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Scrambling is the delocalization of quantum information over a many-body system and underlies
all quantum-chaotic dynamics. We employ discrete quantum cellular automata as classically simu-
lable toy models of scrambling. We observe that these automata break ergodicity, i.e. they exhibit
quantum scarring. We also find that the time-scale of scrambling rises with the local Hilbert-space
dimension and obeys a specific combinatorial pattern. We then show that scarring is mostly sup-
pressed in a semiclassical limit, demonstrating that semiclassical-chaotic systems are more ergodic.

Introduction. Scrambling is the process of initially
local information spreading out over a many-body system
and ultimately becoming delocalized over time [1–3]. It
is the mechanism through which a quantum-chaotic sys-
tem can achieve thermalization, i.e. its relaxation to an
ergodic state with no memory of the initial local degrees
of freedom [4–7]. Even if the system does not thermal-
ize and instead (perhaps weakly) breaks ergodicity after
long times—a phenomenon known as quantum scarring
[8, 9]—the information is still scrambled.

Scrambling underlies quantum-chaotic dynamics, so it
has been the subject of serious investigation over the
past several years in the study of quantum information,
condensed matter theory, and quantum gravity [10, 11].
More specifically, scrambling has provided insights into
properties of computational complexity [12–14], entan-
glement dynamics [15, 16], and transport [17–19] in quan-
tum systems. As black holes [1–3] and other spacetimes
[20] can be thought of as “fast” scramblers [21], scram-
bling is also of interest in quantum gravity. Further-
more, there are protocols with which to measure scram-
bling through simulation and experiment [22–26]. So, by
studying scrambling, we glean profound, testable insight
into the universal features of quantum dynamics.

Tunable toy models that highlight phenomena of in-
terest are a tried and true tool of theoretical physics. In
this letter, we propose that quantum cellular automata
(QCAs) [27–29] are a useful tool for studying scrambling
(cf. [30–36]). These are lattice systems equipped with
local Hilbert spaces on each site and a discrete time-
evolution operation. This operation can be phrased in
the language of Heisenberg (time-dependent) operators,
and so it is straightforward to simulate operator growth
from some initial state. Thus we can apply the general
protocol for studying scrambling [22–24] to QCAs.

To exemplify the utility of cellular automata, we eluci-
date the scrambling behavior of a particular class: “Clif-
ford” QCAs. We find that they harbor scarring for
particular initial conditions. We also simulate the de-
pendence of the “scrambling time” on the Hilbert-space
dimension N , with large N describing a semiclassical
regime. We ultimately find that the semiclassical sys-
tems are “more” ergodic than low-N ones at late times.
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FIG. 1. A schematic “space-time” plot depicting scrambling
between initial operators V and W (x). For a given x, the
squared commutator eventually reaches O(1). Over all x, this
defines a cone (the shaded region) in which information is
diagnosed as scrambled. The minimum time t∗ of this cone is
the scrambling time. The slope vB is the associated velocity.

Quantifying scrambling. We quantify scrambling
with the out-of-time-ordered correlator (OTOC) [22–24],

F (x, t) =
〈
W (x, t)†V †W (x, t)V

〉
. (1)

V is a local operator. W (x, t) = U(−t)W (x)U(t) is the
time evolution of a local operator W (x) inserted at po-
sition x. We take [V,W (x)] = 0, so the OTOC measures
the breakdown of commutativity due to operator growth.

The OTOC is used to study features of chaos, such as
operator growth and the butterfly effect. To see why, we
write it is in terms of the “squared commutator”

C(x, t) =
〈
[W (x, t), V ]†[W (x, t), V ]

〉
= 2 [1− ReF (x, t)] ,

(2)

assuming unitary operators. We call the system “scram-
bled” when this quantity is O(1). For local interactions,
the growth of C(x, t) is said to take a universal form [23]:

C(x, t) ∼ C exp

{
−λL
tp

( |x|
vB
− t
)1+p

}
. (3)

C, p, λL, vB (the butterfly velocity) are constants. In (3),
C(x, t) is not O(1) until t ∼ |x|/vB. By depicting the
squared commutator on a “space-time” (t vs. x) plot,
we observe a “butterfly cone” of slope vB beyond which
we diagnose the system as scrambled (e.g. Figure 1) [37].
The minimum time t∗ of this cone is the scrambling time.
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Clifford QCAs. QCAs are lattice systems which
undergo discrete time evolution. Each is determined by
two things: the local Hilbert spaces on each lattice site
and the unitary time-evolution operator (or automor-
phism). In the Heisenberg picture, we may write the
latter as a set of reversible “rules” [28] for how local op-
erators on each site evolve.

