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We study plasmonic excitations in the Kane-Mele model, a two-dimensional Z2 topological insu-
lator on the honeycomb lattice, using the random phase approximation (RPA). In the topologically
non-trivial phase, the model has conducting edge states that traverse the bulk energy gap and dis-
play spin-momentum-locking. Such a state of matter is called the quantum spin hall (QSH) phase,
which is robust against time-reversal (TR) invariant perturbations. We find that in the QSH phase,
gapless spin-polarized plasmons can be excited on the edges of the system. The propagation of
these plasmons is chiral for each individual spin component and shows spin-momentum-locking for
both spin components on the same edge. Moreover, we study the effect of external magnetic fields
on the gapless edge plasmons. Specifically, out-of-plane magnetic fields delocalize edge plasmons
propagating in one direction without affecting the other one, while an in-plane magnetic field can
be applied to selectively excite a specific spin-plasmon branch with proper doping or gating to the
system. Our findings may have potential applications in novel plasmonic and spintronic devices.
We also investigate plasmons in the Kane-Mele model on a finite-sized diamond-shaped nanoflake
and observe low-energy plasmons circulating the boundary of the material.

I. INTRODUCTION

The experimental observation of the integer quantum
Hall effect (IQHE) [1] has led to a fundamentally novel
way of classifying electronic states via topological invari-
ants. In the pioneering work of Thouless, Kohmoto,
Nightingale, and den Nijs [2] (TKNN), the topological
invariant for the IQHE was identified as an integer called
the Chern number. Here, non-trivial topology is at-
tributed to a broken time reversal (TR) symmetry [3].
In the context of TR-invariant systems, where the Chern
number vanishes, Kane and Mele [4, 5] introduced an-
other Z2 topological classification which distinguishes the
quantum spin Hall (QSH) phase from the trivial insu-
lating phase. The QSH phase is characterized by spin-
momentum-locked topological surface states traversing
the bulk energy band gap. Kramers theorem [6] guar-
antees the degeneracy of energy bands at TR invariant
momenta (TRIM) and forbids gap opening on the surface
from any TR-invariant perturbation [7].

While the topological electronic properties have been
extensively studied in the past few decades [8–19], the
behavior of collective excitations, such as plasmons [20–
30] and magnons [31–33] in topologically non-trivial sys-
tems is drawing increasing attention as well. Our previ-
ous studies have found that plasmonic excitations in the
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Su-Schrieffer-Heeger (SSH) model [34–36] and the Hal-
dane model [36] are clearly affected by the underlying
electron topology, and consequently display character-
istic behavior such as gapless spectra, localized modes
on the sample surface, and robustness against apprecia-
ble disorder. While these models consider spinless elec-
trons, in Z2 topological insulators (TIs) it is necessary to
treat electrons as spinors due to possible spin-mixing cou-
plings. In fact, plasmons in such systems have been stud-
ied on surfaces of two-dimensional (2D) [29] and three-
dimensional (3D) [20, 23, 29, 37] TIs. Due to the spin-
momentum-locking of the conducting edge states in Z2

TIs, these surface plasmons are spin polarized along cer-
tain directions. For this reason, they are called ”spin-
plasmons”, with novel applications in plasmonics and
spintronics [38]. Moreover, spin-polarized plasmons were
also reported in the two-dimensional electron gas that
are observed in Raman-scattering experiments [39], and
in spin-polarized graphene that shows long lifetime dis-
persing in its undamped regime [40]. However, we are not
aware of any studies of how such surface spin-plasmons
can be engineered and tuned by e.g. the application of
electromagnetic fields. Considering the potentially sig-
nificant applications of spin-plasmons, we believe it is
useful to report here our studies on controlling surface
spin-plasmons.

In this paper, we consider the Kane-Mele model [4],
a paradigmatic model of 2D Z2 TIs, on a ribbon struc-
ture as in Fig.1(b). In its TR-symmetric QSH phase, we
observe spin-polarized gapless edge plasmons displaying
chirality, spin-momentum-locking and spin-edge-locking
that are inherited from the topology and symmetry of
the underlying single-electron states. We find that these
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FIG. 1. (a) Determination of the sign νij for the spin-orbit
coupling term in the Kane-Mele model on a Honeycomb lat-
tice. (b) Illustration of Kane-Mele model on a ribbon struc-
ture with zigzag terminations. Two atomic species A and
B are non-equivalent with a non-zero onsite energy tv. Two
dashed red lines define a unit cell that is repeated along the
Y -direction with period L. (c) Diagrammatic representation
of the Dyson series for RPA susceptibility function. The
particle-hole bubble diagram represents the non-interacting
polarization function and the wiggly line represents the bare
Coulomb interaction.

plasmons are sensitive to external magnetic fields applied
in different directions, which can therefore be used as a
practical technique to control them, although the field
breaks the TR symmetry such that some topological fea-
tures of these plasmons are lost. Specifically, we show
that an out-of-plane magnetic field can be applied to tune
surface plasmon localization, and an in-plane magnetic
field can be used to selectively excite plasmons with cer-
tain spin polarization. Moreover, we calculate the plas-
monic excitation spectrum in real-space in a diamond-
shaped Kane-Mele model and observe edge plasmons
circulating the sample. The single-electron topological
properties of this model have recently been investigated
in [41].

The remainder of this paper is organized in the follow-
ing way. In Sec. II, we introduce the random phase ap-
proximation (RPA) method applied to the ribbon struc-
ture for calculating the dielectric response and plasmonic
excitations. In Sec. III, we present detailed results of
plasmonic excitations in the Kane-Mele model. Plasmons
in the original Kane-Mele ribbon structure are firstly in-
troduced, followed by two variant scenarios when the
original system is exposed to an external magnetic field
applied in the out-of-plane direction and the in-plane di-
rection. This is followed by a discussion of plasmons in
real space on a diamond-shaped Kane-Mele model with
open boundaries. Finally, we conclude our study, propos-
ing potential applications of these results and give future
research directions in Sec. IV.

