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We study the superconducting instability of a two-dimensional disordered Fermi liquid weakly cou-
pled to the soft fluctuations associated with proximity to an Ising-ferromagnetic quantum critical
point. We derive interaction-induced corrections to the Usadel equation governing the superconduct-
ing gap function, and show that diffusion and localization effects drastically modify the interplay
between fermionic incoherence and strong pairing interactions. In particular, we obtain the phase
diagram, and demonstrate that: (i) there is an intermediate range of disorder strength where super-
conductivity is enhanced, eventually followed by a tendency towards the superconductor-insulator
transition at stronger disorder; and (ii) diffusive particle-particle modes (so-called ‘Cooperons’)
acquire anomalous dynamical scaling z = 4, indicating strong non-Fermi liquid behaviour.

I. INTRODUCTION

In a variety of strongly correlated materials, supercon-
ductivity develops out of a normal state without well-
defined quasiparticles. Perhaps the best example of such
phenomena is the cuprate family, which exhibit high tem-
perature superconductivity optimally enhanced in the
vicinity of an apparent quantum critical point accessed
by doping[T], 2]. Other examples include the iron-based
superconductors [3H5], and a host of heavy fermion ma-
terials where magnetic quantum critical fluctuations ap-
pear to enhance superconducting tendencies [0} [7]. The
interplay between pairing and non-Fermi liquid (NFL)
behavior at two-dimensional (2D) metallic quantum crit-
ical points (QCPs) is often invoked to explain supercon-
ductivity born out of incoherent quasiparticles [8H22].
The same soft order parameter fluctuations that enhance
superconductivity act also to destroy Landau quasiparti-
cles, rendering them incoherent and opposing the trend
towards superconductivity. Thus in principle, there are
several logically distinct possible outcomes of such com-
peting effects, ranging from superconductivity with sig-
nificantly enhanced transition temperatures, to “naked”
NFLs down to the lowest temperatures [23H25].

Real materials always host structural imperfections.
Whether such randomness can be neglected or whether
they crucially determine universal properties of the sys-
tem has been actively debated for decades. The interplay
between pairing and NFL behavior can significantly be
altered by quenched randomness, which can profoundly
influence the universal behavior near QCPs as well as
nearby superconducting domes. On the experimental
side, the recent discovery of superconductivity in infinite-
layer nickelates [26], which exhibit more structural im-
perfections than their cuprate cousins, and which also
exhibit apparent quantum critical behavior upon dop-
ing, invites us to consider quenched randomness effects
on superconductivity near QCPs. Other experimental

examples where the interplay of quenched disorder and
superconductivity occur include the cuprate and iron-
based superconductor families, each of which possesses
members with varying impurity concentrations. On the
theoretical side, recent studies of the effects of quenched
disorder at QCPs have attracted considerable attention
[27H31]. Nevertheless, the degree to which superconduc-
tivity near QCPs is affected by disorder remains a largely
unexplored and fundamental theoretical challenge. One
might naively expect, for instance, that disorder at QCPs
might not change the pairing scale of an s-wave super-
conductor, in accordance with so-called “Anderson’s the-
orem” [32H34].

Even in conventional dirty superconducting thin films,
Anderson localization [35] significantly modifies the ef-
fective pairing vertex due to strong mesoscopic correla-
tions of single-particle wave functions in energy and real
space (so-called ‘multifractality’) [36H39]. Depending on
the nature of the electron-electron interaction, this ef-
fect could either substantially enhance [38450] or sup-
press [51H60] superconductivity even at relatively weak
disorder, long before a putative superconductor-insulator
transition (SIT)[6IHG3].

The goal of the present paper is to bridge the gap be-
tween the existing theories of NFL superconductivity in
‘clean’ quantum critical systems, on the one side, and
conventional dirty superconducting thin films, on the
other. We study the concrete problem of disordered elec-
trons near an Ising ferromagnetic QCP. We also allow for
orbital and spin degeneracy, which enables us to study
the onset of s-wave (with respect to the Cooper pair angu-
lar momentum), spin triplet, orbital singlet pairing near
the QCP.

More specifically, we develop a unified analytic ap-
proach to the superconducting transition in 2D weakly
disordered fermionic systems coupled to a QCP, account-
ing for multifractality, localization, and non-Fermi liquid
effects. Assuming that the mean free path is shorter than
the superconducting coherence length (so-called ‘dirty’
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FIG. 1. Schematic T" = 0 phase diagram of the model in
terms of the detuning from the QCP, §, and the Drude resis-
tance, to, for J < 1. The solid light red line corresponds to
a transition from the s-wave, spin-triplet, orbital-singlet SC
state to an Anderson insulator. The dashed red line corre-
sponds to a crossover from a ballistic regime (at weak disor-
der), to a dirty limit where multifractality enhances SC. The
black doted lines separate Fermi-liquid and critical regimes,
with a crossover region in between. Above the QCP, ferromag-
netic fluctuations give rise to NFL behavior with dynamical
critical exponent z = 4 (z = 3) in the dirty (ballistic) regime.
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limit), we derive the equation for the spectral gap func-
tion and solve it in various limits, interpolating between
the Fermi liquid and quantum critical regimes. In all
cases we find that multifractal correlations significantly
enhance T, in the range of intermediate disorder strength,
before the SIT is eventually reached. This enhancement
grows rapidly upon approach to criticality (see Fig. .

The outline of the paper is as follows. In Sec. [[I] we
specify the model of a disordered Fermi liquid coupled
to a quantum critical point. Next, in Sec. [[T]| we present
the main results of the paper. The details of our ap-
proach based on the modified Usadel equation are pro-
vided in Sec. [[V] The analysis of the Usadel equation is
presented in Sec. [V] and Sec. [VI]in the Fermi-liquid and
quantum critical regimes, respectively. Our conclusions
are summarized in Sec. [VIIl Some details of calculations
are presented in the Appendices.