We consider a particular class of model systems called
Clifford quantum cellular automata [38–40]. These QCAs
live on an infinite 1d lattice in space and obey transla-
tion invariance. The Hilbert space of each lattice site
arises from quantizing a toroidal phase space, so each lo-
cal Hilbert space is finite-dimensional [41]. We denote
this dimension as N . Furthermore, the Planck constant
scales as 1/N [40], and so N →∞ is a semiclassical limit.

The operators acting on each local Hilbert space con-
stitute a generalized Clifford algebra generated by Q,P :

QN = PN = 1, PQ = ωQP. (4)

1 is the identity and ω = e2πi/N . We write the generators
in Sylvester’s N ×N “clock-and-shift” representation:

Q =


1 0 · · · 0
0 ω · · · 0
...

...
. . .

...
0 0 · · · ωN−1

 , P =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 . (5)

These matrices and their products (excluding 1) are also
called generalized Pauli operators. Indeed, taking N = 2
reproduces the usual Pauli matrices which generate su(2).

Next, while there are many rules one may implement
(so long as they are reversible and translation-invariant
along the lattice), for specificity we will focus on

Qα → Qα−1 ⊗QαPα ⊗Qα+1,

Pα → (Qα)N−1,
∀α ∈ Z. (6)

The index α denotes the lattice position. We describe
the time evolution of any operator on the lattice by iter-
atively implementing these (nearest-neighbor) rules.

The same machinery used for probing scrambling can
be used for Clifford QCAs. In fact, the squared com-
mutator’s form can be computed analytically if we have
reflection symmetry about α = 0. If we take

V = · · · ⊗ 1−1 ⊗ Σ0 ⊗ 11 ⊗ · · · ,
Wα = · · · ⊗ 1α−1 ⊗ Σ̃α ⊗ 1α+1 ⊗ · · · ,

(7)

where Σ0 and Σ̃α are possibly distinct generalized Pauli
matrices respectively at sites 0 and α, then the squared
commutator has the form (cf. supplemental material)

Cα(t) =
〈
[Wα(t), V ]†[Wα(t), V ]

〉
= 4 sin2

[ π
N
ξ(α, t)

]
,

(8)

where ξ(α, t) is some integer function of space-time.
At first glance, this oscillatory behavior may appear

troubling for our claim that Clifford QCAs exhibit scram-
bling. We do not get something of the form (3), but this
is how we argue for a butterfly cone. Not having (3) may
prevent us from diagnosing the system as scrambled.

Fortunately, there is a loophole; we simply need a cone
along whose boundary the squared commutator reaches
O(1). So long as we have such a cone, we do not need
to care about the late-time dynamics. Indeed, when we
simulate the evolution of the Clifford QCA with the rule
(6), we will certainly find that sinusoidal behavior (8)
persist in the late-time dynamics. Nonetheless, we will
also consistently find the requisite cones from scrambling.

Scrambling in action. There areN2−1 generalized
Pauli matrices acting on the Hilbert space of dimension
N , so we have precisely (N2 − 1)2 squared commuta-
tors computed from local insertions. As an example, we
present the nine space-time “heat” plots for the simplest
case N = 2 in Figure 2. From the analytic form of the
commutator (8), Cα(t) is either 0 or 4, so loss of commu-
tativity is akin to a bit flip.

In all of these plots, we observe a cone along which
the squared commutator reaches O(1). Thus, there is
scrambling according to our diagnostic. However, the
dynamics within the cone, particularly at late times, yield
a fractal pattern because of the sinusoidal behavior (8).
Such behavior has also been observed in previous studies
of Clifford QCAs plotting other quantities (cf. [38, 39,
42, 43]), but our analysis highlights that these fractals
arise from the chaotic dynamics after scrambling.

