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Chiral multifold fermions are quasi-particles that appear only in chiral crystals such as transition metal sili-
cides in the cubic B20 structure (i.e., the CoSi family), and they may show exotic physical properties. Here
we study the injection and shift photoconductivities and also the related geometrical quantities for several types
of chiral multifold fermions, including spin-1/2 as well as pseudospin-1 and -3/2 fermions, dubbed as Kramers
Weyl, triple point and Rarita-Schwinger-Weyl (RSW) fermions, respectively. We utilize the minimal symmor-
phic model to describe the triple point fermions (TPF). We also consider the more realistic model Hamiltonian
for the CoSi family including both linear and quadratic terms. We find that injection currents due to circularly
polarized light are quantized as a result of the Chern numbers carried by the multifold fermions within the linear
models. Surprisingly, we discover that in the TPF model, the linear shift conductivities, responsible for the shift
current generation by linearly polarized light, are proportional to the pseudo spin-orbit coupling and indepen-
dent of photon frequency. In contrast, for the RSW and Kramer Weyl fermions, the linear shift conductivity
is linearly proportional to photon frequency. The numerical results agree with the power-counting analysis
for quadratic Hamiltonians. The frequency independence of the linear shift conductivity could be attributed
to the strong resonant symplectic Christoffel symbols of the flat bands. Moreover, the calculated symplectic
Christoffel symbols show significant peaks at the nodes, suggesting that the shift currents are due to the strong
geometrical response near the topological nodes.

I. INTRODUCTION

Multifold fermions are types of quasi-particles that only ap-
pear in solids with particular crystal symmetries [1, 2]. Their
pseudospin degrees of freedom are the degeneracies at the
high-symmetry points in the Brillouin zone. There is no coun-
terpart in the elementary particle model. Thus, the study of
the physical properties and genuine signatures of multifold
fermions in solids is of great interest.

Recent advances in solid state physics show that the topo-
logical and geometrical properties of quantum states manifest
in several physical quantities, one of which is photovoltaic
effect. It is the generation of d.c. current in a noncentrosym-
metric solid under the irradiation of light without an external
bias. Thus, the photovoltaic effect plays an important role in
the search for green energy supplications [3, 4]. The photo-
voltaic response functions are closely related to the quantum
geometrical quantities, such as connections, quantum metric
and Berry curvature. The quantum geometric properties are
related to transport in semiclassical picture. For anomalous
Hall effect, Berry curvature gives rise to the anomalous veloc-
ity of carriers [5, 6]. More recently, the second-order response
of electrons to electromagnetic fields is shown to relate to the
quantum metric and Christoffel symbols, which give rise to
the gravity in momentum space [7, 8]. The possibility of the
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quantization of quantum metric in topological semimetals has
been discussed [9, 10]. In another perspective, the photoelec-
tric response can be utilized to probe quantum geometry of
Bloch states [3, 11–13]. Therefore, the investigation of the
seemingly pure mathematical structure would deepen the the-
oretical and experimental understanding of solids.

The photovoltaic effect in topological semimetals have
been widely studied [7, 14–25]. It has been found that the
Weyl semimetal possesses low frequency divergence which
makes it a promising candidate for terahertz photodetectors
[7, 15, 17, 20, 22]. However, for chiral symmetric Weyl
semimetals, the photovoltaic response of the topological node
and antinode cancels out unless the Weyl nodes are tilted [15].
In contrast, for chiral crystals, the Weyl points are separated
in energy, as a result of the chiral symmetry breaking. There
is an available energy window for nonvanishing photocurrent
even for upright cones. Therefore, the chiral Weyl semimet-
als are promising materials for realizing strong photovoltaic
response.

The relation between the second-order photoconductivity
tensors and topology has been investigated by several authors.
It has been theoretically shown that in chiral symmetry bro-
ken Weyl semimetals, the circular photogalvanic response is
quantized due to the Chern number of the Weyl node near the
Fermi level [4]. Moreover, the second-order photoconductiv-
ity is related to the connection and curvature, reflecting the
geometry of Bloch states involved in the transition [11].

The photoconductivities in chiral multifold fermions have
been studied in real materials, especially in the CoSi family
of space group 198 [20, 22, 26–32]. The material hosts sev-
eral types of topological semimetals, including, type-I, type-II
Weyl semimetal and chiral multifold fermions [20, 22, 26–
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28, 32, 33]. Thus, it is a very suitable material for investiga-
tion of physical properties of topological semimetals.

For second-order photoconducitvites, several mechanisms
that contribute to the second-order conductivities have been
proposed, such as anomalous [34, 35], resonant photogalvanic
[36], double resonance and higher-order pole [35]. In this pa-
per, we study two contributions, the injection and shift current.
The injection current is related to Berry curvature [7, 14] and
quantum metric [8, 9], while the shift current is related to Her-
mitian connections [3, 11, 37]. However, an understanding of
shift current and its geometrical origin for multifold fermions
have been lacking. How momentum space quantum geome-
try contributes to optical response via Christoffel symbols has
not been carefully examined. This paper aims at shedding
light on this topic. Two model Hamiltonians for multifold
fermions are studied in this paper. The first is a pseudospin-1
excitation, which is dubbed as triple point fermion (TPF). The
minimal symmorphic model for TPF, of which the degenerate
nodal point is protected by C4 and an anti-commuting mirror
symmetry, is used in this study. The second is the low-energy
effective Hamiltoinan for space group 198. When spin-orbit
coupling is switched off, the effective Hamiltoinian represents
two degenerate TPFs (DTPF). In contrast, when spin-orbit
coupling is included, the degenerate TPFs split into two sets
of degenerate points, a spin-3/2 excitation, dubbed as Rarita-
Schwinger-Weyl (RSW) or a four-fold fermion, and a spin-
1/2 Weyl point.

