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We show that a magnetic line defect on the surface of a topological insulator generically supports
two distinct branches of spin-polarized and current carrying one-dimensional bound states. We
identify the components of magnetic scattering that lead to the bound states. The velocity, and
hence spin texture, of each of those branches can be independently tuned by a magnetic field rotated
in the plane of the surface. We compute the local net and spin-resolved density of states as well as
spin accumulation and charge currents. The net spin polarization and current due to both bound
and scattering states vary stepwise as a function of the electrostatic and magnetic components of
the scattering potential, and can be tuned by an applied field. We discuss stability of the bound
states with respect to impurity scattering.

I. INTRODUCTION

Spin-momentum locking of the surface states in 3D
topological insulators (TIs) protects them from backscat-
tering except when the perturbing potential breaks time-
reversal symmetry. [1–3] Common belief is that for non-
magnetic scattering the salient features of these states,
such as the Dirac spectrum, remain intact. However,
resonance (nearly localized) states which appear in the
vicinity of individual impurities [4–8] have been observed
in experiments [9–11]. At finite impurity density, for
randomly distributed scattering centers, the entire low-
energy part of Dirac dispersion of the surface topological
states may be modified due to hybridization with the im-
purity resonances. [12, 13]. Impurity signatures appear
not only in the total density of states, but also in the spin
textures arising from the spin-momentum locking [4].

Multiple scattering on impurity clusters, may almost
lift the topological protection [14], generating gaplike
features for quasi-regularly arranged impurity centers.
These observations raise the question of whether spa-
tially extended defects [11] can be used to control spin
textures, or spin and charge currents at topological sur-
faces. In this paper we show how this can be achieved in
a minimal model of extended defects.

The simplest such defect is a line [15–19], realized ex-
perimentally near surface steps [20, 21]. Both localized
(1D states propagating along the line) and scattering
states have been studied for electrostatic potential on a
line or strip [15, 17, 22, 23], while scattering states were
also investigated for a magnetic strip [24]. We consider
the combined effect of electrostatic and magnetic scatter-
ing on a line defect, and compute the resultant spin tex-
tures and charge currents, sketched in Fig. 1. If magnetic
scattering is due to the adsorbed atoms with classical
magnetic moments we show that the in-plane magnetic
field, that orients those moments, controls magnetiza-
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Figure 1. Topological Insulator with a line defect at the sur-
face supports localized (shaded red) states in addition to scat-
tering electrons. Both in-plane and out-of-plane spin accu-
mulation and charge currents parallel to the defect line result
from magnetic scattering, and their magnitudes can be con-
trolled via an external magnetic field.

tion and net charge current. The current varies stepwise
with the field direction, with the values determined by
the chemical potential position in the Dirac cone. These
results are parametrically stable with respect to random
point-like impurity scattering. Our results open the pos-
sibility of using line defects at surfaces of 3D topological
insulators to create current and magnetization channels.

II. MODEL

We model the surface states by a Dirac Hamiltonian
in spin space [1, 2], and include a line defect with both
magnetic and non-magnetic scattering,

H = v(σ × k̂)z + U011δ(x) +
∑

i=x,y,z

Uiσiδ(x) . (1)

Here U0 is the electrostatic potential, Ui’s describe
magnetic scattering, σi are the Pauli matrices in spin

space [25], and k̂ is the momentum operator. The estab-
lished agreement between the results from a 3D-based de-
scription of the surface states [5, 7, 8, 23] and the effective
surface models [4, 6, 22] justifies this choice of the Hamil-
tonian. Since Eq. (1) is written in the long-wavelength
approximation near the Γ point for typical tetradymite
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topological insulators [1–3], the δ-function approxima-
tion is valid for the potentials that decay on the scale
l0 ∼ v/EG, where EG is the bulk energy gap. The first
term above yields helical linearly dispersing states in the
absence of scattering. We assume ferromagnetic align-
ment of the spins at the defect line [26, 27], but allow
for rotation of the moments by an external in-plane field,
thus changing the values of Ui’s.

It is instructive first to perform a symmetry analysis
of Eq. (1). The momentum along the defect, ky, is a
good quantum number, and can be used to classify the
eigenstates. In Eq. (1) the first term is both particle-
hole and time-reversal symmetric. U0 breaks the particle-
hole symmetry, while Ui breaks time-reversal symmetry
of the Hamiltonian. The latter allows spin accumulation
and charge currents, but those are further constrained
by symmetry. When only magnetic scattering due to
Ux is present, the mirror symmetry about x-axis is bro-
ken while the mirror symmetry about the y-axis is intact.
Thus, we expect the spin components sy and sz to change
sign across the defect, while sx remains continuous. On
the other hand, when only magnetic scattering due to Uy
is present, the mirror symmetry about the y-axis is bro-
ken while mirror symmetry about x-axis is intact. This,
combined with translational symmetry along y, implies
that sy will be constant along y-axis, while sx and sz
must vanish. Later we will see that sy also vanishes for
this case.

III. BOUNDARY CONDITIONS.

The Hamiltonian has to be supplemented by the
boundary conditions at the defect line. For the linear
in momentum Dirac systems, the wave function is dis-
continuous across the boundary [28, 29]. The boundary
conditions for scalar potentials and step discontinuity
were investigated in graphene [30–32] and topological in-
sulators [16, 19, 33]. Similar boundary condition arise
at an edge between two surfaces on different planes as
elucidated in Ref. 18.

Direct integration of the eigenvalue equation, Hψ =

Eψ [30–32] gives ψ(x) = e
∫ x
x0
Ôdx

ψ(x0), where

vÔ = −iσy [E − (U011 +U · σ)δ(x)− vσxky] . (2)

Evaluating the integral across the defect line we find

ψ(0+) = e
(U0iσy+Uxσz+iUy11−Uzσx)

v ψ(0−)≡Mψ(0−), (3)

where matrix M encodes the boundary condition. In
Eq. (3), Uy appears as pure phase, and does not affect the
observables, hence we set Uy = 0. In contrast, U0 rotates
the spinor, while Ux and Uz also change the magnitude
of the spinor components. This boundary condition en-
forces continuity of the x-component of the current, and
hence satisfies particle conservation [33–36]. Note that,
while the general form of the matrixM could be inferred

Figure 2. Energy spectrum of the bounds states (purple/green
lines) for different values of U0 and Ux. We set v = 1, and
denoted the Dirac cone with a dashed line. The velocities v±,
Eq. (7) , have different dependence on U0 and Ux, see panels
(a)-(d) and (e)-(f), and hence can be separately tuned. In
addition to the six cases shown, there are six additional cases
for a different set of values of the potentials which yield bound
states with the energies of the opposite sign, to those above,
at each ky, which we refer to as cases (a’)-(e’) in Fig. 5.

from the current conservation (in analogy with how it was
derived for potential impurities in Ref. 36), Eq. (3) gives
the connection between the specific components of that
matrix and corresponding scattering potentials. This is
important for our subsequent analysis of the influence of
the magnetic field, see Sec. VIII. Below we set Uz = 0
since a) dipolar interactions favor in-plane spin orienta-
tion; b) out-of-plane magnetic field opens a gap in the
surface states spectrum removing low energy extended
states; c) we verified the absence of bound states near
the defect lines for Uz 6= 0.

