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Elastic deformations (strain) couple to the electronic degrees of freedom in Weyl semimetals as
an axial magnetic field (chiral gauge field), which in turn affects their impurity dominated diffusive
transport. Here we study the longitudinal magnetoconductance (LMC) in the presence of strain,
Weyl cone tilt, and finite intervalley scattering, taking into account the momentum dependence
of the scattering processes (both internode and intranode), as well as charge conservation. We
show that strain induced chiral gauge field results in ‘strong sign-reversal’ of the LMC, which is
characterized by the reversal of orientation of the magnetoconductance parabola with respect to the
magnetic field. On the other hand, external magnetic field results in ‘strong sign-reversal’, only for
sufficiently strong intervalley scattering. When both external and chiral gauge fields are present,
we observe both strong and weak sign-reversal, where in the case of weak sign-reversal, the rise
and fall of magnetoconductivity depends on the direction of the magnetic field and/or the chiral
gauge field, and is not correlated with the orientation of the LMC parabola. The combination of
the two fields is shown to generate striking features in the LMC phase diagram as a function of
various parameters such as tilt, strain, and intervalley scattering. We also study the effect of strain
induced chiral gauge field on the planar Hall conductance and highlight its distinct features that

can be probed experimentally.

I. INTRODUCTION

Fermions and the atomic lattice form the building
blocks of condensed matter. While each of them is funda-
mentally different from the other, the interplay between
the two leads to remarkable effects. In recent works,
massless Dirac fermions, which have resurged in con-
densed matter, have been shown to couple to the elastic
deformations of the lattice (strain) as an axial magnetic
field (also known as chiral gauge field). Prominent exam-
ples where such fields can be realized include graphene [1-
3] and three-dimensional Weyl semimetals [4-6]. For in-
stance, in graphene, the generated field can be even as
large as 300T, as observed via spectroscopic measurement
of the Landau levels [7]. Measurement of strain-induced
chiral magnetic field as well as its implications on electron
transport in three-dimensional Weyl and Dirac semimet-
als materials is of high interest to the condensed matter
community.

The reason why Weyl and Dirac semimetals also have
been fascinating is due to some intriguing properties that
are absent in conventional metals. Some examples in-
clude the anomalous Hall [8, 9] and Nernst [10-12] ef-
fects, open Fermi arcs [13], planar Hall and Nernst ef-
fects [14, 15], and the manifestation of chiral or Adler-
Bell-Jackiw anomaly [16-25]. The origin of each of these
effects can be traced down to the non-trivial topology of
the Bloch bands. Specifically, the low-energy bandstruc-
ture of Weyl nodes comprises of pairs of non-degenerate
massless Dirac cones that are topologically protected
by the chirality quantum number (also known as the
Chern number). Without any coupling to an external
gauge field, the charge of a given chirality remains con-
served. The conservation law is however broken when

Weyl fermions are coupled to background gauge fields
such as electric or magnetic fields [16-18]. This break-
down of conservation laws is known as ‘chiral anomaly’,
rooting its name from the particle physics literature. The
verification of chiral anomaly in Weyl semimetals is a
very active area of investigation in condensed matter
physics.

In a minimal model of Weyl semimetal, Weyl nodes
must be separated in momentum space by a vector b to
ensure topological protection. Alternatively, the vector
b can also be interpreted as an axial gauge field since it
couples with an opposite sign to Weyl nodes of opposite
chirality [25-29]. Thus the spatial variation of b gen-
erates an axial magnetic field Bs = V x b, which also
couples oppositely to Weyl nodes of opposite chirality.
An effective Bj field can emerge from an inhomogeneous
strain profile in Weyl semimetals. In the presence of an
effective chiral gauge field B, the effective magnetic field
experienced by Weyl fermions at a given node of chirality
x is B — B + xBj5, where B is the external magnetic
field. Therefore, the conservation laws are also modified
accordingly in the presence of the Bj field. Recent works
have pointed out that even in the absence of an external
magnetic field, the chiral gauge field influences the diffu-
sive electron transport in Weyl semimetals by modifying
its longitudinal magnetoconductance (LMC) [6] as well
as the planar Hall conductance (PHC) [30]. Although
true in spirit, the drawback of these works is that they
ignore the momentum dependence of scattering when the
Weyl fermions scatter within a node (known as intran-
ode scattering or intravalley scattering) conserving both
the total charge and chiral charge and also when they
scatter to the other node (internode/intervalley scatter-
ing), in which case they conserve only the total charge.
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Figure 1. Spatial orientation of electric and magnetic fields.
Here B is the external magnetic field and Bs strain-induced
chiral gauge field, v and 5 are their angle measured from the
increasing z-direction i.e., B = B(cos~,0,sin~y) and BsX =
xBs(cosvs,0,sinvs). Therefore, B and Bs are constrained
to be in x — z plane. We have fixed the direction of electric
field along increasing z-direction.

Moreover, intervalley scattering, which is the essence of
‘true chiral anomaly’, has been neglected in Ref. [30]. In
a recent work [31], some of the co-authors of this work
have pointed out that momentum dependence of scatter-
ing, as well as charge conservation constraint, can lead
to drastic differences in the qualitative conclusions. It is
therefore of immense importance to correctly treat the
effect of strain-induced gauge field on electron transport
in Weyl semimetals, which is the focus of this work.

In this work, we critically examine the effect of strain-
induced chiral gauge field via the Boltzmann formal-

Tilt B Bs Sign reversal

0 1 0 -

0 0 1 S

0 1 1 W
1 1 0 -

1 0 1 WS
1 1 1 W
-1 1 0 W
-1 0 1 WS
-1 1 1 W

Table I. Summary for the type of the change :*Weak’ (W),
‘Strong’ (S) and ‘Weak and Strong’ (WS) in the sign for the
LMC under different cases for a TR broken WSM. For B and
Bs, 0 and 1 indicate the absence and presence of the fields,
respectively. For tilt, —1 indicates the tilt of the Weyl cones
are oppositely oriented, +1 indicates orientation in the same
direction, and 0 indicates no tilting. When B = 0, sign change
of LMC is with respect to the Bs field, and whenever B = 1,
the sign change is with respect to the B field irrespective of
Bs. This table corresponds to the case when a < a.

ism (thus limiting ourselves to only weak perturbative
fields) on two linear response quantities: the longitudinal
magnetoconductance, and the planar Hall conductance.
We study these effects in both time-reversal breaking
WSM (with and without tilt) as well as inversion asym-
metric Weyl semimetals. Earlier it was believed that
positive longitudinal magnetoconductivity must manifest
from chiral anomaly at least in the limit of weak exter-
nal magnetic field, but this claim was corrected later on
when sufficiently strong intervalley scattering was shown
to switch the sign of longitudinal magnetoconductivity
even in the weak-B limit [32]. Typically, by positive (neg-
ative) longitudinal magnetoconductance we mean that
(o(IB]) = o(B = 0)) > (<) 0, i.e., the field dependent
conductivity is greater (smaller) than the zero-field con-
ductivity. Here we show that the presence of Bj field
can also reverse the sign of LMC, but only along a par-
ticular direction of the magnetic field (see Fig. 2). This
leads to an interesting scenario of the LMC being posi-
tive along one direction of the magnetic field and nega-
tive when the direction of the magnetic field is reversed.
To counter this ambiguity in the sign of LMC, we in-
troduce the idea of weak sign-reversal and strong sign-
reversal, which depends on the orientation and the vertex
of the parabola of magnetoconductivity with respect to
the magnetic field (Eq. 3). We show that in the presence
of only strain-induced chiral gauge field (and absence of
external magnetic field), the system shows signatures of
strong sign-reversal for all values of intervalley scattering.
In the presence of only the external magnetic field (and
the absence of a chiral gauge field), the system shows
strong sign-reversal only at sufficiently large values of
scattering. In the presence of both chiral gauge and ex-
ternally applied magnetic field, signatures of both weak
and strong sign-reversal are observed, and furthermore,
very interesting features emerge in the phase diagram of
LMC as a function of various system parameters such as
the intervalley scattering, tilt, and strain. We point out

