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The recent measurement of the de Haas-van Alphen effect in the spin-triplet superconductor
UTe2 [D. Aoki et al., J. Phys. Soc. Jpn. 91, 083704 (2022)] supports cylindrical electron and
hole Fermi surfaces, which implies that UTe2 is trivial as a 3D time-reversal-invariant topological
superconductor. Inspired by this observation, we investigate the possible realization of a topological
crystalline superconductor protected by the crystalline symmetry of UTe2. We examine Majorana
surface states protected by mirror and two-fold rotational symmetries for all symmetry-allowed
odd-parity pairing states with time-reversal symmetry and clarify the corresponding topological
invariants. It is found that topological crystalline superconductivity can be realized for all irreducible
representations of odd-parity pairing states of UTe2 even for cylindrical Fermi surfaces.

I. INTRODUCTION

The discovery of superconductivity in the heavy
fermion system UTe2 has attracted much attention
because of the prospect of spin-triplet topological
superconductivity [1]. The highlights are huge upper
critical fields along all directions beyond the Pauli limit
[2–4], a field-reentrant behavior for H ‖ b-axis, [3, 4], and
a tiny decrease of NMR Knight-shift below Tc [1, 5, 6].
These behaviors, which strongly support spin-triplet
pairing states, are similar to U-based ferromagnetic
superconductors, UGe2 [7], URhGe [8], and UCoGe [9],
which are deemed non-unitary Weyl superconductors
with broken time-reversal symmetry [10, 11]. An
important difference of UTe2 from these ferromagnetic
superconductors is that it is paramagnetic down to 25
mK [12]. Although the possibility of non-unitary chiral
pairing states with broken time-reversal symmetry has
been discussed from STM measurements [13], Kerr-effect
measurements [14], and theoretical studies [15, 16], solid
evidence of time-reversal symmetry breaking is lacking to
this date. Thus, it is legitimate to explore the possibility
of a time-reversal-invariant topological superconducting
state in UTe2. However, the symmetry of the gap
function of UTe2, which determine topological properties,
remains controversial even within time-reversal invariant
unitary states. Furthermore, the structure of the Fermi
surface is crucially important for topological characters.
For superconductors with time-reversal symmetry which
is classified as class DIII in the AZ classification, the
Fermi surface must be a closed two-dimensional surface
for a nonzero topological invariant, i.e. three-dimensional
(3D) winding number [17]. Although first principle
band calculations are useful for the understanding of
strongly correlated electron systems, there is no complete
consensus on the topology of the Fermi surface in UTe2

[18–22].
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Recently, the observation of the de Haas-van Alphen
(dHvA) effect in UTe2 was successfully achieved by
Aoki and his coworkers[23]. According to their
result, the dHvA frequencies are compatible with
cylindrical electron and hole Fermi surfaces. This
implies that the superconducting state of UTe2

is, unfortunately, topologically trivial in the sense
of 3D class DIII. However, even for such open
Fermi surfaces, the topological superconducting states
protected by crystalline symmetry are still possible [24–
31]. Motivated by this observation, in this paper,
we investigate the possible realization of topological
crystalline superconductivity in UTe2. We classify
topological invariants protected by the space group
symmetry Immm of UTe2 and examine surface
Majorana zero-energy modes (MZMs) corresponding to
the topological invariants. It is found that the mirror
symmetry and the two-fold rotational symmetry play
crucial roles in the realization of topological crystalline
superconducting states in UTe2.

The organization of this paper is as follows. In Sec. II,
we briefly review the symmetry properties of all possible
pairing states allowed by the point-group symmetry of
UTe2, which is the basis of the following argument. In
Sec. III, we introduce topological invariants associated
with crystalline symmetry, particularly, focusing on
one-dimensional (1D) crystalline winding numbers and
the mirror Chern number. In Sec. IV, we present
an effective microscopic model for the band structure
of UTe2. In Sec. V, using this model, we investigate
surface Majorana states of all irreducible representations
of odd-parity pairing states and clarify topological
invariants arising from crystalline symmetry, which
protect the surface Majorana zero-energy states. The
summary is given in Sec. VI.

II. SYMMETRY OF SUPERCONDUCTIVITY

We, here, present the symmetry classification of the
possible pairing states of UTe2 which is the basis of

mailto:tei@blade.mp.es.osaka-u.ac.jp


2

the following argument. We assume that f -electrons of
uranium sites are condensed into a spin-triplet odd-parity
pairing state with time-reversal symmetry. Then, the
superconducting gap function is given by,

∆(k) = d(k) · σiσy, (1)

which satisfies,

iσyK∆(k)K(−iσy) = ∆(−k), (2)

where d is a d-vector for spin-triplet pairing states,
σ = (σx, σy, σz) is the Pauli matrices for spin degrees
of freedom, and K is the complex conjugate operator.
More precisely, σ is defined not for spin-1/2, but for
the Kramers doublet. In general, atomic spin-orbit
coupling is important for U-based compounds, and
Cooper pairs are formed by electrons with the total
angular momentum j = 5/2. However, we assume here
pairings of electrons in the Kramers doublet states, and
hence, we do not need to consider the j = 5/2 states
explicitly. The d-vector is expressed in terms of the
basis function of the point group symmetry. UTe2 has
the body-centered orthorhombic lattice structure with
the space group symmetry Immm(#71, D25

2h), and hence,
the relevant point group is D2h, which has eight 1D
irreducible representations (IRs). Possible IRs for the
d-vector are Au, B1u, B2u, and B3u, as shown in Table I.
Here, we consider only the case that the direction of the
d-vector is constrained by the orbital degrees of freedom
because of strong spin-orbit interactions of f -electrons.
Moreover, there are two types of uranium atoms in a
unit cell. Thus, two types of pairings of f -electrons are
possible: intra-orbital pairings and inter-orbital pairings.
Each component of the d-vector is represented by a
matrix in this orbital space:

d(k) =

(
d11 d12

d21 d22

)
, (3)

where the indices 1, 2 denote the two f -orbitals. For
odd-parity pairings, d-vectors satisfy

d11(k) = −d22(−k) (4)

d12(k) = −d21(−k) (5)

TABLE I. List of irreducible representations of D2h and basis
functions of the d-vector. â, b̂, and ĉ are unit vectors parallel
to the principal axes of the crystal structure. Cµ (µ = a, b, c)
is a two-fold rotation with the rotation axis parallel to the
µ-axis. Mµν (µ, ν = a, b, c) is a mirror reflection with the
mirror plane parallel to the µ and ν-axes. ∆e is a real even
function of a momentum k.

