = k̃0/Ẽ, the +K valley reaches the orig-
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inal location of the −K valley, as shown in Fig. 3(b).
The −K reaches the original location of the +K after

the time ∆t̃ = 2k̃0/Ẽ, as shown in Fig. 3(c). The oc-
currences of the LZTs associated with the ±K valleys
are indicated by the orange and blue horizontal strips,
respectively, where the width of excitation zone depends
on both the gap size and the magnitude of electric field.

At the time t̃B = 3k̃0/Ẽ, both Dirac points return to
their original starting locations, completing one cycle of
oscillation during which LZT occurs twice.

In the vicinity of a Dirac point (+K or −K) in the
momentum space, an infinite set of energy gaps exists

where, for different momentum deviations ∆k̃y from the
Dirac point, the sizes of the energy gap can be quite
distinct from the exact energy gap in Eq. (39). As the
static electric field in the x direction is turned on, the

momentum in the +k̃x direction increases linearly with
time, sweeping through all possible values of the x com-
ponent of the momentum in the Brillouin zone, effectively

eliminating all the original differences in k̃x for different
points in the momentum space. However, the various
deviations in the y component of the momentum, i.e.,

the different ∆k̃y values, still matter and in fact per-
sist because they correspond to different energy gaps.

As a result, different values of ∆k̃y will lead to differ-
ent probabilities of LZT, creating a distinct morphology

with respect to the LZT probability in the k̃y direction
of the momentum space at any given time. As an exam-
ple, Figs. 4(f) and 4(g) present such a morphology after
20 periods of Bloch-Zener oscillations with the magnifi-
cation about the ±K Dirac points, respectively, where
the color-coded values of the differential LZT probability

∆Pαβ(t) ≡ |αkkk (t)|2 − |βkkk (t)|2 are shown in the (k̃x, k̃y)
plane. An observation is that the LZT morphology, as ex-
emplified in Figs. 4(f) and 4(g), can undergo changes due
to the complicated interference pattern between quan-
tum states in different energy bands in the long time,
due to the non-deterministic nature of the LZTs with re-
spect to the size of the energy gap. Figure 4(a) presents
such a morphology after time t = 0+ (immediately after
the electric field is turned on) within one period of the
Bloch-Zener oscillation. Three examples are illustrated
in Fig. 4(b-d), where the color-coded values of ∆Pαβ(t)

at three time instants: ∆t̃ = k̃0/Ẽ ≈ 20, 2k̃0/Ẽ ≈ 40 and

3k̃0/Ẽ ≈ 60, are displayed. The morphological changes
in the LZTs are concentrated in the vertical neighbor-
hoods of the Dirac points, whereas the values of ∆Pαβ(t)
in most of the momentum space remain unchanged.

A remarkable phenomenon is that, when a change in
the LZT morphology occurs, some experimentally mea-
surable quantities such as the current density can un-
dergo a sudden change as well. To be concrete, we fo-
cus on the current density associated with Bloch-Zener
oscillations, which is dominantly determined by the in-
traband behaviors [44]. Suppose that, initially, the elec-
trons are prepared in the lower band. Due to the change
in the LZT morphology and the mutual switching be-

tween the Dirac points ±K, the dependence of the prob-
abilities for the electrons to be in the upper band on
the momentum will change, and this will lead to a sud-
den change in the current density that is contributed to
by all the momenta in the Brillouin zone. Note from
Figs. 4(b-d) that the changes in the LZT morphology
are pronounced only near the original Dirac points where
an LZT is most likely to occur, while there are no such
changes for most of the momentum space. Since the cur-
rent density is the integration over the entire Brillouin
zone, the resulting change in the current density will be
quite “subtle” in the sense that it will not be a discon-
tinuous change in the current density itself but a non-
smooth change (or, equivalently, a discontinuous change
in the time derivative of the current density). Such non-
smooth changes have indeed been numerically observed,
as shown in Fig. 4(a), where the arrows and the verti-
cal dashed lines indicate the three time instants at which
such a change occurs, corresponding to the distinct LZT
morphology in Figs. 4(b-d), respectively. To compare
irregular and periodic Bloch-Zener oscillations, we also
study the oscillations resulting from near ideal LZTs in
the momentum space (Appendix A).

IV. LANDAU-ZENER-STÜCKELBERG
INTERFEROMETRY IN α-T3 LATTICE

A. Two- and three-level models

The dynamical evolution of the wavefunction in the α-
T3 lattice for α = 0 (1) driven by a static electric field
can be described by the Hamiltonian of a strongly period-
ically driven two- or three-level system, as demonstrated
in Appendix C. According to the adiabatic-impulse the-
ory [11, 12], the quantum evolution can be decomposed
into adiabatic evolution and non-adiabatic LZTs, where
the former occurs most of the time but the latter occur
on a short time scale. For 0 < α < 1, under the adiabatic
impulse approximation, this physical picture still applies.
Specifically, for the adiabatic evolution, the eigenenergy
spectrum is independent of the value of the lattice cou-
pling parameter α, so the adiabatic phase for 0 < α < 1
is similar to that for α = 1. Insights into the LZTs can be
gained by numerically calculating the time evolution of
the transition probability |αk|2 and |γk|2 in α-T3 lattice,
as exemplified in Fig. 2.