Tilt B Bs Sign reversal

0 1 0 S

0 0 1 S

0 1 1 WS

1 1 0 S

1 0 1 WS

1 1 1 WS
-1 1 0 WS
-1 0 1 WS
-1 1 1 WS

Table II. Summary for the type of the change :“Weak’ (W),
‘Strong’ (S) and ‘Weak and Strong’ (WS) in the sign for the
LMC under different cases for a TR broken WSM. This table
corresponds to the case when a > a.. All abbreviations are
same as in Table [I].



that throughout this manuscript, whenever the external
magnetic field is absent, we discuss weak and strong-sign
reversal in the context of the LMC parabola with respect
to the chiral gauge field B5. When the external mag-
netic field is present (in either presence or absence of the
chiral gauge field), weak and strong-sign reversal is dis-
cussed in the context of the LMC parabola with respect
to the external magnetic field B. Table I and II provide
a succinct summary of the main results for a TR bro-
ken Weyl semimetal. We also extend the idea of weak
and strong sign-reversal to the planar Hall conductance
as well, and study the effect of strain-induced gauge field
on the same. Along with other features, we also unravel
a very interesting behavior in the planar Hall conduc-
tance due to an interplay between the chiral gauge field
and the external magnetic field. Specifically, we observe
a region in the parameter space where the planar Hall
conductivity increases in magnitude upon increasing the
scattering strength, which is counter-intuitive.

This paper is organized as follows. In Section II, we
introduce the concept of weak and strong sign-reversal
using a minimal model of a TR broken untilted WSM.
We also study the interplay of strain, tilt, and intervalley
scattering on LMC and PHC. In Section I1I we extend our
results to a TR broken tilted Weyl semimetal. In Section
IV, we present the results for inversion asymmetric Weyl
semimetals. Section V is devoted to a brief discussion on
the inclusion of inhomogeneities in strain-induced chiral
gauge field. We conclude in Sec VI. All the calculations
are relegated to the Appendix.

II. TIME-REVERSAL BROKEN UNTILTED
WEYL SEMIMETALS

We consider a minimal model of a time-reversal sym-
metry broken Weyl semimetal, i.e., two linearly dispers-
ing non-degenerate Weyl cones separated in momentum
space. We also assume that there is no tilting of the Weyl
cones in any direction. The low-energy Hamiltonian is
given by

H:ZZthFk-a' (1)
X k

Here xy = +1 is the chirality of the node, k is the momen-
tum, vg is the velocity parameter, and o is the vector of
Pauli spin matrices.

Using the quasiclassical Boltzmann theory, we study
transport in Weyl semimetals in the limit of weak elec-
tric and magnetic fields. Since quasiclassical Boltzmann
theory is valid away from the nodal point such that
u? > hwkeB, therefore without any loss of generality we
will assume that the chemical potential lies in the conduc-
tion band. Throughout this paper, we fix the direction
of the applied external electric field to be along +2, i.e.,
E = EZ. Further, we rotate the magnetic field along the
xz-plane such that it makes an angle v with respect to
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Figure 2. Change in LMC (0., (B)) with respect to the mag-
netic field for a minimal model of untilted TR broken WSM
(Eq. 2). (a) Weak intervalley scattering (o < a.), and (b)
strong (and weak) intervalley scattering (o > ac). As we
move from blue to the green curve in both the plots (in the
direction of the arrow), we increase Bs from zero to 0.2T. The
Bs-field is held parallel to the external magnetic field. The
vertex By and the corresponding a,&? is marked for the green
curve in plot (b).

the Z—axis, i.e., B = B(cos~,0,siny). When v = 7/2,
the electric and magnetic fields are parallel to each other.
Similarly, the strain-induced chiral gauge field is rotated
in the xzz-plane, i.e,, BsX = yBs(cos~vs,0,sinvs5). The
geometrical arrangement is presented in Fig. 1. The de-
tails of the Boltzmann calculations are relegated to Ap-
pendix A.

A. Longitudinal magnetoconductance in the
absence of strain

First, we briefly discuss longitudinal magnetoconduc-
tance in the absence of strain-induced chiral gauge field
Bs. Since this has been discussed in many earlier works,
we will not elucidate in a detailed fashion. On applica-
tion of a magnetic field parallel to the electric field, the
longitudinal magnetoconductivity obtained in the semi-
classical limit is expressed as

0.2(B) = Ug)BQ + Jgg)v (2)

where 022) is the conductivity in absence of any magnetic

field, while ngz) is the quadratic coefficient of magnetic
field dependence. In contrast to earlier anticipation that
the quadratic coefficient 0222) is always positive, it was re-
cently realized that the coefficient can become negative
if the intervalley scattering is sufficiently strong [32]. In
other words, large intervalley scattering results in neg-
ative longitudinal magnetoconductivity or reverses its
sign. Specifically, this occurs above a critical interval-
ley scattering strength o, and the coefficient ag) con-
tinuously goes from positive to negative around a,. The
sign of the parameter U,(fz) also correlates with increasing
or decreasing longitudinal magnetoconductivity. We call
this as the usual ‘sign-reversal’ of LMC, which refers to
the fact that 0,,(|B|) —0,,(B = 0) continuously changes

sign from positive to negative.
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Figure 3. (a) The vertex of the parabola By, and (b) con-
ductivity at By for a minimal model of untilted TR broken
WSM (Eq. 2). Around the blue dashed contour (o = o) we
see ‘strong’ sign-reversal. The parameters By and ai‘? show
a striking change of sign as we move across the a. contour.

B. Longitudinal magnetoconductance in the
presence of strain

Next, let us examine the behavior in the presence of
an effective chiral gauge field (Bs) that may arise in in-
homogeneous WSMs due to the presence of strain. The
chiral gauge field couples oppositely in opposite valleys;
thus the net magnetic field becomes valley dependent,
iie., B - B+ xBs. We first assume that By is held
parallel to the external magnetic field B, which in turn
is parallel to the electric field. Fig. 2 plots the behav-
ior of do,,(B), which is the change in LMC due to the
magnetic field, i.e., 00,,(B) = 0,.(B) — 0,,(B = 0).
We find that the increase or decrease of LMC depends
on the direction of the magnetic field, especially close to
B = 0. We find that LMC decreases for positive val-
ues of magnetic field and increases for negative values of
magnetic field. Furthermore, when the magnitude of B
is increased further away from zero, LMC increases (de-
creases) for both negative and positive values of B when
a < ac (@ > a.). We contrast this to the behavior in
the absence of strain, where the LMC either decreases
(when o > a.) or increases (when a < «.) irrespective
of the magnitude and the direction of the applied mag-
netic field. Hence, it turns out that stating whether the
longitudinal magnetoconductance is only positive or neg-
ative for a given scenario, as often is the case in most of
the experimental and theoretical literature, turns out to
be rather ambiguous.

