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We theoretically investigate an intrinsic nonlinear anomalous Hall effect (INAHE) in space-time
(PT ) symmetric antiferromagnetic metals. The INAHE is characterized by an asymmetric and non-
dissipative part of the second-order electric conductivity tensor in the clean limit in contrast to the
Drude-type symmetric conductivity tensor with dissipation. By introducing a multipole description,
we show that the emergence of the INAHE is due to active odd-parity magnetic quadrupoles or
magnetic toroidal dipoles under magnetic orderings. In order to clarify the microscopic origin
of the INAHE, we specifically consider a fundamental tight-binding model of a three-dimensional
tetragonal system. We demonstrate that the INAHE arises from the effective coupling between
magnetic ordering and antisymmetric spin–orbit interaction. We also discuss essential electron
hopping paths driving the INAHE.

I. INTRODUCTION

Intrinsic properties of transport phenomena are impor-
tant to investigate the functional properties inherent in
materials. One of the prominent examples is the anoma-
lous linear Hall effect [1–6], whose intrinsic property is
accounted for by the Berry curvature in the absence of
time-reversal T symmetry. The study of transport phe-
nomena has been extended into the second-order non-
linear regime, where the breaking of spatial inversion P
symmetry rather than T symmetry is necessary [7]. In
the T -symmetric system, the nonlinear conductivity is
closely related to the Berry curvature dipole (BCD) [8],
while it is related to an asymmetric band deformation
and a quantum metric (QM) tensor in the T -broken sys-
tem [9–12]. Among them, the nonlinear conductivity in-
duced by the QM tensor is intrinsic and independent of
the relaxation rate in the clean limit, which might help
identify the direction of the Néel vector in antiferromag-
netic (AFM) metals [11, 12].

According to the nonlinear response theory based on
the Kubo formula, there are mainly three contributions
to the second-order electric conductivity: the Drude,
BCD, and intrinsic terms [13–15]. The Drude term con-
tributes to a symmetric tensor, whereas the BCD and
intrinsic terms contribute to an asymmetric tensor and
are the origin of the nonlinear Hall effect. In particu-
lar, the latter intrinsic term leads to the intrinsic anoma-
lous nonlinear Hall effect (INAHE) without dissipation.
Through the microscopic model analyses, the key ingre-
dients to cause the Drude-type and BCD-type conduc-
tivity have been revealed; the former is induced by an
asymmetric band modulation arising from an effective
coupling between magnetic ordering and antisymmetric
spin–orbit interactions (ASOIs) [13, 16] or hopping mod-
ulations due to an alignment of the local scalar chiral-
ity [17, 18], whereas the latter is induced by asymmet-
ric hopping paths causing nonzero BCD in momentum
space [8, 15, 19]. Meanwhile, the microscopic mecha-
nism for intrinsic nonlinear conductivity, including the

INAHE, has yet to be fully elucidated.

This paper investigates the INAHE based on symme-
try and model analyses. First, by performing the sym-
metry analysis, we show that the INAHE is related to
the emergence of the magnetic quadrupole and magnetic
toroidal dipole, which corresponds to the rank-2 axial
and rank-1 polar tensors, respectively. The former mul-
tipole induces the pure INAHE without the Drude-type
contribution. Next, we discuss the microscopic mecha-
nism for the INAHE by analyzing a minimal model in a
three-dimensional four-sublattice tetragonal system. By
taking into account electron hoppings and ASOI under
two types of noncollinear magnetic orderings accompany-
ing the magnetic quadrupole or magnetic toroidal dipole,
we obtain two important ingredients to cause the INAHE:
One is the effective coupling between magnetic order and
ASOI, and the other is the closed paths consisting of the
nearest-neighbor and further-neighbor hoppings. We also
discuss the difference in the model parameter dependence
in the INAHE between the magnetic orderings with mag-
netic quadrupole and magnetic toroidal dipole.

The organization of this paper is as follows. Section II
introduces the second-order nonlinear conductivity based
on the Kubo formula. To discuss the gauge-invariant
quantities, we separate the conductivity tensor into the
Ohmic and Hall parts discussed in Ref. [20]. From the
symmetry viewpoint, we also clarify the relationship be-
tween the Ohmic/Hall parts and activated multipoles.
Section III analyzes a minimum model on a layered four-
sublattice tetragonal structure under AFM orderings
with magnetic quadrupole and magnetic toroidal dipole.
By studying the model parameter dependence and com-
paring them with the numerical results in each ordered
state, we obtain the crucial model parameters and the
effectively closed paths contributing to the INAHE. Sec-
tion IV summarizes this paper and lists the candidate
materials to encourage the observations of the pure IN-
AHE based on the magnetic point groups (MPGs).
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II. SECOND-ORDER CONDUCTIVITY

A. Definition from the second-order Kubo formula

We first briefly introduce the expression of the non-
linear conductivity to make the present paper self-
contained, although its derivation has already been given
in the previous literature [13, 15]. The second-order
nonlinear conductivity tensor σµ;αβ defined as jµ =
σµ;αβEαEβ with µ, α, β = x, y, z can be derived from the
nonlinear Kubo formula. In the clean and static limit,
the second-order conductivity is classified according to
the order of the phenomenological relaxation time τ as

σµ;αβ = σD
µ;αβ + σBCD

µ;αβ + σint
µ;αβ , (1)

where

σD
µ;αβ = −

e3τ2

2~3V

∑

kn

fnk∂µ∂α∂βεnk, (2a)

σBCD
µ;αβ =

e3τ

2~2V

∑

kn

fnkǫµακD
βκ
n (k) + (α ↔ β), (2b)

σint
µ;αβ =

e3

~V

∑

k

εn 6=εm
∑

n,m

[

1

2

fnk − fmk

(εnk − εmk)2
gnmαβ (k)∂µεnk

+2

(

−
∂fnk
∂εnk

)

∂αεnk
gnmµβ (k)

εnk − εmk

]

+ (α ↔ β).