The adiabatic evolution of the wavefunction gener-
ates an adiabatic phase, while the LZTs lead to a non-
adiabatic phase. To gain insights, consider the double
passage case in a strongly periodically driven two-level
system, where two successive transitions are required for
a particle initiated from an eigenstate in the lower band
to reach the upper band with probability one, as exem-
plified in Fig. 5(a). In this case, after two successive
LZTs, the transition probability to the upper band is
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(𝑎)

(𝑏)

FIG. 5. Landau-Zener transitions in α-T3 lattice for α = 0.
Shown in (a,b) is the time evolution of |αkkk|2, the probability
of LZT from the lower to the upper band, for four different
initial momentum values. The orange traces correspond to
the case where the momentum is initiated in the vicinity of
the +K valley and within one Bloch period, LZT is required
for |αkkk|2 to reach zero. The purple traces are for the case
where the momentum is initiated in the vicinity of the −K
valley. In (a), the initial momentum values for the orange and

purple traces are k̃y = 0.07 about +K and 2π/3+0.07 around
−K, respectively. In (b), the corresponding orange and purple
traces are the results of setting the initial momentum values

to k̃y = 0.065 (about +K) and 2π/3 + 0.065 (around −K),
respectively. The transition behaviors displayed can be un-
derstood in terms of the Stückelberg phase (to be analyzed
below) that tends to be approximately constant when the
initial momentum is near the +K valley but exhibits large
variations when the initial momentum is near the −K valley.

Other parameter values are Ẽ = 0.0317, k̃x = 3 and dt̃ = 0.01.

given by [11, 48] (Appendix B 1)

P+ = 4PLZ(1− PLZ) sin2(Φst), (47)

Φst = ζ + ϕs, (48)

where PLZ is the first-time LZT probability given by
Eq. (40) and Φst is the Stückelberg that consists of two
components: the adiabatic phase ζ between two consec-
utive LZTs and the non-adiabatic phase, i.e., the Stokes
phase ϕS at the transition. There are two distinct cases.
The first is

Φst = π/2 + kπ, k ∈ Z, (49)

corresponding to constructive interference [11] because,
after one driving period, the maximum transition prob-
ability to the upper band is P+ = 4PLZ(1 − PLZ),
which is twice the average transition probability 〈P+〉 =
2PLZ(1− PLZ) over one period. The second case is

Φst = kπ, (50)

giving rise to destructive interference [11] as P+ = 0 after
one driving period.

Our equivalence analysis in Appendix C and the treat-
ment of the strongly periodically driven two-level system
in Appendix B 1 give that, for α = 0 in the α-T3 lattice,
the adiabatic phase is given by

ζ =

∫
εkkk(t)dt, (51)

where εkkk(t) is defined in Eq. (8) and depends on the elec-

tric field Ẽ and the momentum deviation ∆k̃y from ±K.
The non-adiabatic phase ϕs is determined by the lin-
earized LZT Hamiltonian about the Dirac points ±K:

ϕs = π/4 + δ(ln δ − 1) + arg Γ(1− iδ), (52)

where δ is determined by the LZT characteristic param-
eter as 2δ = r, as given by Eq. (41). It can be seen that
the Stückelberg phase also depends on the electric field

Ẽ and the momentum deviation ∆k̃y from ±K.

(𝑎)

(𝑏)

FIG. 6. Stückelberg phase in α-T3 lattice for α = 0. (a)
The Stückelberg phase versus the momentum deviation from
+K (orange) and −K (purple) valleys. The range of the
momentum deviation is determined by the empirical crite-

rion: 0 < r ≤ 1, which is ∆k̃y ∈ [0.01, (2Ẽ/3)1/2] for

Ẽ = 0.03 and d∆k̃y = 0.0001. The integration time step is
dt̃ = 0.01. (b) The adiabatic phase measured from the Dirac
points ±K as determined by the integral of function f(x) over

x ∈ [0, 2π/3](−K), x ∈ [0, 4π/3](+K) with ∆k̃y = 0.7.

Figure 6(a) shows the Stückelberg phase for two types

of initial momentum values for Ẽ = 0.03. For LZTs
starting near the Dirac point +K, the Stückelberg phase
is non-adiabatic and approximately independent of the

momentum deviation ∆k̃y, while for −K, the phase is
adiabatic so it depends on the momentum deviation
[Eq. (52)]. More specifically, for LZTs starting from the
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Dirac points ±K, the adiabatic phase between two suc-
cessive LZTs is

ζ+K =

∫ 4π
3

0

f+K(x)dx, (53)

ζ−K =

∫ 2π
3

0

f−K(x)dx, (54)

where the functions f+K(x) and f−K(x) are given by

f+K =
2
√

3Ẽ

√
1 + 4a+ cos

(
2π

3
− x
)

+ 4 cos2
(

2π

3
− x
)
,

f−K =
2
√

3Ẽ

√
1 + 4a− cos

(π
3
− x
)

+ 4 cos2
(π

3
− x
)
(55)

with a+ ≡ cos(3∆k̃y/2), a− = −a+, ∆k̃y measured from

±K, and x ≡ Ẽt̃
√

3/2. Figure 6(b) shows the adiabatic
phase measured from the Dirac points ±K. Since the
integration of f+K has a relatively large value, the adia-
batic phase ζ+K is nearly constant for different momen-

tum deviation ∆k̃y for 0 < r ≤ 1, whereas ζ−K is sen-

sitive to ∆k̃y. The adiabatic phase also depends on the

electric field Ẽ. (More elaborate details can be found in
Appendix D.)