1. Weak and strong sign reversal

To counter the above ambiguity, first, we generalize
the expression of magnetoconductivity from Eq. 2 to the
following:

0.:(B) = 0(B — By)® + 0. 3)

The above definition allows us to shift the vertex of the
parabola (Bg) away from the origin, which is essential
to fit the results presented in Fig. 2. Now, in Fig. 2(a),
when the strength of the intervalley scattering a < a,

even though LMC is negative at low positive magnetic
fields, it is in fact always positive when seen in refer-
ence to the vertex By, i.e., LMC is always positive when
the change in the magnetic field and conductivity is seen
with respect to the conductivity at By, and not with re-
spect to the origin. We call this as ‘weak’ sign-reversal
because the orientation of the parabola remains intact,
only the vertex is shifted from the origin, and also ai?
remains positive. Thus, when intervalley scattering is
weak, strain in inhomogeneous WSMs drives the system
to the ‘weak’ sign-reversed state along a particular di-
rection of the magnetic field. In summary, the charac-
teristics defining weak sign-reversal are the following: (i)
By #0, (i) 0 # 0..(B = 0), (iii) sign o2 > 0.

In Fig. 2(b), when the strength of the intervalley scat-
tering is greater than the critical value («.), the orienta-
tion of the parabola is reversed, i.e., LMC decreases when
seen with reference to By, and ag) becomes negative.
Due to this reason, we call this as ‘strong’ sign-reversal.
Strong sign-reversal is governed by the following condi-

tion: (i) sign P < 0, without any restriction to the val-

ues of By and oi‘?. We then conclude that signatures of

both strong and weak sign-reversal would be: (i) By # 0,
(il) 0 # 0..(B = 0), (iii) sign o2 < 0.

Since By is shifted from the origin due to infinitesimal
strain even when a > a., we conclude that sufficiently
strong intervalley scattering along with strain in inhomo-
geneous WSMs drives the system to show signatures of
both weak and strong sign-reversal, as demonstrated in
Fig. 2 (b). In general, the chiral gauge may be oriented
away from the z— axis and rotated along the xz-plane,
and the variation of magnetoconductivity with respect
to the angle 5 (the angle between z-axis and the Bs
field) is straightforward to understand. As ~; increases
from zero to 7/2, the contribution due to to the chiral
gauge field increases in a sinusoidal fashion. We do not
explicitly plot this behavior.

We point out that strong sign reversal of LMC results
from including energy shift due to the orbital magnetic
moment (OMM) [31-35]. Importantly, the energy shift
results in dissimilar Fermi surfaces due to the differing
signs of the orbital magnetic moment at both valleys.
In Weyl semimetals, chiral anomaly refers to the non-
conservation of chiral charge in the presence of external
gauge fields, i.e., a right-moving electron scatters to a
left-moving state; the conductivity increases with an in-
creasing magnetic field. The dissimilarity in the Fermi
surfaces due to the OMM energy shift causes a right-
moving state to scatter into a state that is no longer
its left-mover partner state, as required by the chiral
anomaly. Furthermore, increasing intervalley scattering
strength results in a greater probability of mismatch of
the Fermi surfaces, eventually reversing the LMC sign.
Weak sign reversal, on the other hand, involves both in-
travalley and intervalley scattering. It is qualitatively
different from strong sign reversal, and isn’t necessarily
dependent on the orbital magnetic moment correction to
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Figure 4. Longitudinal magnetoconductivity for a minimal model of TR broken untilted Weyl semimetal.

=
d) Il 1
o
0.998
S)
~
~20.996
B=0 ) B =0.1T
2 0.994
02 0 02 © 02 0 02
Bs (T) B; (T)

(a) Increasing

intervalley scattering strength results in strong sign-reversal. (b) In addition to this, infinitesimal strain now results in weak
sign-reversal as well. (c) When plotted as a function of the gauge field Bs, LMC is always strongly sign-reversed. (d) In the
presence of an external magnetic field, we see signatures of weak-sign reversal as well. In all the plots as we move from blue to
the green curve we increase the intervalley scattering strength « from below a. to above a..

the energy dispersion.

2. Transition between weak and strong sign-reversed cases

In Fig. 3 we plot the parameters By and aﬁ? as a
function of the chiral gauge field and intervalley scat-
tering strength. The transition from ‘weak’ to ‘strong
and weak’ sign-reversed case is characterized by rever-
sal in signs of the relative offset in conductivity ai?, as
well as the vertex of the parabola By, i.e., By < 0 when
a&? > 0, and vice-versa. In contrast, J,(ZQZ) continuously
interpolates across zero (not plotted). No discontinuity
in By or 09 is observed in the weak sign-reversed case,
i.e., as the strain induced field is increased from zero for
a constant intervalley scattering, the parameters By and

agg) vary continuously.

In Fig. 4 we plot the the longitudinal magnetoconduc-
tivity as a function of magnetic field for different values
of intervalley scattering. An increase in intervalley scat-
tering strength decreases the magnetoconductivity, i.e.,
|022(B, )| > |0..(B,a + €)|, where € is the infinitesimal
increase in the scattering strength, which is also expected
on physical grounds. We find this feature remains in-
tact even in the presence of strain induced chiral gauge
field, as shown in (Fig. 4(b)). We particularly highlight
this point as this will be contrasted to the planar Hall
conductivity that shows an anomalous increase in con-
ductivity with increasing intervalley scattering strength.
In Fig. 4 (c) we plot the LMC in the presence of only
chiral gauge magnetic field (i.e. B = 0). Since, in this
case the external magnetic field is zero, positive/negative
LMC and weak/strong sign-reversal can only be defined
with reference to the Bs field. We find that the strain
induced chiral gauge field by itself only results in strong
sign-reversed phase irrespective of the intervalley scatter-
ing strength. In Fig. 4 (d) we plot LMC as a function of
the chiral gauge field Bs, but in the presence of a fixed
external magnetic field. The Bj field results in strong
sign-reversed phase and the additional external magnetic
field results in weak sign-reversed phase as well.
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Figure 5. Planar Hall conductivity for a minimal model of
untilted TR broken WSM in the absence of any magnetic
field. (a) Variation with respect to the angle 5. Increasing
a reduces the conductivity, as expected. (b) PHC behaves as
the inverse of scattering strength. Since o,.(Bs = 0) = 0,
we have normalized 0., appropriately in both the plots. In
creasing Bs field increases the conductivity.

3. Ezxperimental implications

Experimentally, by tuning the applied strain on the
material, one can realize the weak sign-reversed state;
however, switching to the strong sign-reversed state re-
quires tuning the intervalley scattering strength. The in-
tervalley scattering strength depends on the magnitude
and the type of the inherent disorder present in the mate-
rial and the separation between the Weyl cones. Tuning
the disorder in a material is rather complex; however,
the separation between the Weyl cones may be tuned
experimentally in some cases. For instance, in a Dirac
semimetal (which turns into a Weyl semimetal in the
presence of an external magnetic field), the separation
between the Weyl cones is typically a function of the
strength of the applied magnetic field [11, 36, 37]. Thus
the intervalley scattering strength can be tuned in a Dirac
semimetal as a function of the applied magnetic field, re-
sulting in the realization of the strong sign-reversed state.
By fitting the magnetoconductivity data in Eq. 3 and ex-