II. MODEL

In the vicinity of a continuous phase transition, the sys-
tem exhibits a diverging correlation length, and exhibits
fluctuations on all length scales. Among such fluctua-
tions, the slowest modes dominate the universal proper-
ties of the system. Indeed such reasoning underlies the
Landau-Ginzburg-Wilson paradigm of critical phenom-
ena and applies equally to metallic critical behavior at
zero temperature. Due to the diverging length scales,
a microscopic model is not necessary (since many mi-
croscopic underlying models lead to the same low en-
ergy behavior near the phase transition). Instead, one

keeps the most relevant low energy degrees of freedom
and analyzes their fate as the transition is approached.
In the present context, we consider ferromagnetic order-
ing tendency in a disordered metal, and in such a system,
slow magnetic fluctuations result in a diverging magnetic
correlation length and enhanced magnetic susceptibility.
The Ginzburg-Landau-Wilson theory of such a system
involves a Landau Fermi liquid coupled to slow order
parameter fluctuations (as determined by the magnetic
susceptibility). The coupling between fermions and mag-
netic fluctuations is determined entirely by symmetry[64}-
66]. Moreover, in systems with sizeable spin-orbit cou-
pling, the global spin SU(2) symmetry is explicitly bro-
ken and motivated by such systems, we consider an Ising
ordering transition. In this case, the magnetic suscepti-
bility will be largest along an “easy axis”, which we take
without loss of generality to be the z—direction.

More specifically, we consider a 2D system of
fermions at a finite density interacting via critical Ising-
ferromagnetic fluctuations. The effective action & =
So + Sint given by

So = /derZ Vob [0r 4+ €(iV) + V(1)] oy
ob (1)
Sing = *% / drdrdr’ SZ(I'7 T)Xg;)(l‘ _ IJ)SZ(I‘/, 7_) )

Here e(p)=p?/2m —u (m denotes the fermion mass and p
is the chemical potential), S* = %Zb (Vrovrs — Dystbis)
is the total z-component of the fermionic spin operator,
and J > 0 corresponds to ferromagnetic exchange. The
indices o =7, | stand for the spin projections, and b = 1, 2
is the ‘orbital’ index. The bare spin susceptibility Xé‘?(r)
(or equivalently, a static paramagnon propagator) is de-
fined through its Fourier transform [)Z(Zg)(q)]_lzx +c%q?,
and z is proportional to a tuning parameter for the QCP.
A common experimental tuning parameter near a ferro-
magnetic QCP is pressure (see for instance Ref. [67]).
The parameter x can thus be taken to be time-reversal in-
variant and does not cutoff superconducting instabilities.
Since the inverse susceptibility determines the quadratic
coefficient of the Ginzburg-Landau expansion in pow-
ers of the order parameter, it is the most crucial pa-
rameter associated with the magnetic fluctuations. Mi-
croscopically, the interaction in Eq. could emerge,
for instance, after integrating out a sub-system of criti-
cal Ising spins [68], or as an effective contribution from
high-energy degrees of freedom in a model with a short
range four-fermion interaction tuned to a Stoner insta-
bility [69, [70]. A random potential V (r) coupled to the
fermionic density has a Gaussian distribution with the
zero mean and a variance (V(r)V (r')) = (27v7) " 10(r —
r’). Here v is the density of states per spin/orbital degree
of freedom, and 7 is the mean free time. The spin fluc-
tuations induce an attractive interaction in the s-wave,
orbital-singlet, spin-triplet Cooper channel, resulting in
superconducting order 4142 + 1) 2.

Our analysis of the model is based on several



assumptions. First, we assume that the dimension-
less Drude resistance per spin/orbital degree of free-
dom tg o 1/(ur) is the small expansion parameter of
the model, tg <« 1. Second, we work in the ‘dirty’
limit 77, <« 1, i.e. the mean free path | = vp7 is
small compared to the ballistic coherence length vg /T,
and the motion of fermions is diffusive (in the opposite
limit, disorder can be ignored, and the existing results
apply [68, [69]). The inverse ferromagnetic correlation
length féép =z —2vJ/c < kp is used to define a di-
mensionless tuning parameter § = (kréqcp) ™' allowing
us to interpolate between two limits: the Fermi liquid
regime, typ < § < 1, and the quantum critical regime,
§ < toJ/2. In the former case, the interaction is effec-
tively short-ranged on the diffusive scales, while in the
latter, it behaves as ~ 1/¢? for \/T./vrl < q < 1/1,
inducing significant NFL effects.

III. RESULTS

The low-temperature behavior of the model is gov-
erned by the modified Usadel equation derived at the
leading order in to. This equation exhibits a set of so-
lutions, continuously varying with §, with the following
features:

(i) In the Fermi liquid regime, to < § < 1, the super-
conducting transition temperature is enhanced by multi-
fractality in the range of parameters J < to < J /6% < 1,
and scales as

T, ~ 7L exp {75/(toj)1/2} : 2)

where J = J/(47%c?u) is the dimensionless coupling
strength. The standard BCS mechanism becomes effec-
tive only at very weak disorder ¢y < J (provided that
JInwpT < §, with wp serving as a UV frequency cut-off
for BCS interactions), when T, crosses over to the mean-
field result Tres ~ wp exp{—d/J}[T1]. At stronger dis-
order (27)2.J /6% < to < 1, the superconductor-insulator
transition occurs (see Fig. []).

In the quantum critical regime, d<to.J'/2, we find that:

(ii) there are severe NFL self-energy effects, rendering
diffusive particle-particle modes (so-called ‘Cooperons’)
strongly incoherent at scales below wy = to.J/(8¢)?<771,
with anomalous dynamical scaling z = 4.

(iii) At the same time, the pairing vertex is also en-
hanced by multifractality, tipping the balance in favour
of superconductivity, with a power-law scaling of T,:

toJ to 1
7.~ (o) 3
02(+2nj) (3)

where we also included the first sub-leading correction
in powers of ty. Remarkably, T, in Eq. is enhanced
compared to the transition temperature in the absence
of disorder (which is given by a different power-law

Tiean) 2 /(c*), see for instance [21]) for interme-
diate values of Drude resistance J < t,. This behaviour
continues until the sub-leading correction in becomes
of the order of O(1), ie. for tg < 1/In(1/J). For
stronger disorder (or equivalently, exponentially weaker
coupling J < exp{—2/t}) the system undergoes the lo-
calization transition (see Fig. . We also emphasize that
the regime of multifractally-enhanced superconductivity
broadens rapidly upon approach to the QCP.

