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We investigate the topological phases of two one-dimensional (1D) interacting superconducting
wires and propose topological markers directly measurable from ground state correlation functions.
These quantities remain powerful tools in the presence of couplings and interactions. We show with
the density matrix renormalization group that the double critical Ising (DCI) phase of two interacting
Kitaev chains, is a fractional topological phase with gapless Majorana modes in the bulk, and a one-
half topological invariant per wire. Using both numerics and quantum field theoretical methods, we
show that the phase diagram remains stable in the presence of an inter-wire hopping amplitude t⊥
at length scales below ∼ 1/t⊥. A large inter-wire hopping amplitude results in the emergence of two
integer topological phases, stable also at large interactions. They host one edge mode per boundary
shared between both wires. At large interactions, the two wires are described by Mott physics, with
the t⊥ hopping amplitude resulting in a paramagnetic order.

I. INTRODUCTION

Quantum Mechanics gives rise to important phenom-
ena such as Bose-Einstein condensation and its charged
analog superconductivity, wherein a coherence builds up
between the constituents in the bulk of the material.
Such phases of matter are governed by quantum phase
transitions, wherein even at zero temperature quantum
fluctuations become relevant enough to drive, or desta-
bilize, an underlying ordering. Already since the 70s,
it was found that such transitions can occur without
the inherent breaking of symmetries, and, instead, the
phases of matter are distinguished by winding numbers
or more generally by topological invariants [1, 2]. Whilst
these are usually found to be integer values [3], in the
presence of interactions fractional topological states of
matter have also been predicted as for example in the
fractional quantum hall effect (FQHE) [4], associated
with the direct observation of fractional charges [5, 6].

Due to their robustness against perturbations and
impurities, topological materials have seen a growing
interest in recent years. Particularly the applications of
topological superconductors and insulators in quantum
circuits and computers [7] drive both experimental
and theoretical developments. The key reason these
topological materials are particularly promising is the
existence of exotic anyonic edge modes, which have been
proposed as candidates to build resilient, large-scale
quantum computers [8]. Since the seminal work by
Kitaev [9], one-dimensional spinless superconductors are
predicted to host elusive Majorana fermions [10] on their
edges, which are essentially the real and imaginary parts
of a complex Dirac fermion. Majoranas are as elusive as
they are sought for. Whilst their potential applications
to realizing low-error quantum computation [8, 11] have
stimulated vigorous research, the scientific community
has yet to reach a consensus on whether or not Majorana
edge modes have been detected experimentally. Yet,

there is recent hope that their discovery is on the horizon
[12], paving the way for further interesting applications,
for example with Majorana wire heterostructures. As
demonstrated in [8], networks of spinless p-wave super-
conducting nano-wires offer a promising platform to
realise anyonic exchange statistics. Due to the proximity
of the wires in these heterostructures, hopping and
super-conductive pairing terms between different wires
will naturally occur in realistic setups. Already two
coupled wires, i.e. ladders, are found to have a rich phase
diagram without interactions [13, 14]. Also in the quasi
two-dimensional limit, additional hopping and pairing
terms can have a substantial impact on the macroscopic
properties, as was demonstrated for example in [15]
for a quasi-two-dimensional grid of Majorana wires. It
was shown that in the presence of cross-wire couplings,
it is possible to design (p+ip) superconductivity by
threading appropriate fluxes through each unit cell.

The theory for proximity-induced topological super-
conductivity (SC) focuses strongly on non-interacting
electron models [8]. However, realistic materials will
necessarily be exposed to both internal and external
interactions, which may give rise to previously unknown
transitions [16, 17]. For example, it was found in [18]
that due to the interplay between interactions and
inter-wire hopping amplitude a transition to a super-
conducting state can occur, for two chains of spinless
fermions without SC-pairing. Another fascinating effect
often found in interacting systems is the fractionalization
of the underlying degrees of freedom, for example, the
fractionalization of charge in the FQHE [6] or also
in the case of quantum wires [19]. Another instance
of fractionalization was discovered in the case of two
interacting Kitaev wires [20], wherein the gapless double
critical Ising phase was found to host free Majoranas in
the bulk. Against the backdrop of topological materials
in modern technology, developing a deeper under-
standing of the DCI phase and its Majorana physics is
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therefore relevant. Recent advances in unraveling the
phase diagram of two interacting Bloch spheres [21, 22]
revealed also the emergence of a fractional topological
phase at large interactions. In fact, for the single Kitaev
wire, there exists a well-established map onto the Bloch
sphere through the Bogoliubov-De Gennes representa-
tion [22, 23]. Thus these recent findings stimulate us to
investigate the DCI phase further, and in particular its
link to the fractional Bloch sphere phase in [21].

The extensions beyond non-interacting chains are
plentiful and there is a lot of ground to cover. In
this paper we focus in particular on deepening our
understanding of the DCI phase, its link to fractional
topology as well as the effects of an inter-wire hopping
amplitude t⊥ on the phase diagram found in [20]. We
first propose in Sec. II topological invariants for the
one-dimensional superconducting Kitaev chains, which
by mapping onto the Bloch sphere are found to be
direct analogs of the TKNN invariant [2]. We show that
these quantities, defined through two-point correlation
functions, can be extended to two or more wires and
that they remain powerful tools and topological markers
to study the phases of coupled wires also in the presence
of interactions. We evaluate these correlation functions
using Density Matrix Renormalization Group (DMRG)
calculations [24–26]. In Sec. III, we elaborate on the
C = 1/2 topological invariant(s) associated with the crit-
ical theory of the Majorana fermions at the topological
quantum phase transition for one Kitaev wire, and we
establish a relation with the Bloch sphere. In Sec. IV,
we first review briefly the regions in the phase diagram
of two interacting superconducting wires [20]. We
present an approach to understanding the underlying
quantum field theory (QFT) of both the single and
double critical Ising (DCI) phases [20] in terms of chiral
bulk modes, intimately related to the critical theory of
a single Kitaev wire. Then, in Sec. IV B, we show with
DMRG calculations that our topological markers take
on fractional values of C = 1/2 in the DCI phase, which
establishes a clear link between the topological phases
of two interacting Bloch spheres [21]. Furthermore, we
argue that this also strengthens the notion that the DCI
phase is described by two c = 1/2 critical models per
wire where now c refers to the central charge [27–30] of
the model.

Finally in Sec. V we also investigate both numerically
and analytically the phase diagram in [20] in the pres-
ence of an inter-wire hopping amplitude t⊥, similar to
the ladders studied in [13], to determine the stability of
the coupled-wire phases towards more experimentally re-
alistic setups. It is perhaps relevant to mention here that
the t⊥ term does not have a simple correspondence on
the Bloch spheres’ model since mapping fermions onto
spins- 1

2 through the Jordan-Wigner transformation will
result in “strings” accompanying this operator in the spin
language. Therefore, it is worthwhile studying the ef-

fect of such a perturbation in the two-wires’ model. The
strength of the t⊥ term compared to the Coulomb inter-
action may be adjusted by fixing the distance between the
two wires (a hopping term is supposed to decay exponen-
tially with distance from a Wentzel-Kramers-Brillouin
picture). We find that for perturbative values of t⊥ the
DCI phase and phase diagram remain robust. We study
the phase diagram for larger values of the inter-wires
hopping term, as well as interactions. We also address
the case for prominent interactions between both wires,
which gives rise to Mott physics [20] in the |g| → ∞
limit. Our results are finally summarized in VI. In Ap-
pendices, we present additional information on DMRG
and quantum field theory.

II. TOPOLOGICAL MARKERS FROM
CORRELATION FUNCTIONS

The aim of this section is to define topological invari-
ants for Kitaev p-wave spin-polarized superconducting
wires [9], and express these quantities in terms of real-
space correlation functions. First, we remind the reader
of the Kitaev wire [9], and associated Bogoliubov-De
Gennes formalism, which due to the particle-hole sym-
metry of the Kitaev wire allows a direct mapping onto a
single Bloch sphere [22, 23, 31]. From this, a definition
of a Chern number à la [21] leads directly to the desired
real-space correlation functions. Then, by similar consid-
erations, we argue that in the case of two weakly interact-
ing wires in the sense of [20], a mapping on two-coupled
Bloch spheres remains sensible [22]. Whilst the quanti-
zation of the invariants is no longer guaranteed, we show
numerically using DMRG that these Chern numbers re-
main sensible markers to characterize and investigate the
topological phases in the presence of interactions.

A. Review of the Kitaev wire and its topological
phase diagram

In this article we investigate the topological phases
of (interacting and coupled) Kitaev wires of spinless
fermions. The Kitaev wire is defined by the following
Hamiltonian [7, 9]

HK = −µ
∑
j

nj − t
∑
j

c†jcj+1 + h.c.

+4eiϕ
∑
j

c†jc
†
j+1 + h.c..

(1)

Here µ is the chemical potential acting globally on both
wires, t is the hopping amplitude, ∆eiϕ the supercon-

ducting pairing-strength with phase ϕ and nc,j = c†jcj .
The single wire has two topologically distinct extended
phases. A topological phase transition occurs at the crit-
ical chemical potentials µ = ±2t. In his seminal work [9],
Kitaev developed an intuitive picture of these phases, by
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decomposing the original c-fermions into their Majorana
constituents [23]

cj =
1

2
(γA,j + iγB,j) . (2)

The Hamiltonian (1), for ϕ = 0, takes the following form
when expressed in terms of the Majorana fermions

HK =
∑
j

i
t−∆

2
γB,jγA,j+1 + i

t+ ∆

2
γB,j+1γA,j

−iµ
2

∑
j

γA,jγB,j .
(3)

The two topologically distinct phases can then be under-
stood in the two patterns of Majoranas which emerge,
depending on the chemical potential. For a pictorial rep-
resentation of the two distinct patterns, see figure 1. In
the trivial phases with |µ| > 2t, the on-site pairing of
Majoranas is favoured, thus in the t = ∆ = 0 limit we
find the upper (trivial) pattern in (2). In the topological
phase |µ| < 2t, the nearest-neighbour pairing will domi-
nate, such that for t = ∆ and µ = 0 the lower (topolog-
ical) pattern in (2) emerges. This can be understood in
terms of the following non-local fermions

dR,j =
1

2
(γA,j+1 + iγB,j) . (4)

For open boundary conditions (OBCs) this results in
zero-energy “dangling edge modes” which make the
ground state doubly degenerate.

FIG. 1. The two distinct patterns of Majorana fermions in
the trivial (upper) and topological (lower) phases of a Kitaev
wire. We refer to Ref. [7] for a more in-depth discussion and
review of the topological phases of the Kitaev wire.

Whilst the emergence of edge modes and ground state
degeneracy are both hallmarks of a topological transi-
tion, it is the definition of global and robust invariant

which makes the direct link to topology in the mathe-
matical sense. This link is perhaps best understood when
considering the seminal work in [2], where the Z valued
TKNN invariant (or First Chern number) is defined from
the Berry connection [32] anj (k) = i〈n,k| ∂∂kj |n,k〉 of the

eigenstates of each band [23, 33]

c1 =
∑

n’th filled band

∫
T2

dk2

(
∂any
∂kx
− ∂anx
∂ky

)
. (5)

The Chern number is calculated on the ground state
by summing over the n lowest filled bands |n,k〉. It
is quantized and can only take integer values, and is
a direct analogue of the Gauss-Bonnet theorem for
surfaces: The expression in brackets defines a curvature
2-form or tensor Ωkx,ky on the Brillouin zone which is a

2-torus T2 due to periodic boundary conditions (PBCs)
in both directions. The TKNN-invariant defined above
is not suitable for distinguishing all classes of topological
systems. For example, the Chern number (5) is not
invariant under time-reversal-symmetry (TRS), and
hence vanishes in such systems. Instead, for example in
the two-dimensional quantum spin Hall phase, Kane and
Mele discovered [34] that the appropriate topological
number is a Z2 invariant. This has been generalized also
to other systems [35], and is now often referred to as the
Fu-Kane-Mele invariant. For non-interacting systems
the different possible topological phases have been
classified by dimension and symmetries [36] in various
“periodic tables”, cf. Altand-Zirnbauer classification
[37] or Kitaev [38]. The Kitaev wire described by (1) is
characterized by a Z2 invariant.

In momentum space and the Bogoliubov-De Gennes
Hamiltonian representation (i.e. spinless Nambu ba-

sis) defined through ψ†k =
(
c†k, c−k

)
, the single-particle

Hamiltonian in (1) can be written as the 2× 2 Matrix

HK =
∑
k

ψ†k

(
εk ∆k

∆∗k −εk

)
ψk =

∑
k

ψ†kHkψk, (6)

where we define εk = −
(
µ
2 + t cos (ka)

)
and SC pairing

∆k = i4eiϕ sin (ka). We choose the Fourier transform
on the N -site chain with x = ja with the convention

cj =
1√
N

∑
k∈BZ

eikxck. (7)

The two distinct topological phases can then be de-
termined from the signs of the kinetic term εk at the
high-symmetry points k = 0 and k = π/a [23], la-
beled by δak=0,π respectively. The trivial phases result
in δ0 = δπ = ±1. The topological ones instead have
δ0 = −δπ = ±1, depending on the signs of t and µ. This
defines a Z2-invariant ν, which in this case is introduced
in the well-known way [9, 23]

ν = (−1)
δ0+δπ . (8)
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Long-range hopping and pairing terms may result in
higher topological invariants [39], which are then the
winding numbers m. However, as we consider only
nearest-neighbor hopping and pairing terms, cf. eq. (1),
the winding numbers are restricted to 0, ±1 (in agree-
ment with the structure of Majorana fermions at the
edges). The Z2 number in (8) is thus enough to clas-
sify the system.

B. Chern number from real-space correlation
functions

We show in the following how to define a (particle)
Chern number C = 0, 1, which is directly measurable
from real-space correlation functions of the wire.

Central to our argument is the duality between the mo-
mentum space Hamiltonian in (6) and a Bloch sphere in-
teracting with an external field [22, 31], cf. the discussion
in appendix A. From the momentum space Hamiltonian
(6), the single-particle (Bogoliubov-De Gennes) Hamil-
tonian Hk is a complex 2 × 2 matrix. By introducing

(pseudo-)spin ~Sk and ~dk vector

~S =

 c†kc
†
−k + c−kck

−i
(
c†kc
†
−k − c−kck

)
c†kck − c−kc

†
−k

 , ~dk =

−∆k+∆∗k
2

∆k−∆∗k
2i
−εk

 , (9)

we may write the single-particle Hamiltonian reminiscent
of a spin in a magnetic field [23]

Hk = −~dk · ~Sk. (10)

Here ~dk acts like a “magnetic field” on the pseudo-

spin ~Sk, cf. discussion in A. Together with the super-
conducting phase ϕ, which remains a free parameter, we

map the vector ~dk onto the two-sphere, interpreting the
momentum label ka and super-conducting phase ϕ as the
angular coordinates ϑ and ϕ̃ in (A1). Through the defini-
tions in Appendix A on the sphere this results in [22, 31]
the identifications

cos (ϑk) =
2t cos(ka) + µ

E(ka)
, (11)

sin (ϑk) e−iϕ̃ = − i∆e
iϕ2 sin(ka)

E(ka)

where E(ka) =

√
(µ+ 2t cos (ka))

2
+ 442 sin (ka)

2
.

To be more precise, we introduce the ~d-vector as
~d = |~d|(cosϑ sin ϕ̃, sinϑ sin ϕ̃, cosϑ) with the energetic

correspondence E(ka) = 2|~d|. There is a correspondence
between the two eigenstates of the spin- 1

2 particle and
the definitions of the quasiparticles in the wire model.
Here, ϕ̃ represents the azimuthal angle on the sphere.
Fixing µ = 0 and t = ∆ we observe that ϑk = ka (and
e−iϕ̃ = −ieiϕ). On the sphere, ϑk ∈ [0;π] such that

this will effectively correspond to a half Brillouin zone
on the lattice due to the particle-hole symmetry (PHS)
of the Kitaev model. Conversely if µ � t = ∆, then
ϑk = const..