tracting the parameters By, ai‘?, the phase-plots in the
Fig. 3 can probed experimentally in a Dirac semimetal.
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Figure 6. Planar Hall conductivity for a minimal model of
untilted TR broken WSM. (a) PHC as a function of exter-
nal magnetic field B and no strain induced field (Bs = 0)
is compared with the inset where PHC has been plotted as
a function of Bs with no external field (B = 0). The angle
v was chosen to be equal to 5. Strain opposes the planar
Hall effect albeit with different magnitude. (b) PHC in the
presence of both magnetic field and strain. The chiral gauge
field causes weak sign-reversal. The dotted ellipses highlight
regions that show an anomalous behavior with respect to in-
tervalley scattering strength. The width of lines is reduced
for better visibility. In all the curves, as we go from blue to
green, we increase a. All the plots are appropriately normal-
ized.
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Figure 7. Planar Hall conductance for a minimal model of
untilted WSM as a function of intervalley scattering strength.
(a) in absence of Bs field. (b) in presence of Bs field. In all
the curves, as we go from blue to green, we increase B. All
the plots are appropriately normalized.
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Figure 8. Planar Hall conductance for a minimal model of
untilted WSM. (a) as a function of the external B field. As
we go from blue to red curve, we increase Bs from -0.25T
to +0.25T. (b) as a function of the Bs field. As we go from
blue to red curve, we increase B from 0T to 1T. All the plots
are appropriately normalized. We chose 7 = 5 = 0.457, and
a = 0.5.
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Figure 9. LMC for a tilted TR broken WSM (Eq. 5) with
tL = —t"Y. (a) When Bs = 0.17. (b) When Bs = —0.17..
The inset in both figures is for the case when o = 1.2 > a,
while in the main figures a = 0.2 < a.. As we move from blue
to the green curve in both the plots, we increase ¢, /vp from
0 to 0.06. The opposing effects and adding effects of strain
and tilt are highlighted in (a) and (b) respectively.

C. Planar Hall conductivity

Having discussed the longitudinal magnetoconductiv-
ity, here we wish to study the planar Hall conductivity.
The dependence of the planar Hall conductivity o,, on
the magnetic field is typically quadratic and we may ex-
pand it as [14]

022(B) = {2 (B = Bo)* + o) (4)

xz

where By is vertex of the parabola, and o';(fz) is the
quadratic coefficient. The planar Hall conductivity de-
pends on the angle of the applied magnetic field, specifi-
cally as sin(2v), where ~ is the angle of the magnetic field
with respect to the z-axis [14] (see Fig. 1). To disentan-
gle the effect of strain, we first evaluate the planar Hall
conductivity in the absence of an external magnetic field.
In Fig. 5 (a) we plot the planar Hall conductivity o, (Bs5)
that is evaluated in the absence of external magnetic field
for several different values of the intervalley scattering
strength. The angular behavior with respect to v5 also
turns out to be sin(2+vs) as the case with the usual planar
Hall conductivity. We also explicitly examine the effect
of intervalley scattering a in Fig. 5 (b). Even though the
conductivity is expected to decrease with increasing scat-
tering, the functional form has still never been explicitly
evaluated, especially when the scattering is momentum
dependent. Based on our numerics, we conclude find that
the planar Hall conductivity induced by the chiral gauge
field depends inversely on the scattering strength, i.e.,
042(B5) ~ 1/a.

1. Opposing effects of external and chiral magnetic field

Based on the above observations, one may naively con-
clude that the effect of the strain-induced chiral gauge
field and the external magnetic field are precisely the
same, as also concluded in Ref. [30]. We re-examine this
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Figure 10. LMC for a tilted TR broken WSM when the tilts
are oriented in the same direction. Both weak and strong sign-
reversal is observed irrespective of the intervalley scattering
strength. The legends are same in both the plots.

conclusion by comparing and contrasting the behavior of
the planar Hall conductivity when (i) external magnetic
field is applied and the strain induced field is absent,
and (ii) when strain induced field is present but exter-
nal magnetic field is absent. We find the contribution to
the planar Hall conductivity to be different both in sign
and magnitude, which is in contrast to earlier claims [30].
Specifically, choosing v = 5, we find that o,,(B) when
Bs = 0 has the opposite sign and magnitude to the case
042(Bs) when B = 0. In other words, the effect of strain
is to oppose the planar Hall effect with a different magni-
tude. Due to the difference in magnitude, the two effects
do not cancel out each other. This feature has been high-
lighted in Fig. 6 (a). We attribute this behavior to the in-
clusion of intervalley scattering, momentum dependence,
as well as charge conservation that have been neglected
in earlier works.

2. Unusual conductivity

Nexrt, we study the planar Hall conductivity in the
presence of both the external magnetic field and strain-
induced chiral magnetic field. In the presence of an ex-
ternal magnetic field, the effect of strain is to shift and
tilt the conductivity parabola, thereby resulting in weak
sign-reversal of the conductivity as shown in Fig. 6 (b). In
contrast to the longitudinal magnetoconductivity, PHC
never shows strong sign-reversal even on increasing the
intervalley scattering above the critical value. However,
interestingly, we find that in a certain window of the
magnetic field, increasing intervalley scattering strength
increases the magnitude of the planar Hall conductivity,
which is counter-intuitive. We understand this behav-
ior as the result of the opposing effects of strain-induced
PHC and magnetic field-induced PHC. We better visual-
ize this in Fig. 7, where we plot the planar Hall conduc-
tivity as a function of the intervalley scattering strength
«. First, we notice that in the absence of Bs-field, the
Hall conductivity shows some amount of non-linearity as
a function of 1/«. This is contrasted to Fig. 5(b) (the
case when B = 0, Bs # 0), where linear behavior was ob-
served for all ranges of «. Second, in the presence of By
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Figure 11. (a) The quadratic coefficient of the longitudi-

nal magnetoconductivity ag) for tilted TR broken WSM. (a)
t,(zl) = ft,(;D. (b) tél) = t,(;l). Strain induced chiral mag-
netic field was fixed to Bs = 0.17 in both the cases. The
blue contour separates the regions when 0,&22) > 0 and when

o <0 (strong sign-reversal).

field, the behavior of o,, with respect to a can be strik-
ingly different. Due to the weak sign reversal, o,. can
switch signs, which explains the divergences in the plot in
Fig. 7 (b). Furthermore, we note that when o, switches
sign from positive to negative, the behavior with respect
to a becomes anomalous, i.e., increasing «, increases the
magnitude of o,,. This anomalous behavior with respect
to the intervalley scattering strength is not observed for
longitudinal magnetoconductivity.

3. Experimental implications

Experimentally, in Dirac semimetals, where varying
the external magnetic field may vary the intervalley scat-
tering strength, one can may the behavior of o,, as a
function of the intervalley scatteting strength, as shown
in Fig. 7. Furthermore, one can also externally tune in
the amount of strain and the magnitude of the exter-
nal magnetic field that results in modulation the planar
Hall conductivity o,, as shown in Fig. 8. Importantly,
we expect 0., as a function of B to exhibit weak sign-
reversal while o,, as a function of Bs to shown strong
sign-reversal. This behavior can be again traced back to
the opposing effects of magnetic field and strain discussed
earlier.

III. TIME-REVERSAL BROKEN WSM WITH
TILT

Having discussed the physics of strain induced gauge
field in a minimal untilted model of Weyl fermions, we
now discuss the case when there is a finite tilt in the Weyl
cones. The Hamiltonian is given by

H=>"Y xhvp (k- o+t‘k.) (5)

Here t, is the tilting parameter along the z-axis. We
only focus on the case when tX¥ < wvp, thus restricting
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Figure 12. LMC parameters for tilted TR broken WSMs. The center of the parabola By (a) and o(® as a function of the tilt
parameter and intervalley scattering strength, in the presence of a fixed value of chiral gauge magnetic field Bs = 0.17. The
tilts are oriented opposite to each other in plots (a) and (b). The plots (c¢) and (d) are for the case when the Weyl cone tilts

are oriented in the same direction.

ourselves to type-I Weyl semimetals.