II. METHOD

In order to study plasmonic excitations, we calculate
the dielectric function within the random phase approx-
imation (RPA). The RPA dielectric function has tradi-
tionally been introduced in momentum space for the ho-
mogeneous electron gas [42, 43], as well as recently been
formulated fully in real space to study non-translational-
invariant systems [34, 35, 44, 45]. In RPA, the charge
susceptibility function is considered as the Dyson se-
ries of the non-interaction polarization function linked
by the bare Coulomb interaction, whose diagrammatic
representation is shown in Fig.1(c). This is analogous to
evaluating the interacting Green function from the non-
interacting one using the self-energy. In this paper, we
mainly focus on ribbon structures, which are periodic in
the longitudinal direction while finite-sized in the trans-
verse direction (Fig.1(b)). Therefore, we adopt a com-
bined treatment of both the real- and momentum space
as detailed below.

Generically, as indicated in Fig. 1 (b), the unit cell
spans the entire width of the ribbon (along X-direction)
and is repeated periodically along the Y -direction. We
denote the position and the spin of the i-th atom in the
unit cell as ~τi and ~σi. By Fourier transformation along
the Y -direction, we can construct a tight-binding basis
{|µ〉 ≡ |~τ〉 ⊗ |σ〉 , ~τ = ~τ1, ~τ2, . . . , ~τN and σ = +,−} for
each ky, supposing there are N atoms in the unit cell.
Using this, we can express the non-interacting polariza-
tion function as a matrix, whose element indexed by µ
and µ′ is given by [45]

χ0(ω, qy)µµ′ =
1

L

∑
ky,n,n′

f(E
ky
n )− f(E

ky+qy
n′ )

ω + iγ + E
ky
n − Eky+qyn′

× ψkynµ(ψ
ky
nµ′)

∗(ψ
ky+qy
n′µ )∗ψ

ky+qy
n′µ′ ,

(1)

where ω is the frequency and qy is the momentum trans-
fer in Y -direction. L is the volume of the unit cell in
the periodic direction as shon in Fig.1. E

ky
n and ψ

ky
nµ

are the eigenenergy and the component of the eigenstate
on the µ-th spin orbital in the tight-binding basis, for
the electronic state in the n-th band and with momen-
tum ky. They can be computed from diagonalization of
the tight-binding Hamiltonian H(ky) written in the same
basis introduced above. f(·) is the Fermi-Dirac distribu-
tion function, whose zero temperature limit is applied in
all calculations in this paper. Moreover, we introduce a
finite broadening parameter γ which is set to be 0.01 eV.

On the other hand, we consider electron-electron
Coulomb interaction which is also Fourier transformed
along the Y -direction, namely, V (qy). Using the same
basis and assuming that the Coulomb interaction only
depends on the real-space coordinates of two sites [46],
we have

Vµµ′(qy) =

{
2e2 ∗K0(|qy||x− x′|)/κ, if ~τ 6= ~τ ′,

U0/κ, if ~τ = ~τ ′.
(2)
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Here K0(·) is the zeroth modified Bessel function of the
second kind. This form of the Coulomb interaction is
referred from [47]. For the onsite Coulomb interaction,
the formula for point charges lead to divergent result. So,
we choose to parametrize it as U0 = 17.38 eV using the
value from Ref. [34] where electrons were described using
two-dimensional Gaussian wavefunctions. Additionally,
κ is the dielectric constant of the background medium
which is set to be κ = 1 (the vacuum) unless otherwise
specified.

We can then derive the dielectric matrix within RPA
as

εRPA(ω, qy) = I− V (qy)χ0(ω, qy), (3)

form which we can further extract the electron energy
loss spectrum (EELS) by

EELS(ω, qy) = max
i

{
− Im

[
1

ei(ω, qy)

]}
, (4)

where ei(ω, qy) is the i-th eigenvalue of εRPA(ω, qy). Plas-
monic excitations are identified as peaks in EELS(ω, qy).
Meanwhile, the real-space charge distribution patterns of
plasmon modes can also be obtained utilizing the right
eigenvector of the dielectric matrix εRPA(ω, qy). The
method is similar to the one reported in [34] for the full
real-space RPA calculation. Suppose that em(ωp, qy) is
the selected eigenvalue indicating a plasmon mode at ωp,
then the real-space charge distribution pattern of this
mode can be obtained by

ρ0(ωp, qy) = χ0(ωp, qy)ξm(ωp, qy), (5)

with ξm(ωp, qy) is the right eigenvector corresponding to
em(ωp, qy). In fact, we can also obtain the second EELS
(2nd-EELS) by selecting the second maximum in Eq. (4),
which will provide information about degeneracy of plas-
mon modes. In this paper, we will always consider the
maximum EELS unless otherwise specified.

III. MODELS AND RESULTS

A. Chiral edge spin-plasmons in the Kane-Mele
ribbon structure

The Kane-Mele model on a honeycomb lattice is given
by the Hamiltonian [4]

H =t
∑
〈i,j〉

c†i cj + itSO
∑
〈〈i,j〉〉

νijc
†
is
zcj

+ itR
∑
〈i,j〉

c†i

(
s× d̂ij

)
z
cj + tv

∑
i

ξic
†
i ci.