IV. BOUND STATES

For Ux, U0 6= 0 the Hamiltonian in Eq. (1), sub-
ject to the boundary conditions above, supports one-
dimensional states bound to the defect of the form

ψ±(x > 0, ky) =

(
sin α±

2
± cos α±2

)√
λ±
b
e−λ±xeikyy, (4)

and

ψ±(x < 0, ky) =

(
cos α±2
± sin α±

2

)√
λ±
b
eλ±xeikyy. (5)

where b is normalization length along y and λ± > 0 is
the inverse localization length. Imposing the boundary
condition, see Appendix A for details, gives

tan
α±
2

=
η cosh η + (Ux/v) sinh η

η ∓ (U0/v) sinh η
, (6)
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with η =
√
U2
x − U2

0 /v. In the same notation the dis-
persion, E± = ±vky sinα± ≡ v±ky, with the effective
velocity,

v±
v

= −
(
Ux ∓ U0 cosh η

U0 ∓ Ux cosh η

)
. (7)

and the inverse localization length,

λ± = ky cosα± = ±ky
η sinh η

(U0/v)∓ (Ux/v) cosh η
. (8)

For |U0| > |Ux|, the same equations hold if one takes
η → |η|, and replaces hyperbolic functions by their
trigonometric counterparts. Note that the localization
length diverges (λ± → 0) at long wavelengths (ky → 0).

The condition λ± > 0, combined with Eq. (8), means
that the range of existence (ky > 0 or ky < 0) for each
branch is determined by the sign of cosα±, and hence
depends on Ux and U0. In each case, the sign of v± de-
termines whether the branch is above or below the Dirac
point. Several representative cases are shown in Fig. 2,
and other arrangements of the bound state branches can
be inferred from those, as discussed in the caption. Since
|v±| ≤ v the bound states are always “outside” the Dirac
cone.

From the above, the dimensionless parameter charac-
terizing the strength of the scattering is Ui/v. Below
we explore the entire range of the values for the scat-
tering potentials, however, it is helpful to get a quali-
tative feel for the magnitudes involved. In Ref. 11 for
Bi2Te3 the experimental data for the scalar potential at
the surface step were fit with the local line potential of
V0 = 3.8 eV. Assuming V0 has the range comparable to
the in-plane lattice constant , a ∼ 4.38 Å, we estimate
U0 ' V0a ≈ 16.6 eV·Å. The Dirac velocity in Bi2Te3 is
v ≈ 4 eV·Å, yielding U0/v ≈ 4.1. The same authors
analyzed individual impurity resonances in Bi2Te3 for
comparable values of the scalar and magnetic potentials
[11], and we take that as an indication that a wide range
of parameter values can be accessed experimentally. Of
course, only comparison with detailed ab initio calcu-
lations can verify this in full, but such calculations are
beyond the scope of our discussion here.

When Ux = 0 we recover the results of Refs. 15 and
22, and find two symmetric branches above or below the
Dirac point, with |v±| = v cos(U0/v) [22, 38]. Magnetic
scattering breaks the symmetry between ky and −ky, se-
lectively controlling the sign of v± and allowed signs of
ky for each branch, see Fig. 2(a)-(f). To the best of our
knowledge, this behavior has not been recognized previ-
ously.

When
√
U2

0 − U2
x/v = πn, both branches merge with

the Dirac cone and the bound state disappears [39]. For
any U0 there exists at least one value of Ux where v+ = 0
or v− = 0 [40], generalizing the condition U0 = (n +
1/2)π [38] for Ux = 0.

The inverse localization length is λ± '
ky
√

1− (v±/v)2, and hence the states away from

the Dirac point with a smaller velocity are better
localized. For the bound states described by the spinors
in Eq. (4) and (5), the expectation value of the spin
component sy = 0, while sx ∝ λ±v±. The z component
changes sign across the defect line, i.e. has opposite
signs for x > 0 and x < 0, as expected from our
symmetry analysis above, and we find the magnitude
sz ∝ λ2

±/ky. Thus, flatter dispersion results in stronger
out-of-plane polarization. For Ux = 0, the branches are
symmetric, and hence only for the time-reversal broken
states such as in Fig. 2(a)-(f) and the corresponding
complementary cases discussed in the caption we observe
a net polarization.

V. SCATTERING STATES

In addition to creating the bound states the defect also
scatters the states in the Dirac continuum. The cor-
responding processes are shown in Fig. 3. The energy,
E(k) = vk, and the momentum along the defect, ky, are
conserved. Thus, the quasiparticle coming towards the
defect at an angle θ with the positive x-axis, with the
momentum ki = k(cos θ, sin θ) has a reflected component
with kR = (−k cos θ, k sin θ), in addition to the transmit-
ted component with the same momentum ki. We label
the corresponding wavefunctions by the subscript 1 be-
low. It combines with the quasiparticle coming towards
the defect from the opposite side, x > 0, at an angle
θ with the negative x-axis, where the incoming momen-
tum is k′i = kR, with the wave functions labeled by su-
perscript 2. Below we determine the transmission and
reflection coefficients for these processes.

To do this we take into account that the wave func-
tions of the helical quasiparticles have the spinor form
(i, heiϕ)T , where h = sgn(E) is the helicity, and ϕ is
the angle between the direction of its momentum and
the positive x-axis. For the incoming quasiparticles with
momentum ki combining the incident and reflected parts
the of wavefunction in the region x < 0 gives

ψh1 (x < 0, k, θ) ≡ ψ1,i +Rψ1,R

= Ξ

(
i

heiθ

)
eikyyeikxx + ΞRh1

(
i

−he−iθ
)
eikyye−ikxx ,

(9)

while in the region x > 0,

ψh1 (x > 0, k, θ) = T ψ1,T = ΞT h1
(

i
heiθ

)
eikyyeikxx ,

(10)
where Ξ = (2A)−1/2 is the normalization factor with
A being the total surface area. We defined here k =
(kx, ky) = (k cos θ, k sin θ) dropping the index i.

Note that even before computing the reflection and
transmission coefficients it is clear why the potential
Uyσy does not affect the physics beyond an overall phase,
as is seen from Eq. (3). For the non-vanishing reflection
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Figure 3. Scattering processes discussed in Sec. V.

coefficient, there must exist a non-vanishing matrix el-
ement of the scattering potential between the incoming
and the reflected states. However, it is easy to verify that
〈ψi|σy|ψR〉 = 0 for all incoming angles θ. Consequently,
this potential is reflectionless and does not lead to new
phenomena.