A. Longitudinal magnetoconductivity

Depending on whether the two cones are tilted along
the same or opposite direction, the behavior of both
LMC and PHC can behave differently. In the absence
of strain, if the cones are tilted in opposite directions,
ie., t¥ = —t§/, a linear in magnetic field term is added
to the overall longitudinal magnetoconductivity, and the
magnetoconductivity parabola is shifted and tilted along
a particular direction. In other words, we can say that in
the absence of external strain, tilting results in weak sign-
reversal, although this has never been explicitly pointed
out in earlier works [34, 38, 39]. When the intervalley
scattering strength is large, tilting the Weyl cones results
in both weak and strong sign-reversal.

1. Oppositely tilted Weyl cones

In the presence of both tilt and strain, we arrive at a
very interesting scenario. Both of these parameters, i.e.,
t, and Bs, can tilt the LMC parabola either in the same
direction or opposite direction, and this depends on the
angle between the tilt direction and the strain induced
gauge field. In Fig. 9 we plot the longitudinal magneto-
conductivity for a tilted TR broken WSM presented in
Eq. 5 when the Weyl cones are tilted opposite to each
other. Depending on the direction of the strain induced
gauge field Bj, the effects of tilting and strain can ei-
ther add up or even cancel out. In Fig. 9 (a), Bs > 0,
and the strain and tilting effects work in opposite direc-
tions, while in Fig. 9 (b), Bs; < 0, and the strain and
tilting effects work in the same direction. The tilting of
the parabola is due to the addition of a linear-in-B com-
ponent in the overall magnetoconductivity. Their signs
may or may not be equal to each other depending on the
relative orientation between tilt and strain. The plots
imply weak sign reversal for a < a., and additionally,
strong sign reversal for a > a.. In Fig. 11(a) we plot the
(2)
z

quadratic coefficient 0,7’ as a function of both tilt and in-
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Figure 13. (a) The planar Hall conductance in TR broken
tilted WSM as a function of the angle 75 when (a) the cones
are tilted along opposite direction, and (b) cones are oriented
along the same direction. The legends are the same in both
the plots. Both plots are appropriately normalized such that
the yellow curve is identical in both the figures as expected.
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Figure 14. Change in the magnitude of the planar Hall con-
ductivity (|ozz ()| —|ozz(a+e€)|) for a tilted TR broken WSM
(Eq. 5) on infinitesimally increasing in the scattering strength
(by €). (a) the Weyl cones are tilted in opposite direction. (b)
the Weyl cones are tilted in the same direction. In the region
enclosed within blue contours, we find anomalous behavior
of conductivity with the scattering strength, i.e., the magni-
tude of the conductivity increases on the increase of scattering
strength. We choose a = 0.5, and € = 0.01.

tervalley scattering strength in the presence of a B field.
We note that the presence of the tilt parameter curves
the contour a. separating the two strong sign-reversed
regions, i.e., a. = a.(t,). This dependence is expected
because the presence of tilt parameter contribute addi-
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chirality, t. is the tilt, and o' are scattering rates from node i to node j.

(b) LMC as a function of magnetic field when

the intervalley scattering rates are less than the critical value. (c) LMC as a function of magnetic field when the intervalley

scattering rates are above the critical value. The legends in (b) and (c) are identical. (d) o2 for a fixed value of 1o = 0.19.
Plots (b), (c), and (d) are in the absence of strain, i.e., Bs = 0.
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qualitative behavior is independent of scattering strength.
function of parameters a4 and ¢

». We fixed a2 = 0.19.
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Figure 17. The parameters By (a) and o (b) for inver-
sion asymmetric Weyl semimetals (Eq. 6) in the presence of
both strain-induced field and external magnetic field. We
have fixed a12 = 0.3, Bs = 0.17. Weak sign reversal is not
observed and strong sign-reversal occurs at ais = a14c(t2).

tionally to the dissimilarity of the Fermi surfaces.

2. Weyl cones tilted in the same direction

In the absence of strain it is known that when the nodes
are oriented along the same direction (¢! = ¢;'), the lin-
ear component of the longitudinal magnetoconductivity
does not survive as the contributions from both nodes
cancel out [34, 38, 39]. Hence, as expected, only strong
sign-reversal is observed as a function of intervalley scat-
tering strength. Now, in the presence of only strain in-
duced field, such cancellation does not occur and one

(b), (c), and (d) plot the parameters o2, Bso, and o(Bso) as a

observes weak sign-reversal as a function of the tilt pa-
rameter. Furthermore, in the presence of Bs-field and ab-
sence of external magnetic field, we observe both strong
and weak sign-reversal. To illustrate this, in Fig. 10 we
plot LMC for a tilted TR broken WSM when the tilts are
oriented in the same direction. When both magnetic field
and strain induced chiral magnetic field are present, the

combination of two can give rise to interesting features.

In Fig. 11(b) we plot the quadratic coefficient o2 as a

function of both tilt and intervalley scattering strength
in the presence of a Bj field. The «.(t,) curve separat-
ing the two sign-reversed phases is different depending
on the fact whether the Weyl cones are oriented opposite
to each other or oriented along the same direction.

8. Striking phase plots

Striking features are observed for the parameters By
(the vertex of the parabola) as well as JZZ . We demon-
strate this in Fig. 12. We fix strain induced gauge field
to be around Bs = 0.17. Let us first focus on the case
when the Weyl cones are oriented opposite to each other.
When a < ag, the sign of By changes continuously from
negative to positive as ¢, is varied from negative to pos-
itive. On the other hand, when a > «., the sign of By
changes from positive to negative as t, is varied from neg-
ative to positive. The effects of strain and tilt and strain
can either add up or cancel out and the combination can
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Figure 19. Planar Hall conductance for inversion asymmetric
Weyl semimetal. (a) PHC as a function of 75, when B =
0, and Bs # 0. (b) The change in the magnitude of the
planar Hall conductivity on increasing a4 infinitesimally. In
the region between the blue contours, we observe anomalous
increase in conductivity. Here we fix, B = 1T, ai2 = 0.4,
a14 = 0.5, and € = 0.01.

tilt the parabola overall to the left or to the right result-
ing in weak sign-reversal. This is demonstrated in the
color plot in Fig. 12 (a). When a > «a., the sign of By
changes discontinuously (feature of strong sign reversal).
Now, since weak sign-reversal does not change the sign
of 09, we do not see a sign change in ¢(©) as one varies
the tilt for a given value of o. The sign change in ¢(©)
only occurs as a result of strong sign-reversal (Fig. 12
(b)). Now, when the cones are oriented along the same
direction, the linear component arising from the tilt is
canceled out and hence we do not observe any change in
By or 0 by varying the tilt. The only change occurs at
a = a, due to strong sign-reversal. This is highlighted
in Figs. 12 (c¢) and (d).
B. Planar Hall Effect

Next we discuss the strain-induced planar Hall effect
for tilted TR broken Weyl semimetals. When the cones
are oriented along the opposite directions we observe a
~ sin 275 behavior and the effect of the tilt is only quan-
titative, and so is the effect of varying intervalley scat-
tering strength. On the other hand, when the cones are
oriented along the same direction, the behavior changes
to ~ sin~ys. Changing the tilt parameter can switch the

increase in the scattering strength (by a small amount ¢).
In both cases, i.e., when the Weyl cones tilted in oppo-
site direction, and when the Weyl cones are tilted in the
same direction, we find regions in the Bs —t, space where
anomalous behavior of the Hall conductivity is observed,
i.e., the magnitude of conductivity increases on increas-
ing the intervalley scattering strength. We have already
seen this behavior for untilted WSM as well (Fig. 7),
and here we calculate its dependence on the tilting of the
Weyl cones. Before closing this section, we point out that
in experiments where strain can be applied and manipu-
lated on the inhomogeneous samples can test the above
predictions.
IV. INVERSION ASYMMETRIC WEYL
SEMIMETALS