IR Ca Cb Cc Mbc Mca Mab
basis function

orbital-triplet orbital-singlet

Au + + + − − − kaâ, kbb̂, kcĉ i∆eĉ

B1u − − + + + − kbâ, kab̂
B2u − + − + − + kcâ, kaĉ i∆eâ

B3u − − + − + + kcb̂, kbĉ i∆eb̂

FIG. 1. (a)Schematic picture of the crystal structure of
UTe2. There are two types of uranium atoms in a unit
cell. (b)Crystal axes, mirror symmetry planes, and a two-fold
rotational symmetry axis on an open surface perpendicular
to x⊥. The crystal axes x‖1 and x‖2 are perpendicular to
x⊥ axis. x⊥ is one of a-, b-, and c-axis. (c) Cylindrical
electron(orange) and hole(green) Fermi surfaces of UTe2.

For intra-orbital pairings d11 = d22, since the d-vectors
are odd functions of k due to Fermi statistics. Also,
for inter-orbital pairings d12 has both k-odd and k-even
terms. The former (latter) corresponds to orbital-triplet
(orbital-singlet) pairings. It is noted that, for preserving
time-reversal symmetry (2), the gap function of the
orbital-singlet state must be a pure imaginary. That is,
the relative phase between the orbital-triplet pairs and
the orbital-singlet pairs is π/2. In Table I, we summarize
all possible basis functions for the d-vector (3) allowed
by the point group symmetry.

III. TOPOLOGICAL INVARIANTS
PROTECTED BY CRYSTALLINE SYMMETRY

In this section, we explain topological invariants
related to surface MZMs protected by crystalline
symmetry. In FIG. 1(b), we show the geometrical
configuration of the system used in the following
argument. The yellow surface in FIG.1(b) is an open
boundary surface of the crystal. The axis x⊥ is normal
to the surface, and x‖1 and x‖2 are orthogonal axes
parallel to the surface. x⊥, x‖1 , and x‖2 are, respectively,
chosen to be one of the crystallographic axes, a-, b-,
and c-axes. The surface possesses three crystalline
symmetries: two-fold rotation Cx⊥ around the x⊥-axis,
mirror reflectionMx⊥x‖1

with respect to the x⊥x‖1 plane
and mirror reflection Mx⊥x‖2

with respect to the x⊥x‖2
plane. In the following, we see that such crystalline
symmetries can be used for defining two topological
invariants: the 1D crystalline winding number protected
by chiral symmetry and the mirror Chern number.

We start with a general BdG Hamiltonian H(k) for
superconducting states

H =
1

2

∑
k,α,α′

(
c†kα c−kα

)
H(k)

(
ckα′

c†−kα′

)
(6)
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with

H(k) =

(
Hn(k) ∆(k)
∆†(k) −HT

n (−k)

)
(7)

where c†kα(ckα) is the creation (annihilation) operator
of the electron with momentum k. α labels spin and
orbital degrees of freedom. Hn(k) is the Hamiltonian for
the normal state, and ∆(k) is the gap function. The
BdG Hamiltonian has time-reversal symmetry (TRS)
and particle-hole symmetry (PHS),

ΘH(k)Θ−1 = H(−k), Θ =

(
iσy

iσy

)
K (8)

CH(k)C−1 = −H(−k), C =

(
1

1

)
K (9)

Then, we can define a chiral symmetry operator which
anti-commutes with the BdG Hamiltonian.

Γ = iΘC. (10)

With this chiral symmetry, we can define the topological
invariant referred to as the 3D winding number for
3D class DIII superconductors with TRS. However, as
mentioned in the introduction, the 3D winding number
vanishes for cylindrical Fermi surfaces. Thus, instead, we
consider topological invariants protected by crystalline
symmetry.

We denote a crystalline symmetry operator as
U . Then, the Hamiltonian for the normal state is
transformed as,

UHn(k)U† = Hn(ĝk), (11)

where ĝ is the 3D representation of U acting in the
k-space. The gap function is transformed following the
characters of each IR shown in Table I,

U∆(k)UT = s∆(ĝk), (12)

where s = +1 or −1. Then, we can define the crystal
symmetry operator acting on Nanbu space,

ŨH(k)Ũ† = H(ĝk), (13)

with

Ũ =

(
U

sU∗

)
. (14)

For the point group symmetry D2h, U is Cµ or Mµν

with µ, ν = a, b, c, as shown in Table I. With these
settings, in the following, we consider two topological
invariants for topological crystalline superconductivity:
the 1D crystalline winding number and the mirror Chern
number.

