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We study the quantum-classical correspondence for systems with interacting spin-particles that are
strongly chaotic in the classical limit. This is done in the presence of constants of motion associated
with the fixed angular momenta of individual spins. Our analysis of the Lyapunov spectra reveals
that the largest Lyapunov exponent agrees with the Lyapunov exponent that determines the local
instability of each individual spin moving under the influence of all other spins. Within this picture,
we introduce a rigorous and simple test of ergodicity for the spin motion, and use it to identify when
classical chaos is both strong and global in phase space. In the quantum domain, our analysis of the
Hamiltonian matrix in a proper representation allows us to obtain the conditions for the onset of
quantum chaos as a function of the model parameters. From the comparison between the quantum
and classical domains, we demonstrate that quantum quantities, such as the local density of states
(LDoS) and the shape of the chaotic eigenfunctions written in the non-interacting many-body basis,
have well-defined classical counterparts. We also find a relationship between the Kolmogorov-Sinai
entropy and the width of the LDoS, which is useful for studies of many-body dynamics.

I. INTRODUCTION

The quantum-classical correspondence (QCC) princi-
ple is one of the deepest concepts of physics and has
attracted significant attention since the birth of quan-
tum physics. The different nature between classical and
quantum mechanics is at the origin of the QCC problem;
this difference being highly pronounced in deterministic
Hamiltonian systems. One of the first rigorous results
connecting quantum and classical physics that is often
mentioned in the current literature is the Ehrenfest the-
orem [1]. It states that narrow quantum packets propa-
gate along the classical trajectories for a finite timescale
during which the spread of the packets in the phase space
can be neglected.

Until the birth of the theory of quantum chaos, the
Ehrenfest theorem served as the main tool for establish-
ing the QCC. However, the application of this theorem
to quantum systems that exhibit chaotic motion in the
classical limit led to unexpected results. As analytically
shown in [2], when the system is classically chaotic, the
quantum packets spread exponentially fast resulting in a
very short physical timescale tE on which there is com-
plete correspondence between the quantum and classical
descriptions of the deterministic systems’ behaviors (see
also discussion in [3]).

The estimate of the Ehrenfest time for the simplest
one-dimensional chaotic systems is given by the expres-
sion tE ∝ λ−1 ln(1/~eff), which depends on both the clas-
sical Lyapunov exponent λ and the effective quantum pa-
rameter ~eff proportional to the Planck constant ~. This
expression reveals two cornerstones in the theory of the

QCC. The first one is that the more unstable the classical
motion is, the shorter the time tE becomes. The second
is that by moving deeper into the quantum region, the
Ehrenfest time tE shrinks.

The first numerical study of a paradigmatic model of
classical and quantum chaos, the kicked rotor [4], re-
vealed another timescale, tD � tE , on which there is
a good QCC for the width of the quantum packet as it
diffusively spreads in momentum space. The process of
quantum diffusion gradually slows down, and for times
t� tD, a complete saturation takes place, while classical
diffusion continues. The semi-analytical approach devel-
oped in [3, 5] showed that the saturation results from the
localization of the eigenstates that are involved in the
dynamics. Due to the finite size of the eigenstates in the
infinite momentum space, only a fraction of the phase
space can be covered by the quantum packet. Measuring
the localization length l∞ of the eigenstates by projecting
them onto the unperturbed basis in which the dynam-
ics is explored, it was found numerically and explained
semi-analytically that l∞ is proportional to the classical
diffusion coefficient Dcl. This direct link between clas-
sical diffusion and the localization of the eigenstates is
an important finding in the theory of quantum chaos. It
became known as dynamical localization and is observed
in various disordered models.

As a result of the discovery of the two timescales on
which the chaotic properties of motion get manifested
in a quantum system, tE and tD, the question arose
about when the correspondence principle holds. Local
properties of chaos are evident in quantum systems on
timescales t . tE , while for global properties, this hap-
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pens for t < tD. This means that in quantum systems,
manifestations of chaos depend on the time at which the
evolution of the system is considered. Thus, we have
to agree that there is no unique answer to the validity
of the correspondence principle itself. The answer does
not depend only on the generally accepted classical limit
~eff → 0, but also on how the limit is taken, whether
before or after the time limit t → ∞. If, for example,
we fix ~eff and let time go to infinity first, the correspon-
dence principle will be violated. If, on the other hand,
we assume that the correct procedure is to take ~eff → 0
first, the course of action becomes to fix a finite time
when taking ~eff → 0, and only next take t→∞, there-
fore “saving” the correspondence principle as applied to
chaotic systems. (The question of which limit should be
taken first arises also in classical physics when investi-
gating integrable nonlinear systems with a large number
N of degrees of freedom, the issue in this case being the
order of the limits N →∞ and t→∞.)

Taking ~eff → 0 first was the solution to the QCC prob-
lem proposed by Chirikov at the beginning of the quan-
tum chaos theory [3]. According to Chirikov, chaotic
properties are observed in quantum systems at finite
times only, be the time short or long. Similar points have
been partially addressed in several recent studies [6–25]
that relate unstable classical motion with the exponen-
tially fast evolution of quantum observables, including
the out-of-time ordered correlator (OTOC) [26]. In these
works, the QCC is mostly restricted to short times, typ-
ically on the same order as the Ehrenfest time.

Further numerical studies comparing classical and
quantum diffusion [27] led to the conclusion that the ob-
served quantum diffusion, although nicely reproducing
the global properties of classical diffusion, is not true dif-
fusion, because quantum diffusion is reversible in time,
in contrast to diffusion in classical physics. By numeri-
cally reversing the evolution, the initial quantum packet
is completely recovered, while this is not possible in a
classical system due to the exponential sensitivity of the
chaotic motion to any weak perturbation. In essence,
chaos that occurs in quantum systems at times t > tE
for some global observables has a different nature from
chaos emerging in classical physics.

There have been several efforts to relate essential prop-
erties of a (pseudo)-chaotic quantum dynamics to the
statistical properties of spectra and eigenstates. One of
the earliest suggestions in this direction was Berry’s con-
jecture that for quantum billiards fully chaotic in the
classical limit, the eigenstates may be treated as random
superpositions of plane waves [28]. In this sense, quan-
tum chaos can be understood as the complicated (ran-
dom) structure of the stationary states in a physically
chosen basis (see also [29–34]). As for the eigenvalues,
the properties of the energy spectra of quantum systems
that are strongly chaotic in the classical limit should be
comparable to those determined by random matrices of
a specific symmetry [35, 36].

The interest in the statistical properties of the energy

spectra of complex quantum systems emerged before the
birth of quantum chaos. It was motivated by experi-
mental studies of heavy nuclei and many-electron atoms
(see, e.g., [37, 38] and references therein). One of the
first questions addressed was the shape of the distribu-
tion P (s) of the spacings s between nearest energy levels
in relation to the results from experiments with nucleon
scattering on nuclei. It was observed that the probabil-
ity of small spacings decreases with s, thus manifesting
repulsion between nearest neighboring energy levels. Af-
ter intensive discussions about the form of P (s), Wigner
suggested the expression that is nowadays known as the
Wigner surmise [39], obtained with the use of simple scal-
ing arguments. Later, he indicated that the form of P (s)
could be explained within the theory of random matrices.
Further studies of random matrices (see the collection of
papers in [40]) showed that the degree of repulsion for
small spacings s depends on the symmetry of the random
matrices or, equivalently, on the underlying symmetry of
the physical systems Hamiltonians. Although there is no
analytical expression valid for any value of s, it was nu-
merically shown [41] that an exact form written as an
infinite sum is quite close to the approximate expression
given by the Wigner surmise.

The relationship between the properties of the energy
spectra of quantum systems that are strongly chaotic
in the classical limit and the spectra of random matri-
ces emerged in studies of billiards [35, 36] and was sup-
ported with semiclassical analysis [42]. In the other limit
of completely integrable classical systems, it was under-
stood [43] that the form of P (s) can be approximately
described by the Poisson distribution, P (s) ∼ exp(−s).
This distribution was analyzed within a semiclassical ap-
proach to quantum systems in [28]. The Berry-Tabor
conjecture [28] of the Poisson form of P (s) is consid-
ered a generic property of integrable quantum systems
with a classical limit, but despite intensive mathemat-
ical studies (see [44–46] and references therein), it has
not yet been rigorously proved. Recent studies [47] of
the Lieb-Liniger quantum model, known to be integrable
and solvable with the Bethe ansatz [48, 49], have shown
that the Berry-Tabor conjecture fails due to the existence
of underlying correlations between energy levels. Other
works that have discussed the onset of level repulsion in
integrable systems include Refs. [50–54].