Utilizing the boundary condition in Eq. (3) for scat-
tering states, we find the reflection and the transmission
coefficients,

Rh1 = − eiθ sinh η(hU0 sin θ + Ux)/v

η cos θ cosh η + i sinh η(hU0 + Ux sin θ)/v
, (11)

and

T h1 =
ηcos θ

ηcos θ cosh η + i sinh η(hU0 + Ux sin θ)/v
. (12)

In the complementary process, for quasiparticles com-
ing in from x > 0, see Fig. 3,

ψh2 (x < 0, k, θ) = T ψ2,T = ΞT h2
(

i
heiθ

)
eik
′
yyeik

′
xx, (13)

and

ψh2 (x > 0, k, θ) =≡ ψ2,i +Rψ2,R

= Ξ

[(
i

heiθ

)
eik
′
xx +Rh2

(
i

−he−iθ
)
e−ik

′
xx

]
eik
′
yy . (14)

Once again, imposing the boundary conditions, Eq. (3),
we obtain the reflection and transmission coefficients,

Rh2 = − eiθ sinh η(hU0 sin θ + Ux)/v

−η cos θ cosh η + i sinh η(hU0 + Ux sin θ)/v
,

(15)
and

T h2 = − ηcos θ

−ηcos θ cosh η + i sinh η(hU0 + Ux sin θ)/v
.

(16)

Inspection of Eqs. (11)-(12) and Eqs. (15)-(16) reveals
several important observations. First, in the absence of
magnetic scattering, Ux = 0, quasiparticles exhibit Klein
tunneling at normal incidence angles, i.e. |Rh1,2|2 = 0,
as is expected for massless Dirac particles. When Ux 6=
0, there is a non-zero reflection probability at normal
incidence.

Second, since U0 appears only in combination with the
helicity h = sgn(E), the reflection and transmission coef-
ficients are invariant under simultaneous transformation
E → −E and U0 → −U0. This shows that quasiparticles
above and below the Dirac point effectively feel opposite
electrostatic potentials.

For all values of U0 and Ux, the reflection probabilities,
|Rh1 |2 = |Rh2 |2 for each θ. Thus, we expect no current
along the x-axis. To determine whether a current flows
along the defect, we compare the reflection coefficients for
the electrons incident at angles θ and −θ. These are not
equal to each other whenever Ux 6= 0. In a generic case
both the magnitude and the phase of the reflection coeffi-
cients differ for these two angles. In the special situation
of purely magnetic scattering (U0 = 0, Ux 6= 0) the reflec-
tion probability is the same for θ and -θ, but the phases
of the coefficients R differ. Therefore, in all generality,
in the presence of magnetic scattering, we expect that
the time-reversal symmetry breaking is accompanied by
charge currents along the defect line. In a strongly spin-
momentum locked system such as the one we consider
here, this also results in spin accumulation. We discuss
those in Secs. VI-VII below.

VI. LOCAL DENSITY OF STATES AND
FRIEDEL OSCILLATIONS

Local density of states (LDOS) and its spin-resolved
components are accessible, at least in principle, using
scanning tunneling spectroscopies. We therefore com-
pute their main features below. We start with the con-
tribution of the bound states at a given energy, ε. For
each of the bound state branches, labeled by ±, the ith
spin component of LDOS is given by

ρb±i (ε, x) =
b

2π

∫ ∞
−∞

dkyδ(ε− v±ky) 〈ψ±|σi|ψ±〉 , (17)

where the wave functions are given in Sec. IV, and b is the
system length used for normalizing the wave functions.
The corresponding “charge” LDOS, ρb(ε, x), is obtained
replacing the Pauli matrix, σi by the identity matrix, and
the total LDOS due to the bound states is the sum of the
two contributions, ρbi (ε, x) = ρb+i (ε, x) + ρb−i (ε, x).

Upon momentum integration, ky = ε/v±, and there-
fore we defined the energy-dependent inverse decay

length, λ
(ε)
± = (ε/v±) cosα± in analogy with Eq. (8). If

λ
(ε)
± < 0, no bound state exist at energy ε and hence

there is no corresponding contribution to LDOS. While
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if λ
(ε)
± > 0, elementary integration yields

ρb±(ε, x) =
1

2π

λ
(ε)
±
|v±|

e−2λ
(ε)
± |x| , (18a)

ρb±x (ε, x) =
1

2π

λ
(ε)
±
v
e−2λ

(ε)
± |x|sgn(v±) , (18b)

ρb±z (ε, x) = − 1

2π

(λ
(ε)
± )2

ε
e−2λ

(ε)
± |x|sgn (xv±) . (18c)

Note that the spin-component normal to the plane
changes sign across the x = 0 line as expected from
the symmetry arguments. The sign of the spin-projected
LDOS depends on the dispersion of the bound states,
v±. In cases when two bound state branches exist at
a given energy, their respective contributions may add
(v−v+ > 0) or subtract (v−v+ < 0), and we give exam-
ples for both situations in Fig. 4.

Scattering of the continuum states on the line defect
produces Friedel oscillations in the LDOS. These oscilla-
tions are a consequence of the interference between the
incoming and reflected waves in Fig. 3 on the same side of
the defect, and therefore are controlled by the reflection
coefficients, Rh1,2, as shown in Appendix B. We evaluate
them from the general expression,

ρsj(ε, x) =
A

(2π)2

∑
i=1,2∫ π/2

−π/2
dθ

∫ ∞
0

dkk 〈σj〉i δ(ε− E(k)), (19)

where i = 1, 2 correspond to quasiparticles incident from
x → −∞ and x → ∞ respectively, see Fig. 3. At large
distances, kε|x| � 1, the integral can be evaluated ana-
lytically and has a familiar form,

∆ρs(ε, x)

ρ0
= F [U0, Ux]

cos(2kε|x|+ φ)

(kε|x|)3/2
, , (20)

where we defined the deviation of the LDOS from the
uniform value for an unperturbed Dirac cone, ∆ρs(ε, x) =
ρs(ε, x) − ρ0, with ρ0 = kε/2πv, and we introduced for
convenience the momentum kε = |ε|/v. Note that the 3/2
power law for the total LDOS is different from the 1/2
power characteristic of a two-dimensional electron gas,
and agrees with Refs. [15, 17, 41, 42]. The corresponding
spin-resolved LDOS,

ρsx,z(ε, x)

ρ0
= Fx,z[U0, Ux]

cos(2kε|x|+ φx,z)

(kε|x|)1/2
, (21)

vanishes unless Ux 6= 0. Functions F, Fx, Fz and the
phases φ, φx, φz are given in Eqs. (B4), (C10) and (C15)
of the appendix. Their general form is not crucial for our
analysis.