(6)

Here c†i =
(
c†i↑, c

†
i↓

)
and ci = (ci↑, ci↓) are electron cre-

ation and annihilation operators. The first term is the
hopping between nearest neighbor sites denoted as 〈i, j〉.

FIG. 2. Electronic band structure of the Kane-Mele model
on a ribbon with zigzag terminations. (a) Trivial insulating
phase with tSO = 0.05t and tv = 0.4t. (b) Quantum Spin Hall
(QSH) phase with tSO = 0.05t and tv = 0.1t. Conducting
edge states traversing the bulk energy band gap are observed.
Two spin components are represented by blue and red bands;
two edges are represented by solid and dashed bands. (c) and
(d) are modular square of electronic wavefunctions of the two
spin-up edge states at the momentum K = 1.01π/L. They
are strongly localized on two opposite edges.

The second term describes the mirror symmetric intrinsic
spin-orbit coupling involving next nearest neighbor sites
〈〈i, j〉〉. The sign νij depends on the orientation of the
hopping as illustrated in Fig. 1(a). Mathematically, it

can be determined by νij = (2/
√

3)
(
d̂1 × d̂2

)
z
, where

d̂1 and d̂2 are unit vectors along the two bonds that tra-
verse from the jth site to the ith site. sz is the diagonal
Pauli matrix. tSO is the amplitude for spin-orbit inter-
action and can be determined by second-order perturba-
tion theory calculations [48–51]. The third term is the
Rashba coupling between nearest neighbor sites. It in-
troduces an off-diagonal spin mixing term that can arise
from applying a perpendicular electric field or placing the
sample on a substrate. Its amplitude tR can be experi-
mentally measured [52, 53]. The last term is a staggered
sublattice potential (ξi = ±1) on site A and B [Fig. 1(b)],
which breaks the in-plane twofold rotation symmetry for
non-zero tv. In a ribbon structure of Fig. 1(b), it breaks
the symmetry between two edges as the top and bottom
edge are terminated at different atomic species. In our
numerical calculations, we set the nearest neighbor hop-
ping parameter t = 1 eV and all other energies are scaled
in the unit of t. We also set tR = 0 for simplicity, such
that the topological sector of the model can be tuned by
the ratio of tSO and tv. In this case, the spin-up and
spin-down electrons are originally decoupled. The case
with non-zero tR is presented in Appendix. D and no sig-
nificant effects are observed as long as tR is sufficiently
small.

We focus on the Kane-Mele model on the ribbon struc-
ture with zigzag terminations as illustrated in Fig. 1(b).



4

For tR = 0, the model has a bulk energy band gap Eg =∣∣6√3tSO − 2tv
∣∣ [4] that vanishes when tv = 3

√
3tSO.

For tv > 3
√

3tSO, the system is in the trivial insulating
phase, while for tv < 3

√
3tSO it is in the topologically

non-trivial quantum spin Hall (QSH) phase [4]. A topo-

logical phase transition occurs at tv = 3
√

3tSO character-
ized by band inversion at this critical gap-closing point
[54]. This distinction is illustrated via the electronic sin-
gle particle band structure in Fig. 2. In Fig. 2(a), we
choose tSO = 0.05t and tv = 0.4t (the trivial insulating
phase) and observe no edge states traversing the bulk en-
ergy gap. In Fig. 2(b) (with tSO = 0.05t and tv = 0.1t,
i.e. the system is in the QSH phase), we observe con-
ducting edge states crossing the energy gap. For any
energy within the bulk band gap, there is one TR edge-
states pair on each edge, indicating a non-trivial (odd) Z2

topological order. The conducting edge states for spin-up
and spin-down electrons on each edge propagate in oppo-
site directions, which is a characteristic property called
“spin-momentum-locking” in the QSH phase. We plot
the modular square of the wave functions |ψ|2 for two
spin-up electronic edge states at zero energy (Figs. 2(c)
and (d)), confirming that they are localized on two op-
posite edges. The same properties apply for spin-down
electronic edge states. Due to the non-zero tv in the cal-
culation, energy spectra of conducting edges states on
the top edge (solid lines) and the bottom edge (dashed
lines) are shifted.

FIG. 3. Electron energy loss spectra (EELS) of the Kane-
Mele model on a ribbon structure in (a) the trivial insulating
phase and (b) the in QSH phase. Gapless spin-plasmons are
observed on the edges of the QSH system. (c-f) show real-
space charge modulation patterns of the spin-up plasmon at
P1 (qy= π/8L), the spin-down plasmon P1, the spin-up plas-
mon at P2 (qy= −π/8L) and the spin-down plasmon at P2.
The excited energy is 0.326t. Red and blue in the modula-
tions represent the positive and negative charges.

We now analyze the plasmonic excitations in the Kane-
Mele ribbon structure. Firstly, we show that gapless edge
plasmons can be excited in the QSH phase, but not in the
trivial insulating phase. In Figs. 3(a) and (b), we plot the
plasmon dispersions for both phases. We observe that in
the QSH phase, gapless low-energy plasmons emerge due
to the existence of the conducting edge states observed in
the single-electron band structure (see Appendix. A for
a detailed analysis of the relation between both). These
plasmons are localized on the edges of the ribbon, as
confirmed by the real-space charge distribution patterns
of some typical modes shown in Figs. 3(c-f). In contrast,
gapless edge plasmons are absent in the trivial insulating
phase.