IV. MODIFIED USADEL EQUATION

At the semiclassical (mean-field) level, properties of
disordered superconductors are usually described by the
Usadel equation governing the quasiclassical Green’s
function parameterized by the spectral angle 6. [72]. In
order to account for quantum corrections, we incorpo-
rate interactions of diffusive modes in the parametrically
broad energy interval T, <« ¢ <« 1/7. This is accom-
plished by means of the standard fermionic perturbation
theory, diagrammatically summarized in Fig. |2| (this ap-
proach is fairly standard in the theory of conventional
disordered superconductors, see Refs. [56] 58| [73] for de-
tails). In addition, we also obtained the same results
within the nonlinear o-model framework, extending the
approach of [48] to the case of critical interactions (see
details in Appendices [A] and [B]). As a result, all physical
parameters of the system become scale-dependent, and
the Usadel equation acquires the following form

D
5V205n + @, cosb., — |en|Z., sinf., =0. (4)

Here e, = 7T(2n + 1) denotes fermionic Matsubara fre-
quency, and D = v%7/2 is the diffusion coefficient. In
striking contrast to the standard Usadel equation [72],
Eq. has the energy dependent pairing vertex . and
the self-energy factor Z.,, which are given by

¢, =00 +T> L. ., sinb.,

. )
Ze, =1+ E Z Sgn(anl)£|€n|757n cosbe,, .

Here we introduced some infinitesimal ‘external’ pairing
field ®©, which will be set to zero at the end. The
effective pairing amplitude is given by

_ J d2q )Zzz(|€_5/|7Q)
Es,s’ -5 D) ) ’ (6)
2) 2n)2D.oq*>+ E. + E

with |¢| < 1/I. Here E. = |¢|cosf. + ®© sinf., and
[Xzz(Jwnl, )] 7! = 02(§§(23P + %) + 7 I (Jwn|, q) is the
RPA-dressed spin susceptibility. We also allow for weak
localization (WL) corrections to the diffusion coefficient
Deo/D = 14 2In[r(E. + E.)] [14]. TL..(Jwnl,q) is
the dynamical part of the polarization operator and for



FIG. 2. Diagrammatic representation of the one-loop lin-
earized equation for the pairing vertex ®. (depicted in (b)),
involving an effective pairing amplitude (shown in (c)), and
the Cooperon self-energy X. (which is related to the Z. factor
as |e|Z: = |e| + £¢). The impurity line is denoted by dashed
line, and the single-particle fermionic propagator is denoted
by solid line. Wavy solid line represents the dynamically
screened ferromagnetic fluctuation propagator. Grey rectan-
gular area (defined in (a)) represents the Cooperon dressed
by self-energy shown in (d), as well as by weak-localization
corrections to the diffusion coefficient (not shown explicitly).
Some diagrams have their symmetric counterparts.

arbitrary 6. is given in Eq. . In the normal state,
0. = 0, it reduces to the usual diffusive Landau damping
form IL,., (|wn|, q) = (2/7v)|wn|/ (D¢ +|wn]|) [27], and the
paramagnon propagator reads as

2vJ |wn|
Dg? + |wal -

(7)

[Xzz(|wnl, Q)]ellzo = cg(gééP + q2) +

Assuming that the superconducting state is spatially
homogeneous on the scale of the coherence length, the
gradient term in can be ignored, and the formal so-
lution reads as sinf., = ®., /\/(Jen]Zc,)? + @2 , such
that Egs. become the self-consistency equations for
®. and Z. . For the present study, we are only inter-
ested in the transition to the superconducting phase, and
thus, we can assume that ®. is small, and approximate
Z., and L., .. by their normal state expressions. As a
result, we arrive at

L

o, =00 L7y ZEnim
En + ; |€m‘Z€m Em
. 0
ZEn =1+ E ngn(€m)£‘5n|’5m ,

with the cutoff at |e,,| ~ 1/7, and L., . is now under-
stood as the 6. = 0 limit of Eq. @ The set of equations
, supplemented by the effective interaction @, is in
the core of our analysis. The diagrammatic representa-
tion of Egs. is depicted in Fig. A few comments
are in order. First, Eqgs. were derived perturbatively
in the disorder strength ty, with no additional a priori
assumptions on J or § other than that T, < 1/7 (i.e.

that we work in the ‘dirty’ limit). Therefore, all higher-
order diagrams (including more complicated vertex cor-
rections) are explicitly subleading, and could be safely
ignored in our analysis of the pairing instability. This
surprising simplicity stems from the interplay between
two independent energy scales associated with disorder
(1/7) and interactions (J/c?): the latter sets the over-
all energy units, whereas the former is used to control
perturbation theory. This is in striking contrast to the
‘clean’ case T, > 1/7, where J/c? is the only relevant
low-energy scale, and thus, no small dimensionless pa-
rameter is available. Remarkably, this implies that our
theory remains under control even in the quantum crit-
ical regime § = 0, with no need for any artificial small
parameters (such as 1/Np, where Np is a large number of
fermionic flavours, etc.). Second, Egs. bare some re-
semblance with the standard Eliashberg equations [8] [11].
However, we stress that Z. is not a characteristic of a
single particle Green’s function but rather encodes infor-
mation about Green’s function correlations. For similar
reasons, L., ., is not translation-invariant on the Mat-
subara axis, i.e. it is not a function of |e, — &,,| alone.
Finally, we note that Egs. (§), in principle, allow for a
full finite temperature analysis in a parametrically broad
range T, < T < 1/7. Tt is known that in some cases (for
instance, for a fully SU(2)-invariant QCP), the thermal
self-energy effects could become significant due to the
exchange of virtual bosons of zero Matsubara frequency
[25]. However, in case of the Ising symmetry, the contri-
butions from such static modes cancel out in Egs. , and
do not affect the pairing instability in accordance with
the Anderson’s theorem [8) [34]. Therefore, for the pur-
poses of identifying the superconducting transition tem-
perature it is sufficient to perform analytic continuation
and replace Matsubara summations with continuous in-
tegrals over frequencies, in which finite temperature T
serves mostly as a regularization for low-energy diver-
gences [20, 22], 24]. This procedure is essentially equiva-
lent to the T' = 0 analysis, and correctly determines the
asymptotic scaling of T, with the relevant coupling con-
stants, as well as dynamical scaling of the slow modes.
The latter is guaranteed by the fact that the dynamical
part of the fermionic self-energy usually dominates over
the thermal one at sufficiently low temperatures. We now
proceed with solving Egs. in several limits.