(2c)

We here adopt a symmetric gauge as σµ;αβ = σµ;βα. The
first term in Eq. (1) represents the Drude term propor-
tional to τ2, where εnk and fnk are a band energy and
a Fermi distribution function with wave vector k and
band index n, respectively. e, ~, and V are the elemen-
tary charge, the reduced Planck constant, and the system
volume, respectively. The second term in Eq. (1) repre-
sents the BCD term proportional to τ , where ǫµακ is the
Levi-Civita tensor and Dβκ

n (k) = ∂βΩ
κ
n(k) is the BCD

with the Berry curvature Ωκ
n(k) given by

Ωκ
n(k) = i~2

∑

m 6=n

ǫκαβ
vα,nm(k)vβ,mn(k)

(εnk − εmk)2
. (3)

vα,nm(k) is a Bloch representation for the velocity oper-

ator v̂α(k) = ∂αĥ(k)/~ [ĥ(k) is the k-resolved Hamilto-
nian] defined by

vα,nm(k) ≡ 〈nk|v̂α(k)|mk〉 (4)

with the eigenstates |nk〉 and |mk〉. The expressions for
the Drude and BCD terms coincide with those obtained
by the semi-classical Boltzmann formalism [8, 21].
The third term in Eq. (1) that we focus on in the

present study represents the intrinsic term independent
of τ , where gnmαβ (k) is referred to as a quantum metric

tensor [9]. The expression of gnmαβ (k) is given by

gnmαβ (k) =
~
2

2

vα,nm(k)vβ,mn(k) + vβ,nm(k)vα,mn(k)

(εnk − εmk)2
.

(5)

The first term in the square bracket in Eq. (2c) indicates
the Fermi sea term, while the second term is the Fermi
surface term.
The different terms in Eq. (1) are distinguished by

symmetry. In terms of T symmetry, the Drude and in-
trinsic terms are T -odd, while the BCD is T -even. Thus,
σD
µ;αβ and σint

µ;αβ become nonzero in magnetic ordered

states, while σBCD
µ;αβ becomes nonzero even in the para-

magnetic state. In addition, as all the terms are P-odd,
σBCD
µ;αβ vanishes for the PT -symmetric systems as found

in the AFM systems.
Their transformation property concerning the point-

group symmetry is also different from each other. To
demonstrate that, we decompose σµ;αβ into an Ohmic
part (σO

µ;αβ) and a Hall part (σH
µ;αβ) as follows [20]:

σµ;αβ = σO
µ;αβ + σH

µ;αβ , (6)

where σO
µ;αβ is the symmetric tensor for the interchange

of (µ ↔ α, β) represented by

σO
µ;αβ = σO

α;µβ = σO
β;αµ. (7)

On the other hand, σH
µ;αβ is asymmetric under such an

interchange. Compared to the expressions derived from
the Kubo formula in Eqs. (2), one obtains

σO
µ;αβ =σD

µ;αβ + σint,O
µ;αβ ,

σH
µ;αβ =σBCD

µ;αβ + σint,H
µ;αβ .

(8)

Thus, σD
µ;αβ (σBCD

µ;αβ ) contributes to the Ohmic (Hall) part,

while σint
µ;αβ contributes to both parts, where we denote as

σint,O
µ;αβ and σint,H

µ;αβ . Among them, σint,H
µ;αβ corresponds to the

INAHE. To focus on the behavior of σint,H
µ;αβ , we suppose

the PT -symmetric AFMs in the following discussion, i.e.,

σBCD
µ;αβ = 0 and σint,H

µ;αβ 6= 0.

Let us decompose σint
µ;αβ in Eq. (2c) into σint,O

µ;αβ and

σint,H
µ;αβ . In the PT -symmetric AFMs, two spin-degenerate

bands appear i.e., εnk = εmk for a pair of n 6= m. To
simplify the expression, we replace the band index n,m
as ν, ν̄ which satisfies ν 6= ν̄ and ενk 6= εν̄k. Then, the
summation over n,m is rewritten as

εn 6=εm
∑

n,m

→
∑

ν,ν̄

∑

n∈ν

∑

m∈ν̄

.

We thereby obtain

σint
µ;αβ =

e3

V

∑

k

∑

ν,ν̄

[

fνk − fν̄k
(ενk − εν̄k)2

vνµ(k)g
νν̄
αβ(k)

+2

(

−
∂fνk
∂ενk

)

vνβ(k)g
νν̄
µα(k) + vνα(k)g

νν̄
µβ(k)

ενk − εν̄k

]

,

(9)
where we introduce an interband quantum metric tensor
for the bands ν, ν̄ as

gνν̄αβ(k) ≡
∑

n∈ν

∑

m∈ν̄

gnmαβ (k) (10)
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and vνµ(k) = ∂µενk/~. Finally, σ
int
µ;αβ in Eq. (9) is decom-

posed into

σint,O
µ;αβ =

e3

3V

∑

k

∑

ν,ν̄

[

fνk − fν̄k
ενk − εν̄k

+ 4

(

−
∂fνk
∂ενk

)]

×
vνµ(k)g

νν̄
αβ(k) + vνα(k)g

νν̄
µβ(k) + vνβ(k)g

νν̄
µα(k)

ενk − εν̄k
,

σint,H
µ;αβ =

e3

3V

∑

k

∑

ν,ν̄

[

fνk − fν̄k
ενk − εν̄k

− 2

(

−
∂fνk
∂ενk

)]

×
2vνµ(k)g

νν̄
αβ(k)− vνα(k)g

νν̄
µβ(k)− vνβ(k)g

νν̄
µα(k)

ενk − εν̄k
.

