
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Topological superconductivity driven by correlations and
linear defects in multiband superconductors

Mainak Pal, Andreas Kreisel, and P. J. Hirschfeld
Phys. Rev. B 107, 134503 — Published  4 April 2023

DOI: 10.1103/PhysRevB.107.134503

https://dx.doi.org/10.1103/PhysRevB.107.134503


Topological superconductivity driven by correlations and linear defects in multiband
superconductors

Mainak Pal1∗, Andreas Kreisel2,3, and P.J. Hirschfeld1

1Department of Physics, University of Florida, Gainesville, Florida, USA
2Institut für Theoretische Physik, Universität Leipzig, D-04103 Leipzig, Germany and

3Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

There have been several proposals for platforms sustaining topological superconductivity in high
temperature superconductors, in order to make use of the larger superconducting gap and the ex-
pected robustness of Majorana zero modes towards perturbations. In particular, the iron-based
materials offer relatively large Tc and nodeless energy gaps. In addition, atomically flat surfaces
enable the engineering of defect structures and the subsequent measurement of spectroscopic prop-
erties to reveal topological aspects. From a theory perspective, a materials-specific description is
challenging due to the correlated nature of the materials and complications arising from the multi-
band nature of the electronic structure. Here we include both aspects in realistic interacting models,
and find that the correlations themselves can lead to local magnetic order close to linear potential
scattering defects at the surface of the superconductor. Using a self-consistent Bogoliubov-de Gennes
framework in a real-space setup using a prototype electronic structure, we allow for arbitrary mag-
netic orders and show how a topological superconducting state emerges. The calculation of the
topological invariant and the topological gap allows us to map out the phase diagram for the case of
a linear chain of potential scatterers. While intrinsic spin-orbit coupling is not needed to enter the
topological state in presence of spin-spiral states, it enlarges the topological phase. We discuss the
interplay of a triplet component of the superconducting order parameter and the spin spiral leading
effectively to extended spin orbit coupling terms, and connect our results to experimental efforts on
the Fe(Se,Te) system.

I. INTRODUCTION

Signatures of nontrivial topology in condensed matter
systems have been a holy grail at the frontiers of un-
conventional superconductivity for quite some time now,
more so because of its promising role in creation of pro-
tected zero-energy modes that can find application in ro-
bust quantum computation in a fault-tolerant way [1].
The prototype system where zero-energy modes appear is
the Kitaev chain [2], a one-dimensional chain with spin-
less Fermions exhibiting p-wave superconductivity and
thus inducing Majorana zero modes (MZMs) at the ends
of the chain. These quantum states are protected by
symmetry, do not hybridize due to their exponential lo-
calization and therefore stay at zero energy.

Realizations of topological superconductivity remain
elusive since real electrons carry spin degrees of freedom,
and p-wave superconductivity, i.e. triplet pairing is rare
in nature. Common proposals for possible platforms that
sustain an (effectively) topological character are based on
proximitized superconductivity on nanowires with strong
spin orbit coupling [3–6] or by introducing magnetic
structures on top of conventional superconducting sub-
strates [7–9] For example, placing a chain of ferromag-
netic metal atoms on a superconductor yields hybridized
Shiba bound states and allows one to tune into the topo-
logical regime in the presence of Rashba spin-orbit cou-
pling [10–12] and was subsequently tested in experiment
[13–16].

From an engineering point of view, the platforms based
on nanowires or atomic chains on (conventional) s-wave
superconductors like Al or Pb are easier to fabricate and

control experimentally, compared to unconventional su-
perconductors like the Fe-based material Fe(Se,Te). On
the other hand, unconventional superconductors have rel-
atively higher critical superconducting temperature and
robust gaps while hosting significant spin-orbit interac-
tion which are favorable characteristics for achieving the
topological state.

Recently, apparent Majorana zero-modes at the ends of
naturally occurring atomic line defects on the surface of
Fe-based materials were reported in experiments [17–19].
In a scanning-tunneling microscopy (STM) study, the au-
thors identified line defects on the surface of monolayer
Fe(Te,Se) arising from missing Te/Se atoms in the surface
layer of Se/Te [17]. Sharp spectral peaks in the conduc-
tance at zero energy were observed only at the ends of
these chains. In this discovery paper, the missing line of
Se/Te atoms was hypothesized to have a twofold effect:
(a) inducing a change in the local chemical potential be-
cause of the missing Se/Te charges, and (b) creating a
local Rashba type interaction via i) inversion symmetry
breaking due to removal of Se/Te atoms from only one
sublayer and ii) local electrostatic fields due to missing
charges.