Note that the spin resolved LDOS decays slower than
the net LDOS. Recall that the Friedel oscillations arise
from the interference between incident and reflected

Figure 4. Spin resolved LDOS ρx and ρz for ε = 0.02. Panels
(a), (c): single bound state branch are for U0 = −2 and Ux =
1.4 (we set v = 1 as before). Panels (b),(d): two branches with
opposite spin polarization are for U0 = −1 and Ux = 0.3. We
show the contribution of the bound states, ρbi and the total
LDOS, ρi, including the scattering contribution. Insets of
show the bound state dispersion for the corresponding cases.

waves, and the asymptotic form at kε|x| � 1 is domi-
nated by near backscattering. Spin momentum locking
in TIs ensures that as θ → 0, the overlap 〈ψR|ψi〉 → 0,
reducing the interference effects and leading to a faster
decay of ρs. At the same time 〈ψR|σx,z|ψi〉 does not van-
ish in the same limit, “protecting” the 1/2 power law for
ρsx,z.

In the limit Ux � U0 and Ux � 1, |Rh1,2| → 1 the
integrals can be evaluated exactly at arbitrary values of
x to give

ρs(ε, x) = − |ε|
2πv2

J1(2kεx)

2kεx
, (22a)

ρsx(ε, x) =
sgn(Ux)

2π

ε

v2
J1(2kε|x|), (22b)

ρsz(ε, x) =
sgn(xUx)

2π

kε
v

(
J1(2kεx)

2kεx
− J2(2kεx)

)
, (22c)

where J1 and J2 are Bessel functions of first kind.
Since λ±/kε ∼ 1 for most values of U0 and Ux, at dis-

tances larger than 1/kε the Friedel oscillations determine
the LDOS. Close to the line we evaluate the LDOS nu-
merically, and find that the bound states often, but not
always dominate, with the details depending on the spe-
cific values of U0 and Ux, see appendix D. This holds at
all energies since λ± scales linearly with ε.

Characteristic behavior of LDOS is shown in Fig. 4.
As discussed above, near the defect line the bound state
LDOS depends on whether we have one or two branches
at a given energy, and we show the corresponding cases
from Fig. 2 as insets for reference. If only a single branch
exists, Fig. 2(b), LDOS shows a clear exponential decay
superimposed on Friedel oscillations, Fig. 4(a). If there
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are two branches, the LDOS values for the spin compo-
nent sx ∝ v± add (subtract) when v+v− > 0 (v+v− < 0),
with examples in Fig. 2(d)(Fig. 2(a)). For v+v− < 0,
since λ+ 6= λ−, the more localized state dominates near
x = 0 and its counterpart yields the opposite spin ori-
entation at intermediate distances, see Fig. 4(b). The
situation for ρz is similar, but must incorporate the sign
change at x = 0, see Fig. 4(c,d). At least in principle
these contributions to LDOS can be observed using spin-
polarized STM.

VII. SPIN ACCUMULATION AND CHARGE
CURRENTS.

These LDOS features lead to spatially varying spin ac-
cumulation. The spin density (per unit area) at T = 0 is
given by

Sx,z(x) =

∫ µ

−Λ

[
ρsx,z(ε, x) + ρbx,z(ε, x)

]
dε ≡ Ssx,z + Sbx,z ,

(23)
where µ is the chemical potential and Λ is the high energy
cutoff that we take to coincide with the top of the valence
band, Λ = EG/2. Complete details of the calculation are
given in Appendix E, and here we only emphasize the
important features of the results. The net contribution
of the scattering states arises from the difference between
the spin accumulation due to states below and above the
Dirac point,

Ssx,z = Ss,µx,z − Ss,−Λ
x,z , (24)

where each of the terms has the form familiar from the
Friedel oscillations (β = µ,−Λ)

Ss,βx,z =

(
β

v

)2

Kβ
x,z[U0, Ux]

cos(2|βx|/v + φ̃x,z)

(|βx|/v)3/2
, (25)

with Kβ
x,z and φ̃x,z given in Appendix E. Note that the

long-range decay of each contribution goes as Ss,βx,z ∝
|x|−3/2l

−1/2
β , where lβ = 1/kβ = v/|β| is the charac-

teristic length scale for the high energy cutoff and the
chemical potential, respectively.

Similarly, the cutoff in the integration of the spin accu-
mulation due to the bound states, β, depends on whether
the corresponding branch is below (β = −Λ) or above
(β = µ) the Dirac point. Naively, it would seem that
the contribution of the bound states is much more local-
ized. However, since the localization length diverges as

ε → 0, namely λ
(ε)
± ∝ ε/v, the low energy bound states

provide a long-range tail to the accumulated spin density.
Integration in Eq. (23) with the densities from Eq. (18)
gives

Sbx,z ∼
(β/v±)2

|λ(β)
± x|2

, (26)

Figure 5. Charge current along the defect showing stepwise
dependence on Ux. We take µ = 0.1, v = 1, Λ = 0.5. Panel
(A): U0 = 2; panel (B): U0 = −2. Panel (A) inset: sketch of
the Dirac cone and bulk bands with Λ and µ identified. We
note the combinations of Λ and µ that enter the net current
(see text) and refer to the corresponding dispersion in Fig. 2.

where λ
(β)
± is evaluated at β = µ,−Λ depending on

whether the branch is above or below the Dirac point,
see appendix E for full expressions. For a generic case
when the bound state is not close to merging with the

scattering continuum, v± . v, λ
(β)
± ∼ β/v, the contribu-

tion of the bound states simply decays as |x|−2. While it
is notable that the decay of the spin accumulation due to
the bound states is non-exponential, in the regime of the
validity of Eq. (25) (|x|/lβ � 1), the scattering states

still dominate as Ssx,z/Sbx,z ∼ (|x|/lβ)1/2, albeit not as
strongly as one would naively expect. The out-of-plane
spin density, Sz, creates a magnetic field, and may be de-
tected in magnetometry measurements such as SQuID.
The in-plane magnetization may potentially be detected
optically, from the magneto-optical measurements.

Since the current operator for Dirac systems is pro-
portional to the spin, e.g. jy = eδH/δky = evσx,
spin accumulation leads to net charge currents. Note
Jx ∼ 〈σy〉 = 0 while the current Jy(x) flows along
sgn(Ux)x̂ × ẑ, parallel to the defect, and has a spatial
profile similar to that of Sx(x) above.

The net current at T = 0 is obtained by summing over
the occupied states,

Jy = ev

∫ µ

−Λ

dε

∫ ∞
−∞

dxρx(ε, x) (27)

Using Eq. (18b), and performing the spatial integration
results in energy-independent integrand, sgn(v±)/2πv,
for the energy integral. Thus, for µ > 0, the bound state
currents are independent of the values of the velocity, and
are sgn(v±)eµ/2π and sgn(v±)eΛ/2π for branches above
and below Dirac point, respectively. For µ < 0, each
branch below the Dirac point contributes sgn(v±)e(µ +
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Λ)/2π. Therefore, the bound state contribution to Jy
changes stepwise with the magnetic potential Ux as the
branches evolve according to Fig. 2.