(𝑎)

(𝑏)

FIG. 7. Landau-Zener transitions in α-T3 lattice for α = 1.
Because of the presence of a flat band, the time evolution
of two quantities is displayed: (a) |γkkk|2 and (b) |αkkk|2, the
transition probability from the flat to the upper band and that
from the lower to the upper band, respectively. For the orange

traces, the initial momentum is k̃y = 0.135 around +K. For

the purple traces, the initial momentum is k̃y = 2π/3 + 0.135

around −K. Other parameters are Ẽ = 0.03, k̃x = 3, and
dt̃ = 0.01.

For α > 0, a flat band arises in addition to the two
Dirac cone bands. Figure 7 shows the representative time

evolution of the transition probabilities |αk|2 and |γk|2
for α = 1. Exploiting the equivalence of the dice lattice
driven by a constant electric field to a strongly period-
ically driven three-level system (Appendix C), we have
that, after one Bloch-Zener oscillation period (two suc-
cessive LZTs), the occupation probability of the upper,
flat and lower bands are given by (Appendix B 2)

P+ = 16P̃ 2
LZ sin4(ζ/2), (56)

P0 = 2P̃LZ((1− 4P̃LZ)(1− cos ζ)2 + sin2 ζ), (57)

P− = (2P̃LZ cos ζ + (1− 2P̃LZ))2 (58)

with the normalization constraint P+ + P0 + P− = 1,
where

P̃LZ ≡ P 1/2
LZ (1− P 1/2

LZ ). (59)

For the upper band, ζ = π + 2kπ, k ∈ Z corresponds to
constructive interference and ζ = 2kπ leads to destruc-
tive interference [Eq. (56)]. For the flat band, ζ = 2kπ
gives P0 = 0 [Eq. (57)]. For ζ = π+ 2kπ, we have P0 6= 0

with P̃LZ = 1/4. Note that the Stokes phase disappears
in this case based on the non-adiabatic transition ma-
trix [13]. From Eq. (52), for 0 < r = 2δ < 1, the Stokes
phase is a small constant: ϕs ≈ 0.5. As a result, we have
Φst ≈ ζ.

B. Morphology selection

So far, we have numerically observed the complex LZT
morphology and found a relationship between morpho-
logical changes and irregular Bloch-Zener oscillations. In
addition, we have analyzed the interference phases in α-
T3 lattice based on the equivalence between the lattice
subject to a constant electric field and strongly periodi-
cally driven two- or three level systems. We have found
that the Stückelberg phase (adiabatic phase) of LZTs
starting from the Dirac point +K is nearly independent

of the momentum deviation ∆k̃y, i.e., the energy gap,

while the phase starting from −K is sensitive to ∆k̃y.
For Φst = 0, π, destructive interference among the quan-
tum states from different bands arises for α = 0. For
α = 1, only Φst = 0 corresponds to destructive interfer-
ence. These findings suggest a principle of morphology
selection for 0 ≤ α ≤ 1: setting Φst = 0 or Φst = π for
LZT starting from the +K valley will result in two dis-
tinct types of LZT morphology, as illustrated in Figs. 8
and 9, respectively. As analyzed in Appendix A, ideal
LZTs in the Brillouin zone lead to periodic and regu-
lar Bloch-Zener oscillations. The destructive interference
has a similar effect to that of ideal LZTs. AS a result, the
resulting morphology pattern can improve the regularity
of Bloch-Zener oscillations.

Figure 8 shows, for Ẽ = 0.03 and four different types of
α-T3 lattices, the irregular Bloch-Zener oscillations and
the corresponding representative LZT morphology at a
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FIG. 8. Mostly regular (or weakly irregular) Bloch-Zener oscillations in general α-T3 lattices. (a-d) Oscillations of the intraband
current density for α = 0.3, 0.5, 0.7, and 1.0, respectively. (e-h) The corresponding LZT morphology revealed by the color-coded
differential LZT probability ∆Pαβ(t) in the momentum space at a specific time, where the Stückelberg phase Φst = 0 for LZTs

starts from +K valley. Simulation parameter values are Ẽ = 0.03, dt̃ ≈ 0.001, and dk̃x ≈ dk̃y ≈ 0.012.