In this paper, we give analytical expressions of the second-
order photoconductivities in terms of geometrical quantities
and report the numerical results for TPF, DTPF, RSW and
Kramer Weyl fermions. The injection conductivity is shown
to be related to quantum geometric tensors. The shift conduc-
tivity is not only contributed by Christoffel symbols, but also
the contorsion tensors. The numerical results show that the
shift conductivity can be merely given by the contorsion ten-
sors, whereas the corresponding Christoffel symbols vanish.
Our findings disclose the significance of contorsion tensors
which have been overlooked in previous studies [35]. More-
over, for chiral fermions described by the quadratic Hamil-
tonian, our results show that the lowest order of the second-
order photoconductivity scales as ω0. Particularly, the lowest
order of the shift conductivity is proportional to the pseudo
spin-orbit coupling. In contrast, the lowest order of the in-
jection conductivity is independent of model parameters, in
agreement with the quantization of circular injection conduc-
tivity. The remainder of this paper is organized as follows. In
Sec. II, the second-order photoconductivities and their rela-
tions to the quantum geometrical quantities are given. In Sec.
III, the model Hamiltonians and the power counting analysis
of the second-order photoconductivities for quadratic Hamil-
tonians are presented. The numerical results and discussions
are given in Sec. IV. Finally, the conclusion is given in Sec.
V.

II. SECOND-ORDER PHOTOCONDUCTIVITIES AND
QUANTUM GEOMETRY

In this study, we consider two contributions to the d.c. re-
sponse of the second-order photoconductivies [38]. Accord-
ing to their mechanisms, they are characterized into two pro-
cesses, injection and shift current. The injection (shift) refers
to the change of group velocity (position) during the interband
transition. The topological and geometrical aspects have been
discussed in literature, some of them will be reviewed in this
section.

The shift photoconductivity is given by [7, 39]

σc,abshift =
−πe3

~2

∫
ddk

(2π)d

∑
n,m

fnmI
c,ab
mn δ(ωmn − ω) (1)

where ~ωmn = Em − En is the energy difference between
two bands, d is the spatial dimension, fnm = fn− fm, where
fn,m is the Fermi-Dirac distribution. The electron charge is
−e and e > 0. The integrand for shift conductivity is

Ic,abmn = (Rc,amn −Rc,bnm)rbnmr
a
mn, (2)

where Rc,amn is the shift vector

Rc,amn = rcmm − rcnn + i∂clog ramn (3)

and ramn = 〈m|i∂a|n〉 is the Berry connection [40]. The term
rbnmr

a
mn is the real part of the band-resolved quantum geo-

metric tensor, defined as Qba =
∑
n∈occ

∑
m∈unocc r

b
nmr

a
mn

[41, 42], where (un)occ denotes the (un)occupied bands. The
real part of Qba is the quantum metric gba, while the imagi-
nary part is proportional to Berry curvature Ωba. The relation
is

Qba = gba − i

2
Ωba. (4)

Eq. 2 can also be written as i(rbnmr
a
mn,c − rbnm,cramn), where

ramn,c = ∂cr
a
mn − i(rcmm − rcnn)ramn. Notably, rbnmr

a
mn,c is

a geometrical quantity for the quantum states [11]. We define
Cbcanm = rbnmr

a
mn,c. The non-abelian Berry connections form

tangent vectors in the manifold of the Bloch states. In the sub-
pace of the tangent vectors, Cbcanm is the Hermitian connection
that defines the covariant derivative. Note that the order of
the index for Hermitian connections is bca for the conductiv-
ity tensor cab. Cbcanm is in general complex. The real part of
Cbcanm is the metric connection and the negative imaginary part
of Cbcanm is the symplectic connection. Note that the metric
connection here is different from the Levi-Civita connection

Γbcanm =
1

2

(
∂cg

ba
nm + ∂ag

bc
nm − ∂bgcanm

)
(5)

when the number of bands in the system exceeds two. The dif-
ference is characterized by the contorsion tensors. We define a
generalized complex-valued contorsion tensor Kbca

nm such that
it satisfies

Γbcanm = Re
[
Cbcanm −Kbca

nm

]
(6)

and define the corresponding symplectic part by

Γ̃bcanm = −Im
[
Cbcanm −Kbca

nm

]
. (7)
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The expression of the contorsion tensor is given in Appendix
A. The fully symmetric part with respect to the permutation
of b, c, and a of the Im

[
Kbca
nm

]
is chosen to be zero. Eq. 6

(Eq.7) is the Levi-Civita connection part of the metric (sym-
plectic) connection. We refer to Γbcanm (Γ̃bcanm) as (symplectic)

Christoffel symbols in this paper.
The real part of the shift photoconductivity (called linear

shift photoconductivity hereafter, as in [7]), which is responsi-
ble for the shift current generation by linearly polarized light,
can be written in terms of the symplectic Christoffel symbols,

σc,abshift

L
=
−πe3

~2

∫
ddk

(2π)d

∑
n,m

fnm

(
Γ̃bcanm + Γ̃acbnm − Im

[
Kbca
nm +Kacb

nm

])
δ(ωmn − ω). (8)

The imaginary part of the shift photoconductivity (called circular shift photoconductivity hereafter), which is the response to
circularly polarized light, can be written in terms of the Christoffel symbols of the first kind,

σc,abshift

C
=
−πe3

~2

∫
ddk

(2π)d

∑
n,m

fnm
(
Γbcanm − Γacbnm − Re

[
Kbca
nm −Kacb

nm

])
δ(ωmn − ω). (9)

For numerical calculations, Cbcanm is written in terms of the ve-
locity operators and double derivatives of the Hamiltonian

Cbcanm =
vbnm
ω2
mn

[
wacmn −

vcmn∆a
mn + vamn∆c

mn

ωmn

+
∑
p 6=m,n

(
vcmpv

a
pn

ωmp
−
vampv

c
pn

ωpn

)]
, (10)

where wacmn = ~−1〈m| ∂2H
∂ka∂kc

|n〉, vamn = ~−1〈m| ∂H∂ka |n〉,
∆a
mn = vamm − vann.
The injection conductivity is given by

σc,abinj = −τ 2πe3

~2

∫
ddk

(2π)d

∑
nm

fnm∆c
mnr

b
nmr

a
mnδ(ωmn − ω),

(11)

where τ is the relaxation time [43]. For topological semimetal
that carries topological charges under the irradiation of cir-
cular polarized light, trace of the injection conductivity is
quantized, dubbed as quantized circular photogalvanic effect
(CPGE) [14, 18].

∑
cycl σ

c,ab = iβ0Cτ , where
∑

cycl de-
notes the summation over c, a, b in cyclic permutation, C is
the topological charge of the semimetal, β0 = πe3

h2 and h is
the Planck constant.

The explicit forms of the injection conductivity tensors in
terms of quantum geometrical tensor are given below. By tak-
ing the real part of Eq. (11), the linear injection photoconduc-
tivity is

σc,abinj

L
= −τ 2πe3

~2

∫
ddk

(2π)d

∑
n,m

fnm∆c
mng

ba
nmδ(ωmn − ω).