The contribution of the scattering states is small for
|Ux| < |U0| since the scattering anisotropy inR, Eq. (11),
is weak, and the currents due to electrons incoming at the
angles θ and−θ nearly compensate. In the opposite limit,
|Ux| � |U0| the reflection coefficient |R| → 1 irrespective
of θ. Performing spatial integration over ρsx (Eq. (18b))
and summing over filled states, we find that the limiting
value of the current due to the scattering state is also
insensitive to the magnitude of the magnetic scattering
potential, namely

Jsy,0 = sgn(Ux)
e(|µ| − Λ)

2π
. (28)

This saturated (|Ux|-independent) value is evident al-
ready at moderate values of Ux in Fig. 5, where we eval-
uated all currents numerically, and found that the total
current also varies nearly stepwise with Ux. One of the
values of the Ux where the current changes nearly discon-
tinuously, marked by vertical dashed lines, corresponds
to |Ux| = |U0| (2 in our case). Here η =

√
U2
x − U2

0 /v
changes from real to imaginary and therefore the am-
plitude of the Friedel oscillations, as well as spin accu-
mulation change abruptly, see Appendix E. The other
discontinuity in the current due to the scattering states
occurs when sign of bound state velocity of one of the
branches changes. For |Ux| < |U0| we find this to happen
numerically at U?x/v ≈ ±0.66 for values in Fig. 5. Setting
v± = 0 in Eq. (7) with |Ux| < |U0|, this corresponds to

Ux ∓ U0 cos(
√
U2

0 − U2
x/v) = 0. Expansion to the sec-

ond order in Ux/U0 yields a close approximate solution,
for the critical value of the scattering potential when the
dispersion of the bound states becomes flat,

U?x
v
≈
±(−1 +

√
1− (U0/v) sin(2U0/v))

sin(U0/v)
≈ 0.64. (29)

Thus, both the current due to the scattering states
and that due to the bound states vary discontinuously
with the value of the magnetic scattering potential, Ux,
and hence the total current varies stepwise with Ux. In
the next section we discuss how this current can be con-
trolled. It is important to note, however, that these cur-
rents are dissipationless, and therefore are difficult to de-
tect in transport measurements. Instead, they can be
identified by the magnetic fields they generate or via op-
tical measurements.

VIII. CONTROL OF SPIN-ACCUMULATION
AND CHARGE CURRENTS

One of our main findings is that magnetic scattering
from the spins aligned with the defect line (Uy) and those
normal to it in the plane (Ux) has very different con-
sequences for the observable spin textures and currents.

This opens an avenue for on-demand control of the bound
state dispersion and scattering properties of extended
states. If the magnetic scattering is due to the classical
spins (S) on the defect, the direction of the magnetic mo-
ments in the plane determines the ratio Ux/Uy ∝ Sx/Sy.
In the absence of in-plane magnetic anisotropy a mag-
netic field, B, applied along the surface controls the di-
rection of spins along the defect line, Bx/By ≈ Sx/Sy.
Assuming that the potential scattering is insensitive to
the applied field, and recalling that Uy is irrelevant for
physical observables, we are led to conclude that rotat-
ing the field with respect to the line defect effectively
changes the ratio Ux/U0. This, in turn, controls the spin
accumulation and charge currents.

Now we show that such a field does not alter the elec-
tronic properties or the boundary conditions that we used
to reach our conclusions. Orbital coupling shifts the mo-
mentum of an electron, k→ k − eA. For the field along
the surface, choosing the vector potential along the z-
axis, A = (0, 0, Bxy−Byx), leaves kx and ky unchanged.
For the same in-plane field we must also account for the
Zeeman term− gµB~ σ·B, where µB is the Bohr magneton,
and g is the gyromagnetic factor. Zeeman contribution

results in shift in both k̂y and k̂x [1, 2], k̂x → k̂x+ gµB
2 By

and k̂y → k̂y − gµB
2 Bx. This feature is a consequence

of the linearity of the Hamiltonian in the momentum

k, see Eq. (1). The shift in k̂x appears as an overall
phase, so can also be gauged away by making the choice
A = ( gµB2e By, 0, Bxy−Byx). In turn, the shift of the mo-

mentum k̂y simply relocates the entire spectrum, includ-
ing the Dirac point, to a finite momentum. Crucially,
because of the same linearity of the Hamiltonian in k,
this shift does not affect the current operator. Since the
spin structure of the states is also insensitive to the loca-
tion of the Dirac point in the momentum space, none of
the physical observables depend on the in-plane magnetic
field.

Also note that boundary condition remains unchanged,
since the integral across the defect that was performed to
arrive to Eq. (3) depends only on the terms that are sin-
gular at the defect, which orbital coupling and Zeeman
term are not. We therefore conclude that, if an applied
magnetic field is rotated in the surface plane, it tunes
the value of Ux and, consequently, the ratio Ux/U0. The
maximal ratio is achieved for the field normal to the de-
fect line, while the field along the defect line removes the
observable effects of magnetic component of the scatter-
ing. Hence the discreteness of the currents as a function
of Ux, shown in Fig. 5, directly translates into discrete
jumps as a function of the field direction.

IX. DISORDER BROADENING.

Since extended and bound states coexist at different ky
for the same energy E, randomly located point impurities
mix the two. We estimate the broadening of the bound
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states in the Born approximation. To the second order
in the scattering potential,

Γ = 2π
∑
~k

| 〈ψs|V̂ |ψb〉 |2δ(ε− E(k)), (30)

where |ψb〉 and |ψs〉 are the bound state and scattering

state wavefunctions respectively and V̂ is the impurity
potential, which we take to be a superposition of ran-
domly distributed point-like scatterers of strength V0.
We find (see Appendix F for details)

Γ =
nimpV

2
0 |ε|

v2
F (v±/v). (31)

Here nimp is the impurity concentration. The result
is intuitively clear as the broadening is proportional
to density of extended states available for scattering,
ρ0 = |ε|/2πv2, and the usual Born factor nimpV

2
0 . The

spin-momentum locking and other details of the states
are captured solely by the appearance of a monotonic
but bounded function, F (v±/v) ≤ π, which depends on
the mismatch between v± and v, see Eq. (F5). This re-
sult means that the bound states are parametrically well
defined at sufficiently clean surfaces, under the condition
nimpV

2
0 /v

2 � 1.

X. DISCUSSION AND CONCLUSIONS.

We showed that linear defects with magnetic compo-
nent of scattering at surfaces of topological insulators
support spin-polarized bound states, whose signatures
are accessible by local scanning probes. Spin structure
of the bound states combines with the asymmetric scat-
tering of the extended quasiparticles, due to breaking of
time-reversal symmetry, and results in macroscopic spin
accumulation and the flow of non-dissipative charge cur-
rents along the defect. Our most important conclusions
are that the magnetic moments of the scattering centers
along and normal to the defect line play very different
roles, and therefore varying the angle between an ex-
ternal magnetic field applied along the surface and the
defect line effectively controls the strength of magnetic
scattering. Since the charge currents vary stepwise as a
function of the strength of magnetic scattering, the same
stepwise dependence will appear as a function of the field
direction in the plane.