(11)
We evaluate these expressions for the microscopic lattice
model in Sec. III.

B. Relation with multipoles

To discuss the relation with the microscopic elec-
tronic degrees of freedom in the intrinsic term, we
introduce the augmented multipole description [22,
23]. As the transformation properties of σO

µ;αβ and

σH
µ;αβ are different, their corresponding multipoles are

different. Since σµ;αβ is the time-reversal-odd ax-
ial rank-3 tensor, the relevant multipoles are the
rank-1–3 multipoles: the rank-1 magnetic toroidal
dipole (Tx, Ty, Tz), the rank-2 magnetic quadrupole
(Mu,Mv,Myz,Mzx,Mxy), and the rank-3 magnetic
toroidal octupole (Tα

x , T
α
y , T

α
z , T

β
x , T

β
y , T

β
z , Txyz). The

correspondence between the components of σO and σH

and multipole is given by

σO =

















3T ′
x + 2Tα

x T ′
y − Tα

y − T β
y T ′

z − Tα
z + T β

z

T ′
x − Tα

x + T β
x 3T ′

y + 2Tα
y T ′

z − Tα
z − T β

z

T ′
x − Tα

x − T β
x T ′

y − Tα
y + T β

y 3T ′
z + 2Tα

z

Txyz T ′
z − Tα

z − T β
z T ′

y − Tα
y + T β

y

T ′
z − Tα

z + T β
z Txyz T ′

x − Tα
x − T β

x

T ′
y − Tα

y − T β
y T ′

x − Tα
x + T β

x Txyz

















T

,

(12a)

σH =















0 2(Ty −Mzx) 2(Tz +Mxy)
2(Tx +Myz) 0 2(Tz −Mxy)
2(Tx −Myz) 2(Ty +Mzx) 0
Mu +Mv −(Tz −Mxy) −(Ty +Mzx)

−(Tz +Mxy) −Mu +Mv −(Tx −Myz)
−(Ty −Mzx) −(Tx +Myz) −2Mv















T

,

(12b)

where the matrix representation of the conductivity ten-
sor σ has been expressed as

σ =















σx;xx σy;xx σz;xx

σx;yy σy;yy σz;yy

σx;zz σy;zz σz;zz

σx;yz σy;yz σz;yz

σx;zx σy;zx σz;zx

σx;xy σy;xy σz;xy















T

,

TABLE I. The relation between the Ohmic/Hall part of the
second-order conductivity tensor and the activated multi-
poles. M and MT multipoles represent magnetic and mag-
netic toroidal multipoles, respectively.

Multipole Ohmic Hall
MT dipole X X

M quardupole – X
MT octupole X –

(Tx, Ty, Tz) and (T ′
x, T

′
y, T

′
z) stand for the independent

magnetic toroidal dipoles and T means the transpose of
a matrix. The magnetic quadrupole (magnetic toroidal
octupole) appears only in σH (σO), while the magnetic
toroidal dipole appears in both conductivity. Thus, the
pure INAHE is expected when the magnetic quadrupole
is activated under magnetic orderings. We present the
relation between the σµ;αβ and the multipoles in Table I.

III. MODEL CALCULATIONS

As discussed in the previous section, the INAHE oc-
curs when either a magnetic quadrupole or magnetic
toroidal dipole is activated. In this section, we evalu-
ate the INAHE based on the microscopic lattice model
to examine the key ingredients for the INAHE from the
viewpoint of the electronic degrees of freedom. First, we
construct a minimal model under the four-sublattice lay-
ered tetragonal structure, where the PT -symmetric non-
collinear AFM structures can accompany the magnetic
quadrupole and magnetic toroidal dipole in Sec. III A.
Next, we show the numerical results for the INAHE in
the model in Sec. III B. Then, we discuss the important
contributions to the INAHE of the model parameters in
Sec. III C.

A. Hamiltonian

To examine the behavior of the INAHE, we con-
struct a minimal lattice model, as shown in Fig. 1; the
lattice structure consists of the four-sublattice layered
tetragonal structure, whose point group belongs to D4h

(4/mmm1′). The lattice constant is set to be a + b = 2
(a = b = 1) and c = 1 for simplicity. The tight-binding
Hamiltonian is given by

H =
∑

k

∑

γ,γ′

∑

σ,σ′

ĉ†
kγσh

γγ′

σσ′(k)ĉkγ′σ′ , (13)

where ĉ†
kγσ and ĉkγσ are the fermionic creation and anni-

hilation operators of the wave number k, the sublattice
γ = A–D and the spin σ =↑, ↓. The Hamiltonian ma-

trix [ĥ(k)](γσ),(γ′σ′) ≡ hγγ′

σσ′(k) consists of three parts as
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FIG. 1. The four-sublattice layered tetragonal structure with
the hopping parameters (ta, tb, t

′

a, t
′

b, tc) and g-vector denoted
as the blue arrows in our model in Eq. (13). a, b, and c are
the lattice constants.

follows:

ĥ(k) = ĥhop(k) + ĥASOI(k) + ĥmf . (14)