V. FERMI-LIQUID REGIME

We begin with the Fermi liquid regime tp < 6 < 1,
in which the interaction can be approximated as
Xzz(|wnl, @) =~ §écp/02 for the entire range of momen-
tum integration in In a coordinate representation,
this condition implies that x..(r) decays on a scale £qcp
much shorter compared to the mean-free path [. There-
fore, our model in this regime effectively describes a dis-
ordered two-orbital Fermi-liquid with strong anisotropy
in the spin-exchange Landau parameters. After evaluat-
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FIG. 3. Superconducting transition temperature in a ‘Fermi-liquid’ regime (t9 < ¢ < 1), as a function of the bare Drude
resistance to for In1/(7Tpcs) = 30. (a): the BCS coupling is in the spin-triplet channel, and J/6* = 0.002, 0.005, 0.011
(from bottom to top). Vertical dashed lines correspond to the SIT taking place when the renormalized resistance becomes of
the order of one. Inset: temperature dependence of the renormalized resistance for J/§? = 0.003, In1/(7Tscs) = 30, and for
t = 0.06, 0.075, 0.085, 0.1 (bottom to top). (b): the BCS coupling is in the spin-singlet channel. Black dotted lines indicate
a transition between spin-singlet and spin-triplet superconducting phases, while the colored dashed lines correspond to a SIT.
(¢): The T = 0 phase diagram with two distinct superconducting (SC) phases, in case of bare BCS attraction in the spin-singlet

channel only, for In1/(7Tscs) = 30.

ing L, ., we find that Z. = 1, and the equation for the
pairing vertex ®., acquires the following form

In7(en+em) o
o, =00 _27aT [ o = (9
e e go 1+%In7(entem)] em )

where a = 72t0.J/(26)? < 1 is the emergent dimension-
less coupling constant. The denominator of the kernel in
@D describes WL renormalization of the resistance. This
equation can easily be solved with logarithmic accuracy.
To this end, we approximate Matsubara sums by inte-
grals, introduce a new variable ( = In %, and replace
In7(e 4+ ¢’) by In(7 max{e,e'}). As a result, we find

¢ ¢
O = ‘I’(O)Jra/dé' fto(C/)q)C'_afto(C)/dCI(I)C' , (10)
0 ¢r

where f;,(¢) = ((1-"8%)"", and {7 = In L. After differ-
entiating this integral equation several times with respect
to ¢, it reduces to a second-order differential equation,
which can be readily solved as

o, (1 —to¢/2)” Hevimm/2

®(0) ;1+(1—f](1+8\/ﬁ))( - %(r) 7

(11)

where n=16a/t3=(27/8).J /to. Note that 1 can be arbi-
trary in magnitude even if both o and tg are small. When
this ratio is smaller than 1 (i.e. to > J/§?), the supercon-
ducting susceptibility xs.(T) o< ZETZO @ /P remains
finite for all (r < 2/tg indicating that superconductivity
fails to prevent the renormalized resistance from growing
uncontrollably, and thus, the ground state is insulating.
In contrast, for n > 1 the square root /1 —n becomes

complex, meaning that superconductivity intervenes and
sets in when y;.!(7.)=0, where T, is

1 2{1_exp[2(arctann\/ﬁ—7r)]}. 12)

1 =
nTTc to

In the limit 2 < «, or equivalently to < J/62, Eq.
transforms into Eq. . Crucially, the renormalized re-
sistance at the transition remains small ¢(¢r,) = to/(1 —
tolr./2) < 1 in this range of parameters, implying that
our calculation is controllable.

We also mention in passing that, after taking the limit
to — 0 while holding « fixed (i.e. ignoring WL correc-
tions to the resistivity), the superconducting susceptibil-
ities xs.(T") acquires a particularly simple form

. 1
Jim D) = R (VB) . (9

which leads to the same expression for T, as in Eq. .
In this limit, Eq. (9) is formally analogous to the gap
equation derived in [73,[75] for Coulomb repulsion. In our
case, however, « is positive, which leads to attraction.

Another interesting limit of Eq. isn—1 <« 1, which
corresponds to the interactions and disorder strength be-
ing comparable in magnitude. In this case, the transition
temperature takes the following form

T, ~ iexp{—fo [1—exp{—\/%+2}]} . (14)

where the second term in square brackets is a small cor-
rection to the leading order estimation T, ~ 7~ te~2/to
(note that a similar scaling of T, was reported in [40] for
a different problem). In order for our analysis to be self-
consistent, we also have to make sure that the resistance



at this scale is still small, ¢(¢r,) < 1, which leads to the
following applicability condition In~2 % <Kn—-1«< 1L

The above expressions for 7T, are derived assuming
that the bare large momentum BCS scattering is weak,
and superconductivity emerges primarily due to attrac-
tive interaction with small momentum scattering in a
particle-hole channel. In our model, this approxima-
tion is well-satisfied in a parametrically broad regime
because féf? (g = 0) > )Zg?(q = 2kp) provided that
Eqep > k;l, and thus, the bare value of the correspond-
ing dimensionless coupling constant Apcg is suppressed
by an extra small factor § <« 1. Let us now allow for
small but finite Apcg in the spin-triplet orbital-singlet
Cooper channel, which leads to a mean-field supercon-
ducting transition at some temperature Tpes < 1/7,
ie. 1/Agcs = In TT;CS = (rpes > 1. Then the ac-
tual transition temperature can be determined from the
equation 1 — Apcsxse(Te) = 0, leading to

2 t
T, ~ 7 lexp {—tOPn (OCTQBCS) } ) (15)

where the function P, () is explicitly defined as

1
r—24x/1— 1—7
1= (17271\/172) 7 v N< 1

1—exp —% (mO(x — 2) (16)

— arctan [%@?D} , n>1

Py(z) =

The full expression in Eq. reduces to either Eq.
or Eq. under the assumption 62/(JIn* 7Tgcs) <
to < J /62. The resulting dependence of T, on the Drude
resistance to (as well as the temperature dependence of
the renormalized resistance) is depicted in Fig[3{a).