As one moves from few- to many-body systems, the
analysis of the correspondence principle gets more chal-
lenging [18, 19, 55–61]. With regard to classical systems,
this is primarily due to the structure of the multidimen-
sional phase space, which becomes practically inaccessi-
ble for a detailed study. On the quantum side, the main
problem is the dimension of the Hilbert space, which
grows exponentially fast with the number of particles and
sites. As a result, many questions about the QCC applied
to many-body systems remain unanswered.

The purpose of this paper is to resolve the issue of the
QCC for many-body systems, at least partially, by focus-
ing on the strongly chaotic regime. Our study is based
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on the semianalytical approach that was used to establish
the criteria for the onset of quantum chaos and statisti-
cal relaxation in isolated quantum systems of interacting
Fermi and Bose particles, and which were confirmed by
numerical experiments [34, 62–64].

We consider a one-dimensional spin model that is rel-
evant to experiments with ion traps, where the range
of the interactions can be tuned [65–68]. We show that
quantum functions used in the analysis of quantum dy-
namics, quantum chaos, and localization have classical
counterparts, and the QCC between them is excellent in
the region of quantum chaos. We also find a direct rela-
tionship between the rate of quantum information spread
and the Kolmogorov-Sinai entropy, which is a classical
quantity obtained by summing the positive Lyapunov ex-
ponents.

The paper is organized as follows. In Sec. II, we de-
scribe our one-dimensional classical system with L in-
teracting spins and determine the range of parameters
chosen for our numerical simulations. As we explain, the
analysis of the system’s behavior in the multidimensional
phase space is simplified due to additional integrals of
motion. The phase space of the system represents a set of
L three-dimensional (3D) spheres, each one correspond-
ing to one spin. The motion of each spin is limited by a
3D phase space and is described by a 3D equation with
an external perturbation determined by the behavior of
the surrounding spins. As a result, the degree of instabil-
ity of the motion of a single spin is effectively determined
by the positive Lyapunov exponent associated only with
that individual spin and not with the entire system of
spins. This allows us to relate the maximal Lyapunov
exponent of each single spin with the Kolmogorov-Sinai
entropy of the whole system. In addition, we are able to
obtain a rigorous and simple definition of ergodicity for
the entire classical system by examining the motion of
each spin on its 3D sphere.

Section III describes the corresponding quantum sys-
tem and gives an estimate of the critical interaction
strength above which the behavior of the quantum sys-
tem can be considered chaotic. The estimate is done
before diagonalization and is based on the structure of
the Hamiltonian matrix represented in a properly chosen
noninteracting basis. Numerical analysis of level statis-
tics supports the analytical estimates that we obtain.

In Sec. IV we show that it is possible to define clas-
sical analogues to functions that are widely used in the
analysis of quantum systems. One of these functions is
known in nuclear physics as strength function and in solid
state physics as local density of states (LDoS). The other
refers to the shape of the eigenfunctions (SoE) and is
used to quantify the eigenstates as either localized or de-
localized, and as regular or chaotic. The LDoS and the
SoE for classical systems are obtained by numerically in-
tegrating the classical equations of motion [69, 70]. The
possibility to talk about the classical LDoS and the classi-
cal SoE remains little known, despite some previous stud-
ies [71–75]. Our numerical data demonstrate an excellent

correspondence between the classical and quantum func-
tions above the quantum chaos border. The knowledge
of these functions is extremely important for the descrip-
tion of the dynamical properties of the quantum system
and its relaxation into a state that can be described sta-
tistically [34].

Inspired by the QCC, several results have been ob-
tained relating the behavior of quantum observables –
such as survival probability, Loschmidt echo, different
types of entropies, and OTOCs – with the maximal Lya-
punov exponent in the region of strong chaos [7, 10, 11,
13, 17, 22, 25, 76]. However, many-body classical sys-
tems are characterized by the full spectrum of Lyapunov
exponents and many features of global dynamics can be
thought in terms of the sum of all positive Lyapunov
exponents [77], that is, the Kolmogorov-Sinai entropy.
This prompts us to search for a link between quantum
dynamics and the Kolmogorov-Sinai entropy, a direction
taken also in [78–80]. It was recently shown that the
width of the quantum LDoS determines the dynamical
wave packet spreading in the non-interacting many-body
Hilbert space [64, 81] and is related with the timescale
for equilibration. In Sec. V, we then compare the width
of the LDoS with the Kolmogorov-Sinai entropy and find
a direct correspondence between the two. Conclusions
are given in Sec. VI.

II. CLASSICAL MODEL

We consider a one-dimensional classical model of L in-
teracting spins described by the following Hamiltonian,

H = H0 + V =

L∑
k=1

BkS
z
k −

L−1∑
k=1

L∑
j>k

JjkS
x
j S

x
k , (1)

where

Bk ≡ (B0 + δBk) ,

and

Jjk ≡
J0

|j − k|ν
.

The angular momentum I2 = |~Sk|2, for k = 1, ..., L, is
fixed. We choose I = 1, so that time has the dimension
of inverse energy. In Eq. (1), Bk are the frequencies of
the noninteracting motion described by the Hamiltonian
H0. They are slightly detuned by random values of δBk,
with |δBk| ≤ δW � B0, to avoid degeneracies in the
corresponding quantum model. We consider a single set
of random values of δBk, so the model is perfectly deter-
ministic, in the sense that no averages over different real-
izations of Hamiltonians are performed. The interacting
part of the Hamiltonian depends on the couplings Jjk be-
tween all pairs of spins and decays algebraically with the
distance between the spins with an exponent ν > 1. Even
though there is coupling between distant spins, techni-
cally speaking, since the model is one-dimensional and
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ν > 1, we are not considering long-range interactions.
Most of our results are obtained for the generic value of
ν = 1.4 and do not depend on this choice.

The classical equations of motion are obtained from
standard expressions written in terms of the Poisson
brackets and the Levi-Civita symbol εαβγ as{

Sαk , S
β
j

}
= δkjε

αβγSγk , (2)

from which we have

Ṡxk = {Sxk , H0} = −BkSyk ,

Ṡyk = {Syk , H} = BkS
x
k + Szk

∑
j 6=k

JjkS
x
j , (3)

Ṡzk = {Szk , V } = −Syk
∑
j 6=k

JjkS
x
j .

The numerical solution of the classical dynamics is
obtained by integrating, via the 9/8 Runge-Kutta algo-
rithm, the equations of motion in Eq. (3). To make the
comparison between quantum and classical dynamics as
close as possible, the initial conditions for the classical
system are chosen using random directions for the spins
in the Bloch sphere under either the constraint of (i) fixed
noninteracting energy in a sufficiently small microcanon-
ical energy range E0 − δE0 < H0 < E0 + δE0, or of (ii)
fixed total energy E−δE < H < E+δE. For each result,
we specify whether condition (i) or (ii) is used.

When analyzing the structure of the phase space of
model (1), it is important to take into account that in
addition to the total energy, there are L other integrals
of motion, namely the squares of the angular momenta
of each spin, which are fixed. In other words, the classi-
cal trajectory of each individual spin lies on a sphere of
unit radius, which is separate from the other spins. The
influence of the surrounding spins to the stability of an
individual spin can be regarded as an external perturba-
tion. From this viewpoint, the equation for the k-th spin
can be written as

S̈zk + Ω2
k(t)Szk = Fk(t), (4)

with the nonlinear time-dependent frequency

Ω2
k(t) =

∑
j 6=k

JjkS
x
j (t)

2

= J2
0

∑
j 6=k

Sxj (t)

|j − k|ν

2

, (5)

and the driving nonlinear force

Fk(t) =
∑
j 6=k

Jjk
[
BjS

y
j (t)Syk(t)−BkSxj (t)Sxk (t)

]
(6)

= J0

∑
j 6=k

BjS
y
j (t)Syk(t)−BkSxj (t)Sxk (t)

|j − k|ν
.