Secondly, we find that gapless edge plasmons are spin-
resolved and inherit chirality as well as spin-momentum-
locking from the QSH electronic structure. Chirality of
the gapless edge plasmons can be detected by focusing on
each individual spin component. In the spin-decoupled
QSH regime (tR = 0), each spin component behaves ef-
fectively as a non-trivial Chern insulator displaying chi-
ral edge current flow. We analyze in detail the inher-
itance of chirality from the electronic structure to the
plasmonic excitations for the spin-up component, while
the spin-down component can be understood in the ex-
actly same way. The spin-up edge current propagates
uni-directionally with positive (negative) momentum on
the bottom (top) edge, as indicated by the positive (neg-
ative) slope of the dashed (solid) blue edge-states energy
dispersion in Fig. 2(b). This property is inherited by the
plasmons in the sense that the spin-up edge plasmons
with positive (negative) momenta qy can only stay on
the bottom (top) edge, as indicated by the mode pro-
file of “P2 ↑” in Fig. 3(e) (“P1 ↑” in Fig. 3(c)). This
can be understood by noticing that for the positive (neg-
ative) momentum transfer qy, spin-up electronic transi-
tions can only occur within the dashed (solid) blue band
in Fig. 2(b), along which all electronic states are localized
on the bottom (top) edge of the ribbon. It is true that
electronic transitions with positive (negative) qy can also
occur within the solid (dashed) red band. However, this
band includes spin-down electronic states localized on the
top (bottom) edge of the ribbon, which have negligible
interfere with the dashed (solid) blue band of spin-up
electrons on the bottom (top) edge due to their large real-
space separation. On the other hand, spin-momentum-
locking of gapless edge plasmons can be inferred by fo-
cusing on each individual edge. On the top edge, spin-up
plasmons can only be excited with negative momentum
qy (Fig. 3(c)), whereas spin-down plasmons are restricted
to positive momenta. On the bottom edge, we find the
opposite behavior for the two spin components. The rea-
son for the spin-momentum-locking of gapless edge plas-
mons can also be understood by analyzing the restricted
transitions within each conducting electronic bands in
Fig. 2(b). As noticed from Fig. 3(b), in the original Kane-
Mele model with TR symmetry, the plasmon dispersions
also display “TR symmetry” in the sense that the rela-



5

tion ω↑(qy) = ω↓(−qy) (or ω↑(−qy) = ω↓(qy) on the other
edge) holds. Later we will see that this relation is broken
with applied external magnetic field which breaks the TR
symmetry.

Lastly, if we excite gapless edge plasmons at a spe-
cific momentum qy, TR symmetry and spin-momentum-
locking in the QSH phase transform into a new special
property of these plasmons, which we will call spin-edge-
locking. For instance, using an external excitation field
with a specific positive qy, spin-up plasmons can only be
excited on the bottom edge (Fig. 3(e)), while spin-down
plasmons can only be excited on the top edge (Fig. 3(f)).
This property opens up possibilities for plasmon engi-
neering using these gapless edge spin-plasmons by gat-
ing, doping or substrate manipulation on the edges. For
instance, here we propose a way to energetically separate
spin-up edge plasmons and spin-down edge plasmons via
substrates engineering. As we know that plasmon disper-
sion sensitively depends on Coulomb interactions which
can be tuned by the local screening environment [55], by
applying different dielectric substrates on the top edge
and the bottom edge of the ribbon, we can tune the en-
ergies of spin-up plasmons and spin-down plasmons sep-
arately. They can then be selectively excited by choos-
ing external excitation field with corresponding frequency
ωtop or ωbottom.

In summary, we have investigated plasmonic excita-
tions in Kane-Mele ribbon structure in both the triv-
ial phase and the QSH phase. In the QSH phase
we have observed spin-polarized gapless edge plasmons
which are obviously absent in the trivial phase. More-
over, these plasmons display characteristic properties of
strong localization, chirality for each spin component,
spin-momentum-locking on each edge, and spin-edge-
locking for each individual excitation (ω, qy). These
properties are analyzed to be inherited from the single-
electron topology of the underlying model. Therefore,
gapless edge plasmons with above characteristic proper-
ties can be regarded as a topological signature of collec-
tive excitations in TR-invariant QSH insulators.

B. Tuning edge plasmons via external magnetic
fields

In this section, we study the Kane-Mele model in the
presence of external magnetic field. The original model
Hamiltonian is modified by adding a Zeeman energy term
induced by the external magnetic field B, which is given
here as

HZ = HKM +
∑
i

c†iB · sci. (7)

HKM refers to the Kane-Mele model Hamiltonian from
Eq. 6. As we shall see in the following, although apply-
ing magnetic field breaks the TR symmetry, it can be
useful to tune the edge plasmons excited in the Kane-
Mele model. The tuning effect depends on the direction

of applied Zeeman field.

1. Control of edge plasmons localization via Bz field

FIG. 4. (a) Electron band structure, and (b) plasmon disper-
sions, of the QSH Kane-Mele ribbon structure in presence of
an out-of-plane magnetic field Bz. (c) and (d) are modular
square of electronic eigenstates at “c” and “d” points marked
in the electron band structure (a).

We first consider the external magnetic field applied
in the out-of-plane direction, namely Bz = Bz ẑ. In
Fig. 4(a), we show the electronic band structure of the
QSH Kane-Mele ribbon when Bz = 0.15t. There are
three main effects to be addressed due to the presence of
the magnetic field. Firstly, introducing Bz does not open
a gap on the edge of the system. For each spin compo-
nent, conducting edge states crossing over the bulk band
gap remain. Therefore, gapless edge plasmons are pre-
served, which is shown by the EELS in Fig. 4(b). Sec-
ondly, the field breaks the TR symmetry on each edge
because the system is magnetized. This will correspond-
ingly break TR symmetry in the corresponding plasmon
branches. The relation ω↑(qy) = ω↓(−qy) is explicitly
broken, as indicated by the asymmetric dispersion for
qy ≶ 0 in Fig. 4(b). Such an asymmetric property of plas-
mons may find potential applications in non-reciprocal
plasmonic and spintronic devices. Thirdly, although the
Bz field does not destroy gapless edge plasmons, the real-
space localization of these edge plasmons can be affected.
Particularly, significant delocalization for plasmons with
small positive qy is expected, because they are dominated
by single electron states near “c” and “d” points (marked
in Fig 4(a)) crossed by the Fermi level. As we can see,
these two points are very close to bulk bands, such that
their wave functions are delocalized (cf. Figs. 4(c) and
(d), Figs. 2(c) and (d)). In contrast, we do not expect
significant delocalization effects to appear for plasmons
with small negative qy, because states “e” and “f” are
still deep in the gap.