𝛼 = 0

(𝑎) (𝑏) (𝑐)

(𝑑) (𝑒) (𝑓)

෨𝑘𝑥
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𝑦

෨𝑘𝑥
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𝑦
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FIG. 9. Strongly irregular (“chaotic”) Bloch-Zener oscillations. The static electric field strength is Ẽ = 0.0279. (a) Mostly
regular oscillations in the intraband current density for α = 0 (graphene). As α increases from zero, the oscillations become
strongly irregular, as shown in (b) and (c) for α = 0.5 and α = 1, respectively. (d-f) The corresponding LZT morphology at
a particular time instant, where the Stückelberg phase Φst = π for LZTs starts from the +K valley. Integration parameter

values are dt̃ ≈ 0.01 and dk̃x ≈ dk̃y ≈ 0.012.

given time in the momentum space. It can be seen that
the Bloch-Zener oscillations shown in Figs. 8(a-d) are
somewhat irregular - they are mostly regular. The de-
structive interference pattern of LZTs starting from the
+K valley in the momentum space is shown in Figs. 8(e-
h) with Φst = 0. For another type of morphology with
Φst = π, the Bloch-Zener oscillations are more irregular.
For example, for α 6= 0, the oscillations can be strongly
irregular or “chaotic,” as exemplified in Figs. 9(b) and
9(c). In this case, for 0 ≤ α ≤ 1, the interference pattern
associated with the LZTs starting from the +K valley

changes from destructive to non-destructive, as shown
in Figs. 9(d-f). In both cases, the morphology of LZTs
starting from the −K valley changes little due to the
sensitivity to the momentum deviation.

V. DISCUSSION

Bloch or Bloch-Zener oscillations, in addition to be-
ing a fundamental phenomenon in solid state physics,
practically provides the foundation to convert a direct
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current into an oscillating current in the terahertz fre-
quency regime [24]. Research in the past decade or so has
suggested that, in 2D multiband materials, Bloch-Zener
oscillations can be vulnerable to Landau-Zener transition
or tunneling [29, 30, 33–36]. Is this generally true? The
question is important to physics and our present work
has provided two-fold answers: yes LZTs can indeed af-
fect the Bloch oscillations but what is destroyed is not the
oscillations themselves but just the perfect time period-
icity of the oscillations; no because the irregular oscilla-
tions can persist even with frequent occurrences of LZTs.
In fact, approximately periodic Bloch-Zener oscillations
can be maintained if the LZTs are near ideal such that
they result in a near-one probability for the electrons to
switch into a different band or when near destructive in-
terference arises between the quantum states in different
energy bands. Nonsmooth or irregular behaviors in the
current density arise when the LZTs are not ideal and
the interference is partially destructive.

Our study encompasses the entire spectrum of a class
of 2D Dirac materials modeled by α-T3 lattices. We have
found that the set of points in the 2D momentum space
near a Dirac point at which LZTs occur can possess a
complex morphology, and it is the change in the mor-
phology that results in irregular Bloch-Zener oscillations.
Theoretically, when driven by a static electric field, an α-
T3 lattice is equivalent the Landau-Zener-Stückelberg in-
terferometry. Specifically, the α = 0 lattice (graphene) is
effectively a two-level periodically driven quantum sys-
tem while the general α-T3 lattice for 0 < α ≤ 1 is
equivalent to a three-level periodically driven system. For
the three-level system, we have exploited the concept of
Stückelberg phase from the adiabatic impulse theory to
understand the LZTs that occur in the neighborhoods of
the Dirac points in distinct valleys.

In the α-T3 lattice, a non-zero coupling parameter α
induces a flat band in between the positive and negative
energy bands, effectively resulting a three-level system.
After the first LZT in Fig. 2, the quantum state is a su-
perposition of the three energy bands and the LZT is
enhanced by the flat band (compared with the two-level
case). For subsequent LZTs (e.g., as shown in Figs. 8 and
9), the flat band modifies the Stückelberg phase Φst for
destructive interference in the three-band interferometry
(compared with the two-band one). More specifically,
for α = 0, the destructive interference corresponds to
Φst = 0, π from Eq. (47). For α = 1, the destructive
interference means Φst = 0 only and the case Φst = π is
excluded from Eqs. (56-58). For 0 < α < 1, the behav-
ior of destructive interference is obtained numerically, as
shown in Figs. 8 and 9, which is slightly different from
the α = 1 case, especially in Figs. 9(e,f). Taken together,
a nonzero α modifies the physical picture from two- to
three-band quantum interference: it generates a flat band
in the original two-level system, creates three-band inter-
ferometry, enhances LZT in the momentum space around
the Dirac points, and modifies destructive interference.

Theoretically, the asymmetrical morphology pattern

around the ±K points results from the different char-
acteristics of the Stückelberg phases Φst. As shown in

Fig. 6(a), Φst is nearly constant with ∆k̃y measured from
the +K Dirac point after two LZTs and Φst changes

greatly with ∆k̃y from −K. Different values of the in-
terference phase Φst give distinct interference patterns,
such as constructive, destructive, and mixed quantum
interference (neither constructive nor destructive) in the
momentum space, as exemplified in Fig. 4(c).

For LZTs with a near unity transition probability,
which can occur for an infinitesimal energy gap, the ±K
points make the same contribution to the Bloch oscil-
lations. However, slightly away from the Dirac points
where the energy gap is no longer infinitesimal, the con-
tributions differ. The reason why the Bloch oscilla-
tions around K are more prominent compared with those
around the −K point lies in the interference phase Φst.
In particular, the LZTs from the +K point with different

momentum deviation ∆k̃y are in phase with each other,
as shown in Fig. 6(a). However, the LZTs measured from
the −K point are out of phase, so the contributions to
the Bloch oscillations cancel each other to some degree.