Equation (4) indicates that the z-component of each sin-
gle spin can be thought of as a parametric oscillator with
a time-dependent frequency Ωk(t) and under the force
Fk(t) that depends on the sum of the product of all x
and y spin components.

The picture above implies that, in addition to the sta-
bility of the motion of the total system consisting of L
oscillators (spins), one can ask about the stability of any
individual spin. Notice that the motion of a single spin is
itself nonlinear, but for weak interactions between spins,
the nonlinear terms can be treated perturbatively. This
representation of our model helps to understand the es-
sential properties of the motion. Specifically, in the weak
interaction limit, the motion of the Sz component of a
chosen oscillator can be considered separately from the
Sx and Sy components.

A somewhat similar model of parametric oscillators
was analyzed by Chirikov in his seminal paper [82, 83],
in which he discovered that the overlaps of nonlinear
resonances result in the phenomenon of chaotic motion.
These resonances appear in the second order of perturba-
tion theory, which complicates the analytical approach.
The rigorous analysis of such nearly-linear models of in-
teracting particles, where the nonlinearity is due to the
perturbative coupling with other degrees of freedom, is
still an open problem (see [84]).

In the following two subsections we study the proper-
ties of our system with the purpose of identifying, if any,
the region of maximal classical chaos. We also give a
physical insight of what maximal chaos actually means.

A. Lyapunov Analysis

To study the chaotic properties of the classical many-
body system, we perform the standard Lyapunov anal-
ysis, which consists in finding the Lyapunov spectrum
λ1, λ2, . . . λ3L [85]. We compute the whole Lyapunov
spectrum by integrating the variational equations to-
gether with the equations of motion [86, 87]. This is
done by choosing random initial conditions at a fixed
energy E. Since the length of each spin is a constant
of motion, L exponents are equal to zero. In addition,
due to the time-reversal symmetry, the eigenvalues sat-
isfy λk = −λ3L−k, for k = 1, ..L, hence there are only
L positive Lyapunov exponents. The spectrum is illus-
trated in Fig. 1 (a) for L = 7. Notice that the Lyapunov
exponents corresponding to k = 7 and k = 15 are very
close to zero, but are not zero.

From the Lyapunov spectrum, we obtain the
Kolmogorov-Sinai entropy, hKS, which is defined via the
Pesin theorem [88] as the sum of all positive Lyapunov
exponents,

hKS =

L∑
k=1

λ+
k . (7)

Our main interest is in the maximal Lyapunov exponent,
λmax. For two sufficiently close initial conditions on the
constant energy surface, the distance between the two
trajectories in the multidimensional phase space grows
exponentially in time with a rate given by λmax. Its in-
verse, 1/λmax, defines the shortest time-scale related to
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FIG. 1. (a) Lyapunov spectrum for L = 7 spins showing L
positive, L negative, and L null exponents. (b) Average (over
initial conditions) of the maximal Lyapunov exponent and av-
erage density of the Kolmogorov-Sinai entropy as a function
of the energy per spin, E/L, for two different system sizes
L. (c) Average Kolmogorov-Sinai entropy as a function of
J0 (in semilog scale) for different values of L [see legend in
(d)]. Inset: rescaled Kolmogorov-Sinai entropy as a function
of J0 showing the collapse into a single curve. (d) Average
Kolmogorov-Sinai entropy density vs average maximal Lya-
punov exponent for different values of L; same values of J0 as
in (c). Dashed line is the best linear fit (m is the slope) for

all data in the region λ
(L)
max < 0.8. Deviations from the linear

dependence appear for λ
(L)
max > 0.8, since this region is charac-

terized by large values of the interaction strength, J0 � B0.
In all panels: B0 = 1, δW = 0.2, and ν = 1.4. In (a)-(b):
J0 = 3. In (b): Average over an ensemble of 300 initial ran-
dom trajectories within a small energy window ±0.01 around
the indicated energy values in the x-axis. In (c)-(d): Fixed
energy |E| < 0.01 and the average is done over 103 initial
values of Sx,y,z.

the dynamical instability.

In what follows, we use the results in Fig. 1 to de-
scribe the direct relationship between the maximal Lya-
punov exponent and the Kolmogorov-Sinai entropy. In
particular, Fig. 1 (b) shows that both quantities are sim-
ilar functions of energy and Fig. 1 (d) demonstrates that
hKS/L ∝ λmax.

Generically, the Lyapunov exponents and the
Kolmogorov-Sinai entropy depend on the initial condi-
tions, such as the energy or the particular regions of the
energy surface, and on the chosen parameters L, B0, J0,
and the range of the interaction ν. To show this depen-
dence, we fix B0 = 1, which sets the energy scale, keep
ν = 1.4, choose a sufficiently large interaction strength
J0 = 3, and study in Fig. 1 (b) λmax and hKS as a func-
tion of the energy of the initial conditions. Here and
hereafter, the notation for the maximal Lyapunov expo-
nent, λmax, and for the Kolmogorov-Sinai entropy, hKS,
indicate the average values obtained within an ensemble

of random initial conditions with constant energy E. As
seen in Fig. 1 (b), both the maximal Lyapunov exponent
and the Kolmorogov-Sinai entropy are smooth increas-
ing functions of the energy density E/L. We therefore
choose E = 0 as the region of maximal dynamical in-
stability (chaos) for our further investigations. In the
numerical simulations E = 0 means −0.01 < E < 0.01.

It is important to note that fixing the value of the en-
ergy does not fix the degree of chaos, since we still have
the freedom to tune the interaction strength J0. This
is actually a subtle point that deserves better clarifica-
tions. Contrary to the common intuition, increasing the
inter-spin interaction strength, J0, while keeping the en-
ergy fixed at E = 0, does not increase the contribution
of the interacting part V in comparison with the non-
interacting part H0. Fixing the initial conditions to have
E = 0 means that |H0| ' |V |, so for any J0, both H0

and V remain on the same order of magnitude. Physi-
cally, changing the strength of the perturbation J0 while
keeping the energy E fixed just means exploring different
regions of the energy surface E = 0. That is, increas-
ing J0 corresponds to selecting a set of initial conditions
where, on average, the modulus of the z-magnetization,
|(1/L)

∑
k S

z
k |, also increases. This is a generic feature

found whenever one fixes the total energy rather than
changing the ratio between the interacting part (V ) and
the non-interacting part (H0) of the Hamiltonian.

Figure 1 (c) shows that the Kolmogorov-Sinai entropy
grows logarithmically with respect to the interaction
strength J0, even for small J0 < 1. To better under-
stand the dependence of hKS on the system size L, we
plot in the inset the density of the Kolmogorov-Sinai en-
tropy, hKS/L, as a function of J0. As one can see, the
data obtained for different values of L collapse into a sin-
gle curve, showing that the rescaling with respect to the
system size is excellent. These results should be com-
pared with those contained in [85], where an analogous
rescaling was found for the discrete nonlinear Schrödinger
chain.

For values of J0 that are not too large with respect to
B0, the (average) maximal Lyapunov exponent shows a
dependence on the interaction strength similar to that
of the density of Kolmogorov-Sinai entropy. To facilitate
the comparison, we plot one quantity as a function of
the other in Fig. 1 (d). There is a linear relation between
them, hKS/L = mλmax, where m ' 0.43 is the slope ob-
tained by the best linear fitting for not too large values
of λmax. This relationship is in agreement with the ap-
proximate linear dependence of the positive part of the
Lyapunov spectrum as a function of k seen in Fig. 1 (a).