We investigate the delocalization effect on positive qy
edge plasmons in more detail. Here we select modes along
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FIG. 5. (a) EELS of the QSH Kane-Mele ribbon structure
evaluated along the momentum transfer q = π/8L with and
without an external magnetic field Bz = 0.15tẑ. Spin-orbit
interaction for the numerical calculation here is set to be
tSO = 0.05 t. (b) and (c) are real-space charge modula-
tion patterns of two spin-plasmons excited at “P” (energy:
0.249 eV ) in the presence of the external field Bz. They are
delocalized into the bulk. (d) shows a decreasing weight of
charges on the edge for the plasmon mode “P” with increased
strength of the field Bz.

qy = π/8L and plot the EELS as a function of ω, namely,
EELS(qy = π/8L, ω). This is given in Fig. 5(a) for both
Bz = 0 (no magnetic field) and Bz = 0.15t. The first
mode in each spectrum is the edge plasmon. As we can
see, introducing Bz changes the excitation energy of the
edge plasmon, an effect induced by the changed electronic
band structure. More interestingly, the mode localization
in the real space is strongly affected by Bz. In Figs. 5(b)
and (c), we show the real-space charge modulation pat-
terns of spin-up and spin-down plasmons excited at “p”.
While the “spin-edge-locking” character remains, both
modes strongly delocalize compared to their counterparts
in Figs. 3(e) and (f) without external magnetic fields.
In fact, localization of edge plasmons can be gradually
changed by tuning the field strength Bz. In Fig. 5(d),
we show how the weight of charges localized on the edge
decreases with an increased value of Bz in the range of 0
to 0.15t. This observation indicates a way to control edge
plasmons localization via an external Bz field. We note
that the tuning effect depends on the original bulk band
gap of the system. If the original bulk band gap is large,
a small external field Bz will not have a big influence on
the plasmon spectrum and mode localization. Detailed
analysis for this case is given in Appendix B.

2. Selective excitation of spin-polarized plasmons with
applied Bx field

We now turn to the QSH Kane-Mele model in the pres-
ence of an in-plane magnetic field Bx = Bxx̂ applied in
x-direction. This induces an off-diagonal on-site spin-
flip term that violates the time-reversal symmetry, which
opens a gap on each edge of Eg = 2Bx (Fig. 6(a)). For

FIG. 6. Electronic band structure of the Kane-Mele ribbon
structure in the presence of an in-plane magnetic field Bx =
0.15 t x̂. An energy gap is opened on each edge due to the spin-
flip TR-broken term. Four bands in the middle correspond to
spin-up and spin-down electronic states localized on the top
and bottom edges, represented in the same way as in Fig. 2.
(b) Modular square of electronic eigenstates of the middle four
bands at K = 1.01π/L. The sub-figures are ordered from low
energy to high energy. Strong localization character is still
preserved in the presence of Bx field.

strong enough Bx, the model is completely gapped at
zero energy. Gapless edge plasmons will therefore van-
ish if we keep the Fermi level at EF = 0 eV. However,
the localization character of electron eigenstates on these
bands is still preserved, as long as these bands still extend
deeply in the bulk energy gap. This can be confirmed
the modular square of the four electronic eigenstates at
k = 1.01π/L plotted in Fig. 6(b).

The above property of the electronic structure in the
presence of Bx implies a way to selectively excite gapless
edge plasmons with specific spin polarization. As we can
see, due to the gap opening on each edge, the spin-up
electron band and the spin-down electron band are en-
ergetically separated. We can tune the Fermi level by
doping [56, 57] or gating [58] the system such that EF
crosses one band of a specific spin polarization, as illus-
trated in Fig. 6(a). In this case, the spin-down electron
band on the bottom edge (the dashed red line) becomes
conducting. Therefore, gapless edge plasmons can just
be excited for spin-down electrons on the bottom.

FIG. 7. (a) EELS of the Kane-Mele ribbon structure with a
shifted Fermi level EF = −0.15t and in the presence of an in-
plane magnetic field Bx = 0.15 t x̂. Gapless edge plasmons are
observed for spin-down component only. (b) Spin projection
and (c) real-space charge modulation pattern of the plasmon
mode marked by the red down-arrow in (a), which with qy =
π/8L and energy = 0.146 eV .