It is also worth mentioning that Eq. , formally con-
tinued to negative 7, could be used to determine sup-
pression of the superconducting transition temperature
in the spin-singlet Cooper channel because the Ising-
ferromagnetic interaction is repulsive in that channel (in
this case, Tecog should be viewed as a mean-field transi-
tion temperature for a spin-singlet SC state). The SIT
occurs when to(r, /2 ~ 1, which yields a critical value
of the resistance to crit ~ 452/(772J~C%BCS) < 1. Here we

also assumed that J¢3 > 6 for the theory to remain
self-consistent. We note that this critical point is anal-
ogous to the Finkelstein’s result for Coulomb repulsion
53]

In addition, one could also extend this analysis by
allowing for a competing BCS attractive coupling con-
stant in a s-wave spin-singlet (orbital-triplet) channel
Y1911+ Y4292, in which ferromagnetic fluctuations me-
diate repulsion. Under these circumstances, any increase
in disorder strength will result in suppression of T, in
the spin-singlet channel (see Fig.[3[b)), while the pairing
fluctuations in the spin-triplet channel will grow. De-
pending on the coupling strength J, there are two possi-
bilities (see the phase diagram in Fig. 3{c)): first, if the

coupling is weak, the system can undergo a SIT transi-
tion directly from a spin-singlet state, and second, there
could be an intermediate disorder-driven phase transition
between the two distinct superconducting states, preced-
ing a SIT (the corresponding highly non-monotonic to-
dependence of T, is depicted in Fig. [3(b)). The latter
scenario takes place provided that T, for both supercon-
ducting channels coincide, leading to the condition

<1+F+n—4/(to<mcs>)m
L= VT4+n—4/(tolrses)
= exp [727T+2arctan( 1771)} , o n>1. (17)

This equation determined the boundary between the
spin-singlet and spin-triplet SC phases in Fig. c). On
the other hand, the onset of the SIT occurs when the
renormalized resistance ¢({r,) becomes of the order of

. ¢
one, ie. tp ~1—P_, (%

sets the boundary for the insulating phase in Fig. c).
The magnitude of T, in a spin-triplet superconducting
phase could become both higher or lower than the initial
mean-field transition temperature Tpcg, depending on
the coupling strength (both possibilities are depicted in

Fig. c))

). The latter condition

VI. QUANTUM CRITICAL REGIME

Next, we turn to the quantum critical regime, emerging
in the limit § < toJ? (i.e. féép is negligible). In this
limit, the effective pairing amplitude can be estimated as

- or 1/2
Ee,s’ ~ 5 (|E — Ell) TT(|€H‘|5") ) (18)

The square-root scaling here appears after expanding @
at the lowest order in disorder strength, while preserving
energy-dependence of resistance. The latter contributes
a factor T, = [1 + toIn(z)/2]'/2, smoothly varying on
top of the overall power-law behaviour of . The cor-
responding self-energy factor for a Cooperon reads as

—+o0
VA’ de’
Z.—1+ OJ/ c
) oe(l+ %1

x
32c nT(5+5’))1/2

) ~ 14wy e P g
(19)

o 1 1
le—e/[1/2 |e+e|l/2

As a result, the self-consistent solution for the diffusive
particle-particle propagator (‘Cooperon’) at the lowest
order in ty takes the form

[Dy(e, )] = Dg? + wi*(|e|V2 + [€'|Y?),  (20)

where the non-analytic frequency dependence originates
from the self-energy factor Z.  in Eq. , with T, = 1



for tg < 1. After combining these results together, we
arrive at the pairing vertex equation

T |2 Tr(lenltlemD) Pem

— o0
o, =00+ 7 o P
m#n |En_€m‘2 (|74‘2+TT‘57n|>

. (21)

In solving this equation, one can make use of the fact
that Y., varies very smoothly compared to the power-
law factor in the kernel, allowing to approximate Y, . by
its value at € = T,.. The remaining constant factor Y 1,
can be eliminated by rescaling frequencies as € — TTT
leaving us with a particular limit (y = 1/2) of the general
gap equation extensively studied in [2I]. Following the
logic of [21], we approximate |¢ — ¢’| by max{|e|, |¢’|} in
Eq. , and reduce the resulting integral equation to
a differential one, similarly to our analysis of the Fermi
liquid regime [76]. It is also convenient to introduce a
physical gap function A, = ®. /Z. , which obeys the
following integral equation

AE — (I)(O _|_TZ |€7L|75m ( e — EHAE”) ) (22)

|eml nl

From this representation, it is clear that the term with
Em = |en| in the sum is cancelled out. After replacing
Matsubara sums with integrals, we obtain

¢ (T
(14 2091 () A = v / d¢’ geo (')A +vg1o (C) / d¢' A
0 ¢

(23)
where v = 7J/2/8, and gy, (¢) = €¢/2(1 — to¢/2)~ /2.
It is instructive to compare this equation with its ana-
log Eq.7 analyzed in the Fermi-liquid regime. The
main conceptual distinction between these two equations,
apart from having different kernels fi, (¢) # g1, ((), is
that here we have a self-energy term, suppressing super-
conductivity due to NFL effects. After differentiating
this equation twice with respect to (, and taking the
limit ¢y — 0 (which corresponds to the absence of weak
localization corrections to the resistance), we find

. 1 .
(1 + 2064/2) As + (veC/Q — 2) Ac + %eC/QAC =0.