(12)

By taking the imaginary part of Eq. (11), the circular injection
photoconductivity, is

σc,abinj

C
= τ

πe3

~2

∫
ddk

(2π)d

∑
n,m

fnm∆c
mnΩbanmδ(ωmn − ω),

(13)

where gbanm = Re
[
rbnr

a
m

]
and Ωbanm = −2Im

[
rbnr

a
m

]
are band

resolved quantum metric and Berry curvature, respectively.
In the numerical calculation, the Dirac delta function in the

equations is replaced with the Lorentzian function

L =
1

π

γ/2

(ωmn − ω)2 + (γ/2)2
, (14)

where γ is the broadening.

III. MODEL HAMILTONIANS AND POWER COUNTING
ANALYSIS

The model Hamiltonians of the triple point fermion and the
multifold fermions in the CoSi family are introduced in this
section.

The first model Hamiltonian considered in this paper is the
minimal symmorphic model for TPF [44]. This model can
be viewed as stacked layers of Chern insulators along the z-
direction and thus the time-reversal symmetry is broken. The
topological charge of the Weyl point is ±2. The band disper-
sion is a result of the coupling between the quadratic Weyl
point and a additional flat band via pseudo spin-orbit cou-
pling. The minimal two-band Hamiltonian for the quadratic
Weyl fermions is

Hq(~k) = [s(2− cos(kx)− cos(ky))− 2t cos(kz)]σz

+ 2b sin(kx) sin(ky)σy

+ 2b [cos(kx)− cos(ky)]σx, (15)

where b is the pseudo spin-orbit coupling strength, s is the on-
site hopping strength. The z-direction hopping term t, lattice
constant a and ~ are taken to be 1 in this model. The Weyl
points are at (0, 0,±π/2) and of opposite chirality. By intro-
ducing a flat band that couples to the quadratic Weyl fermions,
we obtain an effective 3 × 3 Hamiltonian for the triple point
fermion [44, 45]

Ht(~k) =

 Hq
λ†+
λ†−

λ+ λ− 0

 , (16)
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TABLE I. The sign change for the matrix elements under z-mirror
symmetry (Mz).

Omn(k)⇒ ±Omn(k)

rzmn,z(k) rzmn,c 6=z(k) ra6=zmn,z(k) rzmn(k) vzmn(k) ra6=zmn (k) va6=zmn (k)

+1 -1 -1 -1 -1 +1 +1

FIG. 1. The energy band along [110] direction for Ht [Eq. (6)] to
the quadratic order with b = 1, s = 1. (a) λ = 0. (b) λ =

√
2. The

numbers annotated on the figure labels the band indexed from low to
high energy. The energy at which the TPF lies is denoted by WTPF .

where λ± = λei(φ±π/4)(sin kx ∓ i sin ky). Hereafter, we
choose λ =

√
2 and φ = π/2 for isotropic dispersion (to

the lowest order).
The coupling between the flat band and Hq preseves the

symmetry of Hq . Both Hamiltonians obey C4 rotation sym-
metry and anticommute with mirror symmetry Rxy that maps
x↔ y, preserving chiral symmetry, while time-reversal sym-
metry is broken. The two opposite topological nodes are re-
lated by the mirror symmetry along z-direction Mz . The sign
change of the matrix elements for the photoconductivities un-
derMz are shown in Table I. The conductivity tensor of which
components with odd numbers of z changes sign for opposite
nodes, leading to vanishing response for the lattice. To break
the chiral symmetry, an additional term that breaks the mirror
symmetry along z- direction, d sin(kz)I3×3, is added to the
Hamiltonian (Eq. 16), where I3×3 is the 3× 3 identity matrix
[14]. Thus, the chiral symmetry is broken and the two TPFs
are separated in energy. In the following, we consider the re-
sponse near one of the nodes. We consider the low-energy
expansion of the Hamiltonian Eq. (16) up to quadratic order
of k near the node. Thus, λ± = λei(φ±π/4)(kx∓ iky) and Hq

becomes

Hq(~k) =

[
s
k2
x + k2

y

2
+ 2ckz

]
σz +

2bkxkyσy + b
[
k2
y − k2

x

]
σx, (17)

where c = ∓1 is the chirality of the Weyl point for the node

FIG. 2. Energy bands along [111] direction for HΓ198 [Eq. (19)]
to the quadratic order. (a) Without spin-orbit coupling. The bands
are doubly degenerate. The black dashed line denotes the energy
level at the double TPF node. (b) With spin-orbit coupling. The
blue (red)dashed line indicates the energy levels of the RSW node
(Kramer Weyl). The blue numbers denote the band index of the RSW
node. The zero energy denotes the Fermi level.

at (0, 0,±π/2). The quadratic term in the diagonal does not
change the Chern number of the bands. Thus, changing the
value of s can be treated as a smooth deformation to the
Hamiltonian. The eigenenergies are 0, and

±1

2

√
16k2 + (4b2 + s2)k4

ρ + 8skzk2
ρ (18)

where k2 = k2
x + k2

y + k2
z , k

2
ρ = k2

x + k2
y . The dispersion

relations for λ = 0,
√

2 with b = 1, s = 1 are shown in Fig.
1. For λ = 0, the upper and lower bands are quadratic, while
for λ =

√
2, the upper and lower bands disperse linearly. The

spin-excitation sits at zero energy, labeled by WTPF .
For a more realistic model, we take the effective Hamil-

tonian for transition metal silicides that belong to the space
group 198. There are one threefold rotation symmetry along
(111) axis and three twofold screw symmetries along the x, y
and z axis for this group [16, 46].

In order to isolate the multifold fermions at high symmetry
point, we expand the tight-binding Hamiltonian to the sec-
ond order of crystal momentum k. The effective low-energy
Hamiltonian for Γ point is [16]

HΓ198 =
∑
i

(H(i)
o +H

(i)
SOC), (19)

where H(1,2)
o is the spinless part, H(1,2)

SOC is the spin-orbit cou-
pled term and the superscripts (1, 2) denote the order in mo-
mentum k of the expansion. For the effective Hamiltonian to
the linear order, i = 1. For the quadratic order, the summation
runs over i = 1, 2. Each part of the Hamiltonian is given by
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H(1)
o = 3v2 + v1 [τx + τxµx + µx] +

vp
2

[µykx + τyµzky + τyµxkz] (20)

H
(1)
SOC = vr [τyσz + τxµyσx + τzµyσy] +

vs
2

[τxσxkx + τxµxσyky + µxσzkz] (21)

H(2)
o =

−v2k
2

2
+
−v1

8

[
τx(k2

x + k2
y) + τxµx(k2

y + k2
z) + µx(k2

z + k2
x)
]

(22)

H
(2)
SOC =

−vr
8

[
τyσz(k

2
x + k2

y) + τxµyσx(k2
y + k2

z) + τzµyσy(k2
x + k2

z)
]

+
v′r
4

[τyµzσxkxky + τyµxσykykz + µyσzkzkx] , (23)

TABLE II. Notations for energy levels at each topological node for
HΓ198.