Having discussed the effect of strain in time-reversal
broken WSMs we now move on to the case of inversion
asymmetric WSMs. To this end, we will restrict our at-
tention to the following minimal model for an inversion
asymmetric WSM that consists of four nodes as dictated
by symmetry considerations:

4
H =" (xnhvrk - o + hvpt?k.00). (6)
n=1

The system consists of four Weyl nodes located at the
points K = (+ko, 0, £k) in the Brillouin zone. In Eq. 6,
Xn is the chirality, and we are also introducing the pa-
rameter t7, that represents the tilting of the Weyl cone.
The Weyl cones are assumed to be tilted only along the z
direction. Specifically, (l,tz):(xl,t(zl)) = (—x2, 9’) =
(x3, ft,(f’)) = (7X4,ftg4)), such that inversion symme-
try is broken. The tilt parameter ¢, is considered to be



less than unity. Fig. 15(a) plots the schematic diagram
of this prototype inversion asymmetric Weyl semimetal.
Specifically, we must consider four intranode scattering
channels (node n <= n) and four internode scattering
channels (node n <= [n + 1]mod 4). The dimensionless
scattering strength between node m and node n is de-
noted as a™". For simplicity, we ignore the scattering
between nodes (4 <= 2) and nodes (1 <= 3) since they
involve a large momentum transfer compared to others.
The four internode scatterings can be divided into two
categories: (i) scattering between Weyl cones of opposite
chirality and opposite tilt orientation (1 <= 2) and (3
<= 4), and (ii) scattering between Weyl cones of oppo-
site chirality and same tilt orientation (1 <= 4) and (2
<= 3). Since both these categories result in different
behaviors, it is of interest to see the interplay between
the two.

A. LMC in the absence of strain

We first examine the behavior of longitudinal magne-
toconductivity in the absence of any strain. Earlier, we
examined that for a system of only two tilted cones (of
opposite chirality), ‘weak’ sign-reversal is possible only if
the cones are oriented opposite to each other. However,
in the current case, ‘weak’ sign-reversal generated by in-
ternode scattering channel (1 <= 2) is exactly cancelled
by scattering channel (4 <= 3). Second, the scatter-
ing (1 <= 4) and (2 <= 3) do not cause weak sign
reversal as they involve Weyl cones with the same tilt.
Therefore, in the absence of Bs field, weak sign-reversal
is not observed for the case of an inversion asymmetric
WSM. In Fig. 15 we plot longitudinal magnetoconductiv-
ity for the inversion asymmetric Weyl semimetal (Eq. 6)
in the absence of strain-induced chiral gauge field Bs.
As discussed, we do not observe any signature of weak
sign-reversal, and there is only strong sign-reversal when
a12 and/or ayy are large enough. Increasing tilt does
not qualitatively change the behavior and increasing the
magnitude of the tilt in either direction is only seen to
increase the magnitude of magnetoconductivity.

B. LMC in the presence of strain and absence of
external magnetic field

Next, we study the behavior in the absence of an exter-
nal magnetic field but in the presence of strain-induced
gauge field Bs. First, similar to the case with TR, bro-
ken Weyl semimetals, we find that strain-induced chi-
ral magnetic field B; always results in a negative LMC
coeflicient crg). This results in contradiction to earlier
claims that find an increase in longitudinal magneto-
conductivity with strain [28, 30]. The reason can be
traced out to the non-inclusion of intervalley scattering,
momentum-dependent scattering, and charge conserva-
tion, all of which are included in the current work (see
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Appendix A). Furthermore, we find that strain, by itself
results in strong sign-reversal, while tilting, additionally,
results in weak sign reversal. In Fig. 16 (a) we plot LMC
as a function of strain-induced magnetic field By, which
clearly demonstrates these features. As before, we fit the
magnetoconductivity via the following expression

022(Bs) = 0{2 (B — Bso)® + 0:.(Bso), (7)
where the slope of the conductivity ngz) is always found
to be negative irrespective of the value of tilt, strain, in-
tervalley scattering strengths across either nodes. The
center of the parabola (Bjg) directly correlates with the
tilt parameter ¢t,. Depending on the sign of t,, Bsg can
be either positive or negative. The parameter Bsg is also
found to have dependence on the scattering strength, but
this dependence is relatively weak compared to the de-
pendence on ¢,. In Figs. 16 (b), (¢), and (d), we plot the
parameters U,(fz), Bs, and 0. (Bso) as a function of vy,
and t,, keeping a5 fixed, and B = 0. No sharp discon-
tinuities are observed in the parameters since the system
is already in strong sign-reversed state.

C. LMC in the presence of both strain and
external magnetic field

In inversion asymmetric inhomogeneous Weyl
semimetals, interesting effects can occur as a result of
the interplay between the strain-induced chiral gauge
field, external magnetic field, and the tilt parameter, as
demonstrated in Fig. 17. We examine LMC as a function
of external magnetic field for a fixed value of chiral
gauge field, and use Eq. 3 to evaluate the fit parameters
By, ogi), and Jgg). We do not find a signature weak
sign-reversal, and only strong sign-reversal occurs when
the intervalley scattering ay4 > ai4c, where ag4. now is
a function of tilt parameter. Around o = ay4.(t,) we
find a sharp change in the sign of the parameters By
and aé‘?

in o?z) as well.

that corresponds to a continuous change of sign

D. Experimental implications

It is worthwhile pointing out that by identifying the pa-
rameters By and aﬁ? from the experimentally measured
conductivity, their signs may help identify the dominant
scattering mechanisms in the system, i.e., either intern-
ode or intranode scattering, and also provide us insight
about the strain in the samples as well as the tilting if the
Weyl cones. Experimentally, one may also study LMC
in inversion asymmetric Weyl semimetals by tuning the
amount of strain in the system. Therefore it is of interest
to study the effect of varying strain on LMC. In Fig. 18
(a) we plot 60, = 0,,(B) — 0,.(B = 0) simultaneously
varying the intervalley scattering strength a4 as well as
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the strain induced chiral gauge field B;. We see signa-
tures of both weak and strong sign-reversal. Increasing
« beyond a, results in strong sign-reversal, while change
in the tilt parameter results in weak sign-reversal. We
fix the value of aq2, and evaluate the fit parameters of
0..(B) from Eq. 3. Fig. 18 (b) plots JQ

of Bs and «oq4. The contour aqy. where aii) switches
sign shows a dependence on Bj as well. Therefore the
contour a. is in general a function of both ¢, and Bs.
Fig. 18 (c) and (d) plot the parameters By and o'? ob-
tained from Eq. 3, both of which display very interesting
behavior as a result of varying Bs and ay4. In Fig. 18 (c),
when a < a.(Bs), the sign of By changes from negative
to positive as B changes sign from negative to positive.
When a > «.(Bs), the change of sign is from positive
to negative. At o = «.(Bs), there is strong sign-reversal
resulting in sharp contrasting features on the both sides
of a(Bs). On the other hand, in Fig. 18 (d), o2 does
not change sign as Bs changes sign, but like By, it dis-
plays striking behavior around a.(Bs) due to strong sign-
reversal.

as a function

E. Planar Hall Effect

Before closing this section, we also comment on the
planar Hall effect in inversion asymmetric Weyl semimet-
als. Fig. 19 (a) plots the planar Hall conductivity o, as a
function of the angle 5 in the absence of an external mag-
netic field and presence of strain induced gauge field Bs.
The PHC behaves as ~ sin(2vs) as in Fig. 13 (a). The
contribution from the two time-reversed and opposite tilt
Weyl node pairs adds up, while the contribution from
two time-reversed and same tilt Weyl node pairs cancels
out, and that is why we do not get a ~ sin(~s) trend as
in Fig. 13 (b). In Fig. 19 (b), we plot the change in the
magnitude of the planar Hall conductivity upon infinites-
imally increasing the intervalley strength «y4. We again
notice a region in the Bs — t, space where the variation
of conductivity is anomalous, i.e. increasing intervalley
scattering increases the magnitude of the conductivity.
A similar plot is observed when we instead fix a4 and
vary «qg, therefore we do not explicitly plot this here.