The first term ĥhop(k) represents the hopping term in-
cluding the hoppings along the x or y direction (z direc-
tion), ta and tb (tc), and the hoppings along the in-plane
diagonal direction, t′a and t′b, as shown in Fig. 1. The sec-

ond term ĥASOI(k) represents the sublattice-dependent
ASOI, which originates from relativistic spin–orbit cou-
pling under the lack of local inversion symmetry at each
lattice site. We here take into account the ASOI along
the out-of-plane direction, which is represented by

ĥASOI(k) = δγγ′gγ(k) · (σ)σσ′

= δγγ′α1 sin kz {ẑ · [eγ × (σ)σσ′ ]} ,
(15)

where eA = (−1,−1, 0), eB = (1, 1, 0), eC = (1,−1, 0),
eD = (−1, 1, 0), ẑ = (0, 0, 1), and σ = (σx, σy, σz) is the
vector of the Pauli matrix in spin space. gγ(k) is the
so-called (sublattice-dependent) g-vector, and its direc-
tion in each sublattice is presented in Fig. 1, which forms
the vortex structure to satisfy fourfold rotation symme-
try [24–27]. It is noted that

∑

γ gγ(k) = 0 owing to the
presence of global inversion symmetry.

The third term ĥmf stands for the molecular field (MF)
corresponding to the magnetic order, which arises from
the MF approximation to the Coulomb interaction. We
consider two types of noncollinear magnetic textures with
magnetic quadrupole Mu and magnetic toroidal dipole
Tz as shown in Figs. 2(a) and 2(b), respectively. The
expression of the MF Hamiltonian matrix is given by

ĥmf =

{

hAFδγγ′eγ · (σ)σσ′

hAFδγγ′ẑ · [eγ × (σ)σσ′ ]
(16)

with the magnitude of the MF hAF. The first row cor-
responds to the MF for the magnetic quadrupole Mu,
while the second row corresponds to that for the magnetic

FIG. 2. The noncollinear spin configurations to accompany
(a) the magnetic quadrupole and (b) the magnetic toroidal
dipole. The red arrows represent the spin moments. We also
show the MPGs and irreducible representations in D4h.

toroidal dipole Tz. In the case of Mu (Tz), the magnetic
point group reduces to 4/m′m′m′ (4/m′mm) [28]; P sym-
metry is broken while keeping PT symmetry in both
cases. These odd-parity multipoles have been recently
discussed in AFM metals since they give rise to uncon-
ventional off-diagonal responses and quantum transports,
such as the magnetoelectric effect [29–33], nonlinear Hall
effect [34], and nonreciprocal spin transport [35].

For later discussion in Sec. III C, we introduce the mul-
tipole description for the Hamiltonian in Eq. (14). By
using the symmetry-adapted multipole basis [36–38], the
Hamiltonian can be expressed as the product form of the
cluster and bond degrees of freedom (denoted as cluster
multipole and bond multipole, respectively) and the spin
degree of freedom. For example, the onsite degrees of
freedom in the Hamiltonian matrix is described by the
cluster electric multipole Q(c), while the off-site degrees
of freedom are described by the bond electric multipole
Q(bn) and bond magnetic toroidal multipole T (bn), where
the superscript n represents the index for the bond. The
matrix representation of the relevant multipoles is given
in Appendix A.

Then, the hopping Hamiltonian ĥhop(k) can be ex-
pressed as follows:

ĥhop(k) = ĥ1(k) + ĥ2(k) + ĥz(k),

ĥ1(k) = (ta + tb)(cx + cy)Q
(b1)
0 − (ta + tb)(cx − cy)Q

(b1)
v

+ (ta − tb)sxT
(b1)
x + (ta − tb)syT

(b1)
y ,

ĥ2(k) = (t′a + t′b)cxcyQ
(b2)
0 − (t′a + t′b)sxsyQ

(b2)
xy

+ (t′a − t′b)sxcyT
(b2)
x + (t′a − t′b)cxsyT

(b2)
y ,

ĥz(k) = 2tcczQ
(c)
0 ,

(17)
where the abbreviation as sα = sin kα, cα = cos kα for
α = x, y, z is used for notational simplicity. The super-
script (c) in the multipole matrices represents the cluster
multipole, while (b1) and (b2) represent the bond mul-

tipole in ĥ1(k) and ĥ2(k), respectively. Similarly, the
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ASOI and MF terms are expressed as

ĥASOI(k) = α1sz(Q
(c)
y σx −Q(c)

x σy) ≡ α1szT
(c)
z , (18)

and

ĥmf =

{

hAF(Q
(c)
x σx +Q

(c)
y σy) ≡ hAFM

(c)
u

hAF(Q
(c)
y σx −Q

(c)
x σy) ≡ hAFT

(c)
z .

(19)

We summarize the correspondence between multipoles
included in the Hamiltonian and their irreducible rep-
resentations in Table II. It is noted that the multipole
degree of freedom belonging to the B+

1g (B+
2g) representa-

tion appears only in ĥ1(k) [ĥ2(k)].

TABLE II. The correspondence between multipoles included
in the Hamiltonian and irreducible representations (IRs) in
D4h. The superscript ± of the irreducible representation de-
notes the parity with respect to T operation.

