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We demonstrate the existence of a conceptually distinct topological pumping phenomenon in 1-
dimensional chains undergoing topological adiabatic cycles. Specifically, for a stack of two semi-
infinite chains cycled in opposite directions and coupled at one edge by a gapping potential, we
derive a higher-order bulk-boundary correspondence that relates the bulk Chern number associated
to the adiabatic cycle of a single infinite chain and the number of electrons transferred between
the semi-infinite chains. The relation is formulated using the relative index of two projections and
proven using K-theoretic calculations. The phenomenon is exemplified using the Rice-Mele model and
possible experimental implementations with classical and quantum degrees of freedom are discussed.

Forty years ago, Thouless predicted that topological
quantized pumping of charge can occur under an adi-
abatic cycle in a 1-dimensional insulating bulk system
with uniformly filled valence bands [1]. He arrived
at this conclusion via a bulk calculation involving the
physical observables and the states of the infinite sys-
tem. Thouless never considered a physical boundary,
because his calculation was all about the flow of charge
through a theoretical section of the infinite system. Nev-
ertheless, Thouless pumping is often presented as the
quantum analogue of the Archimedean screw (see e.g.
[2]), which loads water at one end and spills water at the
other end every time the screw is cranked up. For this to
happen at the quantum level, it is often suggested that
a half-infinite Thouless chain needs to be put in contact
with a metal, though the precise pheonomenology of
such an experiment is impossible to formalize by a clean
calculation as in [1], because one is now dealing with a
hybrid ungapped system. In this work, we present an
experimentally verifiable scenario in which topological
quantized pumping is achieved at the contact between a
Thouless chain and an empty and spectrally gapped sys-
tem. This is interesting because the pumped electrons
or the excitations are not mixed with the Fermi sea of
the metal. For this reason, we claim that our proposed
mechanism supplies the principle for a genuine source
of quantized excitations. Furthermore, the effect can be
observed in phonons and photonic crystals as well.

There are two types of pumpings observed in exper-
iments recently. The first type involves Thouless quan-
tized pumping in the bulk of 1-dimensional systems
with ultra-cold fermionic and bosonic atoms [8,[9]. The
second type is the edge-to-edge pumping which relies
purely on the spectral flow and on the adiabatic theo-
rem [10H13]. In such experiments, the spectral bands are
empty and a localized mode is loaded at one end of a
chain. Upon an adiabatic deformation of the system, the
mode follows the spectral flow and ends up at the other
side of the finite system. This type of pumping relies
on the bulk-boundary correspondence principle which
warrants a chiral spectral flow, and this is all needed for

the success of such experiments. We mention this type of
experiments because the setting is that of a finite chain in
contact with vacuum, but it will also work if the contact
is with an insulator. However, the physical processes are
very different from those involved in Thouless pumping.
Specifically, there is no dynamics of bulk states because
the spectral bands are empty at the start.

A topological pumping phenomenon similar to the
one presented here was discovered in [5], in the context
of 3-dimensional condensed matter systems displaying
the quantized magneto-electric effect. In this work, we
demonstrate that this topological pumping effect also
occurs in weakly coupled 1-dimensional chains under
topological adiabatic cycles. Since these systems are
much easier to handle in a laboratory, we hope that our
present theoretical work will eventually lead to an exper-
imental realization. The proposed set-up, illustrated in
Fig. 1, consists of a stack of two semi-infinite Rice-Mele
chains [3] driven in opposite topological adiabatic cy-
cles. By unfolding, the system can also be thought of as
two interfaced half-infinite Rice-Mele chains driven by
identical adiabatic cycles. We, however, will work with
the folded configuration which transforms an interface
problem into a bulk-edge problem, for which there exist
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FIG. 1. Illustration of our coupled Rice-Mele chains adiabati-
cally driven in opposite topological cycles, with the two sub-
lattice sites A and B of unit cells labeled. At t = 0, the va-
lence bands of the top chain (blue) are uniformly filled and the
bottom chain (green) is completely empty. The coupling A(t)
switches on the edge potential Vege(t), defined by , which
couples the chiral edge bands of the top and bottom chains.
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FIG. 2. (a) Spectral gap of the Hamiltonian (2) as a function of the parameters (5, A), together with two adiabatic cycles, of which
y1 = (6 = 0.3sin(2nt), A = —0.3 cos(277)) circles and y, = (6 = 0.4 + 0.3sin(2n7), A = 0.4 — 0.3 cos(27t7)) does not circle the gap
singularity at 6 = A = 0. (b,c) The energy spectrum of the Hamiltonian (2) as a function of the adiabatic parameter 7 for y; and y»,
respectively. Both spectra are generated with chains of 20 sites. Two chiral modes located at opposite left (L) and right (R) ends