(24)
The general solution of this equation can be easily found
in terms of certain hypergeometric functions. Crucially,
this solution changes sign at vexp(/2 ~ 1, and then
starts oscillating. Indeed, for vexp (/2 > 1 we have

A = Ce=$/ cos (\/5(/4 n ¢) : (25)

where C is the overall normalization constant. The phase
¢ could be determined by matching Eq. with the
solution in the opposite limit, vexp (/2 < 1, where we
obtain

Ar = Cret/* g, (2 2veC/4) + Cyet/*y; (2 21164/4) .
(26)

Here C; 2 are some constants, and Ji(z) and Yi(x) are
the Bessel functions of the first and second kind, respec-
tively. Therefore, the gap function indicates a pairing
instability at the scale T, ~ 77102 ~ 771J, which is ex-
actly the leading term in Eq. . In order to retain the
first correction to this result, one has to expand g:,(¢) to
the lowest order in t(, leading to the following equation

t . t t 1 .
(1 + 21;6%(1+70)C) As+ |:1 + 20:| <’06;(1+20)C _ 2) Ac
t
+% {1 + 20} eIHto/2C/2N =0 . (27)

In turn, Eq. can also be solved with hypergeo-
metric functions. Thus, the oscillations develop when
e(+t0/2)¢/2 =1 leading to T, ~ Tl A
771J(1+ %2 1n1/J), in agreement with Eq. ().
Therefore, we find that the pairing instability in a crit-
ical regime sets in at the scale determined by Eq. . At
the same time, it is known that in the absence of disorder

TS scales as J?/(c*w) [21]. The ratio of these scales
is proportional to the ratio of two small dimensionless
parameters t and J, controlling disorder and interaction
strength, respectively

Tc(dirty)/TC(clean) ~ to/j ] (28)
Therefore, the conclusion is quite remarkable: even in the
presence of strong NFL effects, the transition tempera-
ture is enhanced at intermediate (but still weak) disorder
J < ty < 1. We emphasize that even though J < 1 in
the regime of interest, this result has nothing to do with
perturbation theory in J. The actual expansion is per-
formed in powers of ty only.

The physical reason of this enhancement is twofold. At
the semiclassical level, the ferromagnetic order parameter
mixes with the continuum of diffusive particle-hole exci-
tations of the Fermi surface. As a result, the effective
electron-electron interaction gets Landau-overdamped,
but with a dynamical scaling z = 4 (i.e. w ~ ¢* at
low energies), instead of z = 3 as in case of ballistic
dynamics. This effect by itself is already enough to pro-
duce non-analytic corrections in the Cooper channel. But
most importantly, strong mesoscopic (multifractal) corre-
lations of single-particle wave-functions (represented by
the diagrams in Fig[2|c)) manifest themselves in the ap-
pearance of a Cooperon in the effective pairing amplitude
@, further enhancing the degree of non-analyticity. In
combination, multifractality and diffusive Landau damp-
ing lead to Eq. ., and eventually, to the power-law
scaling of T, in Eq. ( .

We also note that the critical interaction remains dy-
namically screened at the relevant momentum scales
q > \/w/D contributing to the scattering processes in
Fig(c) This precludes local mesoscopic correlations
from being effectively ‘averaged out’ at large distances, as
it happens for unscreened Coulomb repulsion [55]. More-
over, despite the Cooperon propagator Eq. (20 exhibit-
ing anomalous dynamical scaling, the superconducting



coherence length & still obeys a standard relation to T,
ie. & = /D/T., characteristic of conventional disor-
dered superconductors. However, the magnetic correla-
tion length ~ /%o, as inferred from the critical param-
agnon propagator Eq. , appears to be parametrically
shorter than €.

At even weaker coupling (or stronger disorder), local-
ization corrections to resistance become more noticeable,
and the full frequency-dependence of Y. starts to play
a role, giving way to more complicated behaviour of the
pairing vertex ®.. In particular, the renormalized resis-
tance evaluated at the superconducting transition tem-
perature ¢(T,) = to Y2, becomes of the order of one at

to ~ 1/1n(1/.J), indicating that the system undergoes a
localization transition.

VII. CONCLUSIONS

We have developed the theory of a pairing instability in
a disordered 2D fermionic system coupled to a ferromag-
netic quantum critical point. Our approach, based on the
modified Usadel equation, allows to treat weak localiza-
tion and non-Fermi liquid effects on equal footing, and
predicts a strong enhancement of superconductivity at
intermediate disorder strength, both away and near the
critical point, caused by mesoscopic (‘multifractal’) cor-
relations of single-particle wave-functions. In its present
form, our approach does not account for phase fluctu-
ations of the superconducting order parameter, which
drive the true transition to be of Berezinskii-Kosterliz-

J

Thouless (BKT) type. However, it is known [77] that the
actual transition temperature Ty differs only slightly
from the mean-field transition temperature T, in the limit
of small resistance, and thus, our predictions are expected
to remain qualitatively correct even for Txr.

Our results constitute a first step towards our under-
standing of the fundamental interplay between disorder
and superconductivity in 2D quantum critical itinerant
electron systems. Our theory and the predicted enhance-
ment of superconductivity could in principle be tested us-
ing sign problem free Monte Carlo simulations of metallic
criticality along the lines of Ref. [68]. In the future, we
wish to investigate properties of the emerging supercon-
ducting phase, where the full non-linear form of the Us-
adel equation will be required. Particularly intriguing
observables include mesoscopic fluctuations of the local
density of states [48], and the superfluid stiffness [77]. In
addition, it would be interesting to explore other types of
QCPs, including cases where the critical order parameter
is not conserved [17, [78, [79], and thus, couples differently
to diffusive modes compared to the present case.
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Appendix A: o-model

In this section we provide details of the o-model approach to the problem of dirty superconductivity in quantum
critical systems. On the technical side, our analysis extends the methodology suggested for a different problem in
[48] by allowing for arbitrary coupling strength, as well as frequency and momentum dependence of the interaction
in the one-loop derivation of the effective action. As a first step, we follow the standard procedure: we average over
disorder using the replica trick, decouple the resulting interaction via a matrix-valued Hubbard—Stratonovich field @,
and integrate out the fermions. The resulting integral over @) is computed via the saddle-point method justified in the
limit of weak disorder. Finally, we obtain the action for the low-energy modes (so-called ‘diffusons’ and ‘cooperons’)
S, + Sint, where

S, = % /dr Tr [D(VQ)2 —46Q — 4&“”@} ,
T 2 /(0 , , (A1)
S = () ITY Y / drdr’ X (Jwn, T — /) Tr [[tr30Q(x)] Tr [I7,t,50Q(x")] |

ny r=0,3

where () are matrices operating in the replica, Matsubara, particle-hole, spin, and orbital spaces. The interaction
amplitude is given by

K2 (lwal, )7 = (€qep +4°) - (A2)

The inverse screening length féép = va — 2vJ /¢ describes the deviation from the quantum critical point (QCP). Here
x is the tuning parameter, and 2vJ comes from the static polarization operator. In principle, the initial electron-
electron interaction of our model (Eq. of the main text) also leads to a number of additional operators in Siy



representing inelastic scattering with large momentum transfer ~ 2kr. However, in a vicinity of a QCP, the bare
interaction is sharply picked at ¢ = 0, and all other bare scattering amplitudes are suppressed by extra small factors
~ (kréqop) ™! < 1 compared to the term that we retain in Siys.