WDTPF -0.07 eV
WK -0.131 eV
WRSW -0.04 eV

where τ, µ, σ are Pauli matrices and lattice constant a has
taken to be 1. The parameters are obtained from fitting to
the first-principle calculations. For RhSi, the fitted parameters
are v1 = 0.55, v2 = 0.16, vp = −0.76, vr = −0.03, v′r =
0.01, vs = −0.04 (eV) [16]. The tight-binding model pre-
serves the screw and threefold rotation symmetry of the space
group 198. It was constructed with symmetry-allowed nearest
neighbor hoppings [16].

When the spin-orbit coupling is turned off, i.e. vr, v′r, vs =
0 , there are two degenerate spin-1 excitation at Γ point in the
Brillouin zone. The energy band diagram for the quadratic
Hamiltonian without spin-orbit coupling is shown in Fig. 2(a).
The bands show spin-1 excitation and are doubly degenerate,
dubbed as double TPF. The node locates at energyWDTPF =
−0.07 eV. The low energy dispersion is similar to that of Ht,
although with different symmetry properties from Ht. There-
fore, the two models have different nonvanishing components
of the optical conductivities even though the pseudospin de-
grees of freedom are the same.

When SOC is turned on, the six-fold degenerate point splits
up into two sets [46], as denoted by dashed lines in the
band diagram in Fig. 2 (b). One is the fourfold degener-
ate point which is a pseudospin -3/2 excitation and named
as RSW fermion. The other is the twofold crossing point
which is a spin-1/2 excitation. The energy of each node is
WRSW = −0.04 eV for RSW and WK = −0.131 eV for
Kramer Weyl. Because the degenerate point is at Γ point,
which is one of the time-reversal invariant momentum, the
two-fold degenerate point is called a Kramer Weyl [47]. The
effective Hamiltonian for the Kramer Weyl is

HK = ~k · ~σ, (24)

where σ is the Pauli matrix for electron spin, not pseudospin
degrees of freedom. As a result, the real spin of a Kramer
Weyl align along the principal axis kx, ky, kz [47].

Power counting analysis. The resonance effect of photo
response in topological semimetals is interesting, because it
suggests the potential application as terahertz photodetectors.

By dimension analysis, the dependence of the shift and injec-
tion conductivity on photon frequency can be revealed. In pre-
vious studies [7, 48], the analysis was constrained for k-linear
Hamiltonian. Since in our study, the quadratic terms have sig-
nificant roles, we will include linear and quadratic terms in the
Hamiltonian for dimension analysis. The following analysis
considers three dimensional case, i.e. d = 3. The dimension
of the Hamiltoinan is

H ∼ ~vk + ~v′k2 (25)

and the eigenenergy is denoted by E. Thus, the dimension for
Berry connection is

r ∼ 1

E

∂H

∂k
=

~v + ~v′k
E

. (26)

For E in the denominator, to the lowest order of k gives E ≈
~vk, Thus,

r ∼ 1

k
+
v′

v
(27)

and

r3 ∼ 1
k3 + 3

k2
v′

v + 3
k

(
v′

v

)2

+
(
v′

v

)3

, (28)

to the lowest order ω ∼ vk.
The delta function, δ(ωmn−ω), has dimension ω−1. Thus,

the shift conductivity scales as

σsh ∼ e3

~2

(
a−1

ω + a0
v′

v2 + a1
v′2

v4 ω + H.O.T.
)

(29)

where a−1,0,1 are dimensionless coefficients given by the mo-
mentum space integration in Eq. 1. Note that the a−1ω

−1

diverging term is contributed only by the k-linear terms in
the Hamiltonian and vanishes for upright Weyl cones [7, 48],
which is the case for the multifold fermions considered in this
study. Thus, a−1 = 0. The second term shows that the shift
conductivity is independent of ω, but proportional to v′. The
similar result was found in a previous study that shows the
linear shift conductivity for Dirac surface state is linearly de-
pendent on the warping term and independent of photon fre-
quency [49].

For injection conductivity, ∆ ∼ v + v′k and r2 ∼ k−2 +

2 v
′

vk + ( v
′

v )2,

σinj ∼ τe3

~2

(
c0 + c1

v′

v2ω + H.O.T.
)
, (30)
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and c0,1 are dimensionless coefficients given by the momen-
tum space integration in Eq. 11. The leading term, which is
independent of frequency, does not depend on the model pa-
rameters. This term corresponds to the quantization of circular
injection conductivity. The values of the coefficients a−1,0,1

and c0,1 are determined by the details of the Hamiltonian.

IV. NUMERICAL CALCULATIONS

In this section, we present the calculated second order pho-
toconductivity spectra and also related geometric quantities
for the model Hamiltonians described in the preceeding sec-
tion.

A. Triple point fermions

The only symmetry for the effective triple point fermion
model Ht in the low-energy expansion is C4 symmetry along
the z axis. As a result of the lowest symmetry, Ht has more
nonzero components of second order photoconductivity than
the CoSi family. Furthermore, because of the broken time-
reversal symmetry, all four types of the photocurrents are
present, namely, linear and circular shift currents as well as
circular and linear injection currents [7]. From symmetry
analysis, there are 11 nonvanishing linear and 10 nonvanish-
ing circular conductivity tensor elements [50]. Among them,
there are four (three) independent linear (circular) conductiv-
ity elements. For simplicity, we show the most prominent con-
ductivity elements in Fig. 3.