of the chain are visible in panel (b). These chiral modes are absent for the adiabatic cycle y,.

many tools of analysis. Now, at t = 0, the valence bands
of the top chain are uniformly filled and all energy bands
of the bottom chain are completely empty, and the two
chains are decoupled. As the adiabatic cycles progress,
the coupling between the chains is turned on and then
off towards the end of the cycles. For this hybrid system,

suppose I is the projection onto the populated states

at t = 0 and II{ is the adiabatic time evolution of this
projection after a complete cycle, we show that

Index(IT{,, TI,) = Ch,, 1)

where on the left we have the relative index of Avron,
Seiler and Simon [20-22] and on the right is the Chern
number (3) associated to the adiabatic cycle of a single in-
finite chain. This identity connects a 2-dimensional topo-
logical invariant and a 0-dimensional invariant related to
the interface, hence it is a higher-order bulk-boundary
correspondence. It tells us that a Ch,-number of elec-
trons has been pumped in the system and, since the
top chain had all the available states occupied, this extra
electrons must have been pumped into the bottom chain.
Note that a relation similar to (T) is needed to rigorously
justify the analogy mentioned at the beginning between
pumping into a metal and the Archimedean screw, but
no such relation has been derived. This shows how poor
our understanding of Thouless pumping in the presence
of physical interfaces is, and hopefully it clarifies the
importance of the step taken by our work.

Let us start our analysis by first considering a single
Rice-Mele Hamiltonian

H==Y" (1kB)x Al + Jlx + 1, AXx, Bl + hc)  (2)

X

+ A7) (I Axx, Al = Ix, B)x, B,

where A and B denote the sublattice sites of the x-th
unit cell, J1» = 1+ 6 and A denote the tunneling cou-
plings and energy offset between neighboring sites, re-
spectively. Fig. 2(a) shows its spectral gap mapped as
function of the parameters 6 and A, together with two
adiabatic paths parametrized by the cirlce $! = R/Z, of
which y; encloses the gap singularity while y, does not.
The Chern number for a closed and spectrally gapped
loop y is [4]

Ch, =i fs dt TrL(p(T)[aTP(T),i[X,P(T)]]), )

where P(T) = X(-w,5,](H(y¢)) is the spectral projector onto
the lower energy bands below the gap, X is the position
operator and Tr; is the trace per length. Throughout,
Xa denotes the characteristic function of the set A. Ch,
is written in real-space rather than k-space to convey
that it is well defined in the presence of disorder [14].
The difference between ;1 and y, is that Ch,, = 1 while
Ch,, = 0. The expected chiral edge modes traversing the
spectral bulk gap for y, are illustrated in Fig. 2(b).