The 2 × 2 Hamiltonian is diagonalized by the Bogoli-

ubov quasi-particles η†k = u∗kc
†
k+v∗kc−k similarly as in the

Bardeen Cooper and Schrieffer model [40]. For a general
phase ϕ, we can e.g. define the quasiparticle operator
η† associated to an occupied quasiparticle state and to
the lowest energy eigenstate of the spin- 1

2 in (A2). The
Bogoliubov de Gennes (BdG) transformation then diag-
onalizes the Hamiltonian, yielding two quasi-particles η±

corresponding to the upper and lower band. As particle-
hole symmetry relates both, the label ± can be dropped
and the BdG transformation defined through the lowest

energy eigenvector of (6) with Hamiltonian −E(ka)η†kηk.
This results in

η†k = cos (ϑk/2) c†k + ie−iϕ sin (ϑk/2) c−k. (12)

The |BCS〉 ground state can be defined for the filled

energy states as ηkη
†
k|BCS〉 = 0. It has the following

explicit expression [20]

|BCS〉 =
((

δµ<−2t + (1− δµ<−2t)c
†
0

)
×

k<π
a∏

k>0

(
sin (ϑk/2)− ie+iϕ cos (ϑk/2) c†kc

†
−k

)
×
(
δµ<2t + (1− δµ<2t) c

†
π

) )
|0〉.

(13)
The points k = 0 and ka = ∓π require some care where
the pairing function goes to zero. We have adjusted
the δ functions to correspond to filled or empty states
according to the value of the chemical potential in
agreement with the matrix (6). From the Bogoliubov-De
Gennes quasi-particle basis, the link to the Bloch sphere
eigenvector |GS〉 in Appendix A for each k label is made

by taking c†k −→ | ↑〉 and c−k −→ | ↓〉 [22, 31].

As was first shown in [21] for (coupled-) Bloch spheres,
the quantized Chern number in (5) can be written from
the polarizations of the spin at the two poles of the Bloch
sphere:

C =
1

2
(〈Sz (ϑ = 0)〉 − 〈Sz (ϑ = π)〉) . (14)

For two spheres the well-definedness of partial Chern
numbers [41] was demonstrated for a wide range of in-
teractions, and resulted in the discovery of a fractional
geometric phase at comparably large interactions [21].
By mapping (k, ϕ) onto the Bloch sphere (two-sphere),
we can define a Chern number C à la [21] by simply
evaluating the z−Spin operator at the “poles” k = 0 and
ka = π

C =
1

2
(〈Szka=0〉 − 〈Szka=π〉) . (15)
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Acting with Sz on the BCS ground state we explicitly
find 〈Szk〉 = cos (ϑk), which is the Ehrenfest theorem for
a spin half particle in a radial magnetic field [22, 31].
For µ � t and thus ϑk = const., we immediately find
C = 0. In the µ = 0 we have ϑk = ka, and hence
C = 1

2 (cos (0)− cos (π)) = 1. This splitting results
in two bands, the (quasi-)particles and holes, such
that Ctot = Cp + Ch. From the PHS it also follows
that Cp = −Ch, which can be readily seen by the
formula Ch = 1

2 (〈Szka=π〉 − 〈Szka=2π〉) and the fact that
ka = 2π is identified with k = 0. Thus the total Chern
number Ctot = 0, in agreement with the literature.
We also recover the same Z2 invariant as defined in
equation (8) [22], by taking the product 〈Szka=0〉·〈Szka=π〉.

We now show that the particle Chern number C de-
fined in (15) can recast as a physically and experimen-
tally sensible quantity, as it can be expressed in terms of
real-space correlation functions of the wire.

C. Measuring topology from correlation functions

The first step is to represent the z-spin operators
Szka=0,π in terms of the real-space (spinless-) fermionic

operators cj and c†j . For this, we perform a Fourier trans-
form of the pseudo-spin Szk yielding

Sz
i ≡

1√
N

∑
k

eikxiSzk

=
1
√
N

3

∑
k∈BZ;j,r

eik(xi+xj−xr)c†jcr

− 1
√
N

3

∑
k∈BZ;j,r

e−ik(xr−xj−xi)cjc
†
r.

(16)

Performing the sum over the momentum label k ∈ BZ
reduces the above expression to

Sz
i =

1√
N

∑
j

(
c†jcj+i − cjc

†
j+i

)
. (17)

As can be seen, for i > 0 these operators are intrinsi-
cally related to the amplitudes of i’th neighbour hopping,
whilst for i = 0 it is found to be simply 1

N

∑
j (2nj − 1).

Since the momenta k = 0 and k = π/a are special in
the sense that eikx = 1 and eikx = (−1)

x
respectively,

the “backwards” Fourier transform is especially simple
to perform, and results in

Szka=0 =
1√
N

∑
i

Sz
i , S

z
ka=π =

1√
N

∑
i

(−1)
i
Sz
i . (18)

From these two (independent) equations we define the
Chern number C, as well as its “dual” C as

1

2

〈(
Szk=0 − Szk=π

a

)〉
≡ C =

1√
N

N/2∑
i=0

〈Sz
2i+1〉

1

2

〈(
Szk=0 + Szk=π

a

)〉
≡ C =

1√
N

N/2∑
i=0

〈Sz
2i〉 .

(19)

Here the Chern number C is the relative polarization,
and C the absolute polarization, dual to C by measuring
the degree of alignment of the spins. Equation (19)
defines topological markers in real space. This sets them
apart from other, momentum space topological numbers,
making them directly accessible numerically for example
with DMRG. Whilst other topological markers have
previously been defined over non-local correlation func-
tions in real space [42, 43], the quantities defined in (19)
repackage that information into a physically intuitive,
and conceptual observable. As an example, we now show
how to obtain the correct pattern of Majoranas shown
in figure 1 from C and C.

For the single Kitaev wire, the ground state is sim-
ply given by the BCS wave function, from which it is
straightforward to calculate the real-space correlation
functions. In terms of the ϑk angles, the expectation

values of 〈c†r+jcj + h.c.〉 can be calculated directly and
one finds

〈Sz
j>0〉 =

1

N

∑
k∈BZ

cos (k · j) (1− cos (ϑk))

〈Sz
j=0〉 =

1

N

∑
j∈BZ

(1− cos (ϑk))− 1.
(20)

For the j = 0 case one needs to account for the anti-
commutation relations in (17). When the spectrum has
a gap, the correlations decay exponentially with a corre-
lation length ξ, and thus we only need of order ξ terms
to obtain a robust topological marker. The following two
examples correspond to the extreme limit where ξ is min-
imal: The two patterns presented in figure 1 above are
exact in the limits of t = ∆ = 0, and µ = 0 respectively
[9], for which ϑk simplifies considerably. In the trivial
(µ� t) case ϑk = π, such that the only non-zero expec-
tation value in (20) is 〈Sz

j=0〉 = 1. This is equivalent to
a density of fermions nc = 1 and the wire is filled with
on-site bound Majoranas for each lattice site, cf. figure 1.
For the topological case at µ = 0 we found that ϑk = ka,
thus only 〈Sz

j=1〉 6= 0. This implies on the one hand that
2nc − 1 = 0, i.e. half-filling. In addition to the non-
local fermion (4), we introduce the left-binding fermions
dL,j = 1

2 (γA,j − iγB,j+1). Together with dR,j one finds

Sz
j=1 =

1

N

∑
j

(
d†R,jdR,j − d

†
L,jdL,j

)
= nR − nL (21)
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Since the densities nR/L ∈ [0, 1], the Chern number C =
1 implies nR = 1 and nL = 0, which is exactly the non-
trivial pattern in figure 1. For general |µ| < ∞, the
function ϑk is more complicated and thus cos (ϑk) smears
out and one must include more Sz

j correlators. In the
critical case µ = ±2t this “smearing” becomes maximal,
and all values of j become comparably relevant - one of
the key features of critical behaviour.

D. Reproducing the phase diagram of the single
Kitaev wire with DMRG

For one non-interacting wire the BCS ground state is
known exactly. However, as we are interested in interact-
ing systems, we present already in the following results
obtained with the Density Matrix Renormalization
Group (DMRG) algorithm [25]. DMRG, first introduced
by White [24] in the early 90s, provides a powerful tool
to approximate the ground state of a Hamiltonian, and
has become a standardized and well-established tool
in condensed matter physics. In this work, we use the
library ITensor in Julia [44] to perform our computations
[45]. The performance of the DMRG algorithm depends
strongly on having a low degree of entanglement between
the subsystems (or blocks), which is why it is optimized
for short-range interacting, one-dimensional systems
with open boundary conditions (OBCs). However,
by defining the Chern numbers from the poles of the
Bloch sphere representation ka = 0 and π, we intrinsi-
cally assume the well-definedness of a BZ and thus of
PBCs. Additional optimization of the algorithm can
be achieved by exploiting symmetries of the system,
as this makes the Hamiltonian block diagonal which
reduces complexity considerably. Whilst the Kitaev wire
does not preserve particle number N =

∑
i ni due to

the superconducting gap ∆, the fermion parity defined

as P̂ ≡ (−1)
P

= eiπ
∑
i ni = Πi (1− 2ni) is conserved,

since only cooper pairs can be annihilated or created.
Therefore P̂ and H commute, and the |GS〉 can be
labeled by its parity, or equivalently by P . From now
on, we will label the two distinct parity sectors by this
binary notation P = 0 (even) and P = 1 (odd). For
more details about the DMRG for two coupled wires, we
refer to Appendix B.

Apart from performance, there is another, more subtle
reason why it is important to impose the conservation
of symmetries in the DMRG algorithm explicitly: The
DMRG searches for ground states of H by optimizing an
initial guess |GS〉 = |ψ0〉, and subsequently improving
on it with each iteration. However, consider two degen-
erate GSs labeled by a and b i.e E (|GS, a〉) = E (|GS, b〉).
Then our initial guess |ψ0〉 fixes the superposition of these
degenerate states, i.e. the DMRG is insensitive to the
precise mixture of the two sectors. The physical GS lives
in the space spanned by |GS, a/b〉, i.e.

|GS〉 = χa|GS, a〉+ χb|GS, b〉. (22)

The initial guess |ψ0〉 will therefore only sample
(χa, χb) = (χa,0, χb,0). The precise degree of mixing
χa/b will therefore be necessary to determine the physical
GS. We return to this discussion later on in more detail,
when examining the critical phases of Kitaev wires.

DMRG provides the GSs for both parity sectors, from
which we identify the true one as the lowest-lying state.
ITensor gives us the GS as a Matrix Product State
(MPS), from which the correlation functions in (20) are
extracted. As can be seen in figure 2, the numerical re-
sults match the theoretical predictions also far from the
limiting cases µ = 0 and µ � |t|. Interestingly, the dual
number C can distinguish between the two trivial phases
[46]. This feature persists and is very promising for ap-
plications. We highlight now already the two Quantum
Critical Points (QCPs) µ = ±2t, which seem to inter-
polate between the trivial and topological phases with
C = 1/2. We return to this in more depth in Sec. IV B.

FIG. 2. DMRG calculations for N = 60 site wire with
PBCs. Transitions from trivial to topological and vice-versa
are at µ = ±2t. GS of the trivial phases has parity P = 0
whilst the topological phase has P = 1. At the transition
point the GS is degenerate and in an equal superposition of
P = 0 and P = 1, leading to C = 1/2.

E. Reviewing the phase diagram of two interacting
Kitaev wires

Recurring themes when contemplating applications
for topological matter in emergent technologies are both
scalable quantum computers as well as quantum circuits.
Especially for the latter case, super-conducting wires
like the Kitaev chain could be of particular interest,
not least due to the dangling Majorana edge modes.
As recently demonstrated [15], a quasi-two-dimensional
grid of Kitaev wires admits (p+ ip)-superconductivity
when threading appropriate fluxes through each unit cell.
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Following the example in Ref. [20], we introduce two
Kitaev chains

H0 = −
∑
σ,i

(µ
2
nσc,i + tcσ†i c

σ
i+1 −4c

σ†
i c

σ†
i+1 + h.c.

)
,

(23)
with label σ to distinguish the two chains. The proximity
of wires in realistic heterostructures will certainly make
coupling between two neighbouring wires relevant. One
prominent force will be the electrostatic one, or Coulomb
interaction, between the charge carriers of both wires.
Investigating the effects of Hubbard-like interactions as a
first approximation to this is the central theme hereafter.
Following the example of [20], we now include

Hint = g
∑
i

(
n1
i −

1

2

)(
n2
i −

1

2

)
. (24)

The presence of such (strong) interactions renders the
classification of topological phases from their symmetries
no longer complete [47], and exotic phases may emerge
The phase diagram in the presence of such an interaction,
obtained in [20], is presented in the figure below.

FIG. 3. Phase diagram for two interacting Kitaev wires, from
[20]. Gapless DCI phases are in red, whilst 4MF and po-
larized denote doubly topological and doubly trivial phases
respectively. At high |g| we find MI-AF and MI-FM, i.e.
Mott insulating (anti-)ferromagnetic phases. Coloured lines
(B1, C2 and C4) are trajectories relevant when studying the
effects of an inter-wire hopping term t⊥ in Sec. V.

A key observation is, that next to the doubly topo-
logical (4MF ) and doubly trivial (polarized) phases
which one expects from coupling two Kitaev wires,
additional phases appear both at large interactions and
at half-filling. On the one hand a transition to Mott
physics at large |g| is observed, and (anti-)ferromagnetic
ordering in the |g| −→ ∞ limit emerges. On the other
hand, far from half-filling, a gapless critical phase also
opens up: the double critical Ising phase (DCI). An

important quantity to classify critical theories is the
so-called central charge [27]. A central charge c = 1 may
refer to a critical Dirac fermion or a bosonic Luttinger
theory in (1 + 1)D. As found in [20], the DCI phase is
characterized by a total central charge c = 1. This can
be identified with two gapless Majorana fermions in the
bulk, or similarly critical Ising modes in two dimensions
[48]. From the link between the single Bloch sphere
and the single Kitaev wire [23], it is then natural to
ask whether an extension of this “duality” is possible
for two coupled chains and two coupled wires. In fact,
as was investigated in [21], coupling two Bloch spheres
in z−direction through a term ∼ Sz,1Sz,2 gives rise to
a phase diagram not very different to figure 3. Both
doubly topological and trivial phases, as well as distinct
high-|g| phases emerge. Additionally, also a fractional
topological C1 = C2 = 1/2 phase in the presence of
strong interactions is observed, when a Z2 (exchange)
symmetry between the spheres is present [21]. It is
important to emphasize here that this interaction acts
directly on the Bloch sphere which then means the
reciprocal space of an associated topological lattice
model. Various forms of interactions have been shown
to stabilize the C1 = C2 = 1/2. In particular, a simple
scenario to realize this phase is a local interaction in the
reciprocal space. An important prerequisite to observe
this fractional phase is the presence of an adjustable
MSz,i term which from the link between the single
Kitaev wire and the Bloch sphere is induced by the
presence of a global chemical potential acting on the two
wires.

In Appendix C 1 we extend and develop the link be-
tween two interacting wires [20] and Bloch spheres [21],
by re-writing the low-energy Hamiltonian (24) in mo-
mentum space. We find that the two-interacting Bloch
spheres are in a sense momentum space duals to the two
interacting wires. Therefore, at least for the phases of
two-interacting wires in [20] which are connected to the
g = 0 line, the topological numbers defined in (19) are
appropriate and reveal their distinct topology. The ex-
istence of a mixed (non-local) momentum term in (C6)
may suggest that for larger interaction parameters the
mapping is not precisely exact onto the two spheres.
However, this term can be reabsorbed into the ∼ µ
chemical potential contribution for each wire. Due to
the wire symmetry, this will act as a uniform renormal-
ization µ = µ (g) for both wires, which then supports
the idea that the spheres/wires duality is robust even
towards larger interactions, as long as the Bogoliubov
quasi-particle basis is the correct Hilbert space basis to
describe the wires. Below, we quantify the effects of these
non-local interactions via DMRG systematically in the
phase diagram of the two-wires model. That way we will
also verify that the fractional topological numbers intro-
duced for the two-spheres’ model [21, 22] are also useful
to describe the DCI phase of the two-wires’ model.
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F. Integer topological phases for two interacting
Kitaev superconducting wires

First, we evaluate the topological numbers Ci and C
i

for the two wires, navigating through the phases with in-
teger topological numbers [20]. As introduced prior, the
phase diagram for low |g| presents three distinct phases
[20]: Two polarized phases, and the topological 4MF
phase, cf. figure 3. By continuity to the non-interacting
limit, these phases are the extensions of the topological
and trivial phases of two independent Kitaev wires. With
open boundary conditions (OBCs), the 4MF phase thus
has four dangling Majorana edge modes [20].