We claim this to be a violation of ergodicity, signalling
quantum scarring. To see why, first consider how we
would diagnose a system as thermalized at late times.
Thermalization of the system means a loss of “memory”
of the initial insertions. Such memory must instead be
confined to subleading effects in the late-time regime deep
in the cone. So, if the late-time dynamics are ergodic,
then the squared commutator inside of the cone must lose
track of the separation between the initial insertions. In
other words, it must exhibit x-independence.

That is not what we see in our Clifford QCA. Instead,
the sinusoidal behavior (8) persists at late times and in-
duces the fractal pattern seen in our space-time plots. So,
although the information is scrambled (i.e. delocalized)
within the cone, it is not thermalized (i.e. randomized)
over space. The fractals represent quantum scarring.

In this letter, our focus is on OTOCs of local initial
operators (cf. [44]). However, the OTOC can generally
probe the loss of commutativity between initially com-
muting nonlocal operators, as well. The initial operators
themselves need not be local. For instance, we may start
with an initial operator Wα which comprises generalized
Pauli matrices localized to multiple lattice sites. It would
be interesting to simulate such initializations to under-
stand the dynamics of nonlocal states.
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FIG. 2. All nine space-time “heat” plots of the squared commutators Cα(t) =
〈
[Wα(t), V ]†[Wα(t), V ]

〉
with local initial

insertions (7) in the N = 2 Clifford QCA with rule (6). We restrict to lattice sites −100 ≤ α ≤ 100 and 100 time steps. From
left to right, the initial operators at the central (0) lattice site are (a,d,g) Q0, (b,e,h) P0, and (c,f,i) Q0P0. From top to bottom,
the initial operators at the α lattice site are (a,b,c) Qα, (d,e,f) Pα, and (g,h,i) QαPα. Cα(t) = 4 at blue points and 0 at black
points. For all of the initializations, the small-scale dynamics have subtle differences, but the large-scale dynamics yield fractals
of similar sharpness. Being more precise, we find that the patterns approximately have the same fractal dimension ∼ 1.83 (cf.

supplemental material for the calculation), consistent with the exact value of the “trace-time” fractalsa log2
3+
√
17

2
[36, 42].

a We thank Grace Sommers for pointing out that this exact value is known.

Semiclassical regime. Quantum chaos can be quite
different from classical chaos. For example, classically
chaotic systems always thermalize at late times, but
quantum systems may scar. To reconcile the classical and
quantum regimes, we may consider a semiclassical limit
of a quantum chaotic system. In our Clifford QCAs, we
can implement such a limit by increasing N . Specifically,
we examine the influence of N on the evolution of the ini-
tial local operator insertions Σ0 = Q0 and Σ̃α = Qα. The
space-time plots are presented in Figure 3.

We first examine the scrambling time t∗. It can be read
off explicitly from the position of the emergent butterfly
cone. By scanning over a range of N ≥ 2, we find that t∗
“jumps” by 1 at particular values of N (Table I). Up to
a factor of 6, these values of N equate to a subsequence
of particular Whitney numbers [45] (defined later):

W2t = 4F3

(
1− t

2
,

1− t
2

,− t
2
,− t

2
; 1,−t,−t; 16

)
. (9)

This specific sequence originates from our initialization
(Σ0 = Q0, Σ̃α = Qα) and our rule (6). To see why, note
that we are simply finding the minimum time t∗ at which

Cα(t∗) ≥ 1 =⇒ ξ(0, t∗) ≥
N

6
, (10)

with fixed N [recall (8)]. For (6), we find ξ(0, t) = W2t.
So, consider some N and the minimum t∗ for which

(10) is satisfied. By increasing N , we will eventually
violate this bound, and so we must go to the Whitney
number for t∗+ 1 for the squared commutator to be ≥ 1.