However, these authors did not rule out the possibility
that removal of the Se/Te atoms can expose the mag-
netic nature of corresponding Fe atoms, thus mimicking
presence of an effective magnetic chain, as suggested in
the magnetic adatom proposal [9, 11]. In one theoretical
scenario, it was reported that first principle calculations
show large density of states near the Fermi level due to
missing Te/Se atoms that induces magnetic order on the
line defects [20]. The authors then used a single band
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model with phenomenological exchange interactions to
suggest that in either the ferromagnetic or or antiferro-
magnetic (AFM) configuration of the chain, it undergoes
a topological transition and hosts MZMs. The work in
Ref. [21] employs a single band model description and re-
lies on a significant Rashba spin-orbit interaction to turn
the chain into a topological superconductor. However, it
is not a priori clear whether breaking of inversion sym-
metry, which induces Rashba spin-orbit coupling on the
surface, is a necessary ingredient.

While intriguing by themselves, these studies propose
different phenomenological pictures and mechanisms, in-
dicating that the issue is far from settled theoretically.
Further investigations are required to deduce the cor-
rect effective low-energy model describing the topological
transition, as well as to understand how it arises from re-
alistic descriptions of Fe-based systems. In our work,
we employ a multiorbital electronic structure model in-
cluding local Hubbard-Kanamori interactions relevant for
Fe-based systems in order to understand the emergence
of the topological phase. We treat superconducting or-
der and magnetic order emerging from the same band
structure on the same footing in a self-consistent mean
field framework. Our approach is capable of generating
magnetic order close to the defect structures which are
a priori most likely to act primarily by inducing poten-
tial scattering, i.e. a local shift of the chemical potential.
More concretely, we model our Hamiltonian to describe
a linear chain of potential scatterers. In a previous work
we used a similar model to describe local magnetic or-
der causing magnetic anisotropy in presence of spin-orbit
coupling and Hubbard-Kanamori type correlations [22].

Here, we show that in realistic band-structures of iron-
based superconductors in the vicinity of a magnetic in-
stability, linear potential defects can drive noncollinear
local magnetic states. These in turn modify the nature of
the superconducting order parameter and therefore drive
the system into the topological phase. This effect can be
understood from the viewpoint that already in the homo-
geneous system (without the defect), the spin-orbit cou-
pling induces small components of (pseudospin) triplet
pairing, once unconventional pairing is present. To detect
the topological phase in our approach, we calculate the
topological invariant based on Pfaffians at time-reversal
invariant momenta (TRIM) as constructed from the real
space Hamiltonian using a supercell method (see Ap-
pendix A). Since the bulk superconductor exhibits triv-
ial topology, we then expect MZMs on the endpoints of
chains of potential scatterers.

II. MODEL

Our theoretical calculations can be summarized in
three conceptionally different steps as follows. First, we
consider a homogeneous system and calculate the super-
conducting order parameter and magnetism in a self-
consistent mean-field approach to (i) characterize the

FIG. 1. A schematic “vertical” chain of potential impurity
inserted in a 20 × 6 system that we work with. Strength of
the potential impurity can be tuned at every site. Periodic
boundary condition is imposed in both horizontal and vertical
directions, thereby effectively simulating a one-dimensional
infinite impurity or rather an impurity circle on the surface
of a toroid.

superconducting order parameter and its modifications
from the usual picture once spin-orbit coupling is present
and (ii) tune the parameters of the Hubbard-Kanamori
interactions close to, but below the magnetic instability
(while not considering superconductivity).

Second, we introduce non-magnetic impurities (red
crosses) into our description in real space and thereby
use a system size of 20 × 6 lattice points, see Fig. 1,
to again calculate self-consistently the spatial pattern of
superconducting order parameter and (local) magnetic
moments. We employ periodic boundary conditions in
x and y directions for tight-binding hoppings and super-
conducting order parameters.

Finally, we construct the Hamiltonian of a system that
consists of repeating units in one dimension of the Hamil-
tonian treated in mean field approximation, and examine
the resulting bands as function of the supercell momen-
tum (as quantum number) for the periodically repeating
units. This allows us to calculate the topological invari-
ant associated with such a quasi-one dimensional super-
conductor.