To illustrate this, we calculate the EELS of the Kane-
Mele ribbon in presence of a Bx field with the Fermi
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level set to be EF = −0.15t (crossing the dashed red
band). The result is plotted in Fig. 7(a), from which we
can clearly see a gapless plasmon dispersion branch. As
expected before, these plasmons are of spin-down elec-
trons localized on the bottom edge of the ribbon. For
instance, we show the real-space charge modulation pat-
tern of the plasmon mode at qy = π/8L (indicated by
the red down-arrow) in Fig. 7(c). This plasmon is indeed
an edge mode localized on the bottom edge. Moreover,
we project this charge distribution onto each spin com-
ponent and show them in Fig. 7(b). We observe that the
mode is strongly spin-polarized, whereby the spin-down
component dominates. It is worth mentioning that in
previous sections of non-gapped models (no matter with
Bz field or not), gapless edge plasmons always come in
pairs of spin-up component and spin-down component
(see Fig. 3(b) and Fig. 4). In the present case, the phe-
nomenon is fundamentally different, as we only have one
spin component of gapless edge plasmons excited. The
in-plane magnetic field here preserves the mirror sym-
metry My [41] such that the energy bands remain sym-
metric, however, the relation ω↑(qy) = ω↓(−qy) is still
broken due to the complete absence of one spin-plasmon
branch. Here we should clarify that the realization of
selective excitation of spin-plasmons is at the cost of los-
ing chirality. From the electronic structure in Fig. 6, we
can see that the back-scattering channel within the con-
ducting dashed red band is open. Therefore, spin-down
plasmons localized on the bottom edge with negative qy
can also be excited. This is distinct from the situation
with Bz, where we have observed non-reciprocity.

C. Real-space edge plasmons in Kane-Mele model
on a diamond-shaped nanoflake

FIG. 8. (a) Structure of the Kane-Mele model on a diamond-
shaped honeycomb lattice nanoflake with zigzag edges. (b)
Modular square of degenerate single-electron edge states of
the model at energies ±0.075 eV.

In this section, we study plasmons in the Kane-
Mele model on a different structure - a diamond-shaped
nanoflake of honeycomb lattice with open boundaries
of zigzag termination. This structure is illustrated in
Fig.8(a) with nearest neighbour bond length of a =
1.42Å. We study the model in the QSH phase param-
eterized with tSO = 0.2 t and tv = 0. In this case, we
find low-energy edge states shown in Fig.8(b). Next, we
study the plasmonic excitations in the model using the
full real-space RPA method introduced in [35]. The sys-

FIG. 9. Real-space charge modulation patterns of typical
plasmon modes in the QSH Kane-Mele model on a diamond-
shaped nanoflake. (a) and (b) are low-energy edge plasmons
excited at ω = 0.585 eV and ω = 0.975 eV. (c) is a high-
energy bulk plasmon excited at ω = 5.968 eV.

tem supports both low-energy edge plasmons and high-
energy bulk plasmons. We show three typical modes in
Fig. 9. In the Figs. 9(a) and (b) we see two edge modes
with different energies and wave-vectors. This indicate
that low-energy edge plasmons are dispersive. The edge
plasmons are extremely localized along the boundary of
the nanoflake. A typical bulk plasmon mode at high en-
ergy is shown in Fig. 9(c) with charges oscillating inside
the material.

IV. CONCLUSIONS

In conclusion, we have performed a detailed study on
plasmons in the Kane-Mele model with theoretical analy-
sis and numerical calculations. Plasmonic excitations are
identified from the electron energy loss spectrum derived
from the dielectric function calculated within the random
phase approximation (RPA). We have mainly considered
Kane-Mele model on a ribbon structure in the topolog-
ically non-trivial QSH phase where spin-polarized gap-
less edge plasmons have been observed. For each spin-
polarization plasmons propagate uni-directionally on the
edges of the ribbon. On the same edge, spin-up plasmons
and spin-down plasmons always propagate in opposite di-
rections. For a specific momentum transfer qy along the
longitudinal direction of the ribbon, both spin-polarized
plasmons can be excited, but localized on opposite edges.
We summarize these three properties as chirality, spin-
momentum-locking and spin-edge-locking of plasmons in
QSH insulators. Plasmons in QSH phase are sensitive to
external magnetic field. Applying an out-of-plane mag-
netic field Bz breaks the TR symmetry by effectively
magnetizing the material. However, it does not open
a gap without introducing any non-TR-invariant spin-
mixing term. Therefore, spin-polarized gapless edge plas-
mons remain, but the dispersion spectrum is no longer
TR symmetric. We have found that increasing the field
strength of Bz will gradually delocalize edge plasmons
in one direction, but does not significantly affect edge
plasmons in the opposite direction. On the other hand,
applying an in-plane magnetic field Bx along the trans-
verse direction of the ribbon opens a gap on each edge
by breaking the TR symmetry with onsite spin-flip term.
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In this case, spin-up and spin-down electron bands on
the same edge are energetically shifted. By tuning the
chemical potential via proper doping or gating, we can
selectively make one spin-polarized edge band conducting
and therefore excite gapless edge plasmons with specific
spin-polarization. However, we have clarified that these
edge plasmons are no longer chiral due to opened back-
scattering channel. Our results imply that spin-polarized
plasmons in 2D QSH topological insulators can be ma-
nipulated by external magnetic field. Besides the rib-
bon structure, we have also investigated plasmons of the
QSH Kane-Mele model on a diamond-shaped nanoflake
with open boundaries. We have observed low-energy edge
plasmons circulating the sample, which can also be inter-
preted as a topological signature of the model in its in
collective excitations.