Above we used a continuum long-wavelength Hamil-
tonian. In lattice models the bound states merge with
either valence or conduction band [23] at momenta com-
parable to the size of the Brillouin zone. The result-
ing non-linearity of the dispersion will modify the values
of the net magnetic moment and the current, and wash
out the sharp transitions between the plateaus in Fig. 5,
but our main conclusions remain unaffected. Similarly,
weak hexagonal modulation of the Dirac cone changes
the quantitative details but not the qualitative behavior
found here.

It is important to note that the currents we find are
a feature of the ground state, and therefore dissipation-
less (flow in the absence of external bias). Consequently,
they cannot be easily measured using standard transport
techniques and geometries. Instead, these currents will
be most easily accessible and detectable via the magnetic
fields they produce. In this context, our work motivates
studies of patterned networks of line defects, where the
desired spatial distribution of these currents and the as-
sociated fields can be created. In this context our work
is a part of a bigger effort of defect engineering of surface
and interface properties.
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Appendix A: Wavefunction of the bound states.

We look for eigenstates of the Hamiltonian, Eq. (1) of
the main text, of the form

ψ(x, ky) =

(
C
D

)
eikyye−λ|x|

√
λ

b
, (A1)

where b is normalization length along y, and λ > 0 for
solutions to be normalizable along x. By substituting it
in the hamiltonian we find,

v

(
0 ky − λsgn(x)

ky + λsgn(x) 0

)(
C
D

)
= E

(
C
D

)
. (A2)

The eigenvalue for the above equation is E =

±v
√
k2
y − λ2.

For real eigenvalues E, λ < |ky|. We therefore intro-
duce parameters α± such that energy eigenvalue E± =
±vky sinα± and λ± = ky cosα±. Then solving for the
eigenfunctions we obtain the wavefunctions in Eqs. (4)
and (5). Imposing the boundary condition (Eq. (3) of
the main text) we obtain the energy eigenvalues,

E = −vky
(
Ux ∓ U0 cosh η

U0 ∓ Ux cosh η

)
, (A3)

and Eqs. (6) and (8) follow.

Appendix B: Local Density of States: Scattering
States

Scattering state LDOS is given by Eq. (19) with σi
replaced by identity matrix.
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ρs(ε, x) =
A|ε|

(2π)2v2

∑
i=1,2

∫ π/2

π/2

dθ|ψhi (kε, θ)|2 , (B1)

where A is the area of the surface, and appears for nor-
malization. kε = |ε|/v and we have suppressed spatial
dependence of wavefunction for brevity. Sum over 1 and
2 corresponds to particle coming in from left and right
respectively. Since the two are not coherent, we sum the
corresponding amplitudes. For x < 0,

∫ π/2

−π/2
dθ(|ψh1 (kε, θ)|2 + |ψh2 (kε, θ)|2) =

1

A

(
2π + 2Re

(∫ π/2

−π/2
dθRh1e−2ikεx cos θie−iθ sin θ

))
.

(B2)

It is worth emphasizing that it is the reflection coef-
ficient, R that determines the interference between the
incoming and the outgoing states that leads to Friedel os-
cillations. In the limit kε|x| >> 1, the dominant contri-
bution comes only from near the stationary points within
the integration interval. However, Rh1 ie−iθ sin θ vanishes
at θ = 0. Instead we use a generalized version of sta-
tionary phase approximation [47] and the leading order
contribution is computed to be,

∆ρs(ε, r)

ρ0
= F [U0, Ux]

cos(2kε|x|+ φ)

(kε|x|)3/2
(B3)

where ∆ρs(ε, x) = ρs(ε, x)− ρ0, ρ0 = kε/2πv,

F [U0, Ux] =

√
C2

1 + S2
1

2
√
π

, φ = −3π

4
− tan−1

(
S1

C1

)
,

(B4)

C1 = −η
2 sinh2 η(U2

x cosh2 η + U2
0 )

(η2 cosh2 η + U2
0 sinh2 η)2

, (B5)

and

S1 = −sgn(ε)
U0η sinh η cosh η(η2 − U2

x sinh2 η)

(η2 cosh2 η + U2
0 sinh2 η)2

. (B6)

Appendix C: Spin-resolved Local Density of States

1. Continuity of ρx and Discontinuity of ρz

Note that despite the rotation and spinor mag-
nitude change at the defect, see Eq. (3), ρx is

continuous across the defect and ρz is flips direc-
tion at the defect. To demonstrate this, we ex-
plicitly calculate 〈ψ±(x = 0−, ky)|σx,z|ψ±(x = 0−, ky)〉
and 〈ψ±(x = 0−, ky)|M†σx,zM|ψ±(x = 0−, ky)〉 for U =
U0δ(x) case. Setting Ux = 0, the wavefunction

|ψ±(x = 0−, ky)〉 =

√
1∓ sinU0

2

(
1

± cosU0

1∓sinU0

)√
λ

(ε)
±
b
eikyy.

(C1)
Then

〈ψ±(x = 0−, ky)|σx|ψ±(x = 0−, ky)〉 = ± cosU0λ
(ε)
± /b,

(C2)
and

〈ψ±(x = 0−, ky)|σz|ψ±(x = 0−, ky)〉 = ∓ sinU0λ
(ε)
± /b.

(C3)
Now we find

M|ψ±(x = 0−, ky)〉 =

(
cosU0 sinU0

− sinU0 cosU0

)(
1

± cosU0

1∓sinU0

)
√
λ

(ε)
±
b
eikyy

√
1∓ sinU0

2
(C4)

=

(
cosU0

1∓sinU0

±1

)√
λ

(ε)
±
b
eikyy

√
1∓ sinU0

2
(C5)

Explicit evaluation of the expectation values shows
that

〈ψ±(x = 0−, ky)|M†σxM|ψ±(x = 0−, ky)〉

= ± cosU0λ
(ε)
± /b, (C6)

and

〈ψ±(x = 0−, ky)|M†σzM|ψ±(x = 0−, ky)〉

= ± sinU0λ
(ε)
± /b. (C7)

Thus, we see that 〈σx〉 has remained the same across
the defect while 〈σz〉 has flipped sign. This is a conse-
quence of mirror symmetry about y-axis of the Hamilto-
nian which the bound eigenstates have inherited.

2. Scattering States LDOS

Spin-resolved LDOS is defined in general in Eq. (19)
of the main text, and here we focus separately on the x
and z components.