The full Hamiltonian consists of 5 distinct terms,

H = H0 +Hint +Himp +HSC +HSOC, (1)

which we introduce in detail in the following sub-sections.
H0 is the tight-binding part of the Hamiltonian, Hint

is the full Hubbard-Kanamori interaction, Himp includes
the onsite impurity potentials on the vertical chain of
impurity sites, HSC includes the superconductivity pair-
ing part, HSOC includes the atomic spin-orbit coupling.
Note that first step does not include the impurity term,
Himp and superconducting term HSC when we discuss
the magnetic phase diagram of the normal state.

A. Tight-binding Hamiltonian

In order to capture essential properties of the electronic
structure of Fe-based materials, we employ, for the nor-
mal state Hamiltonian, a tight-binding model [23] in two
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FIG. 2. Band structure and Fermi surface of the system: (a) Band structure of the system along the high-symmetry path in
the Brillouin zone and (b) Fermi surface along with the dominant orbital character of the bands at a filling of n = 5.95.

dimensions with five orbital states on each lattice point,

H0 =
∑
ijµνσ

(
tµνij ciµσ − δijδµνµ0

)
c†iµσcjνσ . (2)

where c†iµσ creates an electron on lattice point i and or-
bital µ in spin state σ. For all self-consistent calculations
of a setup of the Hamiltonian in real space, the chemical
potential µ0 is determined in order to reach the filling
n. Indeed, the true crystal structure of Fe-based mate-
rials contains two inequivalent iron atoms such that 10
orbital states per elementary cell would be needed. How-
ever, the Fe atoms are related by glide plane symmetry
(which consists of a reflection on the Fe-lattice plane fol-
lowed by a translation connecting neighbored Fe atoms
such that the (non-relativistic) electronic structure can
be exactly downfolded to a 5 orbital model. Deviations
from this are (i) perturbative in the spin-orbit coupling
which is small for the 11, 111 and 1111 Fe-based sys-
tems [24–26] and (ii) become qualitative for 122 systems
once coupling in the third dimension is considered.

B. Hubbard-Kanamori Repulsion

To capture effects of correlations, we start with a local
Hubbard-Kanamori interaction [27–29],

Hint = U
∑
iµ

niµ↑niµ↓ + U ′
∑

i,µ<ν,σ

niµσniνσ′

+
(
U ′ − J

) ∑
i,µ<ν,σ

niµσniνσ + J ′
∑
i,µ6=ν

c†iµ↑c
†
iµ↓ciν↓ciν↑

+ J
∑

i,µ<ν,σ

c†iµσc
†
iνσ′ciµσ′ciνσ

(3)

where σ and σ′ are complementary spin indices, i is the
site for the local interaction and µ, ν are d orbitals. The
Hubbard repulsion term is parametrized by U and in-
volves opposite spins in the same orbital, while the sec-
ond term is its generalization to multiple orbitals where
occupation of states with opposite spins in different or-
bitals is penalized with the energy U ′. The third term
with coefficient U ′−J describes interaction between elec-
trons with parallel spin in different orbitals, and thus en-
forces Hund’s rules. The fourth term J ′ allows for hop-
ping of spin-pairs between orbitals. We ignore orbital
differentiations of interaction parameters and set J = J ′,
U = U ′ + 2J , which correspond to spin-rotationally in-
variant interactions. J = J ′ is guaranteed by choosing
a basis of real-valued Wannier states [29] and we work
with J = J ′ = U/4 in the following, a reasonable choice
for Fe-based materials.

The interaction Hamiltonian has been decoupled at the
mean-field level in this work such that the interaction
Hamiltonian is given by [28]

HMF
int =

∑
iνσ

[
U〈niνσ′〉+

∑
µ6=ν

{
U ′〈niµσ′〉+

(
U ′ − J

)
〈niµσ〉

}]
× c†iνσciνσ

−
∑

i,µ6=ν,σ

[(
U ′ − J

)
〈c†iνσciµσ〉 − J

′〈c†iµσ′ciνσ′〉 − J〈c
†
iνσ′ciµσ′〉

]
× c†iµσciνσ

−
∑
iνσ

[
U〈c†iνσciνσ′〉+ J

∑
µ6=ν

〈c†iµσciµσ′〉
]
c†iνσ′ciνσ

−
∑

i,µ6=ν,σ

[
U ′〈c†iνσciµσ′〉+ J ′〈c†iµσciνσ′〉

]
c†iµσ′ciνσ

(4)

where σ′ is complementary spin index of σ and vice
versa and the mean fields 〈. . .〉 are calculated as expec-
tation values at temperature T from the eigenenergies
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and eigenstates of the total Hamiltonian. Once the ex-
pectation values become spin-dependent, there is a finite
magnetization at lattice point i,