FIG. 4. Chern numbers Cσ for g = 0 and t = ∆ = 1.0
and L = 76a per wire with PBCs. A clear transition from
polarized to 4MF phases is visible.

We evaluate the topological numbers defined in (19)
numerically for the doubly topological 4MF phase, the
two trivial polarized regions as well as the large |g| Mott
phases for strong interactions [20]. We additionally take
into account the conservation of parity within each wire,
also in the presence of the interaction (24), resulting in
four parity sectors, labeled by (P1, P2). We label the
GS and GS energies by their parities |GS〉(P1,P2) and
EP1P2. Figures 4 and 27 confirm that the doubly trivial
(polarized) phases are characterized by C1 = C2 = 0

and C
1

= C
2

= ±1. As for the single shown in figure

2, the C
1/2

are sensitive to the trivial phases and can
thus be used to identify the various “equivalent” regions
in figure 3. Similarly 4MF phase has C1 = C2 = 1 and

C
1

= C
2

= 0. In figure 5, the quantization of C is shown
to be no longer exact for large g, potentially indicating
proximity to a Mott transition. In the two-spheres
model [21], a transition to a topologically trivial phase
C1 + C2 = 0 (as for the duals) is expected, which does
not imply the individual topological markers to be zero

as well. The energy spectrum for g ' 7t is degenerate

FIG. 5. C and C for N = 50 sites/wire. C is no longer quan-
tized, approaching zero smoothly for large |g|. The red line,
indicating the gap-closing in figure 6, is in qualitative agree-
ment with both the inflection point above, and the transition
point from the toplogical (4MF ) to Mott-insulating antifer-
romagnetic phase MI-AF in [20], cf. figure (3).

between the (P1, P2) = (0, 0) and (1, 1) sectors cf. figure
6. Comparing this to both the topological numbers in

FIG. 6. Energy gaps obtained from DMRG for two interact-
ing Kitaev chains, with N = 50 sites per wire. The spectrum
becomes degenerate at the gap-closing point g ≈ 7t, high-
lighted by the red line, and signals a phase transition.

figure 5, and the phase diagram in figure 3, we note the
qualitative agreement between the gap-closing point and
both the transition point between the topological 4MF
phase and the Mott-insulating phase MI-AF, as well as
the inflection point of the curve in figure 5. Whilst C
and C are no longer quantized at such large interactions
g, they can still be used to investigate the phase diagram
of two (or more) strongly interacting wires.
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In the following two sections we extend our analysis to
the critical phases of one and two, interacting and cou-
pled Kitaev wires. We both add to the previous work
[20], as well as enhance the phase diagram by numer-
ically extracting the topological markers introduced in
(19). Finally, in Sec. V we investigate the effects of an
inter-wire hopping and characterize the phase diagram
with the topological markers defined in (19).

III. THE KITAEV WIRE AT CRITICALITY

Here we elaborate on the quantum phase transition in
the Kitaev model through bulk chiral Majorana modes
introduced for example in Ref. [20]. By investigating the
critical theory of the single wire, we develop both the the-
oretical tools of these chiral modes and benchmark the
DMRG by extracting the topological numbers for the sin-
gle wire. The formalism will be useful to develop further
QFT related to the two-wires model in the next section.

A. Quantum Field Theory for the chiral bulk
modes

At the QCP µ = 2t, the single Kitaev wire is described
by a single critical Ising model. To see this, we formulate
the Hamiltonian (1) in the Majorana representation. We
quantify the distance to the QCP by

δµ = µ+ 2t, (25)

and thus rewrite (3) in a more suggestive manner

HK = it
∑
j

γB,j (γA,j+1 − γA,j)−
iδµ

2

∑
j

γA,jγB,j .

(26)
Introducing the finite-difference derivative for the A

Majoranas and setting δµ = 0, the above reduces to

HK = ita
∑
j

γB,j∂jγA,j , (27)

with a∂jfj = fj+1 − fj and a the short-distance cut-off
(i.e. the lattice spacing). The continuum limit for the A
and B fields is defined as γA/B (x = ja) =

γA/B,j√
a

, such

that for a −→ 0 the Hamiltonian becomes

HK
a−→0−→ ita

∫
x

dx γB(x)∂xγA(x). (28)

We now introduce two chiral Majorana modes γR,j and
γL,j [20], defined by the relations

√
2γL/R (x = ja) = γB (x = ja)± γA (x = ja) . (29)

Before proceeding, a justification for why it is appro-
priate to call these modes chiral is in order. Close to

δµ = 0, the Fermi momentum is found to be kF ≈ 0. We
can then write down the single-particle Hamiltonian Hk
around this value introducing Pauli matrices such that

Hk = − (µ+ 2t) · τz +4 · 2ka · τx = 4 · 2ka · τx, (30)

where in the last step we dropped τz due to δµ ∼ 0. De-
composing ψk into two Majorana fermions γA/B (ka) we
find that HK is diagonalized by γA ± γB , with eigenval-
ues ±24 · ka, i.e. a gapless spectrum. The two chiral
modes have velocities v = ±2a∆ [15]. Through the chiral
γR/L modes into (31), the continuum R/L-Hamiltonian
is found to be

HK
a−→0−→ ita

∫
x

dx (γL(x)∂xγL(x)− γR(x)∂xγR(x)).

(31)
Interpreting γR/L as the two chiral components of a
Majorana field, the Hamiltonian describes a free, one-
dimensional Majorana conformal field theory (CFT). We
emphasize that a free Majorana CFT (half of a Dirac
fermion) counts as c = 1/2. Whilst generally difficult to
obtain experimentally, the central charge has been shown
to enter thermodynamic observables, for example, via a
universal term in the free energy and the heat capacity
CV [27]. Another way to obtain the central charge is via
the entanglement entropy SA (l)

SA = −Tr (ρA log (ρA)) , (32)

where l is the length of the subsystem. The central charge
was found to appear in the coefficient of the logarithmic
contribution [49], i.e.

SA(l) =
c

3
log

(
L

π
sin

(
lπ

L

))
+O(1). (33)

Additional oscillatory terms are present when OBCs are
considered [50]. At δµ = 0 the gapless critical Ising
model with central charge c = 1/2, cf. figure 25 is sig-
naled by the closing of the gap at the critical point and
change in central charge extracted from the entanglement
entropy. We complete this discussion by considering the
effect of δµ 6= 0: The Hamiltonian in (31) acquires a
chiral mass term, given by iδµγRγL , i.e. the Majorana
mode becomes gapped by mC = δµ and has a central
charge c = 0 as expected.

B. Fractional topology of the QCP

Numerically we use DMRG to find the physical ground
state of the system at criticality and extract both the
central charge and topological numbers C and C. The
results are summarized in figure (25). As already men-
tioned in II B, due to the parity conservation of the
Hamiltonian we find a ground state spectrum given by
EP=0 and EP=1, the true ground state, therefore, is de-
termined by the smaller value of both. Generally the
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gap ∆E ≡ EP=0 − EP=1 is non-zero, with the topologi-
cal phase being determined by P = 1 and the trivial ones
by P = 0. Precisely in the critical points µ = ±2t, ∆E
is zero and the spectrum becomes degenerate between
the parity sectors. For more details on the numerics and
subtleties regarding DMRG in the critical phase, we refer
to the Appendix B. As mentioned prior in the discus-
sion around equation (22), the degeneracy implies that
the physical ground state lies in the subspace spanned by
both parity sectors

|GS〉 = χP=0|GS〉P=0 + χP=1|GS〉P=1, (34)

with χ2
P=0 + χ2

P=1 = 1. Therefore, any observable O
is calculated as 〈O〉 = tr [ρ̂O], where the density matrix
is ρ̂ = |GS〉〈GS|. The topological markers defined in
(19) commute with the fermion parity operator, and are
thus diagonal in the parity basis. Due to the fact that
the parity sectors associated to |GS〉P=0 and |GS〉P=1

are orthogonal, the expectation values of diagonal ob-
servables can be calculated using the effective, diagonal
density matrix

ρ̂eff =
∑
P=0,1

χ2
P |GS〉P 〈GS|P , (35)

Numerically we find C = 0 and C = 1 for the P = 0 and
P = 1 GS’s respectively, which results in 〈C〉 = χ2

P=1.
In the absence of a bias, the physical GS necessarily has
χ2
P = 1/2, which results in a fractional C = 1/2 value.

This is coherent with approaches used to measure and
define the fractional Chern invariant of Fractional Chern
Insulators.

We now offer additional arguments and justifications,
that the only physically sensible degree of mixing is given
by χ2

P=0,1 = 1/2, by evaluating the GS of the momen-
tum space Hamiltonian around the poles ka = 0, π. This
discussion makes a link between the gap-closing point in
the critical phase of a single Kitaev wire, and the en-
tanglement property at one pole in the C = 1/2 phase
for two-interacting spheres [21]. The GS parity is de-
termined from the product of all individual site parities,
both in real and momentum space:

P̂ = eiπ
∑
i ni = eiπ

∑
k nk =

∏
k

(1− 2nk) ≡
∏
k

P̂k. (36)

We now determine the GS in momentum space for
a single wire at the QCP, and consider in detail the
poles ka = 0 and ka = π. We fix t = ∆ and t > 0
without loss of generality. In the trivial (|µ| > 2t)
and topological (|µ| < 2t) regimes, the parity is clearly
fixed. By being adiabatically connected to the vacuum

|0〉 and fully occupied
∏
k c
†
k|0〉 states, the two trivial

regions have fixed parity: P = 0 and P = Nmod2
respectively. Similarly, the GS of the topological regime
is characterized by the BCS state in the bulk, which
conserves the parity of the vacuum |0〉. Therefore, only

the pole-contributions in (13) may alter the parity. Due
to |µ| < 2t, one pole will host a particle, whilst the other
is empty. Thus, P = 1 necessarily.

In the critical phase we instead find that both parity
sectors become degenerate, which can be seen from the
GS structure around the poles. To understand this, we
note that at µ = ±2t, the gap closes at ka = π or ka = 0
respectively. Away from these points, the bulk remains
gapped, and we yet expect the BCS wave function (13)
to accurately describe the GS. The parity is thus again
determined solely from the poles, and precisely the GS
around the gap-closing point fixes the mixed parity GS.
To see this, we write Hk to leading order in k

Hka≈0 =

(
−µ2 − t O (k)
O (k) +µ

2 + t

)
, (37)

such that for µ = −2t the gap closes and the off-diagonal
terms are leading order. The two quasi-particles we ob-
tain by diagonalizing the Hamiltonian matrix above are√

2η±k = ck± ic†−k. For low momenta ka ≈ 0 we thus find
the gapless, linear spectrum in terms of the two (related
via PHS) quasi-particles

Hcrit,ka≈0 =
∑
k/0

v+
effkη

+†
k η+

k +
∑
k'0

v−effkη
−†
k η−k . (38)

Here v±eff = ±2∆ + O
(
k2
)
, and we find the GS around

the gap-closing point to be η−†k |BCS〉 for k ' 0 and

η+†
k |BCS〉 for k / 0. Similar to Eq. (12), η−† corre-

sponds to a quasiparticle operator with a negative eigen-
ergy and with ϕ = 0. Due to the PHS symmetry, the GS
is found to satisfy

〈Szka≈0〉 = 〈c†kck − c−kc
†
−k〉 = 0, (39)

where the expectation values where taken wrt. to the
GS. This property will certainly also be true at ka = 0,
and can be linked to the degenerate GS wrt. parity by
considering explicitly

0 = 〈Sz0 〉 = 〈c†0c0 − c0c
†
0〉 = 2〈n0〉 − 1 = −〈P̂k=0〉. (40)

Therefore, the total parity is equal to zero, as P̂ =
∏
k P̂k.

It therefore follows that it lies in a perfect superposition
of “+” and “−” parity sectors, i.e. in binary notation

|GS〉 =
1√
2

(|GS〉P=0 + |GS〉P=1) . (41)

At the south pole ka = π the GS is determined by the
dominant diagonal contribution, i.e. |GS〉 = |0〉. Instead
of the entanglement property (39) we find 〈Szka≈π〉 = −1.
Hence, the Chern number, calculated from the poles
(and derived geometrically on the Bloch sphere from the
integral over the Berry curvature [21, 22, 31]), is given
by C = −1/2. This is how we numerically find the
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C = ±1/2 value in figure 2.

By similar arguments the same holds for the second
topological number C = ±1/2. A remarkable result
is, that C is sensitive to all regions of the phase dia-
gram, even distinguishing both critical points cf. figure
2. The QCP to has a central charge c = 1/2, cf. figure
25. The gapless R/L-chiral modes defined in (29) also
emerge from the momentum-space Hamiltonian around
the poles, thus establishing a first duality between the
central charge and the Chern number in the critical point:

Recall that, for µ = −2t, the GS is η−†k |BCS〉 at ka = 0

(North pole). Decomposing η±,†k into their Majorana
constituents we find

η±k =
1

2
(γA,k + iγB,k)± i1

2
(γA,−k − iγB,−k)

=
1

2
(1± i) (γA,k ± γB,k) ∝ γL/R,

(42)

where in the second we used that γk = γ−k for Majorana
fermions coming from γ† = γ. In the last equation we
identified the chiral modes in (29). As these modes
are in momentum space and near ka ≈ 0, they are
(approximately) uniformly distributed over the whole
wire. Deviating from the QCP leads to a gap in these
chiral modes: Non-zero diagonal elements ∼ δµ in the
Hamiltonian matrix lead to ∼ iγRγL terms, equivalent
to a mass term in the QFT cf. discussion following (26).

IV. FRACTIONAL TOPOLOGY FOR TWO
INTERACTING WIRES

We now demonstrate how both the chiral QFT and
fractional topological numbers C = ±1/2 and C = ±1/2
extend to the critical regions in the phase diagram of
two interacting Kitaev wires. As was discovered in [20],
the critical line extends as a gapless DCI phase, possible
due to the effects of strong interactions. Recasting
the model in terms of mixed-wire fermions, such an
extended critical phase can be predicted from the QFT.
The existence of this phase was also verified numerically
using DMRG and quantum information techniques [20].

In what follows, we expand on the theoretical descrip-
tion of the critical phase, and introducing another set
of mixed wire Fermions Γj and Θj . From this we ob-
tain an alternative QFT description of the DCI phase, in
terms of two chiral complex fermions. These are directly
linked to the chiral Majorana modes of the QCP for a
single wire. This link to the QCP is then extended, by
showing that the topological markers introduced in (19)
are C = C = 1

2 per wire. Finally we also address pos-
sible measurement protocols, further providing evidence
for the duality between the topological properties of two
interacting Bloch spheres [21] and Kitaev wires [20].

A. Chiral QFT for two interacting wires from
mixed wire fermions

We now expand on the idea of chiral bulk modes in
the DCI phase, introduced for the single wire in Sec.
IV. This presents an alternative approach to the QFT
description in [20], offering additional insight into the
physical properties of the gapless DCI phase. We present
the main results in the following and refer to Appendix
C for more details.