A. 1D crystalline winding number

We, here, consider the 1D winding number for a
1D subspace of the 3D Brillouin zone (BZ). The 1D
winding number is defined for systems with chiral
symmetry. However, for the chiral symmetry operator
for the class DIII, Eq. (10), the 1D winding number
always vanishes, because it anti-commutes with the
time-reversal symmetry operator Θ, {Θ, Γ} = 0.
Nevertheless, in the case with a crystalline symmetry,
we can introduce another chiral symmetry operator ΓU
defined as,

ΓU = eiφU ŨΓ, (15)

where eiφU is a phase factor which ensures Γ2
U = 1. Then,

we define the 1D crystalline winding number as,

wU (k‖) = − 1

4πi

∫
dk⊥ tr

[
ΓUH

−1∂k⊥H(k⊥)
]
, (16)

where k⊥ is the momentum in the 1D subspace, and k‖ is
perpendicular to k⊥. Both k⊥ and k‖ are on a symmetry
axis or a symmetry plane, satisfying k = ĝk. If the
gap function does not change its sign under a crystalline
symmetry operation U , i.e. s = +1 in Eq. (12), ΓU
commutes with Θ,

[Θ,ΓU ] = 0. (17)

By virtue of this property, similar to the BDI
class, wU (k‖) does not vanish identically. Therefore,
for IRs with the character “+” shown in Table I,
the 1D crystalline winding number defined with the
corresponding crystalline symmetry can be nonzero and
surface MZMs protected by crystalline symmetry can
appear. Note that the 1D winding number can be
expressed in terms of quantities on the Fermi surface [32].
The Fermi surface formulas for wU (k‖) are given in the
Appendix. Then, it is necessary for non-zero wU (k‖) that
the 1D subspace BZ crosses the Fermi surface. In Sec. V,
we will discuss the 1D crystalline winding number for
each pairing state using the Fermi surface formulas.

B. Mirror Chern number

Another topological invariant can be defined on a
mirror plane that is parallel to the x⊥ and x‖` (` = 1, 2).
On the mirror plane, the BdG Hamiltonian can be block
diagonal in the diagonal basis of the mirror reflection
operator M̃x⊥x‖`

. Then, the mirror Chern number

νx⊥x‖`
is defined as,

νx⊥x‖`
=

1

2
(νx⊥x‖`

(+i)− νx⊥x‖`
(−i)), (18)

νx⊥x‖`
(λ) =

1

2π

∫
BZ

dk⊥dk‖` F
λ
x⊥x‖`

(k) (19)
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where λ = ±i are the eigenvalues of M̃x⊥x‖`
, and Fλx⊥x‖`

is the Berry curvature of the eigen states on the mirror
plane in the BZ with the mirror eigenvalue λ. Since we
consider the cylindrical Fermi surfaces shown in Fig. 1(c),
the mirror Chern number can be nonzero only on the
Mab plane. Furthermore, for the basis function of the
B2u and B3u states shown in Table I, the mirror Chern
number νab vanishes. Therefore, surface MZMs protected
by the mirror Chern number can appear only in the Au
and B1u states. We demonstrate it in Sec. V.

IV. EFFECTIVE MODEL

We, here, present an effective model of UTe2 used for
the following analysis. For simplicity, we consider only
the electron Fermi surface [Fig. 1(c) orange face]. The
contribution of the hole Fermi surface can be similarly
taken into account. Our simplified model is composed of
two f -electron orbitals.

We neglect the staggered Rashba-type spin-orbit
interaction due to local inversion symmetry breaking
which was discussed in previous studies [33]. In general,
by including the staggered Rashba-type spin-orbit
interaction, there may be some mixing with even parity
pairing. However, the magnitude of the mixing is
suppressed by the factor ERashba/EF , where ERashba is
the energy scale of Rashba interaction, unless the pairing
interaction in the spin-singlet channel is comparable to
that in the spin-triplet channel [34], and is not expected
to qualitatively affect the results. In fact, the energy scale
of the staggered Rashba-type interaction is much smaller
than other energy scales relevant to the band structure.

Then, following ref. [33], we assume the Hamiltonian
for f -electrons in the normal state as,

Hn(k) = ε0(k)− µ+ fx(k)τx + fy(k)τy (20)

with

ε0(k) = 2t1 cos ka + 2t2 cos kb (21)

fx(k) = t3 + t4 cos(ka/2) cos(kb/2) cos(kc/2) (22)

fy(k) = t5 cos(ka/2) cos(kb/2) sin(kc/2) (23)

where τx,y are Pauli matrices for orbital degrees of
freedom. To reproduce a cylindrical electron Fermi
surface, we choose the parameters as follows: µ =
−1.8, t1 = −0.5, t2 = 0.375, t3 = −0.7, t4 = 0.65, t5 =
−0.65. The model has two energy bands E± = ε−µ±|f |,
with f = fx − ify. The Fermi level crosses the lower
band E−, for which a cylindrical electron Fermi surface
is realized as depicted in FIG. 1 (c).

In the superconducting state, the gap functions are
given by Eqs. (1) and (3) as discussed in Sec, II. In
numerical calculations for surface states presented in the
next sections, to simplify the analysis, we consider only
inter-orbital pairing states which consist of orbital-triplet
and orbital-singlet pairings,

∆12(k) = id12 · σσy (24)

In fact, we have examined that the inclusion of
intra-orbital pairing states does not change the
qualitative features of the results (see Appendix).

We, here, comment on the gap-node structure. In
the case of cylindrical Fermi surfaces shown in FIG. 1
(c), the Au and B1u states are fully gapped, while
the B2u and B3u states are Dirac superconducting
states with point nodes on the lines ka = 0, kc =
0 and kb = 0, kc = 0 respectively. Note that
these point nodes are protected by two-fold rotational
symmetry. In this paper, we call both fully gapped
superconductors and nodal superconductors with surface
MZMs protected by crystalline symmetry topological
crystalline superconductors.

V. MAJORANA ZERO-ENERGY SURFACE
STATES AND THE CORRESPONDING

TOPOLOGICAL INVARIANTS

In this section, we present numerical results of
surface MZMs and topological invariants which protect
them. For numerical calculations of quasiparticle energy
spectra, we use a system with open boundary surfaces
perpendicular to the x⊥-axis (x⊥ = a, b, c). The system
size L along the x⊥ is set as L = 50 for all calculations.
As shown below, surface MZMs protected by crystalline
topological invariants appear for all IRs of odd-parity
pairing states even for the cylindrical Fermi surfaces. In
Sec. V. A, B, C, and D, we mainly discuss the case only
with the electron Fermi surface. The results in the case
with the hole Fermi surface can be deduced from the
results of the electron surface. The summary of surface
MZMs in the case with both the electron and hole Fermi
surfaces is given in Table II.