Concerning the physical meaning of these results, let
us first point out that the dependence of both hKS and
λmax on ln J0, as evident from Fig. 1 (c) and Fig. 1 (d),
raises the question of the contribution of each spin to the
growth in time of the phase space volume. Indeed, since
a coarse-grained volume V in the phase space is expected
to grow exponentially in time with an exponent given by
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FIG. 2. Distance between two close trajectories in time. Black
thick line is the Euclidean distance in the 3L dimensional
space, while coloured lines stand for the distance in the 3D
space for different spin numbers k = 1, .., L, where L = 7. The
parameters are α = 1.4, B0 = 1, δW = 0.2, initial energy
E = 0 ± 0.01, and interaction strength J0 = 0.3 (a) (weak
chaos) and J0 = 3 (b) (strong chaos). Only one trajectory is
considered.

hKS [77, 89], we should have

V(t) = V(0) ehKSt ∝ [JL0 ]t. (8)

The equation above indicates that even in the presence
of a strong inter-spin interaction, each spin contributes
individually to the growth of this volume. This behavior
must be related with the presence of the L constants
of motion, being therefore generic for spin systems. It
would be interesting to test this result in other classical
spin chains.

Another important point that we raise, motivated by
the equations of motion [Eq. (4)] for the single spins,
is the relationship between the maximal Lyapunov ex-
ponent of the multi-dimensional problem and the dy-
namical instability of the trajectory of each individual
spin confined to its 3D-sphere. To address this ques-
tion, we compare the dynamics of the Euclidean distance
between two initially close trajectories for each spin k,

∆k(t) = ||~Sk(t)− ~S′k(t)||, with the Euclidean distance for

the many-dimensional problem, ∆3L = [
∑L
k=1 ||~Sk(t) −

~S′k(t)||2]1/2. The results are shown in Fig. 2 for two values
of the interaction strength J0. Despite fluctuations, one
sees that the exponential growth of ∆k(t) for each spin
k coincides with the maximal Lyapunov exponent of the
many-body spectrum. This means that the timescale for
the dynamical instability on each individual Bloch sphere
is also described by the maximal Lyapunov exponent of
the multidimensional problem, a result that is far from
trivial.

B. Ergodicity of the Classical Motion

The finding above that the motion of each spin is char-
acterized by the maximal positive Lyapunov exponent
means that the motion is locally strongly chaotic. How-
ever this does not imply that global properties, such as

the relaxation of the whole system of L spins, follow the
predictions of statistical mechanics. For this reason, we
now investigate whether our system exhibits ergodicity.
Apart from simple specific systems, such as billiards and
two-dimensional maps, a mathematical proof of ergodic-
ity for interacting many-body systems is still missing.
The usual numerical approach is to search for conse-
quences of ergodicity, such as the decay of correlations
functions, which is still not enough to claim ergodicity.

Here, we introduce a very simple and rigorous way to
study the onset of ergodicity. Since the motion of each
spin is confined to its 3D-sphere, a rigorous definition of
ergodicity means that the distribution of each one of the
three Cartesian components of each single spin should
follow the expression for each component of the random
eigenstates of N -dimensional full random matrices [90,
91],

P (S) =
Γ(N/2)√

πΓ((N − 1)/2)
(1− S2)(N−3)/2 (9)

where Γ(N) is the Gamma function. In the case of
N → ∞, this expression leads to the Gaussian distribu-
tion of the eigenvectors components. Since in our case we
have N = 3, the ergodic distribution implies the constant
result P (S) = 1/2. This method significantly simplifies
the study of ergodicity for spin models.

To test ergodicity in our system, we consider a single

initial condition u(0) = {~S1(0), .., ~SL(0)} at a fixed en-
ergy E = 0 and compute the trajectory u(t) under the
full Hamiltonian H for a very long time, T = 105. We
then build the distribution obtained by sampling each
component Skα(tj), where α = x, y, z and k = 1, .., L, at
different times tj = j/T , j = 1, .., T . The interval [−1, 1]
in which each single spin component can vary is divided
in 102 bins and we count the number of times each sin-
gle spin component visits each single bin. We say that
the motion is ergodic when the distribution P (Skα) = 1/2
within the statistical error.

The results for the distributions P (Sx), P (Sy), and
P (Sz) for various interaction strengths J0 are shown in
Fig. 3 and Fig. 4 for L = 6 and L = 60, respectively. Each
color represents a different spin number k = 1, ..., L.

In Figs. 3 (a)-(c), where chaos is weak, the distribution
of Sz is clearly different from that of the components Sx

and Sy. This can be understood from the equations of
motion, Eq. (4). In the absence of interaction, the motion
of each spin is simply a rotation about the z-axis. In the
presence of weak interaction strength J0, these oscillators
get coupled, resulting in a motion that covers ergodically
a portion of the surface of the 3D sphere. For even larger
J0, the motion eventually covers the whole surface. Look-
ing at Fig. 3, as J0 increases to J0 = 1 [Figs. 3 (d)-(f)]
and J0 = 3 [Figs. 3 (g)-(i)], P (Sz) becomes more similar
to P (Sx) and P (Sy), but the distributions do not get flat,
so the motion cannot be considered truly ergodic for this
system size (L = 6), even when the interaction strength
is large (by significantly increasing J0, the distributions
become even more curved).
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FIG. 3. Probability distribution functions P (Sx) [(a), (d),
(g)]; P (Sy) [(b), (e), (h)], and P (Sz) [(c), (f), (i)] for J0 = 0.3
[(a)-(c)], J0 = 1 [(d)-(f)], and J0 = 3 [(g)-(i)]. Solid horizon-
tal black line indicates the theoretical result for ergodicity,
P (Sx,y,z

k ) = 1/2. Parameters: L = 6, B0 = 1, ν = 1.4,
δW = 0.2. Initial conditions: random spins with energy
E = 0. Integration time T = 105. Only one trajectory is
considered.

0

0.5

1

P

0

0.5P

-1 -0.5 0 0.5

S
x

0

0.5P

-1 -0.5 0 0.5

S
y

-1 -0.5 0 0.5 1

S
z

J
0
=0.3J

0
=0.3

J
0
=1

J
0
=3

J
0
=0.3

J
0
=1 J

0
=1

J
0
=3 J

0
=3

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. Probability distribution functions P (Sx) [(a), (d),
(g)]; P (Sy) [(b), (e), (h)], and P (Sz) [(c), (f), (i)] for J0 = 0.3
[(a)-(c)], J0 = 1 [(d)-(f)], and J0 = 3 [(g)-(i)]. Solid horizontal
black line (clearly visible in Fig.3) indicates the theoretical
result for ergodicity, P (Sx,y,z

k ) = 1/2. Parameters: L = 60,
B0 = 1, ν = 1.4, δW = 0.2. Initial conditions: random spins
with energy E = 0. Integration time T = 105.

By increasing the system size L, our data in Fig. 4
show a clear onset of ergodicity provided the interaction
strength is strong enough, J0 & 1. Therefore, ergodicity
for the motion of any single spin requires a large number
of spins. A possible reason for the lack of ergodicity for
L = 6 is the presence of stability islands due to non-
linearity. This has been observed for L = 2 in Ref. [71]

and references therein.
We reiterate that to have strong statistical properties

one should have both strong chaos, signalled by a positive
maximal Lyapunov exponent, and ergodicity.

III. QUANTUM MODEL

Upon quantization we have, for each spin,

|~S2| = ~2S(S + 1) = 1,

where S is the quantum spin number and the z-
component of the spin has the values ~s with s =
−S,−S+1..., S−1, S. For simplicity, we only consider in-
teger spin numbers S. Here, and below ~ = 1/

√
S(S + 1)

plays the role of an effective Planck constant. In other
words, the classical limit is obtained for large spin num-
bers S � 1.

We build the many-body Hilbert space of the total
quantum Hamiltonian,

Ĥ = Ĥ0 + V̂ , (10)

using the z-representation, where the basis |n〉 cor-
responds to the many-body eigenstates of the non-
interacting Hamiltonian Ĥ0 and have non-interacting en-

ergies E
(0)
n ,

Ĥ0 |n〉 =

L∑
k=1

(B0 + δBk) Ŝzk |n〉 ≡ E(0)
n |n〉 , (11)

with

|n〉 = |s1, ..., sk, ..., sL〉,

and

Ŝzk |n〉 = Ŝzk |s1, ..., sk, ..., sL〉 = ~sk|s1, ..., sk, ..., sL〉.
The interacting part of the classical Hamiltonian (1) is
written in terms of operators as

V̂ =

L∑
j>k

L−1∑
k=1

J0

|j − k|ν
Ŝxj Ŝ

x
k . (12)

The interparticle interaction is computed by taking
into account that Ŝxj = (Ŝ+

j + Ŝ−j )/2 and

Ŝ±k |s1, ..., sk, ..., sL〉 =

~
√
S(S + 1)− sk(sk ± 1)|s1, ..., sk ± 1, ..., sL〉.