The irregular Bloch-Zener oscillations in the average
current density integrated over the Brillouin zone arise
from the LZTs induced by different energy gaps associ-

ated with the momentum deviation ∆k̃y measured from
Dirac points. In the α-T3 lattice, there is an alternative
way to induce an energy gap between the valence and
conduction bands by adding the positive (negative) on-
site energy on the A (B) sublattice [49, 50]. Because of
the sensitive dependence of the LZT on the size of the
momentum-dependent energy gap, irregularities in the
LZTs are anticipated, so are the irregular Bloch-Zener
oscillations.

Experimentally, it may be feasible to observe at least
the first peak of the Bloch-Zener oscillation in ballistic
time [37]. To probe into the momentum-space morphol-
ogy associated with LZTs and to directly observe the
irregular Bloch-Zener oscillations in a longer time inter-
val in Dirac material systems remain to be difficult at the
present. Alternatively, it may be possible to use quantum
simulators [51, 52] by exploring equivalent optical sys-
tems [20]. In the past, Bloch oscillations have been exper-
imentally studied in photonic systems [21, 23, 35, 53, 54].
The observation of Bloch-Zener oscillations and Landau-
Zener tunneling in photonic graphene [35] is particularly
relevant to possible experimental checks of our findings.
In this artificial Dirac system, the wave packet of light
is driven by an index gradient on a non-adiabatic basis
and the two sublattices are subjected to a potential im-
balance. When the momentum deviation is zero from a
Dirac point and the index gradient is applied in a specific
direction, perfect (ideal) LZT with transition probability
one can occur due to the zero energy gap. However, when
the index gradient is applied in the orthogonal direction,
the LZT becomes imperfect (non-ideal) due to the non-
zero gap. Our work suggests that, if the time evolution
of the wavefunction in photonic graphene can be approx-
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imated as constituting two processes: adiabatic evolu-
tion and non-adiabatic LZT, in principle the Stückelberg
phase can be calculated to choose the appropriate index
gradient value to create destructive interference between
the quantum states in the upper and lower energy bands.
It may thus be possible to generate destructive interfer-
ence to obtain a near-ideal LZT. Our work predicts that,
in this case, the resulting Bloch-Zener oscillations will
become more periodic. Photonic graphene may be a fea-
sible experimental testbed for these phenomena.
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Appendix A: LZT morphology and irregular
Bloch-Zener oscillations
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FIG. 10. LZTs and Bloch-Zener oscillations. (a,b) For mo-
mentum integration width w = 0.5 about the ±K trace and
dt̃ ≈ 0.01, the LZT morphology and the resulting Bloch-
Zener oscillation, respectively. (c,d) Similar to (a,b) but for
w = 0.05 and dt̃ ≈ 0.002. The irregularities in the intraband
current density are indicated by arrows. Other parameter val-

ues are dk̃x ≈ dk̃y ≈ 0.012 and Ẽ = 0.1200.

To further appreciate the interplay between LZT mor-
phology and irregular Bloch-Zener oscillations, we con-
sider two kinds of momentum integration regions about
the Dirac points, as shown in Figs. 10(a) and 10(c), re-
spectively. The resulting time evolution of the current
density is shown in Figs. 10(b) and 10(d), respectively.
For the case in Fig. 10(c), the LZTs are near ideal, gener-
ating less irregular Bloch-Zener oscillations in Fig. 10(d).

Appendix B: Adiabatic impulse theory

1. Two-level systems

The Hamiltonian under a periodic driving in the non-
adiabatic basis has the form [11]

H(t) = −∆

2
σx −

ε(t)

2
σz (B1)

where the driving ε(t) = ε0+A sinωt produces a periodic
time evolution of the eigenenergy spectrum:

ε±(t) = ±1

2

√
∆2 + ε(t)2. (B2)

If the bias of the driving is nonzero: ε0 6= 0, one period
of the evolution of the energy contains two peaks [11]
that are in the time intervals [t1, t2] and [t2, t1 + 2π/ω],
respectively. The quantum dynamical process can be un-
derstood by using the adiabatic impulse theory [11, 12].
According to this theory, the dynamical process can be
approximated as the adiabatic evolution from t1 to t2
and from t2 to t1 + 2π/ω, which are described by uni-
tary transformation matrices U1 and U2, respectively,
and non-adiabatic transitions at t2 and t1 + 2π/ω that
are described by the same non-adiabatic transition ma-
trix N . After one period, the quantum state under the
adiabatic basis can be written as [11]

bbb(t1 + 2π/ω) = NU2NU1bbb(t1). (B3)

When the driving signal is linearized about the transition
point as ε(t) ≈ −vt, the non-adiabatic transition matrix
in the adiabatic basis is [11]

N =

( √
1− PLZe−iϕ̃s −

√
PLZ√

PLZ
√

1− PLZeiϕ̃s

)
, (B4)

where PLZ is the first LZT probability of the upper band
defined by Eq. (40), ϕ̃s = ϕs− π/2, and ϕs is the Stokes
phase. The adiabatic evolution matrix in the adiabatic
basis is