We proceed similarly to the single wire and write the
Hamiltonian in (23) in terms of the Majorana fields, in-
troduced prior in Sec. II. Each complex c-fermion can be
written in terms of the two real Majoranas γA and γB .
Denoting the distance from the g = 0 QCPs by δµ, the
Hamiltonian then reads

H =− iδµ

2

∑
j,σ=1,2

γσA,jγ
σ
B,j − it

∑
j,σ

γσB,jγ
σ
A,j+1

− g

4

∑
j

γ1
A,jγ

1
B,jγ

2
A,jγ

2
B,j .

(43)

We assumed here the limit t = ∆, and use a simi-
lar notation as in (3). The different wires are labeled
by σ = 1, 2. As was already discussed in [20], the de-
grees of freedom of both wires are mixed in the DCI
phase, resulting in a c = 1 critical model for the com-
bined wires. Therefore, we introduce complex fermions
which mix both sets of A and B Majorana species across
both chains:

Γj ≡
1

2

(
γ1
A,j + iγ2

A,j

)
Θj ≡

1

2

(
γ2
B,j − iγ1

B,j

)
.

(44)

Rewriting the Hamiltonian in terms of these mixed modes
we obtain

H =−
(

2t− δµ

2

)∑
j

(
Γ†j+1Θj − Γ†jΘj

)
+ h.c.

− δµ

2

∑
j

(
Γ†j+1Θj + Γ†jΘj

)
+ h.c.

− g

2

∑
j

(
Γ†jΓj + Θ†jΘj

)
− g

∑
j

Γ†jΓjΘ
†
jΘj .

(45)

For δµ = g = 0, i.e. in the double QCP at µ = 2t, the
first bracket resembles strongly the γB∂xγA term in (29).
Then defining similarly continuum-fields for “left” and
“right” movers ψL/R as

√
2ψR/L (x) = Θ (x)± iΓ (x) , (46)

one obtains a critical model in the a −→ 0 limit

H (δµ = g = 0) = 2ita

∫
x

dx(ψ†L∂xψL − ψ
†
R∂xψR). (47)
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This describes a model with central charge c = 1. In
fact, by decomposing Γ and Θ into their Majorana con-
stituents

√
2ψR =

1

2

(
γ2
B − iγ1

B + iγ1
A − γ2

A

)
∼ γ2

R − iγ1
R,

√
2ψL =

1

2

(
γ2
B − iγ1

B − iγ1
A + γ2

A

)
∼ γ2

L − iγ1
L,

(48)

we see that the ψR/L fermions can be written in terms
of the chiral Majoranas on each wire, revealing the
Double Critical Ising character of the phase. The two
spheres model in the C=1/2 phase also reveals the same
Majorana fermions structure [22] as for the one sphere
model at the quantum phase transition emphasing the
correspondence between spheres and wires. Defining
vF /a = 2t− δµ/2, we rewrite (45) in terms of ψR/L

H =− ivF
∫
x

dx
(
ψ†R∂xψR − ψ

†
L∂xψL

)
− δµ

2

∫
x

dx
(
ψ†RψL + ψ†LψR

)
− g

2

∫
x

dx
(
ψ†RψR + ψ†LψL

)
−Hint.

(49)

The interaction-Hamiltonian is defined as

Hint =
g

4a

∫
x

dx
(
ψ†RψRψ

†
RψR + ψ†LψLψ

†
LψL

)
+

g

4a

∫
x

dx
(
ψ†RψRψ

†
LψL + ψ†RψLψ

†
LψR

)
+
gi

4a

∫
x

dx
(
ψ†RψRψ

†
RψL − ψ

†
LψLψ

†
LψR

)
.

(50)

A powerful analytical tool to investigate one-dimensional
interacting fermion systems is bosonization [51–53],
wherein fermionic modes are mapped onto bosonic fields.
This may simplify interactions, and we introduce the bo-
son fields φ and θ through the standard definitions [54]

ψR/L (x = ja) =
UR/L√

2πα
e−i(±φ(x)−θ(x)). (51)

Here UR/L are the so-called “Klein factors” ensuring the
anti-commutation properties of the fermionic fields ψR/L,
and the short-distance cut-off α is of the order of the lat-
tice constant a. When dealing with higher-order terms
and interactions, bosonization becomes fairly lengthy.
We thus only present the results in the main text and
refer to Appendix C 4 for more intricate details. To low-
est order in the short-distance cut-off α one finds (49) to
be equivalent to the following bosonic Luttinger-Liquid
(LL) Hamiltonian with a Sine-Gordon potential for φ

H =

∫
x

dx

(
vF
2π

(
1

K
(∂xφ)

2
+K (∂xθ)

2

)
− gφ cos (2φ)

)
.

(52)
The LL parameter K and gφ are related to the model
parameters as vFK

−1 = a
(
4t− δµ− g

π

)
, vFK =

a (4t− δµ) and gφ =
(
δµ

2πα + ga
4π2α2

)
, scaling as energy

times 1/a. We emphasize that the gφ Sine-Gordon term

comes from the channel ψ†RψLψ
†
LψR. We note that

in the present Hamiltonian (52), the interaction is effec-
tively halved compared to the boson Hamiltonian in [20],
which is explained by the specific choice of mixed fermion
fields [55]. From the RG analysis on the short-distance
cutoff a the flow equations for the LL parameter K and
interaction gφ are found as [20]

dK

dl
=− 4π2

v2
F

g2
φK

2

dgφ
dl

= (2−K) gφ.

(53)

The DCI phase is both gapless and has a total central
charge c = 1. The Hamiltonian (52) has these properties
only when the interaction gφ vanishes. As long as
K < 2, the interaction parameter is always relevant in
the RG sense, cf. (53). The coupling gφ progressively
increases with the parameter l = ln(L/a) related to
the effective length L at which we probe the system.
In this case, gφ = 0 traces a highly fine-tuned line in
the g − µ phase diagram [20], which extends down to
g = 0. Here we have K = 1 and the two wires are
decoupled, thus the critical line belongs to the class of
two critical Ising models, i.e. with central charge c per
wire satisfying 2c = 1. However, when the LL parameter
becomes K > 2, then the ∼ cos (2φ) operator with
scaling dimension ∼ K, becomes irrelevant in (1 + 1)d.
It is then possible for the gapless phase to open up and
extend in the phase diagram. Noting that K > 2 is only
possible at large interactions and far from half-filling
|δµ| � 0, the applicability of bosonization is limited in
the original fermion basis. However, in the mixed-wire
basis ψR/L the DCI phase occurs at half-filling and thus
emphasises the usefulness of the formalism.

An extended DCI region was verified numerically in
[20] using both the central charge and logarithmic bipar-
tite charge fluctuations [39]. The latter is necessary since
we are unable to access the central charges of each wire
individually. Thus it is not possible to distinguish the
DCI phase from the single critical Dirac fermion, or bo-
son, all three of which have a total c = 1. However, as
was shown in [20], the bipartite charge fluctuations [39]
are sensitive to this subtlety. These fluctuations are, just
as the entanglement entropy, defined for a subsystem A
with length l, interacting with the rest of the wire:

FQ = Tr
(
Q2
AρA

)
− Tr (QAρA)

2
=
〈
Q2
A

〉
− 〈QA〉2 . (54)

Whilst the fluctuations have a dominant linear term for
the two coupled wires, which grows with subsystem sys-
tem size l in relation to the quantum Fisher, there is also
a sub-dominant logarithmic contribution [20]

FQ(l) =
| ∆]

2|∆|+ 2t
l +O(log l). (55)
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This sub-dominant term traduces the underlying modes
in the theory: If the degrees of freedom are Majorana
fields, then this logarithmic term enters with a negative
coefficient whilst otherwise it remains positive [20]. It
is therefore possible to verify numerically that the DCI
phase indeed corresponds to two c = 1/2 modes, i.e. a
double critical Ising phase.

B. Fractional topology of the DCI phase

Here, we investigate the critical regions in the phase
diagram [20] of two interacting topological supercon-
ducting wires using the topological markers (19). Using
DMRG we show that even at comparatively large g
values the Chern number of each wire is found to
be stable with C = 1/2. This unveils the fractional
topological nature of the DCI phase. Together with
the considerations made in Sec. II E, the intrinsic link
between the DCI and the fractional C = 1/2 phase for
two coupled Bloch spheres becomes apparent.

From Sec. II E, the analogy between the two wires
and the two entangled Bloch spheres [21] implies that a
projection of the Chern number onto the subsystems is
possible, by measuring the individual polarizations 〈Sz,σk 〉
at the poles k = 0 and k = π/a. From (17) and (19) this
translates to measuring the relevant two-point correla-
tion functions on each wire. We calculated the GS again
for each parity sector (P1, P2) = (0, 1), (1, 0), (0, 0), (1, 1)
using DMRG, see figure 26 in the Appendix. Similar to
the single wire, in the region of the DCI phase the GSEs
become two-fold degenerate. However, in this case, such
that the total parity remains odd, i.e. between the parity
sectors (0, 1) and (1, 0). Thus, effectively, the GS parity
for each wire is again a super-position of P = 0 and
P = 1, just as in the single-wire QCP in Sec. II B.

Evaluating the correlations we a priori expect that the
exact values of the non-interacting C = 1/2 at δµ = 0
will be smeared out by non-zero g. However, as can be
seen in Figs. 7 and 8, also for large g the DCI phase
is found as a constant C = 1/2 plateau. This can be
explained within the Bloch sphere representation in Sec.
II E. Numerically, for a considerable range of interac-
tions, we determined the expectation value 〈Sz,σk=0〉 to be
always unity. The effects of non-zero g only manifest
themselves in C and C at the south pole, i.e. ka = π.
For two-interacting spheres, the fractional C = 1/2 phase
stems from the entanglement of the two polarizations at
the south pole [21]. For two wires, the DCI phase should
be then characterized by a GS which lies in the degener-
ate GS of the two parity sectors |GS〉01 and |GS〉10, cf.
discussion around equation (34). A-priori we thus expect
the physical GS to be given by

|GS〉 = χ01|GS〉01 + χ10|GS〉10, (56)

In this case we find (numerically) that C1 = C
1

= χ2
01

FIG. 7. Chern numbers C and C extracted from the GS for
L = 76a with PBCs. In the parameter range where the DCI
phase was found [20], both topological numbers are found to
be fractional = 1/2. On either side of this extended region,
we identify the 4MF and polarized phases with (C,C) = (1, 0)
and (C,C) = (0, 1) respectively.

FIG. 8. Chern numbers C for the wires. We see again the
fractional nature of the DCI phase around g = 5t and t = ∆.

and C2 = C
2

= χ2
10. Whilst from the single wire QCP

at g = 0 we expect all parity sectors to be degenerate,
an interaction g > 0 introduces a gap between the en-
ergetically lower-lying states |GS〉01 or |GS〉10, and the
|GS〉00 and |GS〉11 states. The inherent exchange sym-
metry between both wires fixes χ2

01/10 = 1/2. In this

case, it follows that C1 = C2 = 1/2. By expressing the
z-spin expectation values by the Chern and dual markers
we obtain the following relation

〈GS|Sz,1ka=π|GS〉 = 〈GS|C1 − C1|GS〉 (57)

This expectation value vanishes, which is the general-
ization of the entanglement property discussed prior in
the QCP of a single wire, cf. discussion following equa-
tion (39). In fact, similar considerations for the case of
two (weakly) interacting spheres reveal the emergence of
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the two (complex) chiral fields ψR/L around the entan-
gled poles, making a link to the critical QFT of the DCI
phase. At ka = 0 we write

〈GS|Sz,1ka=0|GS〉 = 〈GS|C1 + C
1|GS〉. (58)

which is found numerically to always be ≈ 1 in the ranges
considered in figures 7 and 8. Equivalent relations for the
expectation values for wire σ = 2 exist. Thus, around
g = 0 we find similar to the single wire case, that

Cσ =
1

2
〈Sz,σk=0〉 ≈

1

2
. (59)

At larger interaction strengths g we no longer find that
the topological numbers are quantized to ±1. However,
we yet find the entanglement property in (57) to hold ap-
proximately in all parameter ranges considered, cf. fig-
ures 7 and 8. The stability of this entanglement property
explains the stability of the fractional C = C = 1/2 in
the DCI phase. Thus, the DCI phase is characterized by
both fractional central charge c and topological markers
C and C. As for the single wire, discussed in sec. III B,
we attribute this correspondence to the intrinsic duality
with the model of two coupled and interacting spheres
studied in [21].

C. Outlook for measurement protocols

Experimentally, the observation of Majorana fermions
remains elusive, and measurement protocols do not
always provide clear results: for example, in dI/dV
measurements Andreev bound states may also produce
zero-bias-peaks (ZBPs) [56]. By being defined globally,
and in real space, the topological markers in (19)
could provide a direct real-space technique to measure
topology - also in the presence of disorder.

Numerically, the topological numbers C and C in (19)
are fairly simple to access, as they are fully determined
by two-point correlation functions. Experimentally the

non-locality i of 〈c†j+icj〉 may present potential hurdles.
More recent advances in the cold-atoms community are
establishing measurement techniques and protocols to
obtain equal-time and spatially resolved correlation func-
tions [57, 58]. We can hope that in the near future, these
techniques extend to non-local and higher-order correla-
tion functions of quantum wires. In the following, we
show that measuring the capacitance, charge, and band
structure is already sufficient to probe the Chern num-
bers C. The capacitance is, essentially, the total charge
density Q/N of the wire. This, in Fourier space results
in

Q

N
=

1

N

∑
k∈BZ

〈c†kck〉. (60)

For the wire, the appropriate GS is the BCS wave func-
tion, for which one finds

〈c†kck〉 = sin2

(
ϑk
2

)
. (61)

We remind the reader that ϑk is given in by

cos (ϑk) =
µ+ 2t cos (ka)√

(µ+ 2t cos (ka))
2

+ ∆2 sin2 (ka)
. (62)

Making use of the trigonometric identity cos (2x) =
cos2 (x) − sin2 (x), and going over into the continuum
limit, we find alternatively the capacitance as

Q/N =
1

2
− 1

2π

∫ +π/a

0

cos (ϑk) dk. (63)

At half-filling µ = 0 the ϑk function is simply k and
hence Q

N = 1/2 = C/2. This identity comes from the
fact that for one Bloch sphere, from geometry [21] we

have the identification cos2 ϑk
2 + sin2 ϑk

2 = C which can
be precisely used to identify the first term in Eq. (63) as
C
2 . As long as we remain in the topological phase, i.e.
|µ| < 2t, the momentum integral above will be bound
from above by the critical value Icrit for µ = 2t. On the
other hand, ϑk = π, thus the integral is strictly 1. More
generally, if |µ| > 2t, it is bounded from below by Icrit.