The definitions of all the matrices in are standard:

(é)aﬁ = 6nénn’(sozﬁtOOO ) (I]Z)aﬂ = 5n—n’,k5aﬂaa’yt000 ) ((i)(O))OLﬁ = ®(0)6n+n/,05a6t122 3 (A3)

nn’ nn' nn/ —

where ®(©) represents an external infinitesimal pairing potential in the s-wave, orbital-singlet, spin-triplet Cooper
channel, which we introduce for future convenience. The Greek indices o, 8 = 1,..., N,. stand for different replicas.
The generators t,.sp span the particle-hole/spin/orbital matrix space, and are defined as

trsB:TT®Us ®TBa T757B:()71a273' (A4)

Here 7;/0;/T;, i = 0,1,2, 3, are the standard Pauli matrices. The @ matrix field obeys the following constraints and
charge-conjugation symmetry

Q*=1, TrQ=0, Q' =07TQTC, C=in®mnel,, CT=-C. (A5)

1. Superconducting saddle point

In order to investigate properties of the dirty superconducting state, one has to look for the following saddle point
structure

Qj,’i = (tooo cos b, sgnende, e, + t1228in0: e, e, ) §ob (A6)

which is parameterised by a yet unknown function 6. called the ‘spectral angle’. The dependence of 6. on ¢ and
other parameters will be determined from the minimization of the resulting effective action. The off-diagonal matrix
elements in are encoded into the generator ¢19o corresponding to our particular choice of the superconducting
order parameter. One can easily check that %tr t122t799 = 1, and f% trt100Ct1,,C = 1. It is also useful to rewrite

Q%% as R™'AR, where
R%P = (too0 €08 0., 0cye,, + troosinb, 0o, o, )07 (A7)

and (A)gg, = 8gNn €,0nn daptooo is the usual metallic saddle point used in most previous studies. Clearly, Q|o.=0 = A.

Note also that R~' = Rf, and CT7T = R~'C. The o-model action S, evaluated at the saddle point Q reads as

Salf] = —8mvN, V Z [<I>(0) sinf., +e,cosb, | , (AB)
n>0

where V = [ dr is the total volume. After differentiating the action with respect to 6., we obtain the classical Usadel
equation

— |len|sinb., +®© cosh., =0. (A9)

In principle, the spectral angle could slowly vary in the coordinate space as well, which would lead to a gradient term,
see Eq. of the main text. However, we are interested in the superconducting state which is spatially homogeneous
on the scale of the coherence length, so the gradients term in can be ignored.

The goal of the next sections is to compute interaction-induced loop corrections to the classical action .

2. Fluctuations around the saddle point

In order to resolve the non-linear constraints (A5]) in combination with the non-trivial structure of the saddle point
(A6]), the matrix field @ could parameterized as

Q=R 'W+AV1I-WAR, W.o = w.ef(e)0(—€") + Weer(—¢)0(<) (A10)

where we explicitly emphasized the structure of W in the Matsubara space. Also, in everything that follows, we
implement a short-hand notation for Matsubara frequencies: instead of writing the full form e,,, €./, etc., we will



simply use €1, ¢’ and so on. The blocks w and w are matrices in both the replica and t,,p-spanned spaces. They
obey certain symmetry constraints

w=—-Cw'C, w=-Cw*C (A11)
We decompose all fields in terms of generators ¢,.s5 as
w(@))el = [wrsp@)tron , [@@)]E0 =Y [@rsp (@) trss = =) lwrsp(@)]22 Ctl5C (A12)
rsB rsB rsB

we also note that —CtTTSBC = m,sBtrsB, where
MmysB = (5r763 - 57"3)(530 - 65730)(5B;£2 - 532) (A13)

Therefore, the the fields w and w are not independent of each other: [me(x)]jf, = M,sB [wrsB(x)]f,‘Z.
Next, we substitute (A10) into the action (Al]) and expand up to a quadratic order in fluctuations W. We find

S0, W] = 7L”D/dﬂy(vwﬁ + %V/drTr [EAWQ] :
Al4
52 (Al4)

int

0. W] = —(m)?JT> Y / drdr’ X\ (Jwn|,r — ') Tr [RI)t,30R™ W (r)] Tt [RI)t,50R™ W (r')]
ny r=0,3

where £ = R(é+ @(0))1%*1. Note that the term linear in W vanishes due to the classical Usadel equation (A9)). The

explicit form of the higher order terms will be given later. Finally, we compute the effective action Sqg[0] as

5(2)[0 w]— 5(2)[9 W) J dJ
Seit[6] = —In / DWe oW _ / “Ls2i.m) (Al5)
0

where the average in the last expression is performed with respect to the quadratic action for Gaussian fluctuations.
In the next section, we compute the propagator of these fluctuations.

3. Gaussian action for fluctuations

One can easily verify that only the modes (030), (112), (330), (212) are affected by interactions at the Gaussian
level. The full quadratic action has the form

A AAURE T DYDY S 3 U A I (L~ 250 ) )

{g >0} r=0,3 j,k=1{a;}

(A16)
where we omitted the terms describing the modes unaffected by interactions. We also used \Ilalaaf’g )(q) = (1-
25j15m)\113ff€”§r)(q). The matrix elements of A, (q) are given by
[Ar(Q)]?fiijg?ij = [Dq2 + E51 + Esz] 65253661645191’6@1(146&2&3
+27”/JTZX ‘wn‘ q)XfLr])g(el,52)[X»,(:3‘(54753)]*5041014504204350(1042 ) (A17)
where E. = ecosf. + P sinf.. We also defined the following vector combinations
af,(0 « [} af,(3 a o
\Ilsf_(sl = <[w030]55_52, [w112]5ff_52> \I’sf_(s)g = ([w330]€f_82, [wglg]ef_Q) , (15)
> af,(0 _ e _ (e = af,(3 _ e _ (e
w0 = ([UJOSO]—?S,W [w112]—§3,s4> v = ([w330]—€3,547 [w212]—§3,54) ,
where all €; > 0, and auxiliary vectors X are defined as
0 0 0., — 6
X;O)(51752) = (COS <81;—€2) (Ocy+e,—wn — Oeytenw,) » —isin (61262> (01 e — 66162,wn)> )
(A19)