Linear injection current. The linear injection conductivity
spectra are shown in Fig. 3 (a). The xzx and zxx components
are both linear with photon frequency. The linear injection
conductivity is related to the quantum metric gba. In Fig. 4
(a), gzx and gxx are plotted as a function of kz . The metric el-
ement gxx shows a more drastic change near the node kz = 0,
while gzx is zero along kz . As shown in Fig. 4 (b), gzx on
the kz = 0 plane is an odd function in kx. Therefore, the
integration over the plane is zero. For linear injection conduc-
tivity σxzxinj

L, gzx is multiplied by ∆x
mn, which is also an odd

function, and the momentum space integration gives rise to
nonvanishing values, as shown in Fig. 3 (a). The distribution
of gxx on the kz = 0 plane is shown in Fig. 4 (c). For lin-
ear injection conductivity σzxxinj

L, gxx is multiplied by ∆z
mn,

which is a constant because the Hamiltonian is linear in kz .
The values are all positive. Thus, σzxxinj

L is proportional to the
momentum space integration of the quantum metric gxx.

Circular injection current. The circular injection conduc-
tivity is shown in Fig. 3 (b), which is related to the Berry cur-
vature. The Berry curvature is an antisymmetric tensor and
thus its diagonal elements Ωaa vanish. Therefore, only the
nondiagonal element Ωzx of Berry curvature is shown in Fig.
4 (d). Clearly, Ωzx is approximately odd in ky . Thus, when
multiplied by ∆y

mn, the integral gives rise to nonvanishing cir-
cular injection current element in Fig. 3 (b). TheC4 symmetry
requires that Ωzx(−kx,−ky) = −Ωzx(kx, ky), but does not
guarantee that Ωzx(kx,−ky) = −Ωzx(kx, ky). The analysis

FIG. 3. Some of the nonvanishing components of the photoconduc-
tivity tensors for the TPF model. (a) Linear injection, (b) circular
injection, (c) linear shift and (d) circular shift conductivity. For all
the panels, the chemical potential is set to−0.1t. The vertical dashed
line denotes that ω = |µ|.

FIG. 4. Quantum metric tensor elements related to the linear in-
jection conductivity (a, b, c) [components xzx and zxx] and circular
injection (d) conductivity [component xyz], respectively, for the TPF
model with µ = −0.1t. (b-d) are plotted on the kz = 0 plane for the
TPF model.
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FIG. 5. Circular injection conductivity for linear and quadratic
Hamiltonians of the TPF model. βcc =

∑
a,b εcabσ

cab/iτ , where
εcab is the Levi-Civita symbol.

is given in Appendix B. When the photon frequency is larger
than the chemical potential, the value saturates at∼0.65. This
value is close to one-third of the topological charge for TPF.
When taking the trace of the injection conductivity tensor, the
value is close to the Chern number, albeit, with slight de-
viation. The deviation results from the nonzero Chern num-
ber between each pair of bands for the quadratic Hamiltonian.
In Fig. 5, the

∑
cycl σ

c,ab spectrum for HΓ198 to the linear
order is shown. Clearly, with the linear order expansion of
the Hamiltonian, the conductivity is quantized at 2, the Chern
number of the Weyl node. While with the second-order expan-
sion, the conductivity shifts away from the integer at higher
photon frequency. This is due to the nonzero Berry curvature
between a pair of bands. For injection and shift current, only
the interband transitions are considered. Thus, we write the
Chern number as combination of the Berry curvature between
pairs of band. Assume only the lowest band is occupied and
the bands are indexed from 1 to 3 starting from the lowest
energy band. The Chern number is decomposed into

C = C12 + C13, (31)

where Cnm is obtained from the the surface integration of the
Berry curvature (Ωnm(θ, φ)),

Cnm =
1

2π

∫ π

0

dθ

∫ 2π

0

dφΩnm(θ, φ), (32)

Ωnm(θ, φ) = −2 Im
〈m|∂H∂θ |n〉〈n|

∂H
∂φ |m〉

(En − Em)2
. (33)

The calculation is done in spherical coordinate and the Chern
number is obtained after integrating the Berry curvature on the
constant energy surface. For quadratic Hamiltonian, C13 be-
comes nonzero at higher energy, as shown in the inset of Fig.
5. As a result, the cyclic trace of the injection conductivity
between the optically active pair of bands is not quantized for
the quadratic Hamiltonian.

Linear shift current. Fig. 3(c) shows the linear shift con-
ductivities. zxx, xzx and zzz components are independent

FIG. 6. Momentum resolved symplectic Christoffel symbol for TPF.
(a) Along kz , (b) on the kz = 0 plane for the zzz component, (c) on
the kz = 0 plane for the xzx component. The chemical potential is
set slightly below the node, µ = WTPF − 0.1 eV.

of photon frequency after the photon frequency is larger than
chemical potential. The results is the lowest order in ω, as
suggested by Eq. 29. To understand the numerical results,
we resort to the analytical solutions. For analytical calcula-
tion, we use Eq. 3 with Berry connections. Below, the re-
sults for zzz and zxx components are presented. We define
Icab =

∑
nm fnmI

cab
nm. To the lowest order of k, the analyti-

cal form of Icabnm for the isotropic cone is,

Izzz ≈
3b
(
k2
x + k2

y

)2
4k6

(34)

and

Izxx ≈
b
(
2k4
x + 5k2

x

(
k2
y + k2

z

)
+ 3k2

y

(
k2
y + k2

z

))
4k6

. (35)

It shows that the linear shift current depends linearly on the
pseudo spin-orbit coupling b. After inserting the integrand
to Eq. 1 and converting to spherical coordinate, d3k be-
comes dΩkk

2dk, where Ωk is the solid angle in k-space, and
δ(ωmn − ω) is replaced with δ(k − k(ω))/|dE/dk|, where
|dE/dk| ∼ 2 in the linear order of k and k(ω) = ω/2. The
integral becomes

σc,ab =
−e3

2h2

∫
dΩk

∫
k2dk

δ(k − k(ω))

2
Icab. (36)

One obtains σzzz ≈ 7.07 b µA/V 2 and σzxx ≈
8.99 b µA/V 2. In Fig. 3, b = 1 is used for the numerical
calculation. The analytical values are close to the numerical
values with less than 4% error. Thus, the plateau corresponds
to a model dependent value. Similarly, the xzx component for
both the linear and circular shift conductivity is independent
of ω, as shown in Fig. 3 (c,d).

The relevant momentum resolved symplectic Christoffel
symbols for linear shift conductivity zzz and zxx are shown
in Fig. 6. The zzz and xzx components both show a peak near



8

the node in the kz resolved plot. On the kz = 0 plane, the zzz
component is circularly symmetric, while the xzx component
shows mirror symmetry about the kx = ky plane.