For the DCI phase of the two wires’ model, from Eq.
(59), it could be suggestive to perform a direct charge
measurement from a momentum-resolved probe [59, 60]
accessing then 〈Sz,σk 〉 similarly as observing the motion
of a spin- 1

2 when driving from north to south pole such
that for a wire j

Cσ =
1

2
= −1

2

∫ π/a

0

dk
∂〈Sz,σk 〉
∂k

. (64)

V. THE EFFECTS OF AN INTER-WIRE
HOPPING TERM t⊥

Expanding on the phase diagram 3 obtained in [20],
we now consider the effects of an inter-wire hopping
amplitude t⊥. We use both QFT and numerical methods
to study the properties at various ranges of t⊥, and
extract the Chern number C and the dual number C to
enhance the phase diagram. We emphasize here that
the hopping term t⊥ does not have a precise analogue
on the two interacting Bloch spheres, therefore studying
the effect of such a term within the wires is certainly
justified and also physical as charges can leak from one
wire to another. In Appendix C 4, we comment on the
role of an inter-wire SC-pairing term. We also address
the vicinity of the Mott phase(s) for strong interactions.
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The non-interacting Hamiltonian H0 of the combined
two wires system could be written as a sum of two single-
wire Hamiltonians HK,σ

H = H0 +Hint = HK,σ=1 +HK,σ=2 +Hint. (65)

In terms of a combined wires basis, the (free) Hamil-
tonian H0 was given by a block diagonal matrix with
HK,σ=1,2 as diagonal entries. However, including an
inter-wire hopping t⊥ through the following addition to
the Hamiltonian

H⊥ = −t⊥
∑
i

c1†i c
2
i + h.c., (66)

introduces off-diagonal elements mixing both non-
interacting wire Hamiltonians HK,σ. The Hamiltonian
is block diagonalized by the following transformation
[15, 18, 61] of the cσ basis

c± =
1√
2

(
c1 ± c2

)
⇒

{
c1 = 1√

2
(c+ + c−)

c2 = 1√
2

(c+ − c−) .
(67)

In this bonding/anti-bonding basis, the t⊥ term con-
tributes as a shift in the chemical potential, however with
an opposite sign for the respective bands:

H0 =− t
∑
j,κ=±

(
cκ†j+1c

κ
j +

(µ+ (−1)
κ
t⊥)

2
cκ†j c

κ
j

)
+ ∆

∑
j,κ=±

(
eiϕcκ†j c

κ†
j+1 + e−iϕcκj+1c

κ
j

)
+
g

2

∑
j

(
n+
j −

1

2

)(
n−j −

1

2

)
+ h.c.,

(68)

where we defined c+†c+ = n+ and so on. Since a priori
two independent chemical potentials µσ could have been
chosen, we work from now on with the effective potentials

µ± = µ± ∆µ

2
≡ µ+ + µ−

2
± 1

2
(µ+ − µ−) . (69)

To reproduce the above case (68) we thus simply set for
the chemical potentials µ = µ and ∆µ = t⊥.

The effects of adding an inter-wire hopping amplitude
t⊥ on the phase diagram in [20] depend strongly on the
phase. A first important property of the additional term
to the full Hamiltonian (66) is that at zero interaction
g = 0 it does not break time-reversal-symmetry (TRS)
for t⊥ ∈ R. Therefore (66) cannot gap out the topological
edge modes of the 4MF phase using the Chern number C
and C for the two bands. By continuity to the g = 0 limit,
both the 4MF and Polarized phases [20] will remain ro-
bust against a non-zero inter-wire hopping. At non-zero
interactions, such symmetry protection is no longer a suf-
ficient condition in general, to ensure the robustness of
a topological phase [47]. In the large |g| limit we derive,
by projecting onto the effective low-energy Hamiltonian,

that in addition to the (anti-)ferromagnetic ordering, an
additional paramagnetic Mott order is induced due to a
non-zero t⊥. For sufficiently small t⊥, the two Mott insu-
lating MI-AF and MI-F phases [20] in figure 3 are stable
up to a critical interaction value g∗, where inevitably the
paramagnetic order takes over. A key property of both
the single QCP and DCI phase is the existence of gapless
critical Ising modes.

From the QFT away from half-filling we demonstrate
that, in the thermodynamic limit, a non-zero inter-wire
hopping collapses the DCI phase and replaces the doubly
critical line gφ = 0 by two single critical Ising lines. The
phase which emerges between both critical lines is a 2MF
phase, where the wires host two dangling edge modes on
the four possible ends in the case of OBCs, which is sup-
ported by numerical results for the Chern number C and
C for the two bands. However, we demonstrate numeri-
cally that at finite wire sizes, the DCI phase can be found
to prevail below a critical scale t∗⊥. For lengths of orders
of a few hundred sites, we verify numerically a critical
value t∗⊥/t ∼ /L with h/2π = 1. Adjusting the length
of the wires or the distance between them then allows for
the observation of various phases. Through the identifi-
cation T ∼ vF /L (with the Boltzmann constant kB = 1),
varying the temperature T also allows observation of the
different phases.

A. Phases at high t⊥ and high |g|

We first investigate the high |g| limit for a t⊥
term relevant at our length scales. Whilst we focus
in particular here on cases at half-filling (µ = 0),
the results remain valid also when deviating from
this. In the t⊥ = 0 phase diagram it was revealed
by transforming into the low-energy subspace via a
Schrieffer-Wolff transformation [20], that at sufficiently
large g > 0 a transition from the (doubly-topological)
4MF phase to a Mott insulating anti-ferromagnetic
(MI-AF) occurred. For g < 0 conversely the transi-
tion was to a Mott insulating ferromagnetic (MI-F) state.

To generalize the low-energy analysis of the Hamilto-
nian for large |g| in the presence of a non-zero ∆µ, it is
judicious to transform again into the bonding (+) and
anti-bonding (−) basis (67) for which the Hamiltonian
becomes block diagonal (68). To obtain the spin-degrees
of freedom characteristic of Mott physics, we perform ad-
ditionally a Jordan-Wigner transform analogous to [20],
defined by

σzj = c+†j c+j − c
−†
j c−j

σxj = c+†j c−j + c+†j c+j

σyj = i
(
c−†j c+j − c

+†
j c−j

)
.

(70)

This transformation agrees with the one in [20] in terms
of σ = 1 and σ = 2 wire labels, as a Mott phase at half-
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filling implicitly means n1 +n2 = 1 per rung. The change
of basis in (67) leaves this invariant, i.e. n+ +n− = 1. A
subsequent Schrieffer-Wolff transformation results in the
low-energy effective Hamiltonian [20]

Heff,g+ =
t2 −∆2

2g

∑
j

σzjσ
z
j+1 +

∆µ

2

∑
x

σxj

+
t2 + ∆2

2g

∑
j

σyj σ
y
j+1 +

t2 −∆2

2g

∑
j

σxj σ
x
j+1.

(71)

Taking t = ∆ in the effective low-energy Hamiltonian in
(71) reduces the model to a 1D quantum Ising model.
Compared to the low-energy Hamiltonian in [20], the
inter-wire hopping amplitudes map onto a transverse field
contribution ∼ t⊥. As long as it is sub-dominant, i.e.
t2/g > ∆µ, we expect similar physics as in the t⊥ limit,
i.e. a (anti-)ferromagnetic ordering in y−direction:

σyj σ
y
j+1|GS〉 = −|GS〉. (72)

We assumed here the limit t = ∆ in Eq. (71), thus
effectively dropping the xx and zz terms. As can be
seen in figure 28 in Appendix D in the absence of a t⊥
the σy two-point function shows an (anti-)ferromagnetic
ordering for large |g|.

At ∆µ ∼ t2/g, a transition to a paramagnetic ordered
phase occurs, characterized by

σxj |GS〉 =− |GS〉
⇒ σxj σ

x
j+1|GS〉 = + |GS〉.

(73)

The one and two-point functions of σy are zero in this
ground state. In the intermediate regime, i.e. finite g or
non-zero t, both the antiferromagnetic and paramagnetic
ordering compete against each other. For large enough
∆µ ∼ t⊥, this intermediate phase can be tuned away
completely. We test this numerically with DMRG, by
extracting the spin and spin-spin correlation functions
from the GS. We find that up to a threshold interaction
gcrit both a σyj σ

y
j+1 and σx ordering builds up, cf. figure

9. However, after crossing gcrit, the σyσy correlations
decay quickly to zero and only the ordering in σx di-
rection rapidly emerges. This is precisely the behaviour
predicted from the low-energy effective Hamiltonian (71).

If we take g > 0, then we expect the transition from
the Mott insulating MI-AF (y-ordered) to the paramag-
netic phase (x-ordered) to be a second-order phase tran-
sition. For this transition a power-law behaviour for the
〈σyj σ

y
j+1〉 correlation function is expected, whilst 〈σx〉

should be continuous as a function of g [62]. Similar
arguments can be made for g < 0 and the MI-F phase.
A more in-depth numerical analysis of this transition is
necessary and may be done at a later stage, for example
when investigating the role of Mott-physics for strongly
interacting wire structures.

FIG. 9. One and two-point correlation functions for both x
and y spin components extracted from the DMRG GS, in
the presence of an inter-wire hopping t⊥ = 0.5. Crosses cor-
respond to DMRG calculations with L = 20a, whilst filled
markers to L = 30a. The transverse field contribution ∆µ
drives the paramagnetic ordering, as can be seen by the 〈σx〉
and 〈σxj σxj+1〉 correlation functions, which rapidly approach
the values in (73) for g ≈ 6t.

B. Phase diagram in the high t⊥, low g limit

We now turn to the phase diagram at interactions be-
low the Mott scale, and focus on the stability of the re-
maining phase diagram in 3 in the presence of an inter-
wire hopping t⊥. Recognizing the structural similarity of
the Hamiltonians (68) and (23), we generalize the defi-
nitions of the mixed wires fermions Γ, Θ, and the chiral
modes ψR/L to the bonding/anti-bonding bands. Adapt-
ing the labels σ = 1, 2 with κ = ± in the previous defini-
tions in Sec. IV B, we define henceforth

Γj ≡
1

2

(
γA,+j + iγA,−j

)
Θj ≡

1

2

(
γB,−j − iγB,+j

)
.

(74)

The chiral modes are then defined exactly as in (46).
We now treat the wire-mixing component to the Hamil-
tonian ∼ t⊥ as a perturbation on top of the Hamiltonian
in (C36), and we investigate its effects on the phase
diagram using the same bosonization procedure as in
Sec. IV.

First, we rewrite the (band-) fermions c± in terms of
the mixed-band fermions Γ and Θ. By comparing with
previous expressions, we readily notice that

Γ†jΘ
†
j + h.c = n+

j − n
−
j . (75)

Therefore, the additional contribution to the total Hamil-

tonian takes the simple form ∼
∑
j Γ†jΘ

†
j + h.c. Written

in terms of the chiral modes ψR/L, this is equal to

i
∆µ

2

∫
x

dx
(
ψ†Rψ

†
L − ψLψR

)
. (76)
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This is reminiscent of a superconducting pairing term
cf. (1). Indeed, after performing the bosonization with
analogous conventions as prior cf. equation (51), one
finds to lowest order

i
(
ψ†Rψ

†
L − ψLψR

)
= − 1

πα
cos (2θ) +O

(
α0
)
. (77)

The short-distance cut-off α is again taken to be of the
order of the lattice constant a. Thus, with a non-zero
∆µ ∼ t⊥ the full Hamiltonian is given by

H =
vF
2π

∫
x

dx
[
K−1 (∂xφ)

2
+K (∂xθ)

2
]

−
∫
x

dx
[
gφ cos (2φ)− γθ cos (2θ)

]
.

(78)

The LL parameters are defined similarly to the t⊥ = 0

case as vFK
−1 = a

(
4t− δµ+ 2g

π

)
, gφ =

(
δµ

2πα + ga
2π2α2

)
.

The effect of a non-zero t⊥ enters as γθ = ∆µ
2πα ∼ t⊥. In

terms of the short-distance cut-off a the flow equations
for both interaction parameters gφ and γθ are given by

dgφ
dl

= (2−K) gφ

dγθ
dl

=
(
2−K−1

)
γθ,

(79)

whilst for the LL parameter K conversely the flow is de-
scribed by

dK

dl
= −4π2

v2
F

(
g2
φ − γ2

θ

)
K2. (80)

Therefore, a non-zero t⊥ adds a gap to the critical chiral
modes. Along the previously double critical Ising line,
i.e. for gφ = 0, the additional cos (2θ) will keep a gap
open. Thus, the single c = 1 critical line is replaced with
two c = 1/2 critical lines at gφ = ±2γθ ∼ t⊥.

To understand the nature of these transition lines, it is
judicial to re-fermionize the Hamiltonian and introduce
Majorana fermions [20, 48]

H =
∑

κ=+,−

∫
dx

(−ivF )

2
(γσR∂xγ

σ
R − γσL∂xγσL)

−iπ
∫

dx
(

(gφ + γθ) γ
+
Rγ

+
L + (gφ − γθ) γ−Rγ

−
L

)
.

(81)

In this representation, it is visible that each line cor-
responds to a topological phase transition of one of
both ± bands, independently. Along the fine-tuned line
gφ = γθ, the − wire (band) is gapless and has a central
charge of c = 1/2, whilst for gφ = −γθ the bonding
band (+) is gapless, i.e. massless. This corresponds
to an Ising transition with a central charge c = 1/2.
We probed these transitions using DMRG for an open
chain. Figure 10 shows the central charges, extracting
from the entanglement entropy, as a function of t⊥ for

FIG. 10. Central charges for t = ∆ = 1.0, g = 0 and µ = t,
obtained from the entanglement entropy for L = 100a and
OBCs. The clear c = 0.5 peaks at the transitions |t⊥| =
2t± µ ∈ {−3,−1,+1,+3} are visible.

the non-interacting case g = 0 and µ = 1. The four
c = 1/2 critical points at |µ| = 2t ± t⊥, as well as their
equidistant separations are visible. The re-fermionized
Majorana representation (81) also reveals that at least
one of both pairs of chiral Majorana modes γ±R/L will

always have a non-zero mass-term ∼ iγ±Rγ
±
L . Adding

an interaction g only linearly shifts gφ away from its
non-interacting value. The phases for g = 0 in (11) will
therefore also extend to non-zero interaction strengths.
The transition lines gφ = ±γθ separate the phases and
are given by straight lines g (δµ), for appropriate g and
δµ where (78) is accurate.

The central charge is a useful marker to identify critical
regions of the phase diagram, since a gap results in c = 0.
Thus, to investigate the phase diagram and characterize
the topological properties in the presence of t⊥ ∼ t, we
make use again of the markers (19). As we performed a
change of basis to obtain the Hamiltonian (68), it is also
necessary to adapt the definition of C and C in terms of
the correlation functions, to obtain the correct markers
for the bonding and anti-bonding bands, labeled hence-

forth as C± and C
±

. They can be obtained from the wire
basis by adding to each Sz

i the following mixed-wire cor-
relation functions

Sz
i −→ Sz

i +
1

2

∑
j

(
c+†j c−j+i − c

−†
j c+j+i + h.c.

)
. (82)

As predicted from the bosonized Hamiltonian (81) we
expect two additional and distinct phases, next to the
“stable” 4MF and two polarized ones. This coincides
with previous results for the Kitaev ladder, for example
in [13] and [14], in the non-interacting limit.
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We unravel the topological properties of these addi-
tional phases using the adapted topological numbers (19),
showing that the additional phases are 2MF, with a sin-
gle Majorana edge mode per side for both wires. We
label these 2MF-a and 2MF-b, where the a phase lies to
the left of µ = 0 and the b phase to the right. We per-
formed several DMRG calculations, verifying the phase
diagram in 11 for sufficiently [63] low interaction g and
relevant inter-wire-hopping t⊥, i.e. where no finite-size
effects may occur.

FIG. 11. Phase diagram in the presence of t⊥ ∼ t, which
results in two additional phases 2MF-a and 2MF-b, with non-
zero width ∼ t⊥ also at g = 0. We tested the diagram for up
to relatively high g ∼ 5t. Above this, a transition to Mott
physics occurs, as discussed prior in Sec. V A. For non-zero
interactions, the critical lines extend into sloped lines.

The phase diagram was probed extensively, and we
present the numerical results along three distinct “tra-
jectories” C2, C4 and B1 cf. figure 3, in the g − µ
plane. Without loss of generality, we present here the
results for t⊥/t = 1/2. The various phases are classi-

fied using the Chern C± and C
±

numbers, which we
extracted from the DMRG obtained GS. Beginning with
the trajectory labeled as B1, which starts deep in the
polarized phase and then drives upward with interaction

strength g, cf. figure 12. The C± and C
±

numbers are
very stable against increasing g, compared to previous
results for t⊥ = 0. The figure shows, that around g ∼ 3t,
the +band undergoes a transition from trivial to topo-
logical. The antibonding band (−) remains trivial how-
ever, which signals the transition from the R-Polarized to
2MF-b phases in figure 11. As can be seen in figures 13
and 29 in the Appendix, trajectory C2 drives with µ at
constant g = 0.5t, and thus probes the transitions from
4MF to 2MF-b into the R-Rolarized phase. The 4MF

phase, signaled by C± = 1 and C
±

= 0, transitions into

the 2MF-b phase around µ/t ∼ 1.5. Here C
−

becomes
one and C− = 0, whilst the bonding band (+) remains
topological. Around µ/t = 2.75 both bands become triv-

ial, and the R-Polarized phase is determined by C
±

= 1,
corresponding to the r.h.s. of the phase diagram 11. This
is revealed by the topological numbers in 13, where both

± bands are in a topological C± = 1 and C
±

= 0 phase
up to µ/t ∼ 1.5 . Then, the − Band becomes trivial,
followed by bonding band (+) around µ/t ∼ 2.8.