(13)

The two-body interaction in Eq. (12) can be written as

V̂ = V̂in + V̂out, where

V̂in =
∑
j 6=k

J0

4|j − k|ν
(
Ŝ+
j Ŝ
−
k + Ŝ−j Ŝ

+
k

)
(14)

and

V̂out =
∑
j 6=k

J0

4|j − k|ν
(
Ŝ+
j Ŝ

+
k + Ŝ−j Ŝ

−
k

)
. (15)
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The term V̂in couples spin configurations that have
the same total magnetization along the z-axis, M̂z =∑L
k=1 Ŝ

z
k , so it does not change the value of the quantum

number µz = −LS,−LS + 1, ..., LS − 1, LS. The term
V̂out couples basis vectors that differ by two excitations,
so it changes the total magnetization by a factor of two,
µz → µz ± 2. The eigenvalues can then be divided as
belonging to an even (in units of ~) or odd value of the
total z-magnetization. The model is not integrable for
any choice of the parameters J0 6= 0, B0, ν, 6= 0.

A. Hamiltonian Matrix Structure and Quantum
Chaos Border

Information about the structure of the Hamiltonian
matrix is fundamental for a complete description of the
system in terms of quantum chaos [34]. From the struc-
ture of the matrix, one can estimate the quantum chaos
border, that is, the interaction strength necessary to pro-
duce chaotic eigenstates and thus relaxation and even-
tually thermalization [34, 92]. The full analysis of the
Hamiltonian matrix, eigenvalues, and eigenstates pro-
vides a more complete picture than relying only on the
statistics of the spacings between neighboring energy lev-
els.

We order the many-body noninteracting states from
low to high energies and analyze the structure of the
Hamiltonian matrix in two representations. The site rep-
resentation is used in Fig. 5 (a), where the label n in the
axis indicates a many-body noninteracting state |n〉 and

each colored dot marks a nonzero element 〈n|Ĥ|m〉 6=
0. In Fig. 5 (b), each dot indicates again an element

〈n|Ĥ|m〉 6= 0, but the labels in the x- and y-axes are

now the noninteracting energies E
(0)
n . This noninteract-

ing energy representation is more physical and it allows
for generalizations to other many-body models.

To provide a detailed analysis of the Hamiltonian ma-
trix, let us discuss first its noninteracting part Ĥ0, which
commutes with M̂z. This means that in the many-body
Sz-representation the H0 matrix has a block-diagonal
structure with 2SL + 1 blocks, each block being asso-
ciated with a quantum number µz. The block structure
is indeed observed for the diagonal elements in Fig. 5 (a)
and Fig. 5 (b).

All levels belonging to a single block would be degener-
ate if δBk = 0. Instead, we have random |δBk| ≤ δW �
B0, so each block of noninteracting levels forms an energy
band whose maximal width is estimated to be ≈ 2LδW .
This can be confirmed by considering the central block
with µz = 0 (which is the largest block) and a generic
state |n0〉 = |s1, ..., sL〉 belonging to it. The noninteract-
ing energy of this state is given by

〈n0| Ĥ0 |n0〉 = ~
∑
k

siδBk,

which is maximized for sk = S and δBk = δW , so that

FIG. 5. Structure of the full Hamiltonian in the site repre-
sentation (a) and in the energy representation (b). The block
diagonal structure is evident. In (b), the red vertical and
horizontal lines indicate multiples of ~B0. For both panels:
B0 = 1, δW = 0.04, J0 = 3, ν = 1.4, L = 4, S = 2.

E
(0)
max = ~SLδW , E

(0)
min = −~SLδW , and the energy size

of the central block can be estimated as

∆0 = E(0)
max − E

(0)
min ' 2~SLδW ' 2LδW. (16)

Since the energy distance between the diagonal blocks is
proportional to ~B0 [see the horizontal and vertical red
lines in Fig. 5 (b)], when B0 > 2LSδW , the diagonal el-
ements are arranged in 2LS + 1 disconnected segments,
as indeed seen in Figs. 5 (a)-(b), while for B0 . 2LSδW ,
all elements along the diagonal become more or less ho-
mogeneously distributed.

We now move to the interacting part of the Hamilto-
nian, starting with the term V̂in in Eq. (14) that only
couples states inside the same block of fixed µz-value,
since it commutes with M̂z. Let us then concentrate on
a single block with fixed µz. In Fig. 6 (a), we show the
central block (µz = 0) and the arrows indicate examples
of nonzero elements caused by the interactions within
that block, 〈n|V̂in|m〉 6= 0.

280 300 320 340 360

m

280

300

320

340

360

n

V
in

FIG. 6. Structure of the central block (µz = 0) of the

Hamiltonian Ĥ0 + V̂in in the site representation. B0 = 1,
δW = 0.04, J0 = 3, ν = 1.4, L = 4, S = 2.

The two-body interaction V̂in, which contains the sum
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of the operators Ŝ+
j Ŝ
−
k , exchanges the state of two spins

that at most have a non-interacting energy difference
δε = ~|Bk −Bj | ' 2~δW ' 2δW/S.

The term V̂out in Eq. (15) couples the elements of one
block with those of a next-nearest neighboring block, and
as such, it allows us to compute the entire width of the
Hamiltonian matrix. The arrows in Fig. 5 (a) indicate ex-
amples of nonzero elements caused by the interactions be-
tween the central block and outer blocks, 〈n|V̂out|m〉 6= 0.
To estimate the energy bandwidth of the total Hamilto-
nian matrix, we sum the energy separation between the
two outer bands connected with the µz = 0 central band,
that is ≈ 4~B0 with the width of the outer band 2LδW :
∆E ' 4B0/S + 2LδW .

In hands of the bandwidth of the Hamiltonian matrix,
one now needs the number of directly coupled states, so
that dividing that bandwidth by this number, one ob-
tains the many-body energy spacing. To induce quan-
tum chaos, the interaction strength has to be larger than
the energy spacing, i.e. the chaotic regime emerges when
the interaction is strong enough to mix all neighboring
many-body levels.

The average number of directly coupled states corre-
sponds to the average number of nonzero off-diagonal
elements in each row of the Hamiltonian matrix. This
number should be proportional to the number of local
operators in the interacting part of the Hamiltonian,
V̂ , that is ∝ L2. Numerically, we compute the total
number of off-diagonal matrix elements Noff of the full
Hamiltonian matrix and divide it by the matrix dimen-
sion, dim(H) = (2S + 1)L. This is done in Fig. 7 (a)
for different values of L and S, confirming that indeed
Noff/dim(H) ∝ L2.

1 2 4 8
L

10
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N
o

ff
/d

im
(H

)

S=1
S=2
S=3
S=4
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2

0 1 2 3 4
S

0.4

0.5

0.6

0.7

0.8

0.9

J q
cb
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FIG. 7. Panel (a): Number of off-diagonal matrix elements
Noff rescaled by the dimension of the many-body Hilbert space
dim(H) = (2S + 1)L as a function of the system size L for
different values of S. The dashed line is ∝ L2. Panel (b):
Interaction strength for the quantum chaos border Jqcb as a
function of S for different values of L. The dashed line is our
estimate for the chaos border. The parameters in both panels
are B0 = 1, δW = 0.2, J0 = 1, ν = 1.4.

The quantum chaotic regime appears when the typical
perturbation strength (strength of the off-diagonal ele-
ments) is able to mix many-body levels, whose energy
separation can be estimated by ∆E/L2. The strength
of the perturbation is proportional to J0, but it also de-

pends in a complicated way on the other parameters ν,
L, and S, so we denote the strength of the off-diagonal
elements of the matrix Hamiltonian by J0|Vj,k|. One can
then estimate that strong quantum chaos emerges when

J0 &
∆E

L2|Vj,k|
≡ Jqcb, (17)

where Jqcb designates the interaction strength for the
quantum chaos border (qcb).