U1 =

(
e−iζ1 0

0 eiζ1

)
, U2 =

(
e−iζ2 0

0 eiζ2

)
, (B5)

where ζ1 and ζ2 are the adiabatic phases given by

ζ1 =

∫ t2

t1

ε+dt,

ζ2 =

∫ t1+2π/ω

t2

ε+dt. (B6)

In the adiabatic basis, the total transform matrix after
one period is [11]

NU2NU1 =

(
α −γ∗
γ α∗

)
, (B7)
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where the matrix elements are

γ = 2
√
PLZ(1− PLZ)e−iζ1 sin(Φst), (B8)

α = e−i(ζ1+ϕ̃s)[(1− 2PLZ) sin(Φst) + i cos(Φst)],

and Φst = ζ2 +ϕs is the Stückelberg phase. If the initial
state is

bbb(t1) = (0, 1)T , (B9)

the quantum state after one period will be

bbb(t1 + 2π/ω) = (−γ∗, α∗)T (B10)

with the transition probabilities

P+ = |γ|2 = 4PLZ(1− PLZ) sin2(Φst), (B11)

P− = |α|2 = 1− 4PLZ(1− PLZ) sin2(Φst), (B12)

which satisfy the normalization constraint P+ + P− = 1.
From Eq. (B11), it can be seen that whether the transi-
tion is complete depends only on the Stokes phase and the
adiabatic phase between two consecutive LZTs. Specif-
ically, Φst = kπ, k ∈ Z corresponds to destructive in-
terference between the quantum states in the upper and
lower bands while Φst = π/2 + kπ corresponds to con-
structive interference.

2. Three-level systems

A periodically driven three-level system is described by

H(t) = −∆

2
Sx −

ε(t)

2
Sz, (B13)

where the time evolution of the positive and negative
energy is given by Eq. (B2) except for the extra flat band
ε0 = 0. A previous work [13] provided the non-adiabatic
transition matrix in the adiabatic basis when the driving
signal is linearized about the transition point as ε(t) ≈
−vt:

N =

 B + 1 A B
A C A
B A B + 1

 , (B14)

where all A, B and C are constants:

A ≡ −(2P̃LZ)1/2,

B ≡ P 1/2
LZ − 1,

C ≡ 1− 2P
1/2
LZ , (B15)

and

P̃LZ ≡ P 1/2
LZ (1− P 1/2

LZ ). (B16)

The adiabatic evolution matrix of the three-level system
is

U1 =

 e−iζ1 0 0
0 1 0
0 0 eiζ1

 , U2 =

 e−iζ2 0 0
0 1 0
0 0 eiζ2

 .

(B17)

The total transform matrix M ≡ NU2NU1 is

M =

 M11 M12 M13

M∗23 M22 M23

M∗13 M∗12 M∗11

 , (B18)

where

M11 = ˜(B1 + 1)
∗ ˜(B2 + 1)

∗
+AÃ∗1 + B̃∗1B̃2,

M12 = A ˜(B2 + 1)
∗

+AC +AB̃2,

M13 = B̃1
˜(B2 + 1)

∗
+AÃ1 + ˜(B1 + 1)B̃2,

M22 = AÃ∗2 + C2 +AÃ2,

M23 = Ã∗2B̃1 + Ã1C + Ã2
˜(B1 + 1), (B19)

with

Ãi ≡ Aeiζi ,

B̃i ≡ Beiζi ,
˜(Bi + 1) ≡ (B + 1)eiζi , (B20)

for i = 1, 2. Suppose the initial quantum state is

bbb(t1) = (0, 0, 1)T . (B21)

After one period, the quantum state becomes

bbb(t1 + 2π/ω) = (M13,M23,M
∗
11)T . (B22)

The occupied probabilities of the upper, flat and lower
bands after one period are given by

P+ = 16P̃ 2
LZ sin4(ζ2/2), (B23)

P0 = 2P̃LZ((1− 4P̃LZ)(1− cos ζ2)2 + sin2 ζ2), (B24)

P− = (2P̃LZ cos ζ2 + (1− 2P̃LZ))2, (B25)

respectively, where P+ = |M13|2, P0 = |M23|2 and
P− = |M11|2 with the constraint P+ + P0 + P− = 1.
According to Eq. (B23), for the upper band, we have
that ζ2 = π + 2kπ, k ∈ Z corresponds to construc-
tive interference and ζ2 = 2kπ to destructive interfer-
ence. For the flat band, ζ2 = 2kπ corresponds to de-
structive interference, as stipulated by Eq. (B24). For
ζ2 = π + 2kπ, the flat band leads to an LZT with prob-

ability away from zero except for P̃LZ = 1/4 The Stokes
phase defined by Eq. (52) depends only on the parameter
δ (0 < r = 2δ < 1). Numerically, we obtain ϕs ≈ 0.5.
In spite of the small phase deviation due to the Stokes
phase ϕs, Φst = ζ+ϕs = 2kπ corresponds approximately
to destructive interference regardless of the existence of
a flat band. However, Φst = π + 2kπ does not represent
destructive interference in the three-level system.
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Appendix C: Equivalence of α-T3 lattice to strongly
periodically driven two- or three-level systems