We would expect spin-polarized plasmons studied in
our work could possibly be detected by magneto-optic
Kerr effect (MOKE) in experiments [59]. Moreover, non-
reciprocity of edge spin-plasmons induced by Bz field
may find potential applications in novel plasmonic or
spintronic devices. In our future work, we want to study
robustness of the gapless edge spin-plasmons against
perturbations, such as a non-zero Rashba spin-mixing
coupling or localized impurities on the edge [35]. Due
to the spin-edge-locking of edge plasmons, We are in-
terested in engineering spin-plasmons on different local
edges via inhomogeneous substrate screening [55]. More-
over, we are also interested in further exploring plasmons,
or other types of electronic collective excitations, in a
three-dimensional topological system, such as Bernevig-
Hughes-Zhang (BHZ) model [60].
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Appendix A: Topological origin of gapless edge
plasmons in Kane-Mele ribbon structure

We have observed high-energy bulk plasmons as well
as gapless edge plasmons in the QSH phase of the Kane-
Mele ribbon structure from the dispersions shown in
Fig. 10(a). Here we demonstrate that these gapless edge
plasmons have topological origin in the sense that they
are directly originated from topological conducting edge
states in the single-electron band structure. To this end,
we apply the method of decomposing the full polarization
function, denoted as χfull

0 , into the edge part (involving
transitions only within conducting edge bands) denoted

as χedge
0 and the rest part involving other bulk bands.

FIG. 10. (a) Plasmon dispersions of the Kane-Mele ribbon
in the QSH phase. (b) Electron energy loss spectrum, i.e.
EELS(qy = π/8L, ω), of the Kane-Mele ribbon in the QSH
phase evaluated with full susceptibility χfull

0 and edge bands
susceptibility χedge

0 , respectively.

Such a decomposition has been introduced in [35] in or-
der to disentangle the bulk-states and edge-states contri-
butions to plasmonic excitations in a topologically non-
trivial system. In Fig. 10(b) we show the EELS(ω, qy) for
the QSH phase at a small momentum transfer qy = π/ 8L,

using χfull
0 and χedge

0 respectively. Comparing both spec-

tra, we can see that χedge
0 qualitatively reproduces the

low-energy part (ω < 2.5 eV) of the full spectrum with
the full polarization χfull

0 considered. This indicates that
the low-energy plasmonic excitations are dominated by
electronic edge states. As we have already confirmed in
the main text, both conducting electronic states and gap-
less plasmon modes are strongly localized along the edge
of the ribbon. Therefore, gapless edge plasmons indeed
have topological origin.

Appendix B: Plasmons in a large-bulk-gap QSH
Kane-Mele ribbon with external magnetic field Bz

We parameterize a QSH Kane-Mele ribbon with a large
bulk band gap by increasing the diagonal spin-orbit cou-
pling to tSO = 0.15t (Eq. (6)). This makes bulk energy
bands to be further away from conducting edge states
at the Fermi level. In this scenario, a small external
magnetic field Bz will shift energy bands, but will not
significantly affect the edge plasmon excitation and real-
space localization. In Fig. 11(a) we show the EELS along
qy = π/8L (same as the one in the main text) for differ-
ent strength of the magnetic field Bz. As we can see,
the edge plasmon excitation energy does not change very
much, and its real-space charge modulation patterns for
both spin components are still strongly localized at the
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FIG. 11. (a) EELS of the QSH Kane-Mele model along the
momentum transfer qy = π/8L in the presence of external
magnetic field Bz of different strengths. Spin-orbit interaction
in the numerical calculation here is tSO = 0.15 t. The inset
shows the electronic band structure with Bz = 0.15t. (b) and
(c) are real-space charge modulation patterns of two spin-
plasmons excited at “P” with Bz = 0.15t. They are still
strongly localized on edges. (d) shows a slightly decreasing
weight of charges on the edge for the plasmon mode “P” with
increased strength of the field.

edges of the ribbon. A quantitative description of the
edge charge weight with increasing magnetic field up to
Bz = 0.15t is shown in Fig. 11(d). We can see the max-
imum change is only about 2%. In this situation, edge
plasmons are quite insensitve to the external magnetic
field Bz.

Appendix C: Plasmonic excitations in the
graphene-like honeycomb lattice

Instead of only discussing topological insulators, plas-
monics has been investigated in different materials like
graphene[61, 62] and α−T3 model [63, 64]. In this section,
we will analyze plasmons in a graphene-like model with
a simple zigzag nano-ribbon (ZNR) structure as a com-
pared benchmark, considering the tight-binding Hamil-
tonian,

Ĥ = t
∑
<i,j>

c+i cj , (C1)

where < i, j > represents nearest neighbor sites on the
honeycomb lattice, and t is the corresponding hopping
parameter. In Fig.12 we show results for a nanoribbon
with 16 atoms in the unit cell. We first inspect the single
particle energy bands, shown in Fig.12(a), and wave func-
tions at particular momenta, shown in Figs.12(b) and (c).
The finite size of the nanoribbon produces confinement of
the electronic states in the regions near the Dirac points.
The two bands in the gap overlap to form a state around
K/L = π. By plotting the combined wave functions, we
find that these zero-energy states in Fig.12(c) localize at
the edges of the strip-like unit cell, whereas the other,

higher energy, wave functions at the same momentum
are confined to the bulk. The two bands of the localized
edge states that occur between K and K’ in Fig.12(a)
are affected twofold by the finite width, i.e., they merge
and are slightly offset from zero[65].

FIG. 12. (a): Single particle energy spectrum of the tight-
binding nano-ribbon with zigzag edges. (b)-(c): Probability
density of two wave functions (|ψ|2) at momentum K = π/L.
(d): Electron energy loss spectrum (EELS) of the ribbon
structure in the first Brillouin zone with periodic boundary in
the X direction (parallel to the edges) and open boundaries
in the Y direction (perpendicular to edges).