In Fig. 7 (b), Jqcb is shown as a function of S for dif-
ferent system sizes K. As one can see, for the param-
eters used in the numerical investigations of this paper
(S = 1, 2, 3, B0 = 1, δW = 0.2, ν = 1.4, L = 5, 6, 7), an
“operative” estimate for the quantum chaos border indi-
cates J0 & 0.5. However, it is evident that Jqcb depends
on the length L, as also noticed in [93–95], and on the
spin quantum number S, so it is difficult to make fur-
ther analytical considerations concerning the chaos bor-
der both in the semiclassical and thermodynamic limit.
In the next section, we corroborate the consistency of our
choice J0 & 0.5 by studying level statistics.

In closing this section let us stress that even if each
two-body spin Hamiltonian has its particularities, our
analysis can be extended to more general Hamiltoni-
ans. Instead of our Hamiltonian, we could have a system
with additional transverse magnetic fields along the x, y-
directions that would also couple the nearest-neighbour
blocks, µz → µz ± 1, or it could be a model with only
V̂in, or other variations. But overall, the results would
be very similar, we would still have very sparse banded
matrices due to the presence of two-body couplings. We
may therefore say that the Hamiltonian structure ana-
lyzed in this work is quite generic for spin systems with
two-body interactions.

B. Level Statistics

Quantum systems that are chaotic in the classical limit
often exhibit correlated eigenvalues as in random ma-
trices [37]. The degree of short-range correlations can
be evaluated with the distribution of the spacing s be-
tween neighboring unfolded levels. In the case of random
matrices belonging to the Gaussian orthogonal ensem-
ble (GOE), the distribution follows the Wigner surmise,
PGOE(s) = (πs/2) exp(−πs2/4), while uncorrelated lev-
els result in a distribution close to the Poissonian distri-
bution PP(s) = exp(−s) [96].

A more complete picture of the spectrum requires also
the analysis of the long-range correlations. To mea-
sure the rigidity of the spectrum, one resorts to quan-
tities such as the level number variance, Σ2(`), which
is the variance of the number of unfolded eigenvalues
in an interval `. For GOE, we have that Σ2

GOE(`) =
2[ln(2π`) + γ + 1 − π2/8]/π2, where γ is the Euler con-
stant, while for the Poissonian case, the fluctuations are
larger and the variance grows linearly with the energy
interval, Σ2

P(`) = `.
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FIG. 8. Nearest-neighbor level spacing distribution (a)-(c)
and level number variance (d)-(f) for three different interac-
tion strengths; L = 6, S = 2, B0=1, δW = 0.2, ν = 1.4.
For comparison, the solid lines represent Poisson (black) and
GOE (red) results. All the eigenvalues have been computed
from one symmetry sector (even total z−magnetization) dis-
carding 10% of the levels at the borders.

In Fig. 8, we compare the level spacing distribu-
tions [Figs. 8. (a)-(c)] and the level number variances
[Figs. 8. (d)-(f)] for different values of the interaction
strength J0, growing from left to right, and keeping fixed
the other parameters of the Hamiltonian. For all the cho-
sen values of the interaction, the classical system is al-
ways chaotic, but deviations from the Wigner-Dyson dis-
tribution are seen in Fig. 8. (a), because J0 = 0.3 is below
the quantum chaos border. Actually, even in the region
where good agreement of the level spacing distribution
with the Wigner-Dyson distribution is seen [Figs. 8. (b)-
(c)], deviations from the random matrix theory results
appear for the more sensitive measures, such as the level
number variance in Figs. 8. (e)-(f) for ` > 7. Even though
this observation is important, it is not surprising, because
we are comparing the spectrum of a sparse banded ma-
trix, that has correlated elements, with the spectrum of
a GOE random matrix.

IV. SHAPE OF EIGENFUNCTIONS AND
LOCAL DENSITY OF STATES

In this section, we discuss two basic concepts for
the study of quantum chaos and show that they have
classical analogues. The first one is the envelope of
the exact eigenstates written as a function of the non-
interacting energies, which is referred to as the “shape
of the eigenstates” (SoE), and the other is the “local
density of states” (LDoS). Both quantities have been ex-
tensively investigated in view of the definition of chaotic
eigenstates [71, 74]. Chaotic eigenstates are defined as
eigenstates composed of many components in the non-

interacting basis that can be treated as completely un-
correlated.

In physical systems, the eigenstates cannot be fully er-
godic in the non-interacting basis due to the finite range
of the interactions, which gets reflected in the band-like
structure of the total Hamiltonian. Therefore, one can
speak at most about pseudo-randomness of the eigen-
states in connection with some envelope around which
the fluctuations of the squared components of the eigen-
function are Gaussian. This envelope can be obtained ei-
ther by averaging over close eigenstates or by using mov-
ing windows within one eigenstate. The equivalence of
these two averaging procedures is at the core of statisti-
cal mechanics.

Both quantities, SoE and LDoS, are broadly em-
ployed in the quantum realm. To fix the notation, the
Schrödinger equation,

Ĥ0 |n〉 = E(0)
n |n〉 , (18)

defines the non-interacting eigenstates |n〉 and eigenval-

ues E
(0)
n of Ĥ0, and

Ĥ |α〉 = Eα |α〉 , (19)

gives the exact eigenstates |α〉 and exact eigenvalues Eα
for Ĥ. We use Latin letters for the non-interacting eigen-
states and eigenvalues and Greek for the exact ones. The
coefficients

Cαn = 〈n|α〉 (20)

of the eigenfunctions |α〉 =
∑
n C

α
n |n〉 written in the non-

interacting basis are the building blocks of our approach.
They are obtained from the projection of the exact eigen-
states on the non-interacting states or from the projec-
tion of the non-interacting states on the exact ones.

A. Shape of the Eigenstates

For the quantum SoE, we study the components Cαn
as a function of the non-interacting energies E

(0)
n . We

perform an average 〈..〉 over the eigenstates in a small
energy window, E− δE < Eα < E+ δE, and smooth the
function,

WE(E(0)) =
∑
n

δ(E(0) − E(0)
n )〈|Cαn |2〉. (21)

In this equation the SoE, WE(E
(0)
n ), represents the prob-

ability that an eigenstate having an energy in the window
[E − δE,E + δE] is found in the non-interacting state of

energy E
(0)
n .

We obtain the classical analogue of the SoE by taking
random initial conditions for spins with energy fixed in a
small window E− δE < H < E+ δE and computing the

non-interacting energy E
(0)
n = H0(~S1, . . . , ~SL) for all of

them. From that, the classical probability wE(E
(0)
n ) to

have that particular non-interacting energy (histogram
of frequencies) can be obtained.
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FIG. 9. (a)-(c): Quantum (shade) and classical (line) shape of the eigenfunctions; (d)-(f): Quantum (shade) and classical (line)
local density of states. Parameters: L = 6, B0 = 1, δW = 0.2, ν = 1.4. The quantum-classical correspondence is very accurate
for strong enough interaction, J0 & 1. For the quantum case, we have S = 2 and average over 41 eigenstates for the SoE and
50 noninteracting basis states for the LDoS. For the classical functions, we consider a set of 105 initial conditions with total
energies (SoE) or noninteracting energies (LDoS) in the same interval of the corresponding quantum model.

B. Local Density of States

As for the quantum LDoS associated with some non-
interacting state |n〉, a similar procedure is used. The
LDoS is obtained from the coefficients Cαn as a function
of the energy of the total Hamiltonian. We perform an
average over the non-interacting states in a small energy

window, E(0) − δE < E
(0)
n < E(0) + δE, and smooth the

function,

WE(0)(E) =
∑
α

δ(E − Eα)〈|Cαn |2〉. (22)

This distribution represents the probability for a non-
interacting state with energy in the range [E(0) −
δE,E(0) + δE] to be found in the eigenstate with energy
E.

Since the quantum LDoS is the energy distribution of
a given initial state |Ψ(0)〉 of the system, it is tightly con-
nected with the system’s evolution. The absolute square
of the Fourier transform of the LDoS,∫

WE(0)(E)e−iEt/~dE = |〈Ψ(0)|Ψ(t)〉|2,

for example, is the survival (return) probability,
|〈Ψ(0)|Ψ(t)〉|2 , extensively analyzed in studies of quench
dynamics (see [34, 97–102] and references therein), and
the width σLDoS of the LDoS is associated with the life-
time of the initial state. In fact, in the region of strong
chaos, σLDoS is a key parameter for the description of the
relaxation process of quantum systems toward thermal-
ization [64].