Hamiltonian Multipole IR

ĥ1(k) Q
(b1)
0 A+

1g

Q
(b1)
v B+

1g

T
(b1)
x , T

(b1)
y E−

u

ĥ2(k) Q
(b2)
0 A+

1g

Q
(b2)
xy B+

2g

T
(b2)
x , T

(b2)
y E−

u

ĥz(k) Q
(c)
0 A+

1g

ĥASOI(k) T
(c)
z A−

2u

ĥmf M
(c)
u A−

1u

T
(c)
z A−

2u

B. Numerical Results

First, we show the band structure under the non-
collinear AFM orderings for hAF 6= 0 in Figs. 3(a) and
3(b), where the model parameters are set as

ta = 1, tb = 0.9, t′a = 0.5, t′b = 0.3, tc = 1,

α1 = 0.5, hAF = 2.
(20)

There are two characteristic features in the band struc-
tures: One is the asymmetric band modulation along the
kz line with respect to the origin (kx, ky, kz) = (0, 0, 0)
for the AFM state with Tz, as shown in Fig. 3(b). Mean-
while, the band structure is symmetric in the case of the
AFM state with Mu, as shown in Fig. 3(a). The ap-
pearance of the asymmetric band structure in the AFM
state with Tz is owing to a parallel alignment of the spin
moment and the g-vector at each sublattice, which leads
to an effective coupling [24, 39, 40]. The other is the
line-node Dirac-type band dispersion with a narrow gap
along the kz line at (kx, ky) = (π/2, π/2), as denoted by
the circles in Figs. 3(a) and 3(b). This is attributed to
the fact that the noncollinear spin textures in Figs. 2(a)

and 2(b) are related to the π-flux state in the case of
ta = tb and t′a = t′b [41, 42]; the narrow gap structure is
owing to the breathing property of the lattice structure.

FIG. 3. Band structures for the magnetic orderings with (a)
Mu under the MPG 4/m′m′m′ and (b) Tz under the MPG
4/m′mm. In each panel, the wavenumber (kx, ky, kz) depen-
dence is as follows: (kx, ky , kz) = (0, 0, 2s) in [001], (s, s, 0)
in [110], and (s, s, 2s) in [111] with 0 ≤ s ≤ π. The circles
indicate the narrow band gap region.

Next, we numerically evaluate the intrinsic term in
Eq. (11) to investigate the INAHE. We set e = ~ = 1,
the temperature T = 0.01 and choose the k mesh N =
22V/(a + b)2c as 1752 × 1000. In the AFM state with
Mu, σ

H
x;yz = −σH

y;zx becomes nonzero from Eq. (12) since
onlyMu is activated among the relevant multipoles under
4/m′m′m′. Meanwhile, σO vanishes owing to the absence
of the magnetic toroidal dipole and octupole. Thus, the
pure INAHE is expected in this case.
The red dots in Fig. 4(a) show the chemical poten-

tial µ dependence of σint,H
x;yz by using the model param-

eters in Eq. (20). As expected from the MPG symme-
try in the presence of Mu, the system exhibits nonzero
σint,H
x;yz irrespective of µ; there are roughly four peak struc-

tures at µ ≃ −5,−1,+1, and +5. Since the band struc-
ture in this case is symmetric, the microscopic origin
of σint,H

x;yz is different from that of the Drude-type con-

ductivity σD, which arises from the asymmetric band
modulation. We find that these peak structures corre-
spond well to the narrow gap region at the band edges,
as shown in Fig. 4(b), where the black dotted lines rep-
resent their correspondence. Such a correspondence is
reasonable in terms of the expression in Eq. (11); the
narrow gap leading to a small denominator yields a large
σint,H
x;yz . We find that the dominant contribution arises

from the Dirac-type band dispersion in the kx–ky plane
in Fig. 4(b), which means that the quantum metric dipole
vνx(k)g

νν̄
yz (k) = −vνy (k

′)gνν̄zx (k
′) with k′ ≡ (−ky, kx, kz)

becomes important for σint,H
x;yz . This behavior coincides

with the semiclassical analysis [11, 12]. In addition,
the contributions of the Fermi sea and Fermi surface
terms are comparable to each other, as discussed in Ap-
pendix B. We also discuss the results for the case of a
large MF in Appendix B, where we confirm that the main
contribution comes from near the Dirac point as well in
this case. When we turn off the ASOI, the quantum met-
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ric dipole vνx(k)g
νν̄
yz (k) completely vanishes, which indi-

cates that the ASOI is important for the INAHE.
The above situation qualitatively changes when differ-

ent hopping parameters are set. For example, σint,H
x;yz van-

ishes by setting t′a = t′b = 0 while the other parameters
remain the same, as shown by the blue dots in Fig. 4(a).
This result indicates that the diagonal hopping is nec-
essary to induce σint,H

x;yz , which is not accounted for by
the symmetry argument and the geometry of the band
structure. We will discuss this point in Sec. III C.

FIG. 4. (a) Chemical potential µ dependence of σint,H
x;yz evalu-

ated by Eq. (11) with (red) and without (blue) the diagonal
hoppings t′aand t′b at T = 0.01. (b) Band structure along with
the kx = ky = π/2 line. The black dotted lines represent the
correspondence between the region of the narrow band gap at
the band edges and the conductivity peak structures.

Let us discuss the other AFM state with Tz in
Fig. 2(b), where the MPG reduces to 4/m′mm. Since
the relevant active multipoles are Tz and Tα

z in this
case, there are three independent tensor components
in σµ;αβ : σO

z;zz, σO
z;xx = σO

z;yy = σO
x;zx = σO

y;yz, and

σH
z;xx = σH

z;yy = −2σH
x;zx = −2σH

y;yz in Eq. (12). In

other words, not only σH but also σO are expected to
be nonzero in contrast to the Mu case. We ignore the
contribution from the Drude term in order to focus on
the behavior of σint

µ;αβ [13, 16], although it can also be fi-

nite owing to the asymmetric band structure in Fig. 3(b).
Figure 5(a) shows the µ dependence of σint,H

x;zx under the
AFM with Tz, where the same hopping and ASOI param-
eters are used as those with Mu. Similar to the case with
Mu, σ

int,H
x;zx becomes nonzero, which exhibits the peak or

dip structures at the band edges with a narrow gap, as
shown by the dotted black lines in Figs. 5(a) and 5(b).
Thus, the narrow gap structure in the band dispersion
plays an important role in enhancing σint,H

x;zx . The compli-

cated µ dependence of σint,H
x;zx for −4 . µ . 4 compared

to σint,H
x;yz in the case of Mu is attributed to the contribu-

tions between the middle two bands. Indeed, similar µ
dependence to the Mu case is obtained for a large MF,
as shown in Appendix B. It is noted that σint,H

x;zx vanishes
in the absence of the ASOI, as vνz (k)g

νν̄
xx(k) cancels out

with vν̄z (k)g
ν̄ν
xx(k).