Circular shift current. Components of the circular shift
conductivity are shown in Fig. 3(d) for s = 1 and b = 1.
Interestingly, both xzx and zyx components of the circular
shift conductivity vanish when s = 0, showing that this term
is vulnerable to the deformation of the on-site hopping. The
corresponding Christoffel symbol of the first kind for σxzx

is shown in Fig. 7. The kz resolved Γ in Fig. 7 (a) in-
dicate that both xxz and zxx components change sign near
the node kz = 0. For the circular shift zyx component, the
Christoffel symbols are zero along kz . Equation 9 shows that
the contribution to the zyx circular shift conductivity is the
contorsion tensor, not the Christoffel symbol. Fig. 8 shows
the contorsion tensor Re [Kxzy] in the momentum space. Be-
cause Re [Kxzy] = −Re [Kyzx], only the xzy component is
shown. For other components of conductivities, the numeri-
cal values of the contorsion tensor is negligible compared to
the Christoffel symbols; thus their contorsion tensors are not
shown.

If we further simplify the Hamiltonian to the linear order of
k, the Berry curvature for each band of the TPF has a simple
form ∓ sin θ, 0 for the valence, conduction and flat band, re-
spectively, thereby giving rise to the Chern number of ∓2, 0.
Nevertheless, the shift current vanishes after integration, since
the integrands are either 0 or odd functions.

B. Multifold fermions in the CoSi family

In this subsection, we present the numerical results of the
model Hamiltonians for multifold fermions in the CoSi fam-
ily. Since these model Hamiltonians have the time-reversal

FIG. 7. Momentum resolved Christoffel symbol of the first kind
(Γxxz and Γzxx) for the TPF model. (a) Along kz , (b) on the kz = 0
plane for the zzz component, (c) on the kz = 0 plane for the xzx
component. The chemical potential is set slightly below the node,
µ = WTPF − 0.1 eV.

FIG. 8. Momentum resolved contorsion tensor Re [Kxzy] for the
TPF model. This tensor contributes to the circular shift conductivity
zyx. (a) Along kz , (b) on the kz = 0 plane.

FIG. 9. (a) Circular injection and (b) linear shift conductivity
for HΓ198 without spin-orbit coupling with chemical potential set
slightly below the DTPF node (µ = −0.075 eV = WDTPF −0.005
eV). In (b), the curve for chemical potential at the DTPF node is also
displayed.
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FIG. 10. Momentum resolved symplectic Christoffel symbol for the
DTPF node at µ = WDTPF . (a) Along kz , (b) on the kz = 0 plane
for the zxy component and (c) on the kz = 0 plane for the yxz
component. At the Γ point, both zxy and yxz components diverge
negatively, and thus, after the integration of kx, ky , the value is neg-
ative, as shown by the peak at kz = 0 in (a).

symmetry, only the linear shift current and circular injection
current would occur [7].

Double triple point fermions. HΓ198 without SOC is a de-
generate TPF, dubbed as double TPF (DTPF). An symmetry
analysis indicates that the xyz element is the only nonvan-
ishing independent component for both circular injection and
linear shift current, which is plotted as a function of photon
energy (~ω) in Fig. 9(a) and Fig. 9(b), respectively. Figure
9(a) shows that for chemical potential being set slightly be-
low the DTPF node (µ = WDTPF − 0.005 eV), the circular
injection current is nearly zero when ~ω is smaller than the
energy difference between µ and WDTPF (0.005 eV). Nev-
ertheless, it increases sharply when ~ω approaches to 0.005
eV and quickly becomes saturated as ~ω further increases. As
a result of the topological charge carried by the degenerate
point, the circular injection response would show quantiza-
tion. Figure 9(a) indicates that the circular injection conduc-
tivity is quantized at 4 when ~ω > 0.005 eV because of the
double degeneracy of the Weyl point with chiral charge 2.

In Fig. 9 (b), the linear shift conductivity is shown. In-
terestingly, the shift conductivity for the chemical potential at
the node and below the node are opposite in sign. The ma-
jor contribution comes from the quantum geometry of the flat
band. At low photon frequency, the flat band changes from
being unoccupied at µ = WDTPF − 0.005 to occupied at
µ = WDTPF . This change is approximately equivalent to
taking the complex conjugate of the Hermitian connection.
Since the linear shift conductivity is given by the imaginary
part of the Hermitian connection, the shift of chemical po-
tential leads to the sign change. This is similar to the sign
change of the Berry curvature when chemical potential shifts
across the node. In both cases, the magnitude of the shift con-
ductivity increases monotonically as ~ω increases from zero.
Similar to the circular injection current, the shift conductivity

becomes saturated when ~ω is well above 0.005 eV. Neverthe-
less, in contrast to the circular injection current, the saturation
of the shift conductivity apparently does not result from its
quantization behavior. The saturation can be understood from
power counting analysis, which shows that the lowest order of
the shift conductivity is proportional to a0v

′/v.
Since the linear shift conductivity comes from the divergent

behavior of the symplectic Christoffel symbols near the topo-
logical nodes, we show in Figure 10 the symplectic Christof-
fel symbols for the DTPF node. Figure 10 indicates that the
yxz component is more than one order of magnitude stronger
than the zxy component, the linear shift conductivity reveals
mainly the yxz component of the symplectic Christoffel sym-
bols.

RSW fermions. When the spin-orbit coupling is included in
HΓ198, the DTPF nodal point [see Fig. 2(a)] splits into the
RSW and Kramers nodes [see Fig. 2(b)]. The calculated pho-
toconductivity spectra for the RSW node are displayed in Fig.
11. Figure 11(a) shows that the circular injection conductivity
for the RSW fermions increases when ~ω approaches to 0.002
eV and becomes nearly saturated at ∼3 β0 between 0.0025
and 0.005 eV. As ~ω further increases, it first dips slightly
and then increases rapidly to the saturated value of 4 [see Fig.
11(a)]. This interesting behavior of the circular injection con-
ductivity for the RSW node can be understood by the band
dispersion of the RSW Hamiltonian displayed in Fig. 2(b)
where the RSW bands of RSW are labeled with blue num-
bers 1-4. When only the transition from the lowest band is
active, the circular injection conductivity reveals the Chern
number of the lowest band, which is 3, and this explains the
first plateau of ∼3. At higher photon frequencies, the transi-
tion between the second and the third band also occurs, giving
rise to a quantization of 1. The saturated value of the circu-
lar injection conductivity thus reveals the sum of the Chern
numbers of the lowest two bands, which is 4.