When a static electric field is applied to an α-T3 lattice,
the time evolution of the wavefunction can be obtained by
using the adiabatic impulse theory [11, 12]. For graphene
(α = 0) and the dice lattice (α = 1), the tight-binding
Hamiltonians are, respectively,

H = < [fk(t)]σx −= [fk(t)]σy (C1)

and

H = < [fk(t)]Sx −= [fk(t)]Sy, (C2)

where σx and σy are the 2 × 2 Pauli matrices for
pseudospin-1/2 quasiparticles in graphene, Sx and Sy are
the corresponding 3×3 matrices from pseudospin-1 quasi-
particles in the dice lattice, and

< [fk(t)] = −tε

[
1 + 2 cos

(
3

2
k̃y

)
cos

(√
3

2
k̃x (t)

)]
,

= [fk(t)] = 2tε sin

(
3

2
k̃y

)
cos

(√
3

2
k̃x (t)

)
. (C3)

The eigenenergy spectrum of graphene is ε± = ±|fk|.
For the dice lattice, there is a flat band ε0 = 0. The time
evolution of nonzero energy band of both graphene and
dice lattice has the common form for the upper and lower
bands:

ε̃±(t) = ±1

2

√
∆2
k̃y

+ (ε0,k̃y + 4 sin(ωẼ t̃+ φk̃x))2, (C4)

where

∆k̃y
= 2 sin(3k̃y/2),

ε0,k̃y ≡ 2 cos(3k̃y/2),

ωẼ ≡
√

3Ẽ/2,

φk̃x = π/2−
√

3k̃x/2. (C5)

Equation (C4) has the same mathematical form as
that for a strongly periodically driven two-level system
[Eq. (B2)].

A theoretical approach to dealing with a strongly peri-
odically driven two-level system is the adiabatic and im-
pulse approximation [11, 12], which is valid in the regime
of strong field

∆2 +A2 � ω2(in units of ~ = 1). (C6)

Equations (C4) and (B2) give A = 4 and |ω| =
√

3Ẽ/2 <
0.1, rendering applicable the adiabatic and impulse ap-
proximation. The idea of the analysis is to decompose
the time evolution of system into an adiabatic evolution
when it is far from the points of avoided-crossing and
non-adiabatic process in the vicinity of these points.

For adiabatic evolution in graphene, the adiabatic
phase in the wavefunction depends on the integral ζ =∫
ε̃+ (t) dt̃. The dice lattice has the same energy ε̃+ and

the flat band corresponds to a zero adiabatic phase ζ = 0.
Thus, for the upper and lower bands in both graphene
and dice lattice, the adiabatic phase has the same mathe-
matical form as that for the periodically driven two- and
three-level system, respectively.

For the non-adiabatic transition process in graphene
or dice lattice, the effective Hamiltonian about the Dirac
points is the standard or the three-level Landau-Zener
Hamiltonian. Concretely, we can show that the Hamil-
tonian for graphene and dice lattice, given by Eqs. (C1)
and (C2), can be written as the standard Landau-Zener
Hamiltonian for two- and three-level systems, respec-
tively, as

HLZ = (g/2)σx + (st)σz, (C7)

HLZ = (g/2)Sx + (st)Sz, (C8)

through some unitary transformation. In particular, the
requirement is to have σx → σz, σy → −σx for graphene
and Sx → Sz, Sy → −Sx for dice lattice. These transfor-
mations can be realized by rotating the original Hamil-
tonian in two steps since the physical observable does
not change after a unitary transformation. First, we ro-
tate the Hamiltonian H along the anticlockwise direc-
tion with π/2 around the axis y to get H → H ′, where
σx → σz, σy → σy for graphene and Sx → Sz, Sy → Sy
for dice lattice. Second, we rotate the Hamiltonian H ′

along the anticlockwise direction with π/2 around the z-
axis to obtain H ′ → H ′′, where σz → σz, σy → −σx
for graphene and Sz → Sz, Sy → −Sx for dice lattice.
The total unitary transformations for graphene and dice
lattice are

U = exp (−iπ/4σy) exp (−iπ/4σz) , (C9)

U = exp

(
− i
~
π

2
Sy

)
exp

(
− i
~
π

2
Sz

)
, (C10)

respectively.
As for Hamiltonian expansion about Dirac points,

firstly, we expand Hamiltonian in the k̃y direction about
the Dirac points with

+K : k̃y → δk̃y,

−K : k̃y → 2π/3 + δk̃y, (C11)

leading to

cos

(
3

2
k̃y

)
≈ ±1,

sin

(
3

2
k̃y

)
≈ ±3

2
δk̃y. (C12)

With the unitary transformation in Eq. (C9) we obtain
the approximate Hamiltonian as given by

U†H̃U ≈ −ε (t) /2σz −∆ (t) /2σx (C13)
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with

ε (t) = 2

(
1± 2 cos

(√
3

2
k̃x (t)

))
,

∆ (t) = ±6δk̃y cos

(√
3

2
k̃x (t)

)
. (C14)

For the dice lattice, with the total unitary transformation
in Eq. (C10) we have the approximate Hamiltonian as

U†H̃U ≈ −ε (t) /2Sz −∆ (t) /2Sx (C15)