On the other hand, there are two qualitative differences
from the result with Mu. One is the model parameter

dependence; σint,H
x;zx remains nonzero values even for t′a =

t′b = 0, as shown in Fig. 5(a). This indicates the difference
in the microscopic origin of the INAHE for the magnetic
quadrupole and magnetic toroidal dipole, which will be
discussed in Sec. III C.
Another is the additional contribution to σint

x;zx from

the Ohmic part σint,O
x;zx in measurements. Figure 5(c)

shows the µ dependence of σint,O
x;zx with the result for σint,H

x;zx

in Fig. 5(a) for reference. Compared to both results, one
finds that σint,O

x;zx has a similar µ dependence as σint,H
x;zx so as

to enhance the total contribution σint
x;zx = σint,O

x;zx + σint,H
x;zx ,

as shown by the blue dots in Fig. 5(d). On the other
hand, it is noted that there can be a cancellation depend-
ing on the tensor components. For example, the result
for σint

z;xx = σint,O
z;xx + σint,H

z;xx = σint,O
x;zx − 2σint,H

x;zx is presented
by the red dots in Fig. 5(d), where the absolute values
tend to be smaller than those in σint

x;zx.

C. Effective closed path

In the previous section, the numerical result indicates
the characteristic hopping parameter dependence in the
intrinsic term in σµ;αβ for the AFM state with Mu. In
this section, we elucidate the essential model parameters
for the INAHE in both AFM cases. For that purpose, we
evaluate the following quantity:

Γijk
µ;α,β =

∑

k

Tr
[

v̂µ(k)ĥ
i(k)v̂α(k)ĥ

j(k)v̂β(k)ĥ
k(k)

]

,

(21)
which was obtained by the expansion of the nonlinear
conductivity tensor [15]; the order of the expansion is
i + j + k, where i, j, k are integers. The real part of

Γijk
µ;α,β contributes to the INAHE.

Let us consider the conditions for nonzero Γijk
µ;α,β in

Eq. (21). As the INAHE is induced by the onset of the

AFM ordering, Γijk
µ;α,β must include the contribution of

hAF; otherwise, Γ
ijk
µ;α,β = 0. In addition, its hAF depen-

dence should be an odd function since the AFM state
with the different domain leads to the opposite sign of
σint
µ;αβ . In this situation, the trace in Eq. (21) should

include other spin-dependent terms to make the trace,
at least in spin space, nonzero. In the present model
in Eq. (14), such a term corresponds to the ASOI in

Eq. (18). The remaining condition for nonzero Γijk
µ;α,β de-

pends on the hopping elements in Eq. (17) so that the
trace in sublattice space becomes nonzero.
From the symmetry viewpoint, the trace can become

nonzero when the irreducible representation of the direct
product in the trace belongs to the totally symmetric rep-
resentation, i.e., A+

1g. The direct product representation

of the ASOI and MF terms is given by A−
2u⊗A−

1u = A+
2g in

the case of the AFM order with Mu and A−
2u⊗A−

2u = A+
1g

in the case of that with Tz (see Table II). In order to
construct the A+

2g representation in the former, the irre-
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FIG. 5. (a) Chemical potential µ dependence of σint,H
x;zx evaluated by Eq. (11) with (red) and without (blue) the diagonal

hoppings t′a and t′b at T = 0.01. (b) Band structure along with the kx = ky = π/2 line. The black dotted lines represent
the correspondence between the region of the narrow band gap at the band edges and the conductivity peak structures. (c) µ
dependence of the Ohmic (blue) and Hall (red) part in σint

z;xx. (d) Results for the total intrinsic conductivity σint
z;xx = σint,O

x;zx +σint,H
x;zx

(blue) and σint
z;xx = σint,O

z;xx + σint,H
z;xx = σint,O

x;zx − 2σint,H
x;zx (red).

ducible representation consisting of the hoppings should
include both B+

1g and B+
2g. Thus, one notices that the

Q
(b2)
xy -type hopping corresponding to B+

2g in ĥ2 is essential

to construct the A+
1g representation for the AFM state

with Mu. In this way, the diagonal hopping is neces-

sary to obtain nonzero σint,H
µ;αβ in the AFM state with Mu,

which is consistent with the numerical results in Fig. 4(a).
Meanwhile, there is no such a constraint for the AFM
state with Tz, as it needs just the A+

1g, which is usually
included in any hoppings.
Based on the above symmetry analysis, we directly

evaluate Γijk
x;y,z to find the important model parameters

for σint,H
x;yz . In the case of the AFM state with Mu, the

lowest-order contribution to σint,H
x;yz arises at (i, j, k) =

(0, 2, 1), where Γ021
x;y,z is given by

Γ021
x;y,z =

∑

k

Tr
[

v̂x(k)v̂y(k)ĥ
2(k)v̂z(k)ĥ(k)

]

=32hAFα1tc(t
2
at

′
a + t2bt

′
b).