A. Au pairing state

We start with the Au pairing state. We use the
following form of the d-vector.

dAu(k) =

 C1 sin ka
C2 sin kb

C3 sin kc + i∆e

 (25)

For numerical calculations of surface states, we set C1 =
C2 = C3 = ∆e = 0.1, and assume that ∆e is a
constant for simplicity. We show quasiparticle energy
spectra for the Au state obtained by diagonalizing the
BdG Hamiltonian with open boundary surfaces in FIG. 2.
We note that, in these numerical calculations, only the
electron Fermi surface is taken into account. Surface
MZMs in the case with the hole Fermi surface can be
deduced from the results of the electron Fermi surface.

First, we discuss the results for the open surface
perpendicular to the a-axis (x⊥ = a) shown in FIGs. 2
(a) Top and (b) Top. In FIG. 2 (b) Top, we see four-fold
degenerate MZMs at kb = ±π, kc = ±π. In fact, these
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FIG. 2. (a)-(f) Top: Quasiparticle energy spectra of the Au state for open surfaces perpendicular to the x⊥-axis (x⊥ = a, b, c).
The system size along the x⊥-axis used for the calculations is L = 50. The calculations are carried out for the model with
the cylindrical electron Fermi surface, and the contributions from the hole band are not included. Red curves correspond to
low-energy surface states. The gapless surface states appear in (a), (b) and (c). Bottom: The cross sections of the electron
Fermi surface (orange) and the hole Fermi surface (green) at (a) kc = 0, (b) kc = ±π, (c) ka = 0, (d) ka = ±π, (e) ka = 0, (f)
ka = ±π. The 1D crystalline winding number can be nonzero when the axis of Cx⊥ rotation crosses the Fermi surfaces. Red
broken lines are a-, b- and c-rotational axes in (a), (b) and (c) respectively. In the lower right table, we show the summary
of the degeneracy of the spectrum and the corresponding topological invariants for the electron band. In the middle column,
“Number of MZMs” means the degeneracy of MZMs protected by the 1D crystalline winding number, or the total number of
zero-energy states associated with the mirror Chern number.

surface MZMs are protected by crystalline symmetry.
The points kb = ±π, kc = ±π are invariant under the
a-rotation Ca. Note that the points kb = ±π, kc = ±π are
changed to kb = ∓π, kc = ∓π by Ca, and the transformed
points are connected to the original points by reciprocal
lattice vectors. Au state has the character “+” for this
rotation (see Table I). Thus, as discussed in Sec. III.
A, the 1D crystalline winding number can be defined at
these k-points. For a 1D subspace along the a-axis, the
1D crystalline winding number (16) can be reduced to

the Fermi surface formula (see Appendix A),

wCa =
∑

E(kF )=0

sgn[(d12)a]sgn[∂kaE−], (26)

which is calculated from information on the Fermi
surface. As seen red broken line in FIG. 2(b) Bottom,
the 1D lines with kb = ±π, kc = ±π in the momentum
space cross the Fermi surfaces four times. Then, we find,

wCa(kb = ±π, kc = ±π) = 4. (27)
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As a result, four-fold degenerate surface MZMs appear,
in agreement with the numerical result. It is noted
that although kb = kc = 0 is also invariant under the
a-rotation, MZMs do not appear since there is no Fermi
surface crossed by the 1D line at kb = kc = 0, and the 1D
crystalline winding number is zero. However, if one takes
into account the hole Fermi surface [FIG. 2(a) (Bottom)
green line], which has cross sections with the kb = kc = 0
red broken line, wCa = 4 is obtained, and then, surface
MZMs appear.

On the other hand, in FIG. 2(a) Top, surface MZMs
appear at kb = ±π, kc = 0. Since the 1D lines with kb =
±π, kc = 0 are not invariant under the a-rotation, one
needs to consider other crystalline symmetry protecting
them. In fact, these 1D lines are on the mirror plane of
Mab, i.e. kc = 0, and hence, surface MZMs protected by
the mirror Chern number are possible to occur. Actually,
we obtain the nonzero mirror Chern number for the
kc = 0 plane νab = 2. This implies the existence of
two doubly-degenerate surface MZMs, which is in perfect
agreement with the numerical result. However, we should
note that this result may be affected by the hole Fermi
surface. If the gap function of the hole band is the same
as that of the electron band, the mirror Chern number
of the electron band cancels with that of the hole band.
This means that pair hopping processes between these
two bands may generate an energy gap of Majorana
surface states. On the other hand, if the relative sign
between the gap functions of the two bands is minus,
the cancellation does not occur, and the surface MZMs
survive.

In the case with an open surface perpendicular to
the b-axis (x⊥ = b), four-fold degenerate surface MZMs
appear at ka = kc = 0, as shown in FIG. 2(c) Top. The
1D line at ka = kc = 0 is invariant under the b-rotation
Cb, for which the character of the Au state is “+”. We
obtain wCb = 4, which is in agreement with the numerical
result of the surface MZMs. It is noted that on the kc = 0
plane, the mirror Chern number is also nonzero, νab = 2.
This means that the four MZMs at kc = 0 are protected
also by the mirror symmetry. In FIG. 2(c) Top, we also
see surface MZMs at ka = 0, kc ∼ ±0.83π, which are
not on a symmetric axis. The mirror Chern number on
the ka = 0 plane is zero because the cross sections of the
Fermi surface with the ka = 0 plane is a quasi-1D open
Fermi surface. Thus, there is no topological invariant
that protects these MZMs. We speculate that the MZMs
at ka = 0, kc ∼ ±0.83π are accidental ones, arising from a
simplification of the model Hamiltonian, and gapped out
by adding symmetry-allowed terms to the Hamiltonian.
In FIG. 2(d) Top, MZMs do not appear at ka = ±π,
kc = ±π, which are also invariant under b-rotation Cb,
since there is no Fermi surface. However, if one takes
into account the hole Fermi surface [FIG. 2(d) (Bottom)
green line], which has cross sections with the ka = ±π,
kc = ±π red broken lines, wCa = 4 is obtained, and then,
surface MZMs appear.