This sequence of Whitney numbers appears in combi-
natorial graph theory [46, 47] as follows. Define a fence
of order n as a set of points {p1, ..., pn} imbued with par-
tial ordering p1 < p2 > p3 < p4 > · · · . An ideal (with
respect to the partial ordering) of order i is any size-i
subset S with the property that pk < pj for any pj ∈ S
implies pk ∈ S. The Whitney number fn,i is then the
number of order-i ideals in the fence of order n [48].
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FIG. 3. The space-time heat plots depicting the squared commutators for initializations Σ0 = Q0, Σ̃α = Qα and (a) N = 2,
(b) N = 4, (c) N = 10, and (d) N = 1000. We restrict to lattice sites −200 ≤ α ≤ 200 and 200 time steps. Unlike in Figure 2,
we must use a gradient to represent the values of Cα(t) since we simulate N > 2. Larger N yields a later cone and, thus, larger
scrambling time. Furthermore, the fractal pattern is strongest for N = 2 and is “filled in” for larger N . By N = 1000, the
squared commutator has lost its position dependence deep inside of the cone, and so the late-time dynamics look more ergodic.

Our Whitney numbers (9) count the ideals of or-
der t in the fence of order 2t and form a mono-
tonic integer sequence indexed by t. This is only
one possible sequence, however, and different initializa-
tions or rules may yield others. It would be interest-
ing to see whether these sequences also have analogous
combinatorial-graph-theoretic interpretations. We leave
further exploration of this connection to future work.

We now briefly touch on the effect of increasing N on
scarring. It is expected that scars will be suppressed in
the semiclassical limit, since we should recover ergodicity
in this regime. This is precisely what we see in Figure 3.

N [2, 6] [7, 12] [13, 30] [31, 66] [67, 156] [157, 378] · · ·
t∗ 1 2 3 4 5 6 · · ·

ξ(0, t∗) 1 2 5 11 26 63 · · ·

TABLE I. A table listing scrambling times t∗ for different
ranges of Hilbert-space dimensions N . As we increase N , t∗
“jumps” at particular values of N . This is because the values
of ξ(0, t∗) appearing in the analytic form (8) of the squared
commutator C0(t) constitute a particular rule-dependent and
monotonic integer sequence (9). For each range of N , there is
a minimum ξ(0, t∗) for which the squared commutator is ≥ 1.

As we increase N , the squared commutator remains O(1)
within “more” of the cone. This makes analytic sense in
(8); the period of the oscillations goes as N , so it takes
longer for the squared commutator to fall back to 0.

There is one caveat to this lesson even in large-N sys-
tems. By an argument of Schwinger [49], the generalized
Clifford algebra contains commuting Clifford subalgebras
corresponding to distinct prime factors of N . If N is com-
posite, then these are proper subalgebras. These allow
for what we call “primal scars” when examining the dy-
namics of particular operator insertions for composite N .

For concreteness, suppose that N = κp` for p-prime,
κ-coprime to p, and some ` ≥ 1. Then, consider the
subalgebra generated by the set {Qκ, Pκ}. By (4),

(Qκ)
p`

= (Pκ)
p`

= 1, (11)

PκQκ = ωκ
2
QκPκ = e2πiκ/p

`
QκPκ. (12)

As κ is coprime to p (and thus p`), e2πiκ/p
`

is a primitive
p`-th root of unity. Thus, {Qκ, Pκ} generates a Clifford
subalgebra which acts on the Hilbert space of size p`.

We observe that this subalgebra is closed under our
rule (6). As such, the simulated dynamics from the ini-

tialization Σ0 = Qκ0 and Σ̃α = Qκα with N = κp` yields
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FIG. 4. The space-time heat plot of the squared commutator

for Σ0 = Q5
0, Σ̃α = Q5

α with N = 10. Observe that this
precisely matches one of the N = 2 plots—specifically Figure
2, upper left—because 10 = 5× 2, and so we have that Cα(t)
is 4 (blue) or 0 (black). This pattern is a primal scar.

the exact same pattern as the initialization Σ0 = Q0 and
Σ̃α = Qα with N = p`. See for example Figure 4, in
which we simulate Σ0 = Q5

0 and Σ̃α = Q5
α for N = 10

and obtain a pattern from the N = 2 case (Figure 2,
upper left).

In general, each distinct prime factor p of N labels a
family of primal scars so long as the Clifford subalgebra
associated with p is preserved under the rule of the QCA.
(6) is one example of such a rule, but there are others.

However, the existence of primal scars does not com-
pletely spoil ergodicity in large-N systems. Firstly, the
space-time plots of the squared commutator generated
from Σ0 = Q0 and Σ̃α = Qα do not maintain this type
of scarring as we increase N . Secondly, we can restrict
ourselves purely to prime values of N . In this case, there
are no Clifford subalgebras even for large N , and so we
would not have primal scars in the first place.