10

a. Spin-resolved LDOS, ρsx(ε, x)

We first consider ρsx, which is given by,

ρsx(ε, x < 0)

=
2

(2π)2

|ε|
v2

∫ π/2

−π/2
Re(Rh1hie−iθe−2ikεx cos θ)dθ. (C8)

Recall that ρsx is symmetric about x = 0 due to mirror
symmetry about y-axis. In the limit kε|x| >> 1, the
dominant contribution is from angles near θ = 0. Using
stationary phase approximation [47],

ρsx(ε, r)

ρ0
= Fx[U0, Ux]

cos(2kε|x|+ φx)

(kε|x|)1/2
, (C9)

where

Fx[U0, Ux] = sgn(ε)

√
C2

2 + S2
2√

π
, φx = −π

4
− tan−1

(
S2

C2

)
,

(C10)

C2 = −sgn(ε)
UxU0 sinh2 η

η2 cosh2 η + U2
0 sinh2 η

, (C11)

and

S2 =
Uxη sinh η cosh η

η2 cosh2 η + U2
0 sinh2 η

. (C12)

b. Spin-resolved LDOS, ρsz(ε, x)

The z components of the spin-LDOS x < 0 is given by

ρsz(ε, x < 0)

=
1

(2π)2

|ε|
v2

∫ π/2

−π/2
2Re(cos θRhi e−iθe−2iεx cos θ/v)dθ.

(C13)

Recall that ρsz is anti-symmetric about x = 0 due to
mirror symmetry about the y-axis. In the limit kε|x| >>
1 the decay law for ρsz is similar to ρsx,

ρsz(ε, r)

ρ0
= Fz[U0, Ux]

cos(2kε|x|+ φz)

(kε|x|)1/2
(C14)

where

Fz[U0, Ux] =
sgn(x)

√
C2

3 + S2
3√

π
,

φx = −π
4
− tan−1

(
S3

C3

)
, (C15)

C3 = − Uxη sinh η cosh η

η2 cosh2 η + U2
0 sinh2 η

, (C16)

and

S3 = −sgn(ε)
UxU0 sinh2 η

η2 cosh2 η + U2
0 sinh2 η

. (C17)

In the main text, we stated that the Friedel oscilla-
tions in spin-resolved LDOS decays slower that LDOS.
Eqs. (C9) and (C14) explicitly show this behavior.

Appendix D: Comparison of Bound and Scattering
States

Figure 6. Ratio of LDOS due to scattering and bound states
at x = 0 and at ε = 0.02 when potentials U0 and Ux are
varied. White space indicates absence of any bound states
above Dirac point. v = 1 and EG = 1.
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Figure 7. Local Density of States at ε = 0.02 when potentials
are set to (a) U0/v = −1.0, Ux/v = −0.5 and (b) U0/v = 3.0,
Ux/v = 1.0, and ∆ρs = ρs − ρ0 where ρ0 = |ε|/2πv2. The
red rectangle and triangle indicate where in parameter space
of Fig. 6 U0 and Ux are located. v = 1 and EG = 1.

In figure 6, we show the ratio of contribution to LDOS
from scattering and bound states at x = 0. When bound
states exist, their contribution is comparable, or even
dominant, over most of the parameter space. As an il-
lustration, in figure 7(a), we have chosen potentials such
that bound state LDOS contribution dominate, while in
figure 7(b) we have chosen them to show comparable
bound and scattering state contributions to LDOS.

Appendix E: Charge Current and Spin
Accumulation Density

In this appendix we compute the current density and
spin accumulation for both bound and scattering states.
In the limit |Ux|/v � |U0|/v � 1 we obtain some exact
results.

1. Bound States

a. Spin accumulation Sb
x and current density J b

y

As discussed in the main text, the in-plane spin accu-
mulation and the current density have the same operator
structure for the massless Dirac systems such as the one
we consider. Considering the bound state contribution,
for the component of the spin (current) normal to (par-
allel to) the defect line we find

Sb±x (x) =
J b±y (x)

ev
=

∫ µ

−Λ

s±x (x, ε)g±(ε)dε

or

∫ µ

−Λ

ρb±x (ε, x)dε, (E1)

where g(ε) = 1
2π|v±| is the density of states for the bound

state branches. Evaluating the energy integral, using
Eq. (18b), we obtained

Sbu±x (x) =
J bu±y (x)

ev
=

1

2π

∫ µ

0

λ
(ε)
±
v
e−2λ

(ε)
± |x|sgn(v±)dε.

(E2)

Performing the integration we determine,

Sbu±x (x) =
J bu±y (x)

ev

=
1

2πv
sgn(v±)µ

(
1− (1 + 2λ

(µ)
± |x|)e−2λ

(µ)
± |x|

4λ
(µ)
± |x|2

)
, (E3)

where λ
(µ)
± = µ

v±
cosα±. One can similarly perform the

integral from −Λ to 0 and obtain,

Sbl±x (x) =
J bl±y (x)

ev

=
Λ

2πv
sgn(v±)

(
1− (1 + 2λ

(−Λ)
± |x|)e−2λ

(−Λ)
± |x|

4λ
(−Λ)
± |x|2

)
.

(E4)

These give us the bound state contribution to in-plane
spin accumulation and current density along y, Sb±x (x) =
Sbu±x (x) + Sbl±x (x) and J b±y (x) = J bu±y (x) + J bl±y (x),
respectively.

We now compute the net bound state current by
performing the spatial integral as well i.e. Jby =

ev
∫ µ
−Λ

dε
∫∞
−∞ dxρbx(ε, x),

Jb±y
ev

=
1

2πv

∫ µ

−Λ

sgn(v±)Θ(λε±)dε. (E5)

The total bound state current is Jby = Jb+y + Jb−y .
When µ > 0, the branches above Dirac point contribute
sgn(v±)eµ/2π and the branches below Dirac point con-
tribute sgn(v±)eΛ/2π to the net current. When µ < 0,
each branch below Dirac point contributes sgn(v±)e(µ+
Λ)/2π.

b. Spin accumulation Sb
z

The out-of-plane spin accumulation is given by

Sb±z (x) =

∫ µ

−Λ

s±z (x, ε)g±(ε)dε or

∫ µ

−Λ

ρb±z (ε, x)dε, (E6)
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where, once again, g(ε) = 1
2π|v±| is the density of states

for the bound state branches. Evaluating the energy in-
tegral, using Eq. (18c), we obtained

Sbu±z (x) =

∫ µ

0

− 1

2π

(λ
(ε)
± )2

ε
e−2λ

(ε)
± |x|sgn (xv±) dε. (E7)

Performing the integral, we find

Sbu±z (x)

= − µ

2π
sgn (x)

cosα±
|v±|

(
1− (1 + 2λ

(µ)
± |x|)e−2λ

(µ)
± |x|

4λ
(µ)
± |x|2

)
(E8)

Similarly performing the energy integral from −Λ to
0, we obtain

Sbl±z (x)

= − Λ

2π
sgn (x)

cosα±
|v±|

(
1− (1 + 2λ

(−Λ)
± |x|)e−2λ

(−Λ)
± |x|

4λ
(−Λ)
± |x|2

)
.

(E9)

These give us the bound state contribution to out-of-
plane spin accumulation, Sb±z (x) = Sbu±z (x) + Sbl±z (x).