In the case with an open surface perpendicular to the

FIG. 3. Top: Quasiparticle energy spectra of the B1u state
for an open surface perpendicular to the a-axis (a) and the
b-axis (b). The results for the electron band are shown.
Bottom: The cross-section of the electron Fermi surface at
ka = 0 (orange) and the hole Fermi surface at kb = 0 (green).
The 1D crystalline winding number can be nonzero when
the mirror plane crosses the Fermi surface. In the lower
table, we show the summary of the degeneracy of the spectra
and the corresponding topological invariants for the electron
band. In the middle column, “Number of MZMs” means the
degeneracy of MZMs protected by the 1D crystalline winding
number, or the total number of zero-energy states associated
with the mirror Chern number.

c-axis (x⊥ = c), there is no surface MZM, as shown
in FIGs. 2 (e) Top and (f) Top. In fact, the 1D
crystalline winding number vanishes, because no Fermi
surface crosses the c-rotation axis. The existence of the
hole Fermi surface does not change this situation.

The results in the case with both the electron and hole
Fermi surfaces are summarized in Table II.

B. B1u pairing state

Next, we present the results of the B1u state. The
d-vector is,

dB1u
(k) =

C1 sin kb
C2 sin ka

0

 . (28)

We set C1 = C2 = 0.1 for numerical calculations. The
d-vector does not depend on kc. Thus, surface MZMs
do not appear in the open surface perpendicular to the
c-axis. In FIG. 3, we show the calculated results of
the energy spectra for the electron Fermi surface in the
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case of x⊥ = a and x⊥ = b. We find the surface
Majorana zero-energy flat band at ka = 0 for the surface
perpendicular to the b-axis. The surface flat band is
protected by mirror symmetry with the mirror plane
ka = 0. In fact, we can define the 1D crystalline winding
number by putting U =Mbc in Eq. (16). Note that the
character of Mbc for the B1u state is “+”, as shown in
Table I. Then, on the ka = 0 plane, the 1D crystalline
winding number wMbc

(kc) can be nonzero. The Fermi
surface formula of wMbc

(kc) is given by,

wMbc
(kc) =

∑
E(kb)=0

sgn[da(kb)]sgn[∂kbE−(kb)]. (29)

For any values of kc, 1D momentum subspace along the
b-axis on the ka = 0 plane crosses the Fermi surface four
times, and hence, wMbc

(kc) = 4, which is in agreement
with the four-fold degeneracy of the flat band. At
kc = 0, which is the Mab mirror plane, the mirror
Chern number can be defined, and actually, we obtain,
νab = 2. However, according to the numerical results of
the surface energy spectrum, there is no MZM at kc = 0
in addition to the MZM flat band shown in FIG. 3 (b)
Top. Thus, the MZMs at kc = 0 in the flat band are
protected by both wMbc

and νab. On the other hand,
there is no surface MZM on the mirror plane of Mca

for the surface perpendicular to the a-axis, since there is
no Fermi surface on the mirror plane. If one takes into
account the hole Fermi surface, a similar surface MZM
flat band will appear on the kb = 0 plane which is the
mirror plane of Mca. The results in the case with both
the electron and hole Fermi surfaces are summarized in
Table II.

C. B2u pairing state

The d-vector of the B2u state is given by,

dB2u
(k) =

C1 sin kc + i∆e

0
C2 sin ka

 . (30)

We set C1 = C2 = ∆e = 0.1 for numerical calculations.
In this case, since the d-vector does not depend on kb,
surface MZMs can appear for x⊥ = a and x⊥ = c.
In FIG. 4, numerical results of the energy spectra for
the electron Fermi surface in the case with these open
surfaces are shown. In both cases, surface Majorana flat
bands appear. As in the case of the B1u state, these
flat bands are associated with the 1D crystalline winding
number protected by mirror symmetry with respect to
the mirror planes kc = 0 and ka = 0. As mentioned in
previous subsections, the 1D crystalline winding number
is determined by the number of crossing points of the
Fermi surface and a 1D subspace where the topological
invariant is defined.

For the kc = 0 plane (see FIG. 4 (a) ), we find
wMab

(kb) = 2 for kb1 < |kb| < kb3 and wMab
(kb) = 4

FIG. 4. Top: Quasiparticle energy spectra of the B2u state for
open surfaces perpendicular to the a-axis (a) and the c-axis
(b). kc = 0 in (a), and ka = 0 in (b). The results for the
electron band are shown. Bottom: The cross-section of the
Fermi surfaces at kc = 0 (a) and ka = 0 (b). The orange
(green) curves are the electron (hole) Fermi surfaces. In the
lower table, we show the summary of the degeneracy of the
flat band and the corresponding topological invariants for the
electron band.

for kb3 < |kb| < π, where the definitions of kb1 and kb3
are given in FIG. 4 (a) Bottom. These results are in
agreement with the degeneracy of the flat band obtained
by the numerical calculation. For the ka = 0 plane, (see
FIG. 4 (b) ), we find wMbc