(22)

This expression indicates that nonzero σint,H
x;yz is obtained

when hAF 6= 0, α1 6= 0, and t′a, t
′
b 6= 0, as expected in

the above symmetry argument. Moreover, one finds that
tc 6= 0 is also important to cause nonzero σint,H

x;yz . Such a

relation holds for higher-order contributions of Γijk
x;y,z.

To further understand the microscopic process con-
tributing to σint,H

x;yz , we investigate the important hop-
ping paths in real space. By analyzing the expression in
Eq. (22), one finds one of the contributing closed paths,
which is given by

Tr[Q(b1)
v Q(b2)

xy T (c)
z Q

(b1)
0 Q

(c)
0 M (c)

u ] 6= 0, (23)

where there is a following correspondence: v̂x(k) ↔

Q
(b1)
v , v̂y(k) ↔ Q

(b2)
xy , ĥ2(k) ↔ T

(c)
z Q

(b1)
0 , v̂z(k) ↔ Q

(c)
0 ,

and ĥ(k) ↔ M
(c)
u . We pictorially plot this process in

Fig. 6(a) starting at the sublattice A. It is noted that an

order of the multipole matrices is important; for example,
a different sequence like

Tr[Q(b1)
v Q(b2)

xy Q
(c)
0 Q

(b1)
0 T (c)

z M (c)
u ] (24)

gives no contribution to σint,H
x;yz . The closed path in this

case is shown in Fig. 6(b). By closely looking at the dif-
ference between Eqs. (23) and (24), one finds that the
relation of the spin and the g-vector is different from each
other. In the former case, the spin moment and g-vector
are coupled in parallel (or antiparallel), which gives a to-
tally symmetric representation, i.e., σ2

x = σ2
y = σ0 in spin

space (σ0 is the unit matrix in spin space). On the other
hand, they are orthogonal in the latter case, which leads
to the off-diagonal component in spin space and results
in Tr[· · · ] = 0. Thus, the effective coupling between the
spin moment and g-vector in the inner-product form is
important to lead to the INAHE.
A similar statement can be applied to the AFM state

with Tz. The lowest-order contribution to σint,H
z;xx arises

at (i, j, k) = (0, 1, 1), where Γ011
z;x,x is given by

Γ011
z;x,x = −16hAFtcα1(t

2
a + t2b + 4t′2a + 4t′2b ). (25)

Similar to the AFM state with Mu, the conditions of
hAF 6= 0, α1 6= 0, and tc 6= 0 are necessary to induce
the INAHE. Meanwhile, the diagonal hopping is not re-
quired in contrast to the case with Mu. Reflecting such a
difference, the contributions of the closed path to Γ011

z;x,x

are distinct, one of which is given by

Tr[T (c)
z Q

(b1)
0 Q

(c)
0 Q

(b1)
0 T (c)

z ] 6= 0. (26)

In the case of the AFM state with Tz, one finds that
the coupling between the spin moment and g-vector at
the same sublattice plays an important role, as schemat-
ically shown in Fig. 6(c), so as to have its nonzero inner-
product.
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FIG. 6. The closed paths contributing to the INAHE. As a
representative, we show the paths starting from sublattice A.
(a), (b), and (c) correspond to Eqs. (23), (24), and (26), re-
spectively. The red (blue) arrows represent the spin moments
(g-vectors). The signs on the bonds indicate the phase of each
hopping.

IV. SUMMARY AND DISCUSSION

In summary, we have investigated the INAHE in PT -
symmetric noncollinear AFMs. We have shown that the
magnetic toroidal dipole, magnetic quadrupole, and mag-
netic toroidal octupole contribute to intrinsic nonlinear
conductivity. Especially, we clarified that its Hall part,
i.e., INAHE, is accounted for by the emergence of the
magnetic toroidal dipole and magnetic quadrupole; the
former gives rise to both Ohmic and Hall parts, while the
latter induces the pure Hall part. Based on the micro-
scopic model analysis for the three-dimensional tetrag-
onal lattice models with Mu and Tz, we found two im-
portant factors to cause the INAHE: One is the effective
coupling between the magnetic order and ASOI and the
other is the hopping paths.

Although we have analyzed a specific model in the
tetragonal system to demonstrate the INAHE, our result
can be straightforwardly applied to other models under
different lattice structures once the tight-binding Hamil-
tonian is provided. Furthermore, the effective coupling
between the magnetic order and ASOI is a general fea-
ture to induce the INAHE in other cases because of the
nature of closed paths in Eq. (21).

Finally, we list candidate materials to have nonzero

pure σint,H
µ;αβ in accordance with the MPG. The materials

are referred from MAGNDATA [43], magnetic structure
database, in Table III. In the listed materials, the origin

of σµ;αβ is identified as the pure INAHE when σint,H
µ;αβ 6= 0

but σint,O
µ;αβ = σD

µ;αβ = σBCD
µ;αβ = 0 for a specific compo-

nent µ, α, β. Such a situation is satisfied for the MPGs
where the magnetic quadrupole Mu belongs to the to-
tally symmetric irreducible representation. It is noted
that some MPGs exhibit other contributions from the
Drude and BCD terms for different tensor components.
For example, let us suppose the 4m′m′, where the BCD
term contributes to the conductivity. In this case, the
electric dipole Qz is induced in addition to Mu [28], but
it contributes to only σH

z;xx and σH
x;zx, which does not af-

fect σint,H
x;yz . Among the candidate materials, the materials

with large spin–orbit coupling and the hybridization be-
tween orbitals with different parity are promising, since
the ASOI is qualitatively related to them.
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Appendix A: Matrix Element of Multipoles