Conclusions. To summarize, quantum cellular au-
tomata are classically simulable toy environments for
quantum many-body physics. In this letter, we elabo-
rate on how nontrivial aspects of the scrambling dynam-
ics of many-body systems can be easily studied by us-
ing QCAs. By focusing on operator growth in Clifford
QCAs both analytically and numerically, we access con-
crete data quantifying scrambling, particularly butter-
fly velocities and scrambling times. Notably, we observe
the formation of quantum scars, a feature of many-body
chaos unique to the quantum regime. This further vali-
dates QCAs as a good arena for studying scarring [30–32].

We find a deep connection between the structure of
our Clifford QCA and combinatorial graph theory. Fur-
thermore, we are able to study how signals of quantum
chaos change in the semiclassical limit. By increasing the
size of the local Hilbert space (a large-N limit), we find
that the fractal behavior exhibited in the squared com-
mutator is typically “filled in,” leading the region within
the butterfly cone to appear more thermal. While there

is still primal scarring in that the dynamics of partic-
ular initializations for large composite values of N pro-
duce “sharper” fractals, increasing N nonetheless always
yields successively more random patterns.

In this letter, we focus on one rudimentary probe of
scrambling—the squared commutator, which is a cousin
of the out-of-time-ordered correlator. However, one may
also examine more refined probes of post-scrambling-time
behavior. One candidate is Krylov complexity [50], which
is defined in terms of Heisenberg operator evolution and
has been proposed as a probe of quantum scarring [51].
Since the rule of a QCA is typically straightforward in
the Heisenberg picture, it is natural also to study Krylov
complexity in such systems.

A major focus of this work is studying semiclassical
(large-N) operator growth to bridge the quantum regime
to classical physics. This has also been the motivation
underlying previous work [52, 53]. While we only have
asked what happens with regards to scarring, it would be
interesting to see if the large-N limit of our Clifford QCAs
explicitly reproduce the features of classical information
spreading.

There are a variety of ways to change the type of
physics being simulated. One can change the rule (even
making them random [54]), the local Hilbert space, or
the structure of the lattice (cf. [35, 36]), thereby imple-
menting alternate types of many-body systems. We can
include multiple species, asymmetries, nonlocal interac-
tions, or even various types of boundary conditions (re-
flecting, periodic, etcetera). Overall, the world of quan-
tum cellular automata is a vast toybox in which to test
a myriad of ideas about quantum many-body dynamics
and chaos.
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SUPPLEMENTAL MATERIAL

Implementation of QCAs

To implement a QCA on a computer, we must employ
a method which accommodates the infinitude of lattice
sites by using only common software architecture. We
can do so by representing particular operators as Laurent
polynomials whose coefficients are integers taken modulo
N , as in [38, 39]. Specifically, we map the full operator
algebra to a two-dimensional vector space and multipli-
cation in the former to addition in the latter. Under this
mapping, we represent generators at site α as

Qα 7−→
(
qα

0

)
, Pα 7−→

(
0

qα

)
, (13)

where q is just an abstract variable. So, under this map-
ping we write a generic operator as

∞⊗
α=−∞

Qiαα P
jα
α 7−→

∞∑
α=−∞

(
iαq

α

jαq
α

)
, (14)

with iα, jα taken mod N . In this notation, a time-evolved
operator O(t) is written

O(t) = ωϕ(t)M tO(0) (mod N), (15)

where O(0) is some vector of the form (14) representing
the initial operator and M is a 2× 2 matrix representing
the rule. The ωϕ factor is an overall phase coming from
reordering the factors as

⊗
αQ

iα
α P

iα
α after applying M .

Implementing a particular rule requires the associated
matrix. The rule (6) used in the main text maps to

M =

(
q−1 + 1 + q N − 1

1 0

)
. (16)

Squared Commutator in Clifford QCAs

We now derive (8). Clifford QCAs are invariant un-
der translations. We also assume invariance under reflec-
tions, making the rule palindromic as in [38, 39]. Then,
we may shift the initial operators (7) by −α and reflect
them around 0 to write the squared commutator at α as

Cα(t) =
〈
[W0(t), Vα]†[W0(t), Vα]

〉
, (17)

where Vα = · · · ⊗ 1α−1 ⊗ Σα ⊗ 1α+1 ⊗ · · · . This is the
expression computed in our simulation.