We now consider a stack of two infinite Rice-Mele
chains and an adiabatic cycle y, but we run the adiabatic
cycle in opposite directions for the two blocks, namely

Ho(t) = (H(oy ! H((y)-f)

with ¢ the real time and T the total duration of cycle.
It will be convenient to use T as the unit of time, in
which case ¢t and 7 coincide and we can use the latter
throughout. Hamiltonian Hy(7) will play the role of the
bulk Hamiltonian. Throughout, our convention will be
to bold all operators related to the double-chain system.
Now, if one calculates the total Chern number of the
lower energy bands, one will find a trivial value, regard-
less if y encloses the critical point or not. As such, one
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FIG. 3. Spectral flow of the Hamiltonian @) reduced on finite-size chains with open boundary conditions, when adiabatically
deformed along (a) the cycle y; and (b) the cycle y;. (c) Same as panel (b) but for the Hamiltonian (7). The labels L/R indicate the
spatial localization of the chiral bands to either left (L) or right (R) edge of the system. Marked with an arrow in panel (b) is the
crossing of the chiral bands localized at the left edge of the system. The window drawn with a dashed line indicates the energy
and time ranges where the edge potential (5) is defined. The data is generated with finite chains containing 10 sites and A(f) for
panel (c) is turned up to 0.05. The blue and green colors represent the overlap with the top and bottom states respectively.

will be inclined to proclaim that all topological charac-
teristics are lost. Our main message is that this is not the
case at all! Let us examine the spectral flows reported in
Figs. 3(a,b) of the Hamiltonian (@), when it is reduced to
finite-size with open boundary conditions. The results
in Fig. 3(a) for the contour y; are not very interesting, but
an opportunity presents itself for contour y; in Fig. 3(b).
Indeed, two opposite chiral bands spatially localized at
the same edge intersect each other as indicated by the
arrow. Then a generic edge potential hybridizes these
bands and gaps the system at that edge, potentially re-
sulting in a quantized spectral flow from the top to the
bottom chain. Let us point out that Eq. (1) prohibits the
emergence of other band splittings un-doing the effect.

To exemplify that the effect is possible, we design an
edge potential that hybridizes only the two chiral bands
from the left edges, leaving the rest of the spectrum in-
tact. This irrefutably proves that the transfer of quan-
tized excitations from one chain to the other is possible.
The topological character of the process, that is, its ro-
bustness against deformations of the bulk models and
edge potentials as well as the inclusion of disorder, is
a separate question. They will be addressed in the sec-
ond part of our work. In the following computations, all
Hamiltonians are assumed finite and with open bound-
ary conditions. Now, let us consider an energy window
AE = [E_, E,] around the band crossing (see Fig. 3b) and
let PAg(7) = x(£_£,1(H(y¢)) be the corresponding spectral
projection of the top chain. Then our proposed edge
potential takes the form

Veagel®) = A(D) pAE(_TO)pAE(T) PAE(T)ISAE(_T) G

where A(t) is a smooth on-off switch that is zero out-
side the small window shown in Fig. 3b centered at the
crossing point. Note that Por(7) displays discontinuities
when the chiral bands cross the edges of interval AE, but
those discontinuities disappear once the smooth on-off
switch is included. More, the spectral projection of Hy(7)
on the interval AE = [E_, E,],

Que(1) = xie_ e (Ho(D)) = (PAS(T) PAE(()_T))I (6)

commutes with our specially designed edge potential
and this assures us that only the states inside the spectral
interval [E_, E, ] are affected by Veqge(7).

The spectral flow of the full Hamiltonian

H(7) = Ho(1) + Vedge(7), T =1/T, @)

illustrated in Fig. 1, is depicted in Fig. 3c. As expected,
the spectrum has been modified only inside the marked
window where one can clearly distinguish a splitting
of the left-localized chiral bands. Outside the marked
window, the two Rice-Mele chains are decoupled, hence
the eigenstates have a well defined top/bottom index,
which is color labeled in Fig. 3. Based on this concrete
spectral flow, the following statement holds: If at t = 0
one fully populates the states below the bulk spectral
gap of the top chain and leaves the states of the bottom
chain completely empty, then exactly one normalized
state will be detected on the bottom chain after one full
adiabatic cycle.