The linear shift conductivity for the RSW node is displayed
in Fig. 11 (b). Interestingly, the conductivity in the low
light frequency region below ∼0.007 eV changes sign when
chemical potential is slightly lowered from the RSW node
to WRSW − 0.003 eV. Specifically, when µ = WRSW (red
curve), the linear shift conductivity is negatively proportional
to ω. When µ = WRSW −0.003 eV (blue curve) (i.e. slightly
below the RSW node), the conductivity shows a pronounced
positive peak at the low frequencies. In this low frequency
region, it can be seen from the band structure [Fig. 2(b)] that
the optically active bands are the second and third (first and
second) for µ = WRSW (WRSW − 0.003) eV. Thus, the lin-
ear shift conductivity reveals that the symplectic Chirstoffel
symbols are opposite in sign between different pairs of bands.
Moreover, for the xyz componenet of the linear shift conduc-
tivity, the related components of the Christoffel symbols are
zxy and yxz. We calculate both components of the symplec-
tic Christoffel symbols for the RSW fermions, as shown in
Fig. 12. Γ̃yxz shows a very strong peak near kz = 0. As for
the DTPF node (Figure 10), in contrast, Γ̃zxy is much weaker
and no resonance is found at kz = 0. Thus, the major con-
tribution to the linear shift conductivity is the yxz component
of the symplectic Christoffel symbol. The distribution of Γ̃ on
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FIG. 11. (a) Circular injection and (b) linear shift conductivity for
HΓ198 with spin-orbit coupling (i.e., the RSW and Kramers nodes).

the kz = 0 plane is also shown in Fig. 12 (b,c). There is a
drastic change near the node.

After turning on the spin-orbit coupling in HΓ198, the band
structure changes drastically. The flat band in DTPF no longer
exists in RSW node. The existence and absence of the flat
band would alter the quantum geometry. The difference can
be observed in comparing the symplectic Christoffel symbols
[Fig. 10 and Fig. 12]. As a consequence, the linear shift
conductivity would have different behaviors. Comparing the
linear shift conductivity [Fig. [9(b) and Fig. 11(b)], the de-
pendence on the photon frequency changes to be linear. The
difference is likely to be the result of the large Christoffel sym-
bols of the flat band.

Kramers Weyl fermions. The calculated photoconductivity
spectra for the Kramers Weyl fermions are also shown in Fig.
11. In this case, µ = WK = −0.131 eV, and the circular in-
jection current probes the Chern number of the Kramer Weyl
node. Thus, the circular injection conductivity is quantized at
1 for ~ω > 0.005 eV.

Interestingly, the linear shift conductivity for the Kramers
Weyl node is proportional to ω, thus exhibiting the same trend
as the type-I Weyl points [48]. In Fig. 13, the symplectic
Christoffel symbols for the Kramer Weyl node are displayed,
which is the source of the linear shift current. Figure 13 thus

indicates that the linear shift conductivity σx,yz is dominated
by the yxz component of the symplectic Christoffel symbol,
similar to that of the DTPF and RSW nodes shown above.

The numerical results presented in this section were ob-
tained under the assumption of zero absolute temperature in
the Fermi-Dirac distribution. At finite temperature, the re-
sults for chemical potentials at the nodes would be different
because the energy differences between bands are the small-
est at the nodes and are more prone to thermal energies. For
chemical potentials away from the nodes, as the smallest en-
ergy gap is larger than the thermal energy, the results would
be qualitatively the same.

In addition, the numerical results are for low-energy effec-
tive Hamiltonian. The energy bands at much higher and lower
energy regimes are ignored in the calculation. Thus, the con-
ductivities are calculated at low photon frequency and valid
for the energy regime where the nodes are isolated.

V. DISCUSSION AND CONCLUSION

The second-order photoconductivities and geometrical
properties of chiral multifold fermions are studied in this pa-
per. The analytical expressions for the injection and shift con-
ductivities in terms of geometrical objects are given. As a
result of the chiral symmetry breaking, the topological node
and antinode are separated in energy. Thus, we study the
second-order optical response of a single node. Our dimen-
sion analysis reveals that the lowest order of second-order
photoconductivity is ∝ ω0 and the second to the lowest or-
der is ∝ ω1. The quantities are calculated for the minimal
symmorphic TPF model and the effective Hamiltonian for the
CoSi family. Whether the ω0 term survives depends on the de-
tails of the Berry connections. For the TPF, RSW and Kramer
Weyl nodes, the circular injection conductivity shows quanti-
zations, as a result of the Chern number carried by the node.

FIG. 12. Momentum resolved symplectic Christoffel symbol for the
RSW node, µ = WRSW . (a) Along kz , (b) on the kz = 0 plane for
zxy component, (c) on the kz = 0 plane for the yxz component.
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FIG. 13. Momentum resolved symplectic Christoffel symbol for
Kramer Weyl of HΓ198. µ = WK − 0.002. (a) Along kz , (b) on the
kz = 0 plane for the zxy component, (c) on the kz = 0 plane for the
yxz component.

The linear shift conductivity for the RSW and Kramer Weyl
node is ∝ ω. This behavior is similar to the type-I Weyl node.
In contrast, the linear shift conductivity for the TPF node is
independent of ω, but proportional to pseudo spin-orbit cou-
pling. This relation has not been found in other Weyl semimet-
als, to the best of our knowledge. Furthermore, by analyzing
the momentum-resolved geometrical objects, it is found that

the quantum metric and Christoffel symbols are strongest near
the nodes. The shift conductivities are related to contorsion
tensors. The numerical results show that the contorsion ten-
sors in general are at least one order of magnitude smaller
than Christoffel symbols and symplectic Christoffel symbols
for both model Hamiltonians. However, the contorsion ten-
sors could be dominant. It is found that the circular shift
conductivity σzyx for the symmorphic TPF model is solely
contributed by contorsion tensors, whereas the corresponding
Christoffel symbols are zero. The study of these geometrical
objects sheds light on the optical probe of the Hilbert space of
lattices.

ACKNOWLEDGMENTS

H.-C.H., J.-S. Y. and G.-Y. G. acknowledge the support
from the National Science and Technology Counsil (NSTC)
and the National Center for Theoretical Sciences (NCTS) in
Taiwan. J.A. was supported by the Center for Advancement of
Topological Semimetals, an Energy Frontier Research Center
funded by the U.S. Department of Energy Office of Science,
Office of Basic Energy Sciences, through the Ames Labora-
tory under contract No. DE-AC02-07CH11358.