X’EL3)(61762) = (COS (961;962) (Ocy+en,—wn T Oertenw,) » SID <961;962> (0cy—enwn + 68152awn)) .
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We note that X(f,)l = —(—1)TX51T)~ After inverting the matrix in (A16]), we obtain the following correlation function
for ¥ field

[e5 oY T T, 3 s 1
<\I’€117—25,2(,]~)c(q)\1173:53:157£7}(_q)> = (O)(51752)6a1a46a2ag{55154562635 27”/J5alaz )(53,54)

4y
XTZXZZ ol @) [ Xk (E1,22)] Xf,:;(&l,g?,)} . (A20)
Here the bare diffusive propagator D((J )(5, ¢’) and the RPA-dressed interaction amplitude X..(|wn|, q) are given by
[DP (e, = D@ + Ec+ Eer ;- [Rex(lwal, )] 7' = *(€ep +¢°) + m2 Lz (lwnl, 0) - (A21)
Here, 11, (Jwn|, ¢) is the dynamical part of the spin correlation function
96 + 96’ . 65 - 05’
ZZ(\wn\ q Z D(O) E 5 {COS ( 5 >5|5+6’|,wn| —I—Sln2 ( 3 >5|s—s/|,|wn|} . (A22)
£,e’>0

In the normal state, . = 0, this expression reduces to the standard diffusive Landau damping

2 Wn,
M lonl o = () 5 (A23

Dq? + |wy|

In the next section, we use the correlation function (A20)) to compute one-loop corrections to the effective action.

Appendix B: One-loop correction to the Usadel equation

According to (A15]), in order to compute the effective action, one has to first evaluate the following average

(8210, W]) = 4(7v)2ITN, / o> Z (@) (@D szz Jwnl, ) X) (1, €2)[X ) (4, 23)])"

4 ¢, >0} r=0,3 j k=1
N V/ 72 JIL,. (|wnl, @)
n Xzz (Jwnl, @]~ + 72 I, (Jwnl, q)

(B1)

After dividing this expression by J and integrating over J from 0 to J, we obtain the following result for the effective
action

Seft[0] = =87V N,V Z (<I>(0) sinf, + 60089

e>0

167w

/ Zln 1 72T (wal, )T (eon, q))] (B2)
One can now vary this action with respect to 6.. For this, the following identity is useful

1) 4T . .
wﬂzz(|wn|, q) = *7 Z Dz(IO) (5, 5’) |:SlIl 95 COS 96’(5E+6’,\wn| — 5|5_8/|7|w”|) -+ cos 95 S11n 95/ (664_5/7‘“}”‘ + 5\E—E/|,|wn|):|

€ e’>0

8T . 05 + 65’ . 96 - 96’
- [@(0) cos . — |e] sin 95] Z[Dflo) (,€)]? [cos2 ( 5 ) Sleon | jete’| + sin? ( 5 > (5|wn|75_5/|] . (B3)

e’>0

At the one-loop level, the modified saddle point equation for the spectral angle has the following form
. <(I>(0) cos . — |¢| sin@s) + ®.cosl. — |g|Z:sinf. =0, (B4)

and the expressions for Z. and ®. are given as (compare with Eq. of the main text)

JT d? - -
Ze=1-5— Z / (27:)]21)((10)(5’5/) [Xoz(le +€',q) = Xz2(le — €', @) cos O = 1 + —ngn ﬁ( )/ cos ., (B5)
0

dq

(0)(6 ) [Xz2(le + €], q) + Xoz(le — €], ¢)] sin b = & —|—TZ££ sinf., , (B6)

d2 05 + 65’ ~ . 95 - 95’ ~
F.=JT Z / 2n)? [Déo) (e, [COS2 ( 5 ) X2l + €], q) +sin? ( 5 ) Yoz (le — €’|,q)} , (B7)
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for £ > 0, [Vez(lwnl, @) = A(Eg2p + ¢°) + T2 I, (|wnl, @), and £

e,e’

differs from L. ./ in Eq.@ of the main text

by the absence of WL corrections to the diffusion coefficient. Formally, in order to promote Eioa), to L./, one has

to compute two-loop corrections to the effective action. This calculation is much more involved than the one-loop
derivation presented here, and the details will be reported elsewhere [80]. Our preliminary analysis of the two-loop
corrections indicates that the weak localization correction D — D.. = D [1 + %" In7(E: + Es/)] in the diffusive
propagator (i.e. [Déo) (e,e)]7' = [Dy(e,€)]! = D. ./¢* + E- + E./) is the only contribution appearing at the lowest
possible order in the coupling constant J, i.e. at the order ~ (’)(t%j ). Therefore, other two-loop corrections could be
neglected assuming that interactions are sufficiently weak (this limit is particularly relevant for multifractality-induced
effects [40]).

In addition, we emphasize that F. in Eq. appears from the variation of the spectral angle entering the diffusion
propagator (see the last line in Eq.). This contribution is accompanied by an extra factors ®(®) cos@ — esiné
which coincides with the classical Usadel equation . This means that the effect of F; is always of the higher order
in tg compared to the remaining terms. In addition, F. always contains ‘weaker’ non-analyticities compared to ®.
and Z.. For instance, its perturbative effect on T, in case of Coulomb repulsion is known [5I] to be sub-leading (of
the order O(tqlog? 7T.)) compared to the correction from ®, (which is of the order O(tglog® 7T%)). To summarize,
we can ignore F. in Eq. and reduce it to the form given in the main text. It is also convenient to re-write
Eq. as a system of two coupled equations involving ®. and Z. as independent functions. This can be accomplished
by means of the following formal solution sinf. = ®./+/(|¢|Z.)? + ®2, which leads to Eqgs. of the main text.
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