V. THE EFFECT OF INHOMOGENEOUS B;
FIELD.

So far we have assumed that the system is under a
strain profile that gives a constant pseudo magnetic
field., i.e., the BY field is position independent. A
spatially modulating chiral magnetic field would stem
from an appropriate modulation of the valley-dependent
vector potential in momentum space AX. We anticipate
that the effect of including the higher-order terms in the
Fourier expansion could result in the following effects:
(i) averaging of the behavior when the sample size
is larger than regions where B; might be considered
homogeneous, (ii) the low-energy Weyl Hamiltonian may
acquire additional higher order terms that may result in
very interesting effects. We reserve the problem of find-
ing Boltzmann solutions to an inhomogeneous magnetic
field for the future. Keeping only the leading order term
in the Fourier series expansion of AX about k = 0, we
end up with the conclusion that the original Hamiltonian
now has an additional term that is linear in k. Here,
we content ourselves with incorporating this effect into
the modulation of the Fermi velocity [40-42], such that
vp — vp + xOvg, where ¢ is a dimensionless parameter
that incorporates the change in Fermi velocity. To this
end, we study the effect of inhomogeneous strain-induced
chiral gauge field Bs on TR broken untitled WSM and
inversion asymmetric Weyl semimetal.

A. TR broken untilted WSM under
inhomogeneous strain.

In Fig. 20 we plot the LMC as a function of B in pres-
ence of inhomogeneous Bj field. We observe that inho-
mogeneity causes deviations from the quadratic depen-
dence of LMC on the magnetic field and also can lead
to non-monotonic behavior. We also have studied the ef-
fect of inhomogeneous Bs field on LMC for the following
cases: (i) Bs =0and B #0, (ii) Bs #0and B=0. In
case-(i), we find that the LMC becomes positive at large
enough 4 for all values of a. In case-(ii), no sign rever-
sal is observed but in-homogeneity in By shifts the focus
of the parabola. We do not explicitly plot this behav-
ior. We conclude that weak inhomogeneity in the strain-
induced chiral gauge field results primarily in quantita-
tive changes while moderate amount of inhomogeneity
may result in non-monotonic behavior of LMC.

B. Inversion Asymmetric tilted WSM under
inhomogeneous strain.

We consider the four-node minimal model of inversion
asymmetric tilted WSM as described in Eq. 6. To study
the effect of inhomogeneity in the strain-induced chiral
magnetic field Bs, we modify the Fermi velocity at each
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valley as described in the case of TR-broken untilted
WSMs. In Fig. 21 (a-d) we have plotted the change in
LMCi.e; d0,,(B) vs. B for different values of 6. Asin the
case of homogeneous Bj field, we are able fit the magneto-
conductivity via; o..(Bs) = ag)(B — Bs0)? + 0..(Bso).
As described earlier, due to the non-zero By field the
LMC parabola has a different vertex and shows “weak
sign reversal”. The effect of the inhomogeneity is to shift
the vertex and focus of the LMC parabola. We also have
studied the LMC as a function of the Bj field in the ab-
sence of an external magnetic field at different values of
tilt t,. We find that “weak sign reversal” is intact up to
6 = 0.20. We do not plot this explicitly. We conclude
that weak inhomogeneity in the chiral gauge field does
not result in qualitative changes of the results.

VI. CONCLUSIONS

The sign of longitudinal magnetoconductivity in Weyl
semimetals due to chiral anomaly has been a subject of
intense research [31-34, 38, 39, 43-50]. Almost unan-
imously, the sign of longitudinal magnetoconductivity
has been agreed upon to be positive, at least within the
limit of weak magnetic fields. However, various factors,
such as tilting of the Weyl cones, strain, and inhomo-
geneties in the material, qualitatively affect the LMC in
Weyl semimetals. The interplay between various param-
eters, such as intervalley scattering, tilt, strain-induced
chiral gauge field, and the external magnetic field, leads
to many striking features in both the longitudinal magne-
toconductance and the planar Hall conductance of Weyl
semimetals, which has been the focus of this work.

In this work, we first show the conventional method of
assigning a sign to magnetoconductivity, i.e., comparing
the magnitude of conductivity for field B with B £ € (e
being arbitrary), leads to ambiguities when the system
is subjected to strain. Specifically, the sign of magneto-
conductivity could depend on the direction of the mag-
netic field. Thus there is a necessity to define weak sign-
reversal and strong sign-reversal, both of which are qual-
itatively different and result in qualitatively different re-
sponses. Weak sign-reversal, in general, leads to smooth
changes in the fit parameters of the conductivity, while
strong sign-reversal leads to very sharp changes. Weak
sign-reversal is specifically characterized by a change in
the vertex and the axis of the parabola of conductivity
with respect to the magnetic field. In contrast, strong
sign-reversal is characterized by an opposite orientation,
i.e., the direction in which the parabola opens is reversed.
The qualitative difference between strong and weak sign
reversal stems from the fact that unlike weak sign re-
versal, strong sign reversal (with respect to an external
magnetic field) depends on the strength of intervalley
scattering. Table I and Table II highlight the differences
as well.

Broadly speaking: (i) when strain-induced chiral gauge
field is absent and external magnetic field is present,



strong intervalley scattering results in strong-sign rever-
sal, (ii) when chiral gauge field is present and magnetic
field is absent, the system, by default, shows strong sign-
reversed state for both weak and strong intervalley scat-
tering, (iii) when both chiral gauge and external mag-
netic field are present, there is both weak and strong
sign-reversal. The latter is also experimentally the most
relevant scenario, and we show that it leads to very strik-
ing phase plots that can be explored experimentally in
current and upcoming experiments in Weyl semimetals.
In practice, the parameters could be evaluated by fitting
the conductivity from the experiments, which could give
us insight into the system’s strain, tilt, and dominant
scattering mechanism.

We have also studied the effect of strain on the planar
Hall conductance. Another striking feature of anomalous
variation of the planar Hall conductivity is also unraveled
due to the rich interplay between the chiral gauge and ex-
ternal magnetic field, where the magnitude of conductiv-
ity can increase with increasing scattering strength. Last,
we also briefly comment that the presence of weak inho-
mogeneities in the chiral gauge field only quantitatively
affects the results. In this manuscript, we have restricted
ourselves to the case where £k = 0 term in the Fourier
series expansion of AX dominates over the others. We
anticipate that the effect of including the higher-order
terms in the Fourier expansion could result in the follow-
ing effects: (i) averaging of the behavior when the sample
size is larger than regions where Bs might be considered
homogeneous, (ii) the low-energy Weyl Hamiltonian may
acquire additional higher order terms that may result in
very interesting effects. A full-fledged Boltzmann analy-
sis for inhomogeneous fields remains an important study
reserved for the future.
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Appendix A: Boltzmann formalism for
magnetotransport

Using the quasiclassical Boltzmann theory, we study
transport in Weyl semimetals in the limit of weak elec-
tric and magnetic fields. Since quasiclassical Boltzmann
theory is valid away from the nodal point such that
u? > hv%eB, therefore without any loss of generality we
will assume that the chemical potential lies in the con-
duction band. The phenomenological Boltzmann equa-
tion for the non-equilibrium distribution function f¥ can
be expressed as [51]

o .
<at—|—f‘x'vr+kx'vk> ff::Icoll[flf]a (Al)
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where the collision term on the right-hand side of the
equation incorporates the effects of scattering due to im-
purities. In the presence of electric (E) and magnetic (B)
fields, the semiclassical dynamics of the Bloch electrons
s [22]

X = DX (%(E QX %(vx Q9B +v;g))

pY = —eDX (E +Vvix B+ %(E : B)QX) . (A2)
where v{ is the band velocity, QX = —xk/2k? is the
Berry curvature, and DX = (1+ eB - QX/h)~!. The self-

rotation of Bloch wavepacket also gives rise to an orbital
magnetic moment (OMM) [35] my. In the presence of
magnetic field, the OMM shifts the energy dispersion as
e — e —my - B. Interestingly, the Berry curvature and
the orbital magnetic moment turn out to be independent
of the tilting of the Weyl cones.