FIG. 12. (Trajectory B1 ) Transition from R-Polarized to
2MF-b. DMRG for t = ∆ = 1.0 and µ = 4.2t and L = 76a
with PBCs. Inter-wire hopping t⊥ = 0.5t. The numbers
C± are given in blue and black respectively, with (marginal)
deviations from quantized C+ = 1 and C− = 0 values.

FIG. 13. Trajectory C2 : Chern numbers (C±) and C1/2,
with values almost quantized to 0, 1/2, 1. See 29 in Appendix
D for duals C.

The figures 14 and 15 show the trajectory C4 from
DMRG with L = 76a and PBCs, where the transition

4MF to 2MF-b is again hailed by C+ = 0 and C
+

= 1.
It occurs around µ/t ∼ 2.4, whilst the subsequent
transition to R-polarised occurs at µ/t = 5, and is
signaled by the jump in the topological numbers. The
phase remains stable also in the presence of strong
interactions g, and comparison with figure 13 reveals the
shifting of the transition points µcrit to higher values
- i.e. the separatrix is sloped as in the t⊥ = 0 case in
figure 3. Due to the inherent Z2 symmetry, the phase
diagram is again symmetric wrt. µ → −µ. However,
the distinction between L-Polarized and R-Polarized is
again possible with the dual numbers C

±
which change

signs.
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FIG. 14. C± and C1/2 for t = ∆ = 1.0 and g = 5t and inter-
wire hopping strength is t⊥ = 0.5t. Band Chern numbers C±

are blue and black respectively, whilst C1/2 is given in pink.

The topological markers C± and C
±

reveal the
non-trivial topology of the 2MF-a and -b. However,
the bonding-/anti-bonding basis explicitly mixes both
wires. To investigate the properties of a single wire it is
necessary to consider C1 and C2 as well. Extracting the
relevant correlation functions reveals that, in the two
2MF phases each wire has effectively C = 1/2 as well,
as can be seen in figure 13. However, as known from the
c = 0 central charges in 10, this cannot be a DCI phase,
or any critical phase for that matter. Instead, since the
± basis mixes both wires equally, we infer that it corre-
sponds to a cat-like superposition of the wires: let T = 1
label topological and T = 0 trivial, then the ground state
of both wires is ∼ |T = 0, T = 1〉+ |T = 1, T = 0〉. Thus
with OBCs, the combined system of two wires admits
two dangling edge modes for a total of four edges,
i.e. one Majorana on each side. Thus the Majorana
has an equal probability to be localized on either of
the two edges of the two wires. This results in an
effective Cσ = 1/2, i.e. another instance of fractional
topology fundamentally distinct from the DCI phase.
To complement our current results and offer deeper
insights into the two 2MF phases, a next study could
focus with more detail on these shared edge modes and
their, possibly, new applications.

The occurrence of the shared-edge modes may have
interesting implications for the topological properties of
coupled wire systems, and there are questions which re-
main to be addressed in future work. For example, do the
shared edges have measurable effects on the topological
zero-bias-peaks (ZBPs), which are the result of tunnel-
ing into the edge modes [64]? Can such shared Majorana
states offer a potentially clear experimental signature for
the existence of Majorana zero modes (MZMs)? The rel-

FIG. 15. Dual numbers C
±

are given in black and blue re-

spectively, whilst C
1/2

are presented in pink.

evance of Majorana physics, both academically and in
technological endeavours, warrants further investigation.

C. Stability of the DCI phase for finite sizes and
small t⊥

In the previous section we focused on the low-g and
high t⊥ limit, yet the Hamiltonian in (81) is also valid
at large g and far away from half-filling. At t⊥ = 0,
the existence of an extended DCI phase was predicted
[20] from RG arguments. Away from the critical line
gφ = 0 the Hamiltonian in (C36) is a priori gapped by
the operator cos (2φ), which scales as ∼ K. At large
enough interactions the LL parameter K can flow to
values K > 2, rendering the cos (2φ) operator irrelevant
in the RG sense, with the effect that the critical line
opens to an extended DCI phase.

In the present case, we showed that in the chiral ψR/L
basis a nonzero t⊥ results in an additional ∼ cos (2θ) op-
erator in (78). The dual field θ scales inversely to φ with
dimension K−1/2, which implies cos (2θ) ∼ K−1. The ef-
fect is clear: whilst cos (2φ) becomes irrelevant for K > 2,
the cos (2θ) operator is super-relevant. Thus, the gapless
DCI phase cannot open in the continuum (thermody-
namic) limit, and the critical lines are instead c = 1/2
seperated by ∼ t⊥, cf. figure 10. However, for finite sys-
tems we may yet find some parameter range where the
DCI phase remains stable against small t⊥. A way to
understand this is by considering instead a temperature
scale T ∗ set by the energy-gap ∼ γθ. Due to the linear
spectrum of the chiral modes, their energy is simply set
by EG ∼ vF k, in units of h/2π = 1. Similarly, at finite
temperature T we find Egap ∼ T , for kB = 1. The criti-
cality condition is thus when both scales are comparable,
i.e. Egap ∼ EG. Therefore, with the lowest momen-
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tum number k at finite length being set by k ∼ 1/L, we
find simply T ∗ ∼ vF /L

∗, i.e. when L∗ ∼ 1/T ∗. With
lengths of the order of a few hundred sites, we thus ex-
pect the DCI phase to persist up to about t⊥/t ∼ 10−3

or t⊥/t ∼ 10−2. However, due to the presence of inter-
actions and superconducting pairings, the bare parame-
ters flow in the RG sense. It is therefore the effective,
renormalized t⊥ which is relevant in this analysis. As
we expect the system parameters to flow to larger val-
ues under an RG process using the definitions of [20], the
critical value t∗⊥ for which the DCI phase can be observed
is expected to decrease.

FIG. 16. Entanglement entropies and central charges for
t⊥ = 10−3t and 10−2t. Results extracted from OBC DMRG
calculations for L = 300a per wire, and t = ∆ = 1.0. The
interaction strength is g = 5.0t and the chemical potential is
set to µ = 3.85t. A plateau, visible for t⊥ = 10−2t, signals
the non-criticality (c = 0) of the system. The central charge
c = 0.354 is nonphysical and due to the finite system size, cf.
Appendix B 4.

Numerically we analysed both the entanglement
entropy and central charge, as well as the bipartite
charge fluctuations [20, 50] to determine the stability
of the DCI phase at different length scales. As seen
for OBCs at L = 300a in figure 16, the entanglement
entropy for t⊥ = 10−3t shows clear logarithmic (critical)
behaviour. A central charge of c ≈ 1 is found after
fitting cf. equation (33). Conversely, at t⊥ = 10−2t,
a visible plateau emerges, indicating non-criticality of
the system. This is also supported by a central charge
of (approximately) zero. Extracted from the logarithmic
contribution of the entanglement entropy, cf. equation
(33), the central charge also depends on boundary effects
for finite systems, as well as the fitting domain chosen
for the analysis. Thus, a nonphysical central charge of
c > 0 may emerge, however by modifying the fitting
regime so that only the central, plateaued region is
considered, yields c ≈ 0. Conversely, for a critical phase,
changing the fitting regime only impacts the resulting
central charge slightly. Alternatively, we also considered
larger systems sizes as well as open boundary conditions,

both of which verified the non-criticality. Therefore, the
phase becomes gapped beyond t⊥ ∼ 10−2t, and previous
results in V B as well as [13, 14] imply we are in the
topological 2MF-b phase cf. figure 11.

As a final test, we extracted as well the bipartite charge
fluctuations, which are predicted to have a negative sub-
dominant logarithmic contribution in the DCI phase [20].
Due to the much more dominant linear contribution, it
is more strategic to analyse instead the functional be-
haviour of

Flog (l) ≡ FQ (2l)− 2FQ (l) , (83)

for which any linear term is automatically removed.
However, due to the convention of signs, the logarithmic
contribution of Flog is therefore expected to be positive in
the DCI phase (i.e. negative when c = 1 per wire instead
of c = 1/2 [20]). As can be seen in figure 17, and figure
30 in the appendix, this is indeed the case for t⊥ ∼ 10−3t.

Additional DMRG calculations are presented in figures
31 and 32 in the Appendix D. Similarly, in Appendix B 4,
results for smaller systems (order of tens of sites), and
conversely larger t⊥ (order of 0.1t), offers more details
and insight on the non-physical central charges of c > 0
in the gapped, 2MF phases. We thus confirm a stability
of the DCI phase against inter-wire hoppings up to values
of order 10−3t, for wires sizes of the order of a hundred
sites.

FIG. 17. The subdominant logarithmic contributions are gen-
erally very fragile and susceptible to boundary-, and finite-size
effects. A control run for L = 100a per wire with t⊥ = 10−3t
shows a clear positive logarithmic cusp. The same holds true
for smaller systems of L = 76, see figure 30.
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VI. CONCLUSION

Different properties of two interacting, spinless p-wave
superconducting wires were investigated to achieve a bet-
ter understanding of the interacting physics of wire ar-
rays or other heterostructures. Additionally, we also an-
alyzed the effects an inter-wire hopping amplitude t⊥ has
on the phase diagram. Essential to this analysis were the
two topological markers, the Chern number C and its
dual C defined for superconducting wires, which can be
expressed completely by two-point correlation functions
in real-space. Our analysis presented perspectives and a
deepened understanding of the double critical Ising phase
first discovered in [20], and revealed additional topolog-
ical phases in the presence of inter-wire hopping ampli-
tudes.

At the heart of our approach are the results in
[21], which demonstrated how a Chern number can be
defined purely from the poles for a Bloch sphere system.
In momentum space the Kitaev wire can be mapped
onto the Bloch sphere, such that topological numbers
can be defined solely from expectation values of the
particle-hole spin operator Szk at k = 0 and ka = π.
Since these expectation values can be expressed purely
from real-space two-point correlation functions of the
GS, they are particularly powerful numerical tools, with
the potential also for experimental implementation. By
studying the low-energy properties of two interacting
wires we highlight, both theoretically and numerically
with DMRG, that the topological markers remain a
sensible tool to distinguish various topological phases of
coupled wires and in the presence of relatively strong
interactions. These results demonstrate the usefulness
of the topological numbers both as indicators for topo-
logical transitions and to distinguish the various phases.
Since they are defined in real-space, the topological
numbers in (19) could also provide a platform to
investigate topology of Kitaev wires in the presence of
disorder. Together with their expression as two-point
correlation functions, we believe the topological numbers
to be particularly interesting for both numerical and
experimental applications.

The main focus of this paper was to deepen our
understanding of the double critical Ising phase (DCI).
It appears as an extended gapless phase for two strongly
interacting wires far from half-filling and is directly
related to the quantum critical point (QCP) of the
single Kitaev wire. By revisiting the quantum field
theory of the two wires in IV, we showed how the model
can be recast in terms of mixed-wire fermions Γ,Θ
and subsequently two chiral Dirac fields ψR/L. The
chiral Dirac modes are directly related to the chiral
Majorana modes of each wire, which provides further
evidence that the extended critical region in [20] is a
double critical Ising phase. Using DMRG to obtain the
GS, we extracted the topological numbers C and C,
which revealed that both are fractional C = C = 1/2

in the DCI phase. To the knowledge of the authors,
this presents a first example of a fractional topological
phase for interacting one-dimensional superconducting
wires, possible due to the interplay of strong interactions
and chemical potentials far from half-filling. These
results further reinforce the correspondence between two
interacting Bloch spheres [21] and two Kitaev wires [20],
beyond the perturbative limit of small interactions g.
It also introduces a correspondence between one “free”
Majorana fermion at a pole on the Bloch sphere and a
gapless quantum fluid with central charge c=1/2 in real
space that may deserve further analysis and applications.

Finally, using QFT methods, we demonstrate that in
the thermodynamic limit, the inter-wire hopping t⊥ will
always gap out the DCI phase, resulting instead in two
topological 2MF phases. However, at finite length scales
for the system, the survival of the DCI phase is pre-
dicted and verified numerically for hopping amplitudes
t⊥/t smaller than ∼ 1/L. This may have important
consequences for applications and modern technology,
wherein components and constituents will inevitably
have a finite length scale. The numerical analysis in the
presence of an inter-wire hopping t⊥ > 0 reproduced the
results predicted from the QFT description, and offers
a test of the phase diagram in figure 11 up to large
values of g and µ. Importantly, our investigation of the
effects of an inter-wire hopping amplitude t⊥ revealed
the emergence of a topological phase characterized by
two Majorana edge modes, shared between both ends
of the wires on either side. Despite the relatively large
interaction strength g = 5t, the topological numbers in
14 and 15 were found to only deviate marginally from
the g ≈ 0 values, cf. figures 11 and 13. Together with
the fractional value C1 = C2 = 1/2 in the wire basis,
these results underline the power and usefulness of these
topological numbers, not only as numerical markers to
unravel the distinct topological phases of coupled super-
conducting wires in the presence of (strong) interactions.
For very strong interactions |g| � t we found that an
additional ordering in x−direction is introduced by a
non-zero t⊥, independent of g. This result followed from
a Schrieffer-Wolff transformation into the low-energy
sub-sector. Since the (anti-)ferromagnetic ordering
in y−direction scales with 1/g, a paramagnetic Mott
phase opens up. This was also found numerically, with
the transition seemingly being a smooth cross-over.
However, a full numerical analysis of the Mott physics in
the presence of an inter-wire coupling is still outstanding
and could be an interesting next topic of study.

The work presented in this paper not only revealed
the doubly critical Ising phase as one of fractional topol-
ogy but also deepened the understanding of its physical
properties. This was achieved both by the introduction of
topological markers directly measurable from correlation
functions and by the quantum field theoretic description
of the gapless modes as chiral R/L−movers. With this
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enhanced “theorists” toolbox, we are motivated to con-
tinue further research into interacting topological phases
of superconducting wires. An immediate next step in
the study of coupled-wire geometries is to consider the
case of weakly-coupled ladder geometries, as an approx-
imation to a quasi-two-dimensional model. Another in-
teresting avenue of research is certainly the inclusion of
light-matter interaction, and the DCI phase’s response
to external perturbations. Both could lead to further
measurement protocols and topological probes.
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Appendix A: Topology of the Bloch-sphere

An intuitive way to understand a non-zero Chern num-
ber (or TKNN invariant), is by considering a single-spin
~S in an external magnetic flux ~B. The Hamiltonian is
determined from the interaction of the spin magnetic mo-

ment with the external field H = −µB
(
~S · ~B

)
. Assum-

ing that ~B is sourced by a monopole charge on the z-axis
at position M/B, the Hamiltonian in terms of spherical-
polar coordinates r = B and angles (ϑ, ϕ̃) is

H (B,M ;ϑ, ϕ) = −B

SxSy
Sz

T

·

cos (ϕ̃) sin (ϑ)
sin (ϕ̃) sin (ϑ)

cos (ϑ)

−MSz

(A1)
where we chose µB = 1 for convenience. When M = 0,
the ground state (GS) of this Hamiltonian lies on the
Bloch sphere and can be written as

|GS; ~B〉 = cos (ϑ/2) | ↑〉+ eiϕ̃ sin (ϑ/2) | ↓〉, (A2)

where the up and down vectors | ↑〉 and | ↓〉 denote the
spin-1/2 eigenvalues of the Sz operator. When M 6= 0,
we can still map the Hamiltonian (A1) onto the Bloch
sphere, however only by re-defining the angular coordi-
nate ϑ̃ (ϑ,M), such that

cos
(
ϑ̃
)

=
M +B cos (ϑ)√

(B cos (ϑ) +M)
2

+B2 sin (ϑ)
2
. (A3)

The effects of M can be understood by evaluating
the expectation value of Sz. Since the position of the
monopole on the z-axis is determined by M , as long as
|M | < B the magnetic charge will remain within the
Bloch sphere of radius B centered at the origin. For
this case one expects 〈Sz〉 to have opposite values at the
North and South poles, i.e. ±1. Similarly, if |M | > B,
the monopole is situated outside of the sphere, and there-
fore the spins will be aligned at both poles. The Chern
number thus essentially counts the magnetic charges in-
side the Bloch sphere, in agreement with the Poincaré-
Hopf theorem, which aligns or anti-aligns the spins at
the poles. The formula (14) thus presents a (quasi) local
measurement of a global topological invariant.