(kb) = 4 for kb4 < |kb| < kb5,
where the definitions of kb4 and kb5 are given in FIG. 4
(b) Bottom. The results of the topological invariants
are in agreement with the degeneracy obtained by the
numerical calculation. The inclusion of the hole Fermi
surface affects the results for x⊥ = a. (see FIG. 4 (a)
Bottom.) Both the electron and hole Fermi surfaces
contribute to the 1D winding number for kb1 ≤ |kb| ≤ kb2,
where the definition of kb2 is given in FIG. 4 (a) Bottom.
The 1D momentum subspace for kb1 ≤ |kb| ≤ kb2 crosses
the electron Fermi surface twice and the hole Fermi
surface four times. Thus, the flat band still appears, but
the degeneracy is changed. The degeneracy depends on
the relative sign between the gap functions of the electron
and hole bands. The results in the case with both the
electron and hole Fermi surfaces are summarized in Table
II.
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FIG. 5. Top : Quasiparticle energy spectra for the B3u state
with open surfaces perpendicular to the b-axis (a) and the
c-axis (b). The results for the electron band are shown.
Bottom : The cross section of the Fermi surfaces at kc = 0
(a) and kb = 0 (b). The orange (green) curves are the
electron (hole) Fermi surfaces. In the lower table, we show
the summary of the degeneracy of the flat band and the
corresponding topological invariants for the electron band.

D. B3u pairing state

The d-vector of the B3u state is given by,

dB3u
(k) =

 0
C1 sin kc + i∆e

C2 sin kb

 . (31)

We set C1 = C2 = ∆e = 0.1 for numerical calculations.
In this case, since the d-vector does not depend on ka,
surface MZMs can appear for x⊥ = b and x⊥ = c.
In FIG. 5, numerical results of the energy spectra for
the electron Fermi surface in the case with these open
surfaces are shown. Note that bulk nodes appear at
ka 6= 0 in FIG. 5(a), but these are for the simplicity
of our model. The stable point nodes are located on the
hole Fermi surface.

We find surface MZMs, which constitute a flat band,
for x⊥ = b. The flat band is protected by the
1D crystalline winding number associated with mirror
symmetry for Mab. Using the Fermi surface formula
of wMab

(ka), we obtain wMab
(ka) = 4 for |ka| < ka2,

which is in agreement with the degeneracy found in the
numerical calculations of the energy spectrum.

The surface Majorana states in the case with the hole
Fermi surface can be easily deduced from the above
results for the electron Fermi surface. The hole Fermi
surface shown in FIG. 1 (c) crosses the ca-mirror plane,
kb = 0. Then, we obtain the 1D crystalline winding
number wMca(ka) = 2, and hence, a surface Majorana
zero-energy flat band appears for the open surface with
x⊥ = c. The results in the case with both the electron
and hole Fermi surfaces are summarized in Table II. Note
that, as seen from the shape of the Fermi surfaces which
is cylindrical along the c-direction, the results for B2u

and B3u are qualitatively similar.

VI. SUMMARY

Inspired by the recent experimental observation of the
cylindrical Fermi surfaces of UTe2, which implies that the
superconducting state is trivial in the sense of a 3D class
DIII superconductor, we have examined the possibility
of realizing topological crystalline superconductivity
in UTe2. We have investigated numerically surface
Majorana states for all IRs of odd-parity pairing
states and clarified topological invariants arising from
crystalline symmetry which protect surface MZMs. It
is found that for all IRs, surface MZMs protected by
topological invariants appear, supporting the realization
of topological crystalline superconductivity. The list
of surface MZMs for all IRs is given in Table II. For
Au representation, the 1D crystalline winding number
associated with two-fold rotational symmetry, as well
as the mirror Chern number play crucial roles in the
stability of surface MZMs. For B1,2,3u representation,
the 1D crystalline winding number associated with mirror
reflection symmetry gives rise to flat bands of surface
MZMs.

We remark that these results are consistent with the
analysis based on symmetry indicators [35–38] and the
Atiyah-Hirzebruch spectral sequence (AHSS) [39, 40].
The AHSS analysis predicts the existence of six (two)
winding numbers in a 1D subspace and three (one) Mirror
Chern numbers for the Au (B1,2,3u) representation of
the space group Immm [40]. Our results demonstrate
that these topological invariants are indeed the origins of
surface MZMs obtained by numerical calculations.

Finally, we briefly comment on the possible
implications of our results for the case with 3D
Fermi surface pockets. Some recent studies discuss the
possible existence of 3D Fermi pockets in addition to
cylindrical Fermi surfaces in UTe2 [41, 42]. In that case,
the 3D winding number of class DIII can be nonzero,
and surface MZMs associated with the 3D winding
number and those protected by crystalline symmetry
discussed in this paper can coexist. Even in such a
case, the argument on crystalline topological invariants
developed in this paper is useful for clarifying the origin
of surface MZMs.
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TABLE II. Summary of surface MZMs of the model for UTe2 with both the cylindrical electron and hole Fermi surfaces. The
d-vectors are assumed to be of the form, sin kµ. kbj and kaj with j = 1, 2, 3, 4, 5 in the left columns of the B2u and B3u cases
are defined in FIGs. 4 and 5. In the right column, ”Number of MZMs” means the degeneracy of MZMs protected by the 1D
crystalline winding number, or the total number of zero-energy states associated with the mirror Chern number. Most surface
MZMs are protected by the 1D crystalline winding number wU defined on crystalline symmetry lines. In the cases of the Au
and B1u states, the sum of the mirror Chern number of the electron and hole bands is 4 or 0, depending on the relative sign
between the gap of the electron and hole surfaces. Also, in the case of the Au and B1u state, some surface MZMs are protected
by both the 1D crystalline winding number and the mirror Chern number, and the total number of the associated MZMs
depends on the details of the model.