All generalized Pauli matrices may be written as prod-
ucts of Q’s and P ’s. Additionally, in terms of the Laurent
polynomial notation (14), we write the entries of the t-
fold product of the rule matrix M in index notation as

(
M t
)
IJ

=

∞∑
α=−∞

ξIJ,α(t)qα, (18)

where the indices I, J run over Q and P and each ξIJ,α(t)

is an integer mod N . Meanwhile, supposing Σ̃0 = QiP j ,
we write W0 in index notation as

(W0)I = iδI,Q + jδI,P , (19)

And so, up to an overall phase the time-evolved operator
W0(t) is

(
M tW0

)
I

=
∑
J

[∑
α

ξIJ,α(t)qα

]
(iδJ,Q + jδJ,P )

=
∑
α

[iξIQ,α(t) + jξIP,α(t)] qα.

(20)

We are ready to compute [W0(t), Vα]. Generalized Pauli
matrices supported on different lattice sites commute, so
we only need the factor of M tW0 at the α lattice site,
defined as Σ̃α(t). From (20), this is

Σ̃α(t) = QiξQQ,α(t)+jξQP,α(t)P iξPQ,α(t)+jξPP,α(t)

≡ QA(t)PB(t).
(21)

For brevity, we have redefined the exponents as integral
functions A(t) and B(t). Additionally, we write the fac-
tor Σα of Vα as QCPD. Note that A,B,C,D also have
α-dependence which we leave implicit for now. From the
Clifford algebra (4), the commutator is

[W0(t), Vα] = ωϕ(t)[Σ̃α(t),Σα] (22)

= ωϕ(t)
[
ωB(t)C − ωA(t)D

]
QA(t)+CPB(t)+D.

Recall that ω = e2πi/N , and so ω∗ = ω−1. Additionally,
the generalized Pauli matrices are unitary. So, we have

[W0(t), Vα]†[W0(t), Vα] = 4 sin2
[ π
N
ξ(α, t)

]
1, (23)

where we have defined ξ(α, t) = A(t)D − B(t)C (mak-
ing α explicit again) and exploited various trigonometric
identities. The overall phase ωϕ(t) from (15) cancels. The
expectation value of (23) is (8).

We only assume a palindromic rule to derive the si-
nusoidal expression. In the letter, we specify (16) and
find jumps in the scrambling time at specific values of N
corresponding to a particular sequence of Whitney num-
bers (9). However, such jumps are a generic feature of
(8), with the corresponding values of N related to the
sequence (ξ(0, t))t≥0. It would be interesting to explore
analogous sequences from other palindromic rules.

Fractal Dimension and Box Counting

The dimension of a fractal can be found through a
method called box counting. The general procedure is as
follows. Suppose that we have some shape of area V. We
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f) vs. log T for the Clifford QCA

with initialization Σ0 = Q0, Σ̃α = Qα and N = 2. This “box-
counting plot” can be used to obtain the fractal dimension of
the space-time plot of the squared commutator. The dimen-
sion is identified as the slope of the line at large T , which we
find to be ∼ 1.83.

then define a unit length ε and cover the shape with N
“boxes” of area εD. There exists some D for which

lim
ε→0
N εD = V. (24)

Essentially, we want to find this D. To do so, note that
in the ε→ 0 limit we may write

logN ∼ D log

(
1

ε

)
+ logV, (25)

and so D is the slope of the logN vs. log(1/ε) line near
ε = 0. The logV term can be ignored.

In our QCAs, we implement an adaptation of box
counting. Define f(t) as the number of lattice sites at
t for which the squared commutator is O(1). We simu-
late the QCA up to time t = T . We associate

N =

T∑
t=0

f(t), ε =
1

T
. (26)

And so, by plotting log (
∑
f) vs. log T , we can iden-

tify the large-scale structure’s fractal dimension D as the
large-T slope. See for example Figure 5, which shows the
plot associated with Figure 2 (upper left).

We also emphasize that this is not the only way to
compute the fractal dimension.
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