The collision integral must take into account scattering
between the two Weyl nodes (internode, x < x’), as
well as scattering withing a Weyl node (intranode, y <=
X), and thus Zeon[fX] can be expressed as

coll fk Zzwﬁoﬁ/ fk/ f}i()7 (A?))
where the scattering rate Wﬁ‘ﬁl, is given by [51]
r 2T n
lec,)li’ = h V <wk’|Ul)<<li<’ |,(/)k>| 6(61(’ - €F) (A4)

In the above expression n is the impurity concentration,
V is the system volume, [¢y) is the Weyl spinor wave-
function (which is obtained by diagonalizing the low-

energy Weyl Hamiltonian given in the main text), Uﬁ‘ﬁ‘,/
is the scattering potential, and ep is the Fermi energy.
The scattering potential profile Ufflf,/ is determined by
the nature of impurities. Here we restrict ourselves to
only non-magnetic point-like impurity, but distinguish
between intervalley and intravalley scattering. This can
be controlled independently in our formalism. Thus, the
scattering matrix is momentum- independent but has a

dependence on the chirality, i.e. Ukk, = UXXL

The distribution function is assumed to take the form
= f& + g, where f§ is the equilibrium Fermi-Dirac
distribution function and gy indicates the deviation from
equilibrium. In the steady state, the Boltzmann equation
(Eq. A1) takes the following form

() (o o)

= eDXzZ e (90— 95)

(A5)

The deviation g is assumed to be linearly proportional



to the applied electric field

We fix the direction of the applied external electric field
to be along +2, i.e., E = EZ. Therefore only A} = A},
is relevant. Further, we rotate the magnetic field along
the zz-plane such that it makes an angle v with respect
to the Z—axis, i.e., B = B(co0s~,0,sinvy). When v = /2,
the electric and magnetic fields are parallel to each other.
Similarly, the strain induced chiral gauge field is rotated
in the xzz-plane, i.e,. BgX = xBs(cos~s, 0,8inv5). When
~vs # /2, the electric and gauge field are non-collinear
and this geometry will be useful in analyzing the strain
induced planar Hall effect. Thus the net magnetic field
at each valley becomes BX — B + xBs.

(A6)

Keeping terms only up to linear order in the electric

J

T} N wnZ' X"'Q///

where N now indicates the total number of impu-
rities, and GX"(0,¢,0',¢') = (1 + xn(cos@cosb’ +
sin 0sin 6’ cos(p—¢’))) is the Weyl chirality factor defined
by the overlap of the wavefunctions. The Fermi wavevec-
tor contour kX is evaluated by equating the energy ex-
pression with the Fermi energy. The three-dimensional
integral in Eq. A9 is reduced to just integration in ¢’ and
¢’. The scattering time 7 depends on the chemical po-
tential (u), and is a functlon of the angular variables 6

and ¢.

pX(E')? / - /
Tﬂi _vz//l klnlsm@ GX(DY)tdo'de
(A10)

where X7 = N|UX"|? /47x?h%. The Boltzmann equation
(Eq A7) assumes the form

AX(0,9)
(0, ¢)

ﬁXn k/ 7 / / / /
VZ//| sm9§X"(D’) LAN(O', ¢')dO' do
(A11)

hi(0,0) + =7—
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field, Eq. A5 takes the following form

, ., eB |
DX |:’U1>(< + siny(QX Vﬁ):l = ZZ WS (AL — AY)
n  k
(A7)

In order to solve the above equation, we first define the
valley scattering rate as follows

1 A3k’
o VZ/ )

Due to the tilting of the Weyl cones the azimuthal sym-
metry is destroyed even when the electric and magnetic
fields are parallel to each other, and therefore all the
integrations are performed over both 6 and ¢. The ra-
dial integration is simplified due to the delta-function in
Eq. A4.

Substituting the scattering rate from Eq. A4 in the
above equation, we have

n \—1ypmx
D)~ WIS

(A8)

25in0'G¥1(0, 6,6/, ¢')(cly — ex) (DY)~ dI'd0'd), (A9)
[
We make the following ansatz for AX(6, ¢)
AX(0,0) = (A — h)X(0,¢) + a* cos 0+
bXsinf cos ¢ + cXsinOsin §)7X(0,¢), (Al2)
where we  solve for the eight unknowns

(Al a The L.H.S in Eq. All simpli-
fies to AX 4+ aX cosf + bXsinfcos ¢ + cXsinfsin¢. The
R.H.S of Eq. A11 simplifies to

vy o [[re.srgan

b sin @’ cos ¢’ + ¢ sin @' sin ¢')dO' d¢’,

+1 341+l
, 0 e,

—h(0',¢") + a" cos '+

(A13)
where the function
nig! Al (k/)d A0 (DTN Xx(p!
f (9,¢)ZWSIHQ(DI(,) T#(Q,(;S) (A14)
k/

The above equations, when written down explicitly take
the form of seven simultaneous equations to be solved
for eight variables. The final constraint comes from the
particle number conservation

DL
X k

Eq. A12, Eq. A13, Eq. A14 and Eq. A15 are solved to-

(A15)



gether with Eq A10, simultaneously for the eight un-
knowns (A\*!, a*! b+, c*1). Due to the complicated na-
ture of the equations, all the two dimensional integrals
w.r.t {€, ¢'}, and the solution of the simultaneous equa-
tions are performed numerically.

For the inversion asymmetric WSM with four Weyl
nodes, the distribution function at each node can be rep-
resented by fi*. Generalizing the formalism presented
above, the collision integral must take into account scat-
tering between multiple Weyl cones. Thus Z.on[fi*] can
be expressed as

Z Z Wil (FL — f),

where p runs over all the nodes, and scattering rate Wﬁ” r
is given by

Coll fk (A].G)

27rn|

WlTlf’ = <1/ka| kk/W’k >‘ 5(61{/ —€r) (A17)

The scattering potential profile U} can be chosen such
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that scattering between the nodes (internode) as well as
within each node (intranode) is considered. Proceeding
as before, we define 7" as

[ — Bmp !/ rmp D \—1 / /
s =V [ g 0L a0

(A18)
and the Boltzmann equation becomes
" AT(0,0)
h;,a (67¢) Rl ary Tm 6 d))
ﬂmpk, romp (P \—1Ap (g’ 4/ 1N
VZ N sin0'G™P (D) "TAL(6', ¢ )db' dg.
(A19)

Making the ansatz A} (0, ¢) = (A™ —h}} (0, ) +a™ cos O+
b™ sin 6 cos ¢ + ™ sin \0sin )70, b)), and using the con-
straint for particle number conservatlon, the Boltzmann
equation is reduced to a system of sixteen equations to
be solved for sixteen unknowns.
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