Topological invariants Number of MZMs

Au
Open surface ⊥ a

kb = 0, kc = 0 wCa = 4 4
kb = ±π, kc = ±π wCa = 4 4
kc = 0 plane νab = 4 or 0 8 or 0

Open surface ⊥ b
ka = 0, kc = 0 wCb = 4 4
ka = ±π, kc = ±π wCb = 4 4
kc = 0 plane νab = 4 or 0 8 or 0

B1u

Open surface ⊥ a
kb = 0, 0 ≤ |kc| < π wMca = 4 4-fold flat band
kc = 0 plane νab = 4 or 0 8 or 0

Open surface ⊥ b
ka = 0, 0 ≤ |kc| < π wMca = 4 4-fold flat band
kc = 0 plane νab = 4 or 0 8 or 0

B2u

Open surface ⊥ a
kc = 0, 0 ≤ |kb| < kb1 wMab = 4 4-fold flat band
kc = 0, kb1 < |kb| < kb2 wMab = 2 or 6 2 or 6-fold flat band
kc = 0, kb2 < |kb| < kb3 wMab = 2 2-fold flat band
kc = 0, kb3 < |kb| < π wMab = 4 4-fold flat band

Open surface ⊥ c
ka = 0, kb4 < |kb| < kb5 wMbc = 2 2-fold flat band

B3u

Open surface ⊥ b
kc = 0, 0 ≤ |ka| < ka1 wMab = 4 4-fold flat band
kc = 0, ka1 < |ka| < ka2 wMab = 2 or 6 2 or 6-fold flat band
kc = 0, ka2 < |ka| < ka3 wMab = 2 2-fold flat band
kc = 0, ka3 < |ka| < ka4 wMab = 4 4-fold flat band

Open surface ⊥ c
kb = 0, ka4 < |ka| < ka5 wMca = 2 2-fold flat band
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Appendix A: Fermi surface formulas for the 1D
crystalline winding number

We, here, derive useful formulas of the 1D crystalline
winding number, which are expressed only in terms of
information on the Fermi surface, in the case of our
two-orbital model given in Sec. IV. We follow the
approach developed in Ref. [32] for single-orbital models.
We, particularly, focus on the 1D crystalline winding
number associated with the a-rotation in the case of the
Au state. The Fermi surface formulas for other cases can
be derived in a similar manner.

The chiral symmetry operator associated with the
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a-rotation Ca is given by,

ΓCa = eiφCa

(
Caiσy

C∗aiσy

)
, (A1)

where Ca flips spin in the b- and c-direction and exchanges
two uranium sites in the unit cell. Ca is explicitly written
as,

Ca = iσxτx. (A2)

We can diagonalize ΓCa ,

VΓΓCaV
†
Γ =

(
1̂

−1̂

)
, VΓ =

1√
2

(
1̂ v

v† −1̂

)
, (A3)

with v = iσzτx. For this basis, the BdG Hamiltonian is
off-diagonal,

VΓH(k)V †Γ =

(
q(k)

q†(k)

)
, (A4)

with,

q(k) = Hnv −∆. (A5)

Using q(k), the 1D crytalline winding number (16) can
be written as,

wCa(ka-axis) = − 1

4πi

∫ 2π

−2π

dka tr
[
ΓCaH

−1∂kaH
]

(A6)

=
1

2π
Im

[ ∫ 2π

−2π

dka∂ka ln(det q(ka))

]
,(A7)

where ka-axis = (kb, kc) = (0, 0), or (π, π). We evaluate
(A7) for the two-orbital model given in Sec. IV,

H(ka) = ξ(ka) + fx(ka)τx + fy(ka)τy (A8)

where ξ(k) = ε0(k)− µ . We consider both intra-orbital
and inter-orbital pairings.

∆ =

(
∆11 ∆12

∆21 ∆22

)
(A9)

where the indices 1, 2 label orbital degrees of freedom.
For simplicity, we assume ∆11 = ∆22, because the
components satisfying ∆11 = −∆22 are spin-singlet
pairings. In fact, we have examined that spin-singlet
pairings do not affect the 1D crystalline winding number.
Considering spin-triplet pairings, we can write,

∆11 = ∆22 = idot
11 · σσy, (A10)

∆12 = i(dot
12 + dos

12) · σσy, (A11)

∆21 = i(dot
12 − dos

12) · σσy, (A12)

where dot (dos) is the d-vector of orbital-triplet
(orbital-singlet) pairings. In the case of the Au state,
on the Ca rotation axis, only dot

a and dos
c are nonzero.

For this model, we obtain,

det q(k) = [ξ2 − |f |2 + d2
11 − d2

12 + ∆e2

+2i(ξd12 − fxd11)]2

≡ (A+ iB)2, (A13)

with,

A = ξ2 − |f |2 + d2
11 − d2

12 + ∆e2, (A14)

B = 2(ξd12 − fxd11), (A15)

where f = fx − ify, and we renamed dot
a = d and dos

c =
i∆e. Using this, we rewrite Equation (A7) as,

wCa(ka-axis) = − 1

π

∫
dkaε

xymx∂kamy, (A16)

with,

m1 =
B

A2 +B2
, m2 =

A

A2 +B2
. (A17)

Since topological invariants are not affected by
continuously changing system parameters as long as
singular points of the integrand are avoided, we can
rescale d as αd (α → 0) except the neighborhoods of
the zero of A, arriving at,

m1 → 0,

m2 → sgn(A).