Appendix B: DMRG

To find the GS of a Hamiltonian such as in (1) it
is judicial to reformulate the problem as a matrix-
diagonalization on the Hilbert space H, where the
Hamiltonian is a dim (H) × dim (H) matrix. The di-
mension usually scales exponentially with system size
dim (H) ∼ xN , and the precise value of x depends on the
number of internal degrees of freedom.

Whilst symmetries constrain the Matrix form and may
reduce the total dimension considerably, even with that
in mind the limits for ED lie in the N = 20 − 30 sites
on current devices. Thus, approximation algorithms are
necessary to determine the GS.

A powerful and by now well-established iterative
scheme to find the GS is the density matrix renormal-
ization group (DMRG) method, developed by White
in the early nineties [24, 25]. This algorithm computes
the lowest energy eigenstates of quantum systems, by
truncating the dimension of H on each site at D (bond
dimension) at some cut-off value ε. By sweeping through
the system back-and-forth this iteratively improves the
initial guess |ψ0〉 for a ground state, and in the language
of matrix product states (MPS) it is essentially a gradient
descent [26]. See figure 18 for a visual representation
of the originally conceived DMRG algorithms for both
infinite and finite systems. A standard marker for
the convergence of the DMRG algorithm is the energy
variance, which indicates how close the optimized state
is to a true eigenstate. Another crucial marker when
computing correlation functions or extracting central
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FIG. 18. DMRG algorithm methodology, illustration taken
from [65]. Left (a): the infinite DMRG algorithm, where
each step progressively “grows” the chain.
Right (b): the finite size DMRG. Here the length L = Na
remains constant and the algorithm “zips” through the system
in sweeps. For PBCs an additional link between both ends has
to be made, resulting in a lower convergence and precision of
the algorithm.

charges is the convergence of the entanglement entropy.

Whilst it has achieved unprecedented precision to ap-
proximate the GS for one-dimensional quantum systems
[66], the algorithm does have its limitations and sub-
tleties. An intuitive way to understand this is, that
truncating the Hilbert space is generally a very good ap-
proximation when the entanglement in the system is lo-
cal i.e. decreases strongly with distance. For two- and
higher-dimensional systems, or in the presence of long-
range correlations, the number of relevant eigenvalues
to keep grows substantially. Whilst generally periodic
boundary conditions (PBCs) are favoured analytically,
the DMRG algorithm converges significantly slower and
requires much higher bond dimensions and thus reduces
the maximal size N one can resolve. Due to the natu-
rally occurring truncation errors, it is also not trivial to
estimate the total error on highly non-local correlation
functions, such as the ones involved for the topological
numbers defined in (19) above.

1. DMRG for two coupled wires

In the MPS language, it is clear that the natural for-
mulation of the DMRG method is in one spatial dimen-
sion. For (quasi-)two-dimensional systems, such as the
two coupled wires, this can be achieved by casting the
(higher-dimensional) lattice into a 1d chain. However,
this may result in considerable changes, when previously
nearest neighbours are now separated by two or more 1d
lattice sites. It is clear that this map is not unique, and
can be chosen according to the microscopic details of the
model. Considering both the interchain hopping t⊥ and

interaction ∼ g, the following is a strategic choice to map
the two coupled wires onto a single chain of length 2L.

FIG. 19. Zig-zag pattern, which was chosen to map two cou-
pled wires onto a single chain. Previously nearest neighbour
couplings are now next-nearest, and vice-versa. However, the
choice of pattern is not unique.

As can be seen in figure 19, previously nearest neigh-
bours are now next-nearest (red), and the interchain
terms are nearest-neighbours (blue). This is particularly
efficient for studying the effects of both g and t⊥ on the
coupled wire systems. In the case of PBCs, an additional
link is added in the same way. Due to the doubling
of the chain length, the convergence slows down and
the time and maximum link dimension D needed for a
faithful approximation increases. This is exacerbated by
adding PBCs, which limits our current investigation to
∼ 100 sites per wire, whilst with OBCs we may achieve
up to order 103 sites. Particularly the critical phases,
with their diverging correlation lengths, require both
the longest run times and highest link dimensions, for a
comparable GSE variance.

A subtlety that is easily overlooked is the issue of de-
generate ground states, for example when symmetries are
explicitly resolved. We found that the topological num-
bers C and C are particularly sensitive to the explicit
mixture |GS〉 = α|GS, 1〉 + β|GS, 2〉 of both parity sec-
tors (P1, P2) = (0, 1) and (1, 0). It is thus important to
resolve also the individual wires parities in DMRG.

2. Convergence

In general, gapped phases require lower bond dimen-
sions to faithfully approximate the GS wave function.
Critical systems with infinite correlation lengths in prin-
ciple cannot be exactly described by MPS with finite
bond dimension, though we can obtain good enough ap-
proximations. Naturally, the required dimensions also
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Sites/wire Polarized 4MF DCI
4 ∼ 10−13 ∼ 10−14 ≤ 10−13

6 10−7- 10−8 10−9 - 10−13 ∼ 10−8

30 ∼ 10−6 10−6- 10−7 ∼ 10−6

50 - ∼ 10−6 ∼ 10−6

76 ∼ 10−6 ∼ 10−6 ∼ 10−6

TABLE I. Variance of the groundstate energy of the two-
wire models in the different phases we study in this paper.
We work with periodic boundary conditions

depend strongly on the system size and boundary con-
ditions. A typical GSE variance that is considered suffi-
cient lies below 10−5 or 10−6. As shown in Table I, we
achieved acceptable variances for both gapped and gap-
less phases up to L = 76a per wire with PBCs. Generally
with OBCs, we can achieve better convergences quicker,
for lattices of up to a few thousand sites. For PBCs,
while it is a priori possible to obtain good results for
large systems, it is very costly both for computational
resources as well as run-time. Therefore we stay with
systems of up to a hundred sites per wire. The graphs
in figures 20 and 21 showcase some typical values of GS
energies and maximum bond dimension as a function of
system size L = Na for the various phases of two inter-
acting topological wires. As shown in figure 20 above,

FIG. 20. Maximum bond dimensions for both gapped and
gapless phases, from small-system DMRG and PBCs.

the gapped phases have similar max. bond dimensions
- irrespective of their topology. They plateau at some
length scale, which is due to the fixed variance cut-off
of ≈ 10−6. Since the 4MF and polarized phases are
gapped, the correlation length is finite and thus beyond
a critical length the bond dimension is a function of the
variance alone and becomes independent of system size.
Conversely, the gapless modes in the DCI phase result in
a diverging bond dimension, ie. a function of GSE en-
ergy variance and system size. In figure 21 we plot some
representative GS energy values for the different phases.

FIG. 21. GS Energies as a function of system size for both
gapped and gapless phases of two interacting superconducting
wires. The DMRG was performed with PBCs.

3. Convergence of correlation functions

A system near criticality will require a diverging bond
dimension for L −→ ∞ to accurately compute non-local
observables. The topological numbers (19) are deter-
mined by non-local correlation functions of all orders up
to L, making them particularly challenging to simulate
accurately. This is exacerbated by the periodic bound-
aries which are used in most instances throughout the
paper. A numerical comparison of the Chern numbers
between OBCs and PBCs for a range of readily accessible
system sizes is shown in figure 22. The defining relation
for C measured at the poles is, in fact, only valid in mo-
mentum space. However, momentum labels k are only
good quantum numbers when PBCs are imposed.

FIG. 22. Chern numbers for PBCs vs. OBCs DMRG calcu-
lations. The 4MF phase here is chosen as µ = g/5 = t, the
DCI phase as µ = 3.85t and g = 5t and the polarized phase
as µ = 3.85t and g = 0.5t.
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To summarise, the Chern numbers are thus highly
dependent on the convergence of the DMRG, and also
on the boundary conditions for accessible system sizes.
Whilst convergence in the energy is a reliable marker
for the accuracy of local observables, non-local correla-
tion functions will naturally have errors. These will in-
crease for longer-range correlators, with each approxima-
tion made at each bond contributing. The GSE variance
cannot be used as a reliable quantifier for these errors.
It is therefore paramount to consider a wide range of pa-
rameters, lengths, and GSE variances when investigating
C and C. In some instances, we found that a poor quan-
tization of the topological numbers was, in fact, due to
convergence rather than physical reasons.

4. Zero central charge in gapped 2MF phases

The truncation error in DMRG can have significant
impact on certain observables, as discussed above for
the Chern and C markers. It is then sensible to wonder
if the non-zero central charge presented in figure 16
is indeed due to the finite system sizes, and not an
artefact of non-convergence of the DMRG algorithm.
The truncation error may lead to a deformed, non-
symmetric entanglement entropy, potentially leading
to a non-zero central charge in gapped phases. We
showcase below how system size and fitting domain have
a considerable impact on the extracted central charge of
the 2MF phases discussed in section V, as opposed to
the maximum bond-dimension.

In figure 23 we show the central charge extracted at
each step of the DMRG calculations. These were per-
formed setting a fixed, maximum bond-dimension which
the DMRG may exploit. The extracted maximum bond
dimension of the (at this stage) optimized matrix prod-
uct state (MPS) is plotted on the x-axis. Convergence is
reached when the maximum bond-dimension is no longer
saturated - and both energy and mid-chain entropy are
then converged.

The parameters place us inside the DCI phase, with
t⊥ = 0.1, a value comparable to the previously discussed
ones given the smaller system size. The convergence of
the entropy ensures that the extracted central charge no-
longer depends on the bond dimension. The system sizes
vary from 20 to 50 sites per wire. The initial increase of
c vs. D can be explained from a non-converged entan-
glement entropy, which is manifest in fluctuations and
the breakdown of the spatial symmetry, leading to a de-
creased effective central charge. More precisely, as long
as the bond dimension is too small to fully capture the
correlation length, the MPS appear nearly critical. If
the total system size or the size of the subdomains are
not significantly larger than the correlation length, we
observe the same phenomenon. We showcase the latter
for the N = 50 sites per wire in the figure 24 below. As

FIG. 23. Central charge vs. bond dimension, with parameters
t = ∆ = g/5 = 1.0, µ = 3.85t and t⊥ = 0.1t.

we can see, already changing the fitting domain slightly
has significant effects on the extracted, numerical cen-
tral charge, with a relatively quick convergence towards
c = 0.

FIG. 24. Central charge vs. fitting domain. Same parameters
as in figure 23 above.

Thus, we attribute the nonphysical value of c ≈ 0.35
in figure 16 to the finite (and small-system) size of our
numerical computations.

Appendix C: QFT for coupled wires

1. Extending the Bloch sphere and wire
correspondence

In the following, we develop the link between two in-
teracting wires [20] and Bloch spheres [21] by rewriting
the low-energy interaction Hamiltonian (24) in momen-
tum space. The on-site density-density interaction re-
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sults in, à priori, a quartic coupling between modes of
four independent momenta ki. However, due to the sum
over the site index i, one of these will be removed by
the momentum-conservation k1 − k2 + k3 − k4 = 0. The
three remaining momenta can be written more sugges-
tively way, by introducing

k1 → k + ∆p
k2 → k
q1 → q −∆p
q2 → q

(C1)

where4p = k1−k2 = q2−q1 by momentum conservation.
Then the interaction in momentum space is

Hint = gA−1
∑
4p

[∑
k

c1†k+4pc
1
k

][∑
q

c2†q−4pc
2
q

]
. (C2)

The area factor A−1 = (2π/L)
2

stems from the normal-
ization factors of the Fourier transforms. The interaction
in (C2) contains several physically distinct processes.
Whilst 4p > 0 it is “removed” from wire 2 and “added”
to wire 1. For 4p < 0 the situation is reversed, thus it
is warranted to interpret 4p as “momentum transfer”
between both wires.

For a wire, we have the identification∑
k

c†k+∆pck =
∑
i

eix∆pc†jcj , (C3)

with x = ja. If we measure the expectation value of these

two terms, we can approximate 〈c†i ci〉 by its mean density.
In the continuum limit, then the dominant contribution
comes from ∆p→ 0. We can also rewrite Hint as

Hint = gA−1
∑
∆p

∑
i,j

ei(xi−xj)∆pc1†i c
1
i c

2†
j c

2
j . (C4)

In the sense of the Renormalization Group (RG)
approach, terms with ∆p 6= 0 would oscillate more
rapidly with increasing the length of the system or
decreasing the temperature such that we can safely
take ∆p → 0 in Eq. (C4). A term that gives rise
to Mott physics in the phase diagram is of the form

c1†R c
1
Lc

2†
L c

2
R + h.c. [20] with L and R referring to left-

and right movers or to the two Fermi points such that

c1†R c
1
L involves a wavevector transfer ∆p = +2kF , c2†L c

2
R

involves a momentum transfer of −∆p = −2kF and
such that the total momentum transfer is effectively
zero. This term can be therefore also relevant away
from half-filling. The relevant term flowing to strong
couplings is then local in real space with xi = xj such
that this can yet be described through the same form of

interactions Hint = gV
∑
i,j c

1†
i c

1
i c

2†
j c

2
j where i = j.

Therefore in the low energy limit, the Hamiltonian is
effectively similar to

Hint ∼ gA−1

[∑
k

c1†k c
1
k

][∑
q

c2†q c
2
q

]

=
gA−1

4

[∑
k

c1†k c
1
k + c1†−kc

1
−k

]

×

[∑
q

c2†q c
2
q + c2†−qc

2
−q

]
.

(C5)

In the second equality, we symmetrised as both sums
run over the entire Brillouin zone. Using the anti-
commutation relations each bracket can be written in
terms of the Szk pseudo-spins introduced in II B. Finally,
the full interaction Hamiltonian together with the linear
shifts becomes

Hint =
gA−1

4

∑
q,k

Sz,1k Sz,2q

=
gA−1

4

∑
q,k

δk,qS
z,1
k Sz,2q +

∑
q 6=k

Sz,1k Sz,2q

 .

(C6)

The first of these terms corresponds to the same
interaction as in the two-spheres model studied in
[21], with a k-independent constant g interaction. The
second part can be absorbed into the two chemical
potentials µ1/2 of each wire, by noting that the sums∑
k 6=q = 1

2

∑
k

∑
q 6=k + 1

2

∑
q

∑
k 6=q.

2. Mixed-wire fermion basis

In the following Appendix, we aim to support the
discussions in Sections IV B and V, in particular, the
derivations of Hamiltonians (52) and (78).

In what follows we work immediately in the Γ and Θ
basis introduced in (44). Thus we first recast the coupled-
wire Hamiltonian in this basis. Beginning with g = 0 =
δµ, we essentially have two copies of the QCP discussed
in IV B. In this basis, the free Hamiltonian is given by

H = 2t
∑
j

(
Γ†j+1Θj − Γ†jΘj + h.c.

)
a−→0−→ 2ta

∫
x

dx
(
∂xΓ† (x)

)
Θ (x) + h.c.

(C7)

In the last step, a continuum limit was made. This
Hamiltonian has superficial (structural) similarity with
the single wire critical theory (31), however now with
Dirac Fermions Γ and Θ. Moving forward we can
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therefore analogously define chiral Fermions γR/L.