To construct the classical LDoS, we fix the non-
interacting energy E(0) and take random initial con-
ditions for each single spin on the unit sphere with
the non-interacting energy E(0) in the required interval
[E(0)−δE,E(0) +δE]. We then compute the total energy
E for all of them and obtain the probability wE(0)(E) to
have the energy E (histogram of frequencies).

C. Quantum-Classical Correspondence

The comparison between the classical and quantum
SoE and LDoS is done using the components Cαn of the
eigenfunctions and the properties of the classical energy
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surfaces H0 = E0 and H = E. More precisely, the classi-
cal distributions can be thought of as a projection of one
of these surfaces onto the other [103, 104].

Figures 9 (a)-(c) show a comparison between the quan-
tum SoE (shade), WE(E(0)), and its classical analogue
(solid line), wE(E(0)). Figures 9 (d)-(f) display the com-
parison between the quantum LDoS (shade), WE(0)(E),
and its classical version (solid line), wE(0)(E). There is
excellent quantum-classical agreement above the quan-
tum chaos border, J0 > 0.5, while deviations are seen
below the quantum chaos border. To explain the reason
for the discrepancy, it is useful to resort to a method to
compute the classical SoE and LDoS based on the dy-
namical equations of motion, as described next.

The procedure to obtain SoE goes as follows. We con-

sider one initial condition u(0) = ~S1(0), . . . , ~SL(0) with
energy E in the chosen energy window and consider its
evolution u(t) under the full interacting Hamiltonian H.
From that we compute the function E(0)(t) = H0(u(t)) =

H0(~S1(t), . . . , ~SL(t)) at several equally spaced times tk =
k∆t, where ∆t is chosen of the same order of the typical
period of the motion, 1/B0, to have statistical indepen-
dent data. The function E(0)(t) is shown in Fig. 10 (a)
and the values at tk are indicated with circles. The nor-
malized distribution of these points is the SoE shown
in Fig. 10 (b). It gives the same result as the “static”
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FIG. 10. Dynamical construction of the classical shape of the
eigenfunctions. In (a): Trajectory E(0)(t) obtained by insert-
ing in the noninteracting Hamiltonian H0 the solution of the
full equations of motion under the total Hamiltonian H. Ran-
dom sample of values of E(0)(t) at equally spaced times are
represented by circles. In (b): These points, which represent
how a trajectory at some specified energy fills the “energy
shell” of H0, are used to plot the normalized probability dis-
tribution function.

method used to obtain Fig. 9 (a) provided the trajectory
can cover ergodically the whole energy range obtained by
the phase space sampling. Most importantly, it is only
in this situation that we can properly define the classi-
cal SoE. In the case in which, due to some physical or
dynamical constraints, different trajectories produce dif-
ferent distribution functions, then a proper definition of
the classical SoE becomes problematic. We then have
the following non-trivial result: the quantum SoE admits

a well-defined classical limit only if the classical motion
is ergodic in some energy region.

This analysis can be equivalently extended to the
LDoS, where the dynamical and static methods to com-
pute the classical LDoS give equal results only in the
region of strong quantum chaos, and they also coincide
with the quantum LDoS. Analogously to SoE, the dy-
namical construction of the classical LDoS requires a sin-

gle initial condition u0(0) = ~S1(0), . . . , ~SL(0) with fixed
non-interacting energy E(0) and its evolution u0(t) under
the non-interacting Hamiltonian H0.

To compute u0(t) under the non-interacting Hamilto-
nian we do not need to numerically integrate the equa-
tions of motion. The classical evolution under H0 corre-
sponds simply to rotations of all spins about the z-axis
with frequencies Bk, and it is given by,

(Sxk )0(t) = Sxk (0) cos(Bkt) + Syk(0) sin(Bkt)

(Syk)0(t) = Syk(0) cos(Bkt)− Sxk (0) sin(Bkt)

(Szk)0(t) = Szk(0).

(23)

With the trajectory under the non-interacting
Hamiltonian H0, we obtain the function E(t) =

H(~S0
1(t), . . . , ~S0

L(t)) from where we extract the values at
tk = k∆t, with ∆t ∼ 1/B0, to build the correspondent
normalized histogram.

To understand the mechanism for the discrepancy be-
tween the classical and quantum quantities for small in-
teraction strength, J0 < 0.5, as shown in Figs. 9 (a),(d),
we take the case of the SoE as an example. Needless
to say a similar analysis can be done for the LDoS. In
Fig. 11 we compare the quantum SoE (shade area) with
the classical SoE obtained with the static method (line)
and with the dynamical method (circles) for two values
of the interaction strength. While the three distributions
coincide in the quantum chaotic regime [Fig. 11 (b)], they
differ for small interaction strength [Fig. 11 (a)]. The
lack of agreement between the two classical distributions
in Fig. 11 (a) is a clear indication of the lack of ergodicity.
Due to dynamical reasons, such as the presence of islands
of stability or dynamical constraints, a single trajectory
cannot span the whole allowable energy range as defined
by the random initial conditions used to implement the
static distribution. Surprisingly, even the quantum dis-
tribution differs from the classical static one. The fact
that the quantum distribution is narrower suggests the
presence of quantum localization. This should not to
be confused with the lack of classical chaos, since both
cases, J0 = 0.3 and J0 = 3, are characterized by the ex-
ponential divergence of close trajectories, signalled by a
positive maximal Lyapunov exponent.
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FIG. 11. Classical and quantum shape of the eigenfunctions
for two different interaction strengths: J0 = 0.3 (a) and J0 =
3 (b). (Red) histograms represent the quantum data obtained
by averaging 41 eigenfunctions in a small energy window in
the centre of the spectrum. (Black) full lines stand for the
classical SoE obtained by averaging over 105 random points in
the same small energy window (static method). (Blue) circles
are obtained with a single trajectory with energy |E| < 0.01
(dynamical method).

V. KOLMOROGOV-SINAI ENTROPY AND
WIDTH OF THE LDOS

As presented in Fig. 2, the rate of the exponentially
growing separation between close trajectories for each in-
dividual spin is related with the maximal exponent of the
full Lyapunov spectrum of the whole spin system. But
what is the role of the other positive Lyapunov expo-
nents? To address this question, we resort to the studies
in Zaslavsky’s book [77], where he compares the value
of the Kolmogorov-Sinai entropy with the exponential
growth in time of the coarsed grained phase-space vol-
ume for multidimensional classical systems with chaotic
behavior, as in our Eq. (8). We have discussed this rela-
tion in our previous work [64] about the onset of quantum
chaos in fermionic and bosonic systems characterized by
two-body interactions. Specifically, we have argued that
the Kolmogorov-Sinai entropy [hKS in Eq. (7)] should be
directly related to the width of LDoS [σLDoS in Eq. (22)].
We now confirm this expectation for our spin system.

Figure 12 (a) compares σLDoS and hKS in the energy
range of maximal chaos (|E| < 0.01) for different system
sizes L and interaction strengths J0. Different colors in-
dicate different system sizes, and the interaction strength
for each set of data grows from the left to the right in the
panels. In the chaotic region considered, which is charac-
terized by ergodicity, the classical and quantum LDoS are
very close, so one can also see the comparison between
the Kolmogorov-Sinai entropy and the width of LDoS in
Fig. 12 as a comparison between two well defined, but
physically different classical quantities.

In Fig. 12 (a), we observe that hKS and σLDoS are on
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FIG. 12. (a) Comparison between the Kolmogorov-Sinai
entropy and the width of the LDoS for B0 = 1, W = 0.2,
ν = 1.4, initial energy |E| < 0.01, and different interaction
strengths 0.5 < J0 < 10. The dashed line guides the eye and
represents the line y = x. (b) Comparison between the density
of the Kolmogorov-Sinai entropy and the rescaled width of
the LDoS for the same data as in panel (a). In the x-axis the
logarithmic scale has been used. Here, the dashed line stands
for the best logarithmic fit y = 0.28 + 0.21 ln(x).

the same order of magnitude, but deviations are visi-
ble, which depend on both the values of L and J0. In
Fig. 12 (b), we show the same data, but rescaled as

h̃KS = hKS/L (density of the Kolmogorov-Sinai entropy)

and σ̃LDoS = σLDoS/
√
L (renormalized energy width).