Appendix A: Second order photoconductivities in terms of
quantum geometrical quantities

The second-order conductivity tensors are expressed in
term of geometrical quantities in Eq. 8 and 9 of which the
contorsion tensor Kbca

nm is defined as

Kbca
nm = i

2

[
rbnm

∑
p 6=m,n

(rcmpr
a
pn − ramprcpn) + ranm

∑
p 6=m,n

(rbmpr
c
pn − rcmprbpn)− ranm

∑
p 6=m,n

(rampr
b
pn − rbmprapn)

]

− i
3Re

[
ranm

∑
p 6=m,n

(rbmpr
c
pn − rcmprbpn)− rcnm

∑
p 6=m,n

(rampr
b
pn − rbmprapn)

]
+ Snmbca . (A1)

Here, Snmbca is imaginary and fully symmetric with respect to
the permutation of b, c, and a. Since Eq. 6 is satisfied with
any choice of Snmbca , we take Snmbca = 0 in this work.

Appendix B: Symmetry analysis for the Berry curvature under
C4 symmetry

The Berry curvature is the curl of the Berry connection
Ωn = ∇ × An, where n is the band index and An =

〈n|i∇|n〉. Under C4 rotation symmetry, kx → ky, ky →
−kx, kz → kz . Because the Hamiltonian preserves C4 sym-
metry, the Berry connection transforms as Axn → Ayn, A

y
n →

−Axn, Azn → Azn. Thus, as required by the symmetry condi-
tion, the Berry curvature obeys

Ωxn(ky,−kx, kz) = Ωyn(kx, ky, kz)

Ωyn(ky,−kx, kz) = −Ωxn(kx, ky, kz)

Ωzn(ky,−kx, kz) = Ωzn(kx, ky, kz) (B1)
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Since C4 symmetry implies C2 symmetry, the effect of
C2 is analyzed below. Under C2 rotation symmetry, kx →

−kx, ky → −ky, kz → kz . The Berry connection transforms
as Axn → Ayn, A

y
n → −Axn, Azn → Azn. Thus, the symmetry

condition requires

Ωxn(−kx,−ky, kz) = −Ωxn(kx, ky, kz)

Ωyn(−kx,−ky, kz) = −Ωyn(kx, ky, kz)

Ωzn(−kx,−ky, kz) = Ωzn(kx, ky, kz). (B2)

[1] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J.
Cava, and B. A. Bernevig, Beyond dirac and weyl fermions:
Unconventional quasiparticles in conventional crystals, Science
353, aaf5037 (2016).

[2] M. Z. Hasan, G. Chang, I. Belopolski, G. Bian, S.-Y. Xu, and
J.-X. Yin, Weyl, Dirac and high-fold chiral fermions in topolog-
ical quantum matter, Nature Reviews Materials 6, 784 (2021).

[3] N. Nagaosa and T. Morimoto, Concept of quantum geometry
in optoelectronic processes in solids: Application to solar cells,
Advanced Materials 29, 1603345 (2017).

[4] A. M. Cook, B. M. Fregoso, F. de Juan, S. Coh, and J. E. Moore,
Design principles for shift current photovoltaics, Nature Com-
munications 8, 14176 (2017).

[5] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on elec-
tronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[6] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.
Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010).

[7] J. Ahn, G.-Y. Guo, and N. Nagaosa, Low-frequency divergence
and quantum geometry of the bulk photovoltaic effect in topo-
logical semimetals, Phys. Rev. X 10, 041041 (2020).

[8] T. B. Smith, L. Pullasseri, and A. Srivastava, Momentum-space
gravity from the quantum geometry and entropy of bloch elec-
trons, Phys. Rev. Research 4, 013217 (2022).

[9] Y.-P. Lin and W.-H. Hsiao, Dual haldane sphere and quantized
band geometry in chiral multifold fermions, Phys. Rev. B 103,
L081103 (2021).

[10] Y.-P. Lin and W.-H. Hsiao, Band geometry from position-
momentum duality at topological band crossings, Phys. Rev. B
105, 075127 (2022).

[11] J. Ahn, G.-Y. Guo, N. Nagaosa, and A. Vishwanath, Rieman-
nian geometry of resonant optical responses, Nature Physics 18,
290 (2022).

[12] Y. Hwang, J. Jung, J.-W. Rhim, and B.-J. Yang, Wave-function
geometry of band crossing points in two dimensions, Phys. Rev.
B 103, L241102 (2021).

[13] S. Chaudhary, C. Lewandowski, and G. Refael, Shift-current
response as a probe of quantum geometry and electron-electron
interactions in twisted bilayer graphene, Phys. Rev. Research 4,
013164 (2022).

[14] F. de Juan, A. G. Grushin, T. Morimoto, and J. E. Moore, Quan-
tized circular photogalvanic effect in Weyl semimetals, Nature
Communications 8, 15995 (2017).

[15] C.-K. Chan, N. H. Lindner, G. Refael, and P. A. Lee, Photocur-
rents in Weyl semimetals, Phys. Rev. B 95, 041104(R) (2017).

[16] G. Chang, S.-Y. Xu, B. J. Wieder, D. S. Sanchez, S.-M. Huang,
I. Belopolski, T.-R. Chang, S. Zhang, A. Bansil, H. Lin, and

M. Z. Hasan, Unconventional chiral fermions and large topo-
logical fermi arcs in RhSi, Phys. Rev. Lett. 119, 206401 (2017).

[17] S. Patankar, L. Wu, B. Lu, M. Rai, J. D. Tran, T. Mori-
moto, D. E. Parker, A. G. Grushin, N. L. Nair, J. G. Analytis,
J. E. Moore, J. Orenstein, and D. H. Torchinsky, Resonance-
enhanced optical nonlinearity in the Weyl semimetal TaAs,
Phys. Rev. B 98, 165113 (2018).

[18] F. Flicker, F. de Juan, B. Bradlyn, T. Morimoto, M. G.
Vergniory, and A. G. Grushin, Chiral optical response of multi-
fold fermions, Phys. Rev. B 98, 155145 (2018).

[19] J. Ma, Q. Gu, Y. Liu, J. Lai, P. Yu, X. Zhuo, Z. Liu, J.-H. Chen,
J. Feng, and D. Sun, Nonlinear photoresponse of type-II Weyl
semimetals, Nature Materials 18, 476 (2019).
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