2. Scattering States

a. Spin accumulation Ss
x and current density J s

y

Current density and in-plane spin accumulation is
given by

Ssx(x) =
J sy (x)

ev
=

∫ µ

−Λ

ρsx(ε, x)dε

=

∫ µ

0

ρsx(ε, x)dε−
∫ −Λ

0

ρsx(ε, x)dε

= Ss,µx,z − Ss,−Λ
x,z (E10)

In the limit µ|x|/v >> 1, the dominant contribution
is from angles near θ = 0, thus using stationary phase
approximation [47] we obtain,

Ss,µx (x) =

∫ µ

0

ρsx(ε, x)dε

=
(µ
v

)2

Kµ
x [U0, Ux]

cos(2|µx|/v + φ̃x)

(|µx|/v)3/2
(E11)

where

Kµ
x [U0, Ux] = sgn(µ)

√
π

(2π)2

√
C2

4 + S2
4 , (E12)

φ̃x = −π
4
− tan−1

(
S4

C4

)
, (E13)

C4 = −sgn(µ)
ηUx sinh η cosh η

η2 cosh2 η + U0
2 sinh2 η

, (E14)

and

S4 = − U0Ux sinh2 η

η2 cosh2 η + U0
2 sinh2 η

. (E15)

Thus, the oscillations have a period πv/|µ| ∼ π/kF ,

and oscillation amplitude decays as ∼
√
|µ|/v/|x|3/2.

Second integral in Eq. (E10) is obtained by substituting
µ → −Λ above. The Freidel oscillations contribution,
thus obtained, oscillate with a period πv/|Λ| while am-

plitude of oscillations decays as ∼
√
|Λ|/v/|x|3/2. For

|Λ| >> |µ|, the total contribution oscillates with period
πv/|Λ|. For |x| >> v/|µ| the ratio of the two contribu-

tions ∼
√
|Λ/µ|.

In the limit, Ux >> U0 and Ux >> 1, we obtain the
current contribution from scattering states by performing
spatial integration and integration over energy on ρsx in
Eq. (22b). This gives

Jsy
ev

=

∫ µ

−Λ

dε

∫ ∞
−∞

dxρsx(ε, x) = sgn(Ux)
(|µ| − Λ)

2πv
.

(E16)

b. Spin accumulation Ss
z

Out-of-plane spin accumulation is given by

Ssz (x) =

∫ µ

−Λ

ρsz(ε, x)dε =

∫ µ

0

ρsx(ε, x)dε−
∫ −Λ

0

ρsx(ε, x)dε

(E17)
Again, as above, in the limit µ|x|/v >> 1, the domi-

nant contribution is from angles near θ = 0, and we use
the stationary phase approximation [47] to obtain,

Ss,µz (x) =
(µ
v

)2

Kµ
z [U0, Ux]

cos(2|µx|/v + φ̃z)

(|µx|/v)3/2
(E18)

where
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Kµ
z [U0, Ux] =

sgn(x)

(2π)2

√
π
√
C2

5 + S2
5 , (E19)

φ̃z = −π
4
− tan−1

(
S5

C5

)
, (E20)

C5 = sgn(µ)
U0Ux sinh2 η

η2 cosh2 η + U0
2 sinh2 η

, (E21)

and

S5 = − ηUx sinh η cosh η

η2 cosh2 η + U0
2 sinh2 η

. (E22)

Again, the second integral in Eq. (E17) is obtained by
substituting µ → −Λ above. The oscillations in Ss,βz (x)
have the same periods and amplitude decay as oscilla-
tions in Ss,βx (x).

Appendix F: Scattering from impurities

In this appendix, we calculate the broadening of
bound state dispersion when electrons scatter into dis-
persive states using Eq. (30). We first calculate∑
~k | 〈ψs|V̂ |ψb〉 |

2δ(ε−E(k)) for a single impurity located

at ~R0 = (x0, y0) and then average over the impurity posi-
tion to get the result for random distribution of point-like
impurities. The potential due to the impurity is given by

V0δ(~r − ~R0). Without loss of generality, we can assume
that x0 > 0. The scattering state wavefunction of an elec-
tron coming in from x→∞, |ψh2 (x > 0)〉 = |ψh2,i〉+|ψh2,R〉
is known from Eq. (14). Similarly, a particle coming in
from x → −∞ will have wavefunction |ψh1 (x > 0)〉 =

|ψh1,T 〉 We evaluate | 〈ψs|V̂ |ψb〉 |2 for E > 0 but suppress
index h = +1 below for brevity

| 〈ψi2|V0δ(~r − ~R0)|ψb〉+ 〈ψR2 |V0δ(~r − ~R0)|ψb〉 |2 + | 〈ψT1 |V0δ(~r − ~R0)|ψb〉 |2 =

(
lim

a,b→∞

V 2
0

4Ab

)
λ+e

−2λ+x0[
2
(
χ2

+ + χ2
− + 2χ+χ− sin θ

)
+ 2Re

[
R∗2e−2ikxx0

(
χ2
− − χ2

+e
−2iθ + 2iχ+χ−e

−iθ

)]]
. (F1)

Figure 8. Spinor overlap F (γ) for (a) electrostatic potential
and (b) magnetic potential at the defect when ratio γ = v+/v
is varied from flat state (v+ = 0) to close to Dirac velocity
v+ ≈ v.

where χ± =
√

1± λ+/k′y =
√

1± cosα+ and R2 is given

by h = +1 expression in Eq. (15). Now we average the
above result to get the broadening for a uniform distri-
bution of impurities.

| 〈ψs|V |ψb〉 |2 =
2

ab

∫ a/2

0

dx0

∫ b/2

−b/2
dy0

| 〈ψi2|V0δ(~r − ~R0)|ψb〉+ 〈ψR2 |V0δ(~r − ~R0)|ψb〉 |2

+ | 〈ψT1 |V0δ(~r − ~R0)|ψb〉 |2. (F2)

Broadening of bound state dispersion is given by

Γ =

(
lim

a,b→∞

V 2
0

A

)
ε

2πv2∫ π/2

−π/2
dθ

1

2

[ (
χ2

+ + χ2
− + 2χ+χ− sin θ

)
+ Re

[
R∗2

λ+

λ+ + ikx

(
χ2
−−χ2

+e
−2iθ + 2iχ+χ−e

−iθ

)]]
.

(F3)

The expression has the form

Γ = nimpV
2
0 ρ0(ε)F (γ), (F4)
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where nimp is the impurity concentration, ρ0(ε) = ε
2πv2

and F (γ) the spinor overlap given by

F (γ) =

∫ π/2

−π/2
dθ

1

2

[ (
χ2

+ + χ2
− + 2χ+χ− sin θ

)
+ Re

[
R∗2

λ+

λ+ + ikx

(
χ2
−−χ2

+e
−2iθ + 2iχ+χ−e

−iθ

)]]
.

(F5)

In figure 8(a) and 8(b), we plot the F (γ) in presence
of only electrostatic and magnetic scattering respectively.
Note that 0 ≤ F (γ) ≤ π, and hence this function sim-
ply gives a prefactor to the characteristic broadening de-
scribed in the main text.
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