We now examine plasmonic excitations in this basic
model and calculate the EELS along the Y-direction in
momentum space while accounting for the spin degener-
acy. Fig.12(d) shows the EELS in the first Brillouin zone,
where we observe clusters of plasmonic branches in dif-
ferent energy regions. At high energies (ω > 5 eV), there
are 8 plasmonic bands corresponding to the 8 A-sites in
the unit cell. Similarly, there are also 8 plasmonic bands
at intermediate energies (ω ∈ {2 eV, 5 eV}), including an
arrow-shaped band at the exact center of the first Bril-
louin zone. In the low energy region (ω < 2 eV), we ob-
serve a continuum of excitations as well as several quasi-
bands. By analyzing the single particle energy structure
and the EELS of the ribbon, we conclude that the bulk
energy bands and the geometry of the model are the orig-
inal source of the high and intermediate energy plasmonic
excitations. In contrast, the low energy continuum is due
to the edge modes.

Appendix D: Effects of small Rashba hopping on the
edge plasmons

For the calculations in the main text, we set the Rashba
term tR = 0 in the Kane-Mele model Hamiltonian [6],
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which allows us to simply tune the phase of the model
by the ratio of tSO and tv. In fact, according to the
phase diagram of the QSH insulator (Fig.1 in [4]), a suf-
ficiently small Rashba term does not change the phase of
the system, and therefore has limited impact on gapless
edge plasmons as well. Here we demonstrate this point
by evaluating plasmonic dispersions in Kane-Mele model
with a small Rashba term tR = 0.05t while the system
remains in the QSH phase (tSO = 0.05t, tv = 0.1t).

FIG. 13. (a) Electronic band structure of the Kane-Mele
model on a ribbon with zigzag terminations for tSO = 0.05t,
tv = 0.1t, and a non-zero Rashba hopping tR = 0.05t.
(b) Electron energy loss spectra (EELS) of the same model.
Green dots depict the plasmon dispersion without the Rashba
hopping term for comparison.

In Fig. 13, we can that both the single-electron band
structure and the plasmon dispersions are barely affected
by this small Rashba term, comparing to the situation
with zero Rashba coupling in the main text (Figs. 2
and 3). For better comparison, we show green dots in
Fig 13(b) representing the dispersion of edge plasmons
without Rashba term. The dispersion nearly overlap with
the situation of non-zero Rashba hopping tR = 0.05t.
We therefore conclude that a sufficiently small Rashba
hopping does not significantly change the single electron
spectrum and plasmon dispersions.

Appendix E: Symmetries of Kane-Mele model with
and without external magnetic field

In this section we briefly show some relevant symme-
try operations applied to the models we have discussed
in the main text.
(1) Time reversal (TR) symmetry of the Kane-Mele
model: we consider the Hamiltonian (6) written in the
spin basis as

H =

(
H↑↑ H↑↓
H↓↑ H↓↓

)
(E1)

where

H↑↑ = t
∑
〈i,j〉

c†i cj + itSO
∑
〈〈i,j〉〉

νijc
†
i cj + tv

∑
i

ξic
†
i ci,

(E2)

H↓↓ = t
∑
〈i,j〉

c†i cj − itSO
∑
〈〈i,j〉〉

νijc
†
i cj + tv

∑
i

ξic
†
i ci,

(E3)

H↑↓ = −tR
∑
〈i,j〉

d̃ijc
†
i cj , (E4)

H↓↑ = tR
∑
〈i,j〉

d̃∗ijc
†
i cj . (E5)

Here d̃ij = dxij− id
y
ij and “∗” indicates complex conjuga-

tion. We notice that H↑↑ = H∗↓↓ and H↑↓ = −H∗↓↑. Now

we apply TR operator T = iσyK to the Hamiltonian (E1)
and we get

T
(
H↑↑ H↑↓
H↓↑ H↓↓

)
T −1 =

(
H∗↓↓ −H∗↓↑
−H∗↑↓ H∗↑↑

)
= H. (E6)

The Kane-Mele model Hamiltonian (6) is TR invariant.
(2) Broken TR symmetry by the Bz field: we consider
the additional term in the Hamiltonian due to the exter-
nal field in z-direction which is

∑
i c
†
iBzszci. This term

breaks the TR symmetry because

T σzT −1 = iσyKσz(−i)σyK = σyσzσy = −σz. (E7)

(3) Broken TR symmetry by the Bx field: we consider
the additional term in the Hamiltonian due to the exter-
nal field in x-direction which is

∑
i c
†
iBxsxci. This term

breaks the TR symmetry because

T σxT −1 = iσyKσx(−i)σyK = σyσxσy = −σx. (E8)

(4) BrokenMy symmetry by the Bz field: in our ribbon
structure with zigzag edges (Fig. 1), the mirror reflection
My does not change the type of sub-lattice but just flips
the spin. The Zeeman energy term due to Bz is

Hz =
∑
i

c†iBzszci = Bz
∑
i

(c†i↑ci↑ − c
†
i↓ci↓). (E9)

Hz becomes −Hz after mirror reflection My.
(5) PreservedMy symmetry by the Bx field: the Zeeman
energy term due to Bx is

Hx =
∑
i

c†iBxsxci = Bx
∑
i

(c†i↑ci↓ + c†i↓ci↑). (E10)

Hx is invariant after mirror reflection My.
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[6] H. A. Kramers, Théorie générale de la rotation param-
agnétique dans les cristaux, Proc. Acad. Amst 33 (1930).

[7] D. Vanderbilt, Berry phases in electronic structure the-
ory: electric polarization, orbital magnetization and topo-
logical insulators (Cambridge University Press, 2018).

[8] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Ex-
perimental observation of the quantum Hall effect and
Berry’s phase in graphene, Nature 438, 201 (2005).

[9] B. A. Bernevig and S. C. Zhang, Quantum spin hall ef-
fect, Physical Review Letters 96, 106802 (2006).

[10] B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum
spin hall effect and topological phase transition in HgTe
quantum wells, Science 314, 1757 (2006).

[11] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buh-
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