The reason for the rescaling with
√
L for the width of the

LDoS is that in the chaotic regime, the classical width of
LDoS can be considered as the sum of L independent
random variables Szk , whose second moment is propor-
tional to L. With this rescaling, all points collapse onto
a single curve well described by a logarithmic fit.

The numerically found logarithmic dependence,

h̃KS ∝ ln σ̃LDoS, (24)

is a relationship between two intensive quantities. This
remarkable result should be checked in other models as
well. This is a very important finding, because these two
quantities have a completely different dynamical origin.
The Kolmogorov-Sinai entropy is directly related to local
instability, while the LDoS is associated with the global
properties of the relaxation process. We hope that the re-
lation above will trigger future investigations in the field.

VI. SUMMARY

The aim of our study was to establish the quantum-
classical correspondence (QCC) for interacting spin-
models, which can be strongly chaotic in the classical
limit. Our results indicate that this correspondence holds
only in the region of strong classical and quantum chaos,
which corresponds to the energy region E ≈ 0, as con-
firmed from the analysis of the Lyapunov spectrum.

Starting with the analysis of the classical equations
of motion, we found that in addition to energy, our
model presents other integrals of motion. This property,
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which is generic to spin systems, stems from the fact that
the motion of each individual spin is restricted to a 3D
sphere, which results in a many-dimensional phase space
with a non-standard Hamiltonian structure.

We observed that for weak interaction, the motion of
each individual spin can be effectively described as a lin-
ear parametric oscillator under an external force consist-
ing of a large number of harmonics. In this case, one can
speak of the emergence of linear chaos, a term introduced
by Chirikov [105, 106].

As the interaction strength increases, the influence of
non-linear resonances emerge due to the non-linear cou-
pling between the spins. However, our results made it
clear that in many aspects the dynamical properties of
the model can still be effectively described with the mo-
tion of individual spins. In particular, we showed that
ergodicity of the full model boils down to ergodicity of
the motion of each individual spin. This allows for the
introduction of a test of the local ergodicity of the motion
of individual spins. Following random matrix theory, er-
godic motion of the trajectory on a sphere implies a flat
distribution of the components of each spin. Our numeri-
cal data confirmed the emergence of this flat distribution
for a large enough interaction strength (J0 & 1) and suf-
ficiently long spin chains (L � 1). One can therefore
speak of global ergodicity, when the motion of all spins
are locally ergodic.

Our study of the quantum counterpart of the system
started with the analysis of the structure of the Hamilto-
nian matrix, which allowed us to establish a criterion for
the onset of quantum chaos. We then showed that the
shape of the eigenfunctions (SoE) and the local density

of states (LDoS), which are essential quantum quanti-
ties, have classical analogues that can be obtained using
the classical equations of motion. There is an excellent
correspondence between the classical and quantum dis-
tributions in the region of strong quantum chaos, but not
when ergodicity is broken.

In the last section, we presented a compelling relation-
ship between the Kolmogorov-Sinai entropy, hKS, and the
width of the LDoS, σLDoS. Since hKS is related to the
local instability of motion, it is not a directly measur-
able quantity, but σLDoS is the decay rate of the survival
(return) probability, which is a global quantity that can
be measured after a quantum quench. This opens the
possibility to relate the Kolmogorov-Sinai entropy with
a physically measurable quantity.
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Hernández, L. F. Santos, and J. G. Hirsch, Quantum
and classical Lyapunov exponents in atom-field in-
teraction systems, Phys. Rev. Lett. 122, 024101
(2019).

[18] J. Rammensee, J. D. Urbina, and K. Richter, Many-
body quantum interference and the saturation of out-
of-time-order correlators, Phys. Rev. Lett. 121, 124101
(2018).

[19] Q. Hummel, B. Geiger, J. D. Urbina, and K. Richter,
Reversible quantum information spreading in many-
body systems near criticality, Phys. Rev. Lett. 123,
160401 (2019).

[20] A. Lakshminarayan, Out-of-time-ordered correlator in
the quantum baker’s map and truncated unitary matri-
ces, Phys. Rev. E 99, 012201 (2019).

[21] S. Pilatowsky-Cameo, J. Chávez-Carlos, M. A.
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Hernández, L. F. Santos, and J. G. Hirsch, Positive
quantum Lyapunov exponents in experimental systems
with a regular classical limit, Physical Review E 101,
010202(R) (2020).

[22] J. Wang, G. Benenti, G. Casati, and W. Wang, Com-
plexity of quantum motion and quantum-classical cor-
respondence: A phase-space approach, Phys. Rev. Re-
search 2, 043178 (2020).

[23] T. Xu, T. Scaffidi, and X. Cao, Does scrambling equal
chaos?, Phys. Rev. Lett. 124, 140602 (2020).

[24] K. Hashimoto, K.-B. Huh, K.-Y. Kim, and R. Watan-
abe, Exponential growth of out-of-time-order correlator
without chaos: inverted harmonic oscillator, J. High En.
Phys. 2020, 68 (2020).

[25] J. Wang, G. Benenti, G. Casati, and W. Wang, Quan-
tum chaos and the correspondence principle, Phys. Rev.
E 103, L030201 (2021).

[26] A. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz.
55, 2262 (1969) [“Quasiclassical Method in the The-
ory of Superconductivity”, Sov. Phys. JETP 28, 1200
(1969)].

[27] D. L. Shepelyansky, Some statistical properties of simple
classically stochastic quantum systems, Physica D 8,
208 (1983).

[28] M. V. Berry, Regular and irregular semiclassical wave-
functions, J. Phys. A 10, 2083 (1977).

[29] V. V. Flambaum, A. A. Gribakina, G. F. Gribakin,
and M. G. Kozlov, Structure of compound states in the
chaotic spectrum of the ce atom: Localization proper-
ties, matrix elements, and enhancement of weak pertur-
bations, Phys. Rev. A 50, 267 (1994).

[30] V. Zelevinsky, M. Horoi, and B. Alex Brown, Informa-
tion entropy, chaos and complexity of the shell model
eigenvectors, Phys. Lett. B 350, 141 (1995).

[31] M. Horoi, V. Zelevinsky, and B. A. Brown, Chaos vs
thermalization in the nuclear shell model, Phys. Rev.
Lett. 74, 5194 (1995).

[32] V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi,
The nuclear shell model as a testing ground for many-
body quantum chaos, Phys. Rep. 276, 85 (1996).

[33] V. V. Flambaum and F. M. Izrailev, Entropy production
and wave packet dynamics in the Fock space of closed
chaotic many-body systems, Phys. Rev. E 64, 036220
(2001).

[34] F. Borgonovi, F. M. Izrailev, L. F. Santos, and V. G.
Zelevinsky, Quantum chaos and thermalization in iso-
lated systems of interacting particles, Phys. Rep. 626,
1 (2016).

[35] G. Casati, F. Valz-Gris, and I. Guarneri, On the con-
nection between quantization of nonintegrable systems
and statistical theory of spectra, Lett. Nuov. Cim. 28,
279 (1980).

[36] O. Bohigas, M. J. Giannoni, and C. Schmit, Character-
ization of chaotic quantum spectra and universality of
level fluctuation laws, Phys. Rev. Lett. 52, 1 (1984).

[37] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller,
Random matrix theories in quantum physics: Common
concepts, Phys. Rep. 299, 189 (1998).

[38] F. Firk and S. J. Miller, Nuclei, primes and the random
matrix connection, Entropy 1, 64 (2009).

[39] E. P. Wigner, On the statistical distribution of the
widths and spacings of nuclear resonance levels, Proc.
Cambridge Phil. Soc. 47, 790 (1951).

[40] C. E. Porter, Statistical Theories of Spectra: Fluctua-
tions (Academic Press, New York, 1965).

[41] B. Dietz and F. Haake, Taylor and Padé analysis of the
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