We show the matrix elements of the multipoles in the
Hamiltonian (17), (18), and (19). The onsite and real
bond degrees of freedom are described by Q(c) and Q(bn)

and the imaginary bond degrees of freedom are described
by T (bn). For the basis {|Aσ〉 , |Bσ〉 , |Cσ〉 , |Dσ〉}, the
relevant matrix elements of the multipoles are given by

Q
(c)
0 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






σ0, Q(c)

x =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1






σ0,

Q(c)
y =







−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1






σ0, Q

(b1)
0 =

1

2







0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0






σ0,

Q(b1)
v =

1

2







0 0 −1 1
0 0 1 −1
−1 1 0 0
1 −1 0 0






σ0,

Q
(b2)
0 =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






σ0, Q(b2)

xy =







0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0






σ0,
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TABLE III. Magnetic point group (MPG) and candidate materials to exhibit the pure INAHE of σint,H
x;yz = −σint,H

y;zx except for
1̄′. Each row is classified by the existence or absence of Drude, and BCD terms for other tensor components based on [11].

MPG intrinsic Drude BCD Materials
4/m′m′m′ © × × GdB4 [44], Fe2TeO6 [45], UPt2Si2 [46], Bi2CuO4 [47], UBi2 [48], UGeSe [49]
6̄′m′2 RbFeCl3 [50], UNiGa [51], TmAgGe [52]
6/m′m′m′

4m′m′ © × © CeCoGe3 [53], CeIrGe3 [54]
6m′m′ ScMnO3 [55], HoMnO3 [56], LuFeO3 [57], Nd15Ge9C0.39 [58], Mn2Mo3O8 [59],

YbMnO3 [60], Yb0.42Sc0.58FeO3 [61]
4/m′ © © × (K,Rb)yFe2−xSe2 [62], TlFe1.6Se2 [63], K0.8Fe1.8Se2 [64], NdB4 [65]
3̄′ MnTiO3 [66], MnGeO3 [67], MgMnO3 [68], Yb3Pt4 [69]
3̄′m′ Cr2O3 [70], (Co,Mn)4Nb2O9 [71–75], Mn4Ta2O9 [76, 77], U2N2(S,Se) [78], AgRuO3 [79],

Na2MnTeO6 [80]
6̄′ Cu0.82Mn1.18As [81], Tb14Ag51 [82]
6/m′ U14Au51 [83]
3m′ © © © U3(P,As)4 [84], GaV4S8 [85], CaBaCo2Fe2O7 [86], Tb(DCO2)3 [87], CrSe [88]

T (b1)
x =







0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0






σ0, T (b1)

y =







0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0






σ0,

T (b2)
x =







0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0






σ0, T (b2)

y =







0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0






σ0,

(A1)
where σ0 represents the unit matrix in spin space. The
multipole matrices are orthogonal with each other, i.e.,
Tr[XpXq] ∝ δpq for X = Q or T . The subscript 0,
(x, y), and (v, xy) represent the monopole, dipole, and
quadrupole components, respectively.

Appendix B: Comparison of Fermi Sea and Fermi

Surface Terms

We compare the contributions from the Fermi sea and
Fermi surface terms in Eq. (2c). In the expression of

σint,H
µ;αβ in Eq. (11), the Fermi sea (surface) term corre-

sponds to the first (second) term in the square bracket.
In contrast to the linear anomalous Hall effect, there is
no obvious way to transform the Fermi sea term into the
Fermi surface term. On the other hand, the Fermi sur-
face term can be transformed into the Fermi sea term
such as

1

V

∑

k

(

−
∂fνk
∂ενk

)

vνµ(k)g
νν̄
αβ(k)

ενk − εν̄k

= −
1

V

∑

k

∂µfνk
gνν̄αβ(k)

ενk − εν̄k

=
1

V

∑

k

fνk∂µ

(

gνν̄αβ(k)

ενk − εν̄k

)

.

Figure 7 shows the µ dependence of σint,H. In both cases
for the AFMs with Mu [Fig. 7(a)] and Tz [Fig. 7(b)], the

behaviors of σint,H, such as the order of the magnitude
and their sign dependence, are similar. Thus, both terms
contribute to the INAHE at the same order. A sudden
change of σint,H is found in the Fermi surface term com-
pared to the Fermi sea term, since the former is more
sensitive to the change of the Fermi-surface topology.

We also show the results for a large MF by taking
hAF = 10 in Fig. 8. As shown in Figs. 8(b) and (d),
the four bands are completely separated into pairs of two
bands. In this case, the contributions from the upper
(lower) two bands in σint,H can be neglected when the
Fermi surface is in the lower (upper) two bands in both
orderings. Indeed, comparing Fig. 8(c) with Fig. 7(b),
the µ dependence of σint,H

x;zx at hAF = 10 is simpler than
that of hAF = 2. The INAHE vanishes at a half-filled
region for −10 . µ . 10 in Figs. 8(a) and 8(c).

FIG. 7. Contributions from the Fermi sea and Fermi surface
terms under the AFM states with (a) Mu and (b) Tz at T =
0.01. We set the same model parameters as Eq. (20).
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FIG. 8. Contributions from the Fermi sea and Fermi surface terms under AFM states with (a) Mu under the MPG 4/m′m′m′

and (c) Tz under the MPG 4/m′m′m′ at hAF = 10 and T = 0.01. Other parameters are used in Eq. (20). (b) and (d) show
the band structures in each state. The circles indicate the narrow band gap region.
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