It then becomes clear that the adiabatic cycle described
above acts like a valve that releases one excitation per cy-
cle into the bottom chain. Hence, our proposed set-up



supplies the design principle for on-demand sources of
quantized excitations. Here are two possible laboratory
implementations. The first one involves phonons. In this
context, the sites of the Rice-Mele chains harbor identical
mechanical resonators which are coupled as indicated by
our Hamiltonian (7). This will require fast dynamic re-
configurability to a level where the pumped signals do
not succumb to dissipation and the effect can be revealed.
The edge-to-edge pumping experiments mentioned in
the beginning have demonstrated that this is now under
control in metamaterials. With the chains decoupled,
the upper chain is excited with a broad spectrum source
such that all phonon modes below the spectral gap are
uniformly excited. After one turn of our proposed cy-
cle, a single phonon will be detected propagating to the
right on the lower mechanical chain. The situation is
more difficult with electrons because populating and
de-populating energy bands is a more involved process.
Still, we believe that the effect can be implemented with
a half-filled virtual spin-Chern insulator. By applying a
strong upward magnetic field, we can populate the up-
spin states and completely depopulate the down-spin
states. The magnetic field can then be abruptly turned
off and the adiabatic cycle is initiated. After one turn
of the adiabatic cycle, one should observe a quantized
spin-down excitation moving to the right. Of course, all
these will take place in the background of the relaxation
process back to the equilibrium state. Hence, the suc-
cess of such enterprise requires the adiabatic cycle to be
shorter than the relaxation time. The recent cold-atom
simulations of spin-Chern insulators [15] show a level
of control that we believe is sufficient for implementing
and observing the effect proposed here.

We now address the topological character of the pro-
cess and show that the phenomenon is independent of
the particular form of the coupling potential. To derive
the bulk-edge correspondence, we send the right edge
to oo, hence the adiabatically cycled system is now semi-
infinite. By doing so, we clear up the spectral gap of
the right chiral bands and, as such, we can apply the
adiabatic theorem to the lower spectrum. To distinguish
between the bulk and half-space operators, we will place
a hat on the latter. Hence, the Hamiltonian (7) becomes
H(t). Furthermore, the operators with matrix elements
decaying to zero away from the edge will carry a tilde.

Hence, the potential becomes ﬁedge(”[). If ’LL is the
physical time evolution operator, i.e. the unitary solu-

tion of the equation, iarﬁf = TI"I\(’L’)’LL, ﬁo = 1, then it
is well-known [17] that U, can be approximated by the

adiabatic time evolution ﬁf (see Supplemental Material
[18]). Then our task is to compare the projections

I, = (P o 8) and T = U (P o 8) ur, @

encoding the initial and final states of the two-chain sys-

4

tem for large T. Here, F(O) = X(_W,EF](H (y0)) is the spec-
tral projection of the top chain at the beginning of the
cycle and Er lies in the spectral gap of H(y).

Let us point out again the unusual character of the
setting. On one hand, the bulk topology, prompted by
the non-zero Chern number Ch,,, exists in the (1 + 1)-
dimensional space (one real and one virtual dimension).
On the other hand, Eq. compares projections on
a semi-infinite quasi-one dimensional system because
time does not appear as a variable in Eq. (8). As we shall
see, this comparison provides a topological invariant
that is associated to the edge physics of the semi-infinite
static system. Hence, our task is to connect the bulk
topology of a (1 + 1)-dimensional system with the edge
topology of a quasi 1-dimensional system, and this is a
jump from a 2-dimensional system to a 0-dimensional
one. Thus, we are dealing with a higher-order topologi-
cal phenomenon.