From Eqs. (C13) and (C15), we translate the momentum

k̃x to the Dirac points as

+K : k̃x → 4π/(3
√

3) + δk̃x,

−K : k̃x → 2π/(3
√

3) + δk̃x. (C16)

Setting δk̃x ≡ Ẽt̃
′

with t̃
′

starting from origin, we obtain,
about ±K,

cos

(√
3

2
k̃x (t)

)
≈

 cos
(

2π
3 −

√
3
2 Ẽt̃

′
)

cos
(
π
3 −

√
3
2 Ẽt̃

′
) 

≈ ∓1

2
+

3

4
Ẽt̃

′
. (C17)

where the second-order term δk̃xδk̃y has been neglected.
For graphene, the effective Hamiltonian about the Dirac
points ±K is

H̃ ≈ 3δk̃y
2

σx ∓
3Ẽt̃′

2
σz, (C18)

which is the standard Landau-Zener Hamiltonian [45].
For the dice lattice, the effective Hamiltonian is

H̃ ≈ 3δk̃y
2

Sx ∓
3Ẽt̃′

2
Sz, (C19)

which is the Hamiltonian of the three-level Landau-Zener
model [13]. In the vicinity of the Dirac points, the non-
adiabatic Landau-Zener transition in graphene (dice lat-
tice) induced by a constant electric field thus shares the
same quantum dynamical law as that in the adiabatic
impulse theory [11, 12].

For the general α-T3 for α 6= 0, 1, the picture of the
quantum dynamical evolution as consisting of adiabatic
evolution and non-adiabatic LZTs is still applicable, be-
cause the eigenenergy spectrum is independent of the
lattice coupling parameter α. In fact, adiabatic phase
with 0 < α < 1 is the same as that for α = 1. For
the non-adiabatic process, the first LZT has been nu-
merically calculated, as shown in Fig. 2. Consequently,
under the adiabatic impulse approximation, the dynami-
cal evolution of the α-T3 lattice is identical to that of the
wavefunction of a strongly periodically driven three-level
system.

TABLE I. Electric field values at which the Stückelberg phase
is about π in Fig. 11

t̃B Ẽ t̃B Ẽ t̃B Ẽ Ẽ
weaker

100 0.0725 141 0.0514 193 0.0376 0.0072

121 0.06 157 0.0462 198 0.0366 0.0065

126 0.0576 162 0.0448 219 0.0332 0.006

131 0.0554 167 0.0434 229 0.0317 0.0059

136 0.0533 188 0.0386 260 0.0279 0.0053

TABLE II. Electric field values at which the Stückelberg phase
is about zero in Fig. 11

t̃B Ẽ t̃B Ẽ Ẽ weaker

118 0.0614 175 0.0415 0.0069

144 0.0504 180 0.0403 0.0068

149 0.0487 185 0.0392 0.0067

154 0.0471 206 0.0352 0.0062

211 0.0344 247 0.0294 0.0042

216 0.0336 257 0.0282 0.0035

242 0.03 278 0.0261 0.003

FIG. 11. Near zero or π Stückelberg phase. Shown is the
average Stückelberg phase over the interval of the initial mo-

mentum deviation ∆k̃y as determined by 0 < r ≤ 1 from the
+K valley for 41 values of the electric field, where the closed
circles are for the field values in Tab. I and the closed tri-
angles correspond to the field values in Tab. II. The integer
index N denotes these 41 cases, with the electric field ranging
from small to large values for both sets of data points. The
integration time step is dt̃ = 0.01.

Appendix D: Stückelberg phase with electric field

Because the Stückelberg phase is near constant for
LZTs starting from the +K valley, as exemplified in
Fig. 6(a), we define the average Stückelberg phase over
the range of the momentum deviation as determined by
0 < r ≤ 1. Although the Stückelberg or adiabatic phase
is sensitive to the magnitude of the electric field [Eqs. (53)
and (55)], we numerically test two sets of electric fields to
produce the average Stückelberg phase from the +K val-
ley around π or zero, as shown in Fig. 11 for the electric
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field values listed in Tabs. I and II for α = 0:

〈ζ〉 ≈ 〈Φst〉 ≈ π + 2kπ or 〈ζ〉 ≈ 2kπ. (D1)

In Tabs. I and II, the field values are determined based
on the destructive interference pattern of LZTs starting
from the +K valley for α = 0 such as the orange traces
in Figs. 5(a) and 5(b) and are tested in the range of
momentum deviation determined by 0 < r ≤ 1. For
α, two types of behaviors can arise. In the first type,

for α > 0, for the electric field values from Tab. I, the
LZT probability |αk|2 can no longer reach zero after two
successive LZTs, i.e., no destructive interference. In this
case, the Stückelberg phase is 〈Φst〉 ≈ π, as shown by
the filled circles in Fig. 6(b). The second type occurs
for field values from Tab. II, where |αk|2 still displays a
near-destructive interference pattern for any α > 0. In
this case, the Stückelberg phase is 〈Φst〉 ≈ 0, as shown
by the filled triangles in Fig. 6(b).
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bands, Phys. Rev. Lett. 126, 256803 (2021).

[26] F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch,
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