This means that the integral (A16) is dominated by
contributions from the neighborhood of the zero of A,
which can be evaluated by expanding A and B around
ka0 satisfying A(ka0) = 0,

A(ka) = ∂ka [ξ2 − |f |2](ka − ka0) + · · · , (A18)

B(ka) = 2(ξd12(ka0)− fxd11(ka0)) + · · · . (A19)

Then, we arrive at,

wCa =
∑

ξ2−|f |2+∆e2=0

sgn[∂ka(ξ2 − |f |2)]

×sgn[ξd12 − fxd11]. (A20)

We can generally assume that ∆e is much smaller than
the bandwidth, and hence negligible in (A20). The
Hamiltonian in the normal state Hn has two energy
bands, E±(kF ) = ξ(kF ) ± |f(kF )|. We assume that the
Fermi level crosses the lower band, and is sufficiently far
away from the upper band. Then, the sum is taken on
the Fermi surfaces, which results in,

sgn[∂ka(ξ2 − |f |2)] ∼ sgn[∂kaE−]. (A21)

Then, we end up with,

wCa =
∑

E(kF )=0

sgn[ξd12 − fxd11]sgn[∂kaE−]. (A22)

This is the Fermi surface formula of wCa . In the main
text, we consider only inter-orbital pairings, and hence,
(A22) is rewritten as,

wCa =
∑

E(kF )=0

sgn[(d12)a]sgn[∂kaE−]. (A23)

In the calculation of wCa , we use this formula. The
Fermi surface formulas for other 1D crystalline winding
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FIG. 6. (a) The 2D 1st BZ for ka = 0 (shaded area).
The dashed lines connect time-reversal-invariant momenta.
Weak Z2 invariants can be defined in this 1D subspace. (b)
Numerical results of quasiparticle energy spectra of the Au
state for an open surface perpendicular to the (011) direction.
Surface MZMs appear at k− = 0 and

√
2π.

numbers can be derived in a similar manner. Note that,
in Eq. (A22), the orbital-singlet gap ∆e is not important.
On the other hand, however, the 1D crystalline winding
number associated with two-fold rotation around the
c-axis is given by,

wCc =
∑

E(kF )=0

sgn[fx(d12)c − fy∆e]sgn[∂kaE−],(A24)

which crucially depends on ∆e. The dependence on
∆e similar to (A24) also appears in the Fermi surface
formulas of the 1D winding number associated withMbc

for the B2u state, and Mac for the B3u state. For other
cases, we can safely ignore ∆e in the calculation of the
1D crystalline winding number.

Appendix B: 1D topological invariant of class DIII

A single crystal of UTe2 is easily cleaved at the
(011)-surface. Thus, it is useful to investigate Majorana
surface states on an open surface perpendicular to the
(011)-direction. In this Appendix, we present some
results on this issue. It is noted that on the (011)-surface,
the point group symmetry is not preserved, and hence,
surface MZMs on this surface, if exist, are not protected
by crystalline symmetry. However, weak Z2 invariants
protected by TRS may be nontrivial. In Fig. 6 (a),
we show the 2D BZ at ka = 0, where there are
four time-reversal invariant momenta (Γ1−4). Then,
we can introduce a weak Z2 topological invariant on a
time-reversal-invariant loop Lij which connects Γi and
Γj (i 6= j),

ν[Lij ] =
1

π

∮
Lij

dk+A−(k) (mod 2) (B1)

FIG. 7. (a) Top : Quasiparticle energy spectra versus ka
for the B3u state with an open surface perpendicular to the
a-axis. kc is set to be zero. Bottom : The cross section of the
electron (orange) and hole (green) Fermi surfaces at kc = 0.
(b) Top : Quasiparticle energy spectra versus kb for the B2u

state with an open surface perpendicular to the c-axis. ka is
set to be zero. Bottom : The cross section of the electron
Fermi surfaces at ka = 0.

The topological invariants are determined only by the
topology of the Fermi surfaces: ν[Lij ] is non-trivial
(trivial) when there are odd (even) numbers of the Fermi
surfaces crossing Lij between Γi and Γj . Therefore,
ν[L12] and ν[L34] are non-trivial, and thus, surface MZMs
appear on the (011)-surface. In Fig. 6 (b), we show the
numerical results of the energy spectra for the Au state
with the (011) open surface. Surface MZMs appear at

k− = (−kb+kc)/
√

2 = 0,
√

2π. If the hole Fermi surface
is taken into account, a similar surface MZMs appear
on the (101)-surface. However, as mentioned above, the
topological invariants are not protected by crystalline
symmetry because the 1D subspace we consider is not any
symmetry line. Thus, these MZMs are unstable against
perturbations compared to those protected by the 1D
crystalline winding number or the mirror Chern number
discussed in the main text.

Appendix C: Numerical results for other basis
functions

In the main text, we have used basis functions of the
form, sin kµ (µ = a, b, c), for the d-vector of orbital-triplet
pairings in all calculations. The crystal symmetry
Immm allows other types of basis functions such as
sin ka/2 cos kb/2 cos kc/2. Here, we show some numerical
results of surface Majorana states, taking this point into
account. We consider the d-vector of the B3u state of the
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form,

dB3u
=

 0
C1 sin kc + C3 sin kc/2 cos ka/2 cos kb/2
C2 sin kb + C4 sin kb/2 cos ka/2 cos kc/2

 .(C1)

We set the parameters as C1 = C2 = 0.1, C3 = C4 = 0.2
for numerical calculations. In this case, the 1D crystalline
winding number associated with Mab symmetry is zero,
and hence, the flat band of surface MZM found in Sec. V
D disappears [see Fig. 7 (a)]. However, if one takes into
account the hole Fermi surface, the Majorana zero-energy
flat band appears for ka1 < |ka| < ka3 on the surface
perpendicular to the b-axis. (The definitions of ka1 and

ka3 are shown in Fig. 7 (a).) Moreover, we also find
surface MZMs on the surface perpendicular to the c-axis.

On the other hand, for the B2u state with the d-vector,

dB2u =

C1 sin kc + C3 sin kc/2 cos ka/2 cos kb/2
0

C2 sin ka + C4 sin ka/2 cos kb/2 cos kc/2

 ,(C2)

the Majorana flat band found in Sec. V C partly survives
as shown in Fig. 7 (b), and also, the corresponding 1D
crystalline winding number for kb4 < k < kb5 is nonzero.
In a similar manner, we examined that for all IRs of
pairing states, surface MZMs appear for other forms of
basis functions.
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