Adding a non-zero shift from the critical points, i.e.
δµ 6= 0, results in an additional term proportional to

∼ −
∑
j

(
Γ†j+1Θj + Γ†jΘj + h.c

)
. (C8)

In the continuum this term is dominated by the ∼ Γ†jΘj+

h.c. contribution to order 1/a, such that we may write

a−→0−→ 2

a

∫
x

dx
(
Γ† (x) Θ (x) + h.c

)
. (C9)

Finally, decomposing the interaction contribution

∼
∑
j

(
n1
i −

1

2

)(
n2
i −

1

2

)
, (C10)

in the Γ and Θ basis results in both linear and quadratic
terms in n. The linear ones simply shift the chemical
potential and are found to be given by

∼ −
∑
j

(
Γ†jΓj + Θ†jΘj

)
. (C11)

More interesting are the quadratic ones, which by analo-
gous computations are found as

∼ −2
∑
j

Γ†jΓjΘ
†
jΘj . (C12)

Grouping all contributions together, we find the final
(continuum) Hamiltonian in the Γ/Θ basis as

H = −
∫
x

dx
(
vF (Θ∂xΓ) (x)− δµ

2

(
Γ†Θ

)
(x) + h.c.

)
− g

2

∫
x

dx
( (

Γ†Γ + Θ†Θ
)

(x)− 2
(
Γ†ΓΘ†Θ

)
(x)
)
.

(C13)

3. Chiral basis

Just as in the single wire at criticality we introduce left
and right movers ψL/R in terms of the complex Γ and Θ
Fermions

√
2ψR/L (x) = Θ (x)± iΓ (x) . (C14)

These chiral modes ψR/L are related directly to the chiral
Majoranas γR/L of each wire. Decomposing Γ and Θ into
their Majorana constituents, we find

√
2ψR =

1

2

(
γ2
B − iγ1

B + iγ1
A − γ2

A

)
∼ γ2

R − iγ1
R. (C15)

Similarly, for the other chirality, we find

√
2ψL =

1

2

(
γ2
B − iγ1

B − iγ1
A + γ2

A

)
∼ γ2

L − iγ1
L. (C16)

Thus these Fermions can be decomposed into the two
chiral Majoranas on each wire. Since g = 0 we expected
such a decomposition, since then the two-wire system is
simply two copies of the single wire.

We now proceed to rewrite the Hamiltonian in (C13)
in terms of the new chiral modes. The kinetic term can
be written as(

ψ†R∂xψR − ψ
†
L∂xψL

)
= iΘ†∂xΓ− iΓ†∂xΘ. (C17)

Unsurprisingly, the left- and right-movers have a relative
minus sign, reflecting the opposite directions of propa-
gation with the effective velocities vF = ±ita. The two
remaining quadratic terms yield additionally

δµ
(
Γ†Θ + h.c.

)
∼ ψ†RψL − ψ

†
LψR

g
(
Γ†Γ + Θ†Θ

)
∼ ψ†RψR + ψ†LψL.

(C18)

Finally, the quartic interaction contributions in (C13) re-
sult in a myriad of terms. There are grouped into three
classes of terms, preempting the subsequent bosonization
and resulting Hamiltonian.

I: ψ†RψRψ
†
RψR + ψ†RψRψ

†
LψL + h.c.

II:
(
ψ†RψR + ψ†LψL

)(
ψ†RψL + ψ†LψR

)
− h.c.

III:
(
ψ†RψL + ψ†LψR

)(
ψ†RψL + ψ†LψR

)
.

(C19)

With these, the full Hamiltonian written in terms of the
R/L movers is given by

H = i
ṽF
2

∫
x

dx
(
ψ†L∂xψL − ψ

†
R∂xψR

)
− i δµ

2a

∫
x

dx
(
ψ†RψL − ψ

†
LψR

)
− g

2a

∫
x

dx
(
ψ†RψR + ψ†LψL

)
− g

4a

∫
x

dx ((I.)− (II.)− (III.)) .

(C20)

Here ṽF = a(4t− δµ) and we introduced a phase factor

ψR/L −→ e±i
π
4 ψR/L, (C21)

which slightly modifies some signs and factors of i in
the interaction contributions (C19). This phase factor is
judicious when bosonizing the Hamiltonian.

4. Bosonization

A powerful tool to investigate the low-energy physics
of a Fermion system in one-dimension is bosonization [51,
67]. Chiral Fermion fields ψR/L are rewritten in terms of
bosonic degrees of freedom.

ψR/L (x) =
UR/L√

2πα
e−i(±φ(x)−θ(x)). (C22)
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Here we defined the boson field φ and its dual θ, and
a low-energy cut-off α of the order of a. The Fermion
statistics are imposed by introducing the two Klein
factors UR/L respectively, defined over the relations

U†R/LUR/L = 1 and U†RUL = i. In what follows we

sketch the main steps in deriving the final bosonized
Hamiltonians in (C36) and (78).

The bosonization for the kinetic term is straightfor-
ward and results in [51, 52]

Hkin =
ṽF
2π

∫
x

dx
(

(∂xφ)
2

+ (∂xθ)
2
)
. (C23)

Next, consider the quadratic Fermion terms in (C20).
The ∼ g term simply reduces to ∂xφ, which consti-
tutes a linear shift in the chemical potential and will be
henceforth discarded. The bosonization of the second
quadratic term ∼ δµ on the other hand is not so trivial.

In fact, upon introducing the boson expressions, we find

− δµ

2

∫
x

dx
(
ψ†RψL + ψ†LψR

)
∼ − δµ

4πa

∫
x

dx
(
U†RULe

2φi + h.c.
) (C24)

Using the relation URUL = i the above term thus simply
becomes

δµ

2πα

∫
x

dx sin (2φ) . (C25)

Finally, we consider the quartic (interaction) terms. For
bosonization it is important to consider normal ordered
expressions [52], therefore we must first apply Wicks the-
orem to write the four-point functions in normal ordered
form, denoted by “: ... :” [53]. We thus consider the fol-

lowing limits of, for example the
(
ψ†RψR

)2

contribution,

which after applying Wicks theorem results in

ψ†RψRψ
†
RψR = lim

ε−→0

(
ψ†R (x+ ε)ψR (x+ ε)ψ†R (x)ψR (x)

)
= lim
ε−→0

(
: ψ†R (x+ ε)ψR (x+ ε)ψ†R (x)ψR (x) : + : ψ†R (x+ ε)ψR (x) : (CR (x+ ε, x) + CR (x, x+ ε))

)
.

(C26)

The point-splitting distance ε is of the order of α and
a. Using the fact that the contractions of R/L-movers is
given by [52]

CR/L (x, y) = ± i

2π (x− y)
. (C27)

The factor of i comes from the Baker-Campbell-

Hausdorff formula (BCH) when calculating the leading
order bosonized expression. The bracketed expression at
the end of (C26) is identically zero. The same will hold
for the equivalent L term, as well as for the mixed RL
contribution. Therefore we only bosonize the normal or-
dered expression of (I. ), resulting in [51, 52]

− ga

2 · 4π2

[
(∂xφ− ∂xθ)2

+ (∂xφ+ ∂xθ)
2

+ 2 (∂xφ− ∂xθ) (∂xφ+ ∂xθ)
]

= − ga

2π2
(∂xφ)

2
. (C28)

By a similar approach, we now calculate the lead-
ing order terms for the remaining II. and III. contri-
butions in (C20). Here it is important to carefully
keep track of all factors of ±i. With respect to the

renormalization of the kinetic term by (C28) we note

that + ga
4

(
iψ†RψL − iψ

†
LψR

)(
iψ†RψL − iψ

†
LψR

)
. Non-

zero are only the two mixed terms, and by considerations
as in (C26) one can compute

ga

4

(
ψ†RψLψ

†
LψR + ψ†RψLψ

†
LψR

)
=
ga

4
lim
ε−→0

(
ψ†R (x+ ε)ψL (x+ ε)ψ†L (x)ψR (x)

)
+
ga

4
lim
ε−→0

(
ψ†L (x+ ε)ψR (x+ ε)ψ†R (x)ψL (x)

)
.

(C29)

The normal ordered two-point functions result in con- stant terms which can be discarded, and thus we consider
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only the normal ordered four-point functions:

: ψ†R (x+ ε)ψ†L (x)ψL (x+ ε)ψR (x) :=
1

(2πε)
2

(
ei(φx+ε−θx+ε−φx−θx) · ei(φx+ε+θx+ε−φx+θx)

)
. (C30)

Merging the product of exponentials using the BCH for-
mula eAeB = eA+B+1/2[A,B] we find that the commu-
tator expressions cancel due to the fact that [φx, θy] =
− [φy, θx], cf. [20]. Then, writing φx+ε−φx = ε∂xφx and
θx+ε + θx = 2θx + ε∂xθx, one finds the leading terms to
be

: ψ†R (y)ψ†L (x)ψL (y)ψR (x) : =
1

(2πε)
2 e

2iε∂xφx

=− 4

2 (2π)
2 (∂xφ)

2
+ i

2

ε
∂xφx

+ subleading terms,

(C31)

with y = x + ε. The total derivative term can be ne-
glected, and so together with the second contribution to
III. this results in a second renormalization to the ki-
netic part, such that finally

vF (∂xφ)
2 −→

(
vF −

ga

π2

)
(∂xφ)

2
(C32)

This corresponds to the effective φ velocity vFK
−1, cf.

(C36).

Lastly consider the II. term, which follows directly the
discussion in [52] and the previous calculation resulting
in (C25). Firstly, again introducing the phase of π/4 in
the field definition, one has

ga

4
(II.) =

ga

4

(
ψ†RψR + ψ†LψL

)
×
(
iψ†RψL − iψ

†
LψR

)
− h.c.

(C33)

The normal ordered four-point function yield subdomi-
nant terms [53], such that only the non-trivial contrac-

tions of ψ†RψRψ
†
RψL etc. remain relevant. This results

in

− ga

4 (2πε)
2U
†
RULe

2iφ− ga

4 (2πε)
2U
†
LURe

−2iφ−h.c. (C34)

Again with conventions URUL = i this results in

ga

4
(II.) =

ga

(4πε)
2 sin (2φ) . (C35)

Finally, by shifting 2φ to 2φ − π/2 and turning the ∼
sin (φ) into a ∼ cos (2φ), we result in the following boson
Hamiltonian

H =

∫
x

dx
ṽF
2π

(
1

K
(∂xφ)

2
+K (∂xθ)

2

)
− gφ cos (2φ) .

(C36)

with the following parameters ṽFK
−1 = a

(
4t− δµ+ g

π

)
and ṽFK = a (4t− δµ), as well as gφ =

(
δµ
2πε + ga

4π2ε2

)
.

Last but not least we note that for t⊥ 6= 0 an additional

term ∼ i
(
ψ†Rψ

†
L − ψLψR

)
appears in the Hamiltonian.

Bosonizing this contribution in an anaologous fashion re-
sults in a SC-pairing-like terms [20], given by

∼ t⊥ cos (2θ) . (C37)

5. Inter-wire superconducting pairing term ∆⊥

Similarly, we investigate the effects on the bosonized
Hamiltonian (78) when additionally introducing an inter-
wire SC-pairing ∆⊥. In the bonding/anti-bonding basis
such a pairing enters as

H∆⊥ = −
∑
j

(
∆⊥c

−†
j c+†j + ∆∗⊥c

+
j c
−
j

)
. (C38)

Due to the gauge choice of the SC-phase φ⊥, the pairing
potential is a priori a complex number. When ∆⊥ is
a real number, the Majorana representation of H∆⊥ is
given by

HRe(∆⊥) = i
Re(∆⊥)

2

∑
j

(
γ+
A,jγ

−
B,j − γ

−
A,jγ

+
B,j

)
, (C39)

resulting in HRe(∆⊥) ∼
∑
j Γ†jΘj + h.c.. In terms of the

R/L chiral basis this is ∼ ψ†RψR−ψ
†
LψL, and subsequent

bosonization produces an irrelevant contribution.

On the other hand, if ∆⊥ is purely imaginary, one
obtains analogously the terms

HIm(∆⊥) = i
Im(∆⊥)

2

∑
j

(
γ+
A,jγ

−
A,j − γ

+
B,jγ

−
B,j

)
.

(C40)
Introducing the Γ and Θ fermions yields

HIm(∆⊥) = Im(∆⊥)
∑
j

(
Γ†jΓj −Θ†jΘj

)
, (C41)

which in the chiral basis is proportional to ψ†RψL + h.c..
Upon bosonization this contributes as ∼ sin (2φ) term,
before shifting the φ fields by π/4. The imaginary part
of ∆⊥ thus renormalizes the interaction gφ. This con-
firms that only an imaginary pairing ∆⊥ may gap out
the topological modes, cf. [15].
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Appendix D: Additional figures

FIG. 25. Entanglement entropy for a single Kitaev wire at
the quantum critical point (QCP), defined by µ = 2t. Fitting
the extracted entanglement entropy, we find the logarithmic
contribution [50], i.e. central charge, which in both parity
sectors yields c = 1/2. This corresponds to a free Majorana
CFT, i.e. a single critical Ising phase.

Figure 26 below shows the energy gaps between the
parity sectors (P1, P2) = (0, 0) and (1, 1) wrt. to the
sector (P1, P2) = (0, 1) or (1, 0) equivalently. Figure 27

FIG. 26. Energy gaps for t = ∆ = 1.0 and g = 5t and
L = 76a, wrt. E01 = E10. In the central (shaded) region
E01 is the lowest eigenvalue, whilst the polarized and 4MF
phases are determined by the parities (P1, P2) = (0, 0) and
(1, 1) respectively.

below shows the dual topological numbers C
1

= C
2

for
various interaction streengths g = −2.5t, 0t, 2.5t. They

distinguish the two polarized phases by C
1/2

= ±1. Fig-

FIG. 27. Dual numbers C
σ

for g = 0 and t = ∆ = 1.0, for
L = 76a per wire with PBCs. Dual numbers are thus able to
distinguish between both polarized phases here as well.

ure 28 shows the yy-spin correlation functions in the limit
of t⊥ = 0 for large interaction strengths g and µ. As
is visible, the values quickly approach −1, verifying the
GS property of the Mott-insulating anti-ferromagnetic
phase. This confirms the results previously obtained in
[20] equivalently. Figure 29 again shows the dual topolog-

FIG. 28. Two-point correlation functions for both y spin
components extracted from the DMRG GS without inter-wire
hopping t⊥. An MI-AF emerges for g � t, seen by the order-
ing 〈σyj σ

y
j+1〉 = −1, as predicted, cf. (72).

ical numbers C
±

and C
1/2

, which again reveal the tran-
sition from 4MF to 2MF-b, and then to the R-polarised
phase respectively. The 2MF-b phase is again charac-
terized by C1 = C2 = 1/2, implying the existence of
shared edge modes. The subsequent figures 30, 31 and
32 provide numerical evidence for the stability of the
DCI against an inter-wire hopping amplitude t⊥ at length
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FIG. 29. Dual numbers C for the transition from 4MF to
2MF-b and subsequently R-Polarized phases. The fractional

C
1

= C
2

= 1/2 value in the 2MF-b phase distinguishes this
topological phase from the others.

scales below ∼ 1/t⊥. Both the central charges c and the
negative sub-dominant logarithmic contributions support
the existence of the DCI phase.

FIG. 30. Sub-dominant logarithmic contributions of the bi-
partite charge fluctuations [39] for t⊥ = 10−3t and t⊥ =
10−2t. Results from the same DMRG runs as in figure 31.
A clear positive logarithmic cusp initially is a defining feature
of the DCI phase.

FIG. 31. Central charges extracted for t⊥ = 10−2t and t⊥ =
2.5 · 10−3t. Results for PBCs and same model parameters as
in figure 16. For both cases, the central charge is close to
unity, with deviations possible due to finite size effects.

FIG. 32. To account for finite size effects for a phase in prox-
imity to a critical region, we performed another DMRG cal-
culation for L = 100a per wire, and t⊥ = 10−3t.
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