Now, the bulk Hamiltonians, such as H or Hj, be-
long to the algebra of periodic operators and are de-
noted by A in the following (adding or multiplying
periodic operators preserves this property). The adia-
batically driven Hamiltonians, such as H(y.) or Hy(1),
then belong to the algebra A® of maps from the cir-
cle §! to the algebra A. The operators with matrix el-
ements concentrated around the edge live in the edge

algebra A (indeed, the sums and products of edge op-
erators remain edge operators). In between A and A

is the algebra Aof half-space operators whose elements
are periodic half-infinite Hamiltonians with clean open
boundary conditions plus any elements from the edge
algebra, i.e. H-= Hlopen + Vedge. The projections from
Eq. (8) belong to M, ® A, where My denotes the algebra
of N X N matrices. Two projections are said to be ho-
motopic if they can be deformed continuously into each
other without leaving the algebra they belong to. Since
in condensed matter physics and metamaterial science
we always work with effective models, it is more appro-
priate to include additional trivial bands, accounting for
the neglected orbitals or degrees of freedom, and allow
the deformations to spill out into these additional bands.
In other words, to allow the deformations to take place

in M., ® A, where M., is the algebra of arbitrary rank
matrices. In this case, one talks about stable homotopy

and the K-theoretic group Kj (3\() classifies the projections
with respect to this equivalence relation. Note that the

stable homotopy class [IT]o of a projection from M., ® A
is the complete topological invariant associated to IT [19].
All the above algebras can be trivially extended to in-
clude weak disorder, and more details on the algebras
can be found in the Supplemental Material [18].

A K-theoretic calculation detailed in the Supplemental



Material [18] shows that the difference
[Hf]o h [HO]O ©)

actually lands in the K-theoretic group Ko(A) of the edge
algebra. Among other things, this implies that the dif-
ference between the projections from Eq. (8) belongs to
the simple algebra M. It is an important detail because
it enables us to connect to the work by Avron, Seiler and
Simon on the relative index of projections [20-22]. Their
original application was on a comparison between the
Fermi projections of 2-dimensional systems with and
without Dirac fluxes piercing the plane of the sample.
The mathematical concept supplied a rigorous frame-
work for Laughlin’s pumping argument for the integer
quantum Hall effect [23]. In our context, the relative
index of the projections (8) is a numerical topological
invariant derived from the complete topological invari-
ant (9), which measures their relative dimension.

We are now ready to state our main result: For any
edge potential Vegee(7) that gaps the spectrum for the
entire duration of the cycle and vanishes for 7 in small
interval [—€, €] around the initial/final points, we have
the relative index

Index(IT{, TI,) = Ch,, (10)

where on the right is the Chern number (3)) associated
to a single infinite chain. The above identity follows
from a relation derived in [18] between the complete
invariant (9) and the complete topological invariant [t
P(1)]p € Ko(.?l'“r"1 ), which carries the Chern number Ch,,.
It takes the form

[ﬁf;‘]o - [ﬁo]o =(Ind o 07)([r > P(D]),  (11)

where 0is the theta map appearing in the Bott periodicity
theorem and Ind is the K-theoretic connecting map as-

sociated to the exact sequence of algebras A »» A » A
(see Supplemental Material [18]). Small disorder is au-
tomatically included in these calculations.

In terms of the spectral flows depicted in Fig. 3, we can
interpret these predictions in the following way. Note
that for y; in Fig. 3¢, there is an additional swap between
an occupied and an un-occupied state for the top chain.
But this swap takes place at the right edge and, when
the right edge is sent to co, an observer operating at the
origin will not be able to detect it. To this observer, it will
appear that one state below the gap has been populated
during the adiabatic cycle, without de-populating any
other states. As such, this newly populated state must
be residing on the bottom chain. In contrast, for y,, while
an edge potential can still hybridize top and bottom non-
chiral edge bands, there will be an equal number of top-
bottom and bottom-up swaps of states, all taking place at
the left edge. Hence, the observer will not detect any net

increase in the population of the states. Furthermore,
the non-topological edge bands are unstable and can
disappear under deformations.

In conclusion, we have discovered a distinct pumping
process which can lead to new applications of topology
in condensed matter physics and metamaterial science.
Based on our rigorous statements, we can assure the
experimentists that no fine-tuning of the edge poten-
tial is required to achieve the quantized effect because a
generic edge potential will typically gap the spectrum.
Furthermore, the effect is robust against deformations
and inherent small design imperfections.
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