Mi =

 〈c†i,↑ci,↓ + c†i,↓ci,↑〉
−i〈c†i,↑ci,↓ − c

†
i,↓ci,↑〉

〈c†i,↑ci,↑ − c
†
i,↓ci,↓〉

 (5)

C. Impurity Potential

We consider a chain of impurities characterized by a
local non-magnetic scattering potential of Vimp which is
included in the real space Hamiltonian as

Himp = Vimp

∑
i∗µσ

c†i∗µσci∗µσ (6)

where i∗ indexes the set of impurity positions along the
y-axis, see Fig. 1. These represent a line defect in the
20 × 6 system, on which all results shown in this work
are based.

D. Superconducting Hamiltonian

Superconductivity is described by the pairing term,

HSC =
1

2

3∑
m=0

∑
ĩj̃

∑
α1,2,3,4

Γmj̃ĩ
(
σmiσ2

)†
α3α1

(
σmiσ2

)
α2α4

×
(
cĩα1

cj̃α3

)†
cĩα2

cj̃α4

(7)

where ĩ, j̃ now include both the lattice and orbital indices
collectively e.g. ĩ = (i, ν), and Γĩj̃ are pairing interac-

tions between ĩ and j̃ mediating unconventional electron
pairing. The spin indices, represented by α1, α2, α3, α4

(written in short as α1,2,3,4 in Eq. (7) to avoid clutter),
can each be either ↑ or ↓; m = 0 denotes the singlet
channel and m = 1, 2, 3 denote the triplet channels.

A mean field decoupling yields the term

HMF
SC =

1

2

3∑
m=0

∑
ĩj̃

∑
α1∼4

Γmj̃ĩ (σmiσ2)
†
α3α1

(σmiσ2)α2α4

×
{
〈c†
j̃α3

c†
ĩα1
〉cĩα2

cj̃α4
+ c†

j̃α3
c†
ĩα1
〈cĩα2

cj̃α4
〉
}
(8)

entering the BdG Hamiltonian. We calculate the super-
conducting gap as

∆j̃ĩα2α4
=

3∑
m=0

dmj̃ĩ
(
σmiσ2

)
α2α4

(9)

FIG. 3. Average absolute magnetization per site as one in-
creases the Hubbard-Hund interaction parameter U . Other
parameters are related to U via the relation J = J ′ = U/4 =
U ′/2. Temperature was set at kT = 0.01 eV. Critical in-
teraction parameter increases as the spin-orbit coupling in-
creases. Inset shows the homogeneous system configuration
corresponding to the encircled data point. The color scale
represents Mz and the arrows represent Mxy.

where d0j̃ĩ is the singlet component and dmj̃ĩ, m = 1, 2, 3
are the triplet components

dmj̃ĩ = Γmj̃ĩ
∑
α1α3

(
σmiσ2

)†
α3α1
〈cĩα1

cj̃α3
〉 , (10)

calculated self-consistently from the eigenvalues and
eigenvectors of the Hamiltonian.

E. Spin-orbit Interaction

Finally, an atomic spin-orbit coupling is introduced as

HSOC = λSOC L · S (11)

where λSOC is the spin-orbit coupling parameter for Fe-3d
orbitals that can be tuned, L and S are respectively the
orbital and spin angular momentum operators evaluated
in the orbital basis which can accurately capture the spin-
orbit splittings when just onsite terms are included in
the Hamiltonian [30]. We use a spin-orbit coupling of
λSOC = 0.02 eV that lies in the typical range for iron-
based superconductors [26]. Note that we do not include
an additional explicit Rashba coupling that would arise
in case of inversion symmetry breaking present at the
surface of a bulk material. We will see below that a
similar term is generated by the local magnetic state near
the defect.
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FIG. 4. Pseudospin triplet superconducting gap induced by spin-orbit coupling. Arrows in a), b) are respectively the real

and imaginary parts of the triplet order parameter vector ~d(k) transformed to band space. Only in-plane part ~d‖ is non-zero.
c) shows the full superconducting gap on the Fermi surface. The induced triplet components make the Fermi surface fully
gapped. Some points on the Fermi surface may visually appear as nodes, however they have tiny gaps with very faint color.
The existence of the triplet component of the order parameter shown is essential for the existence of the nontrivial topological
state.

III. RESULTS

A. Homogeneous Normal State Characterization

We start the discussion of our model with a self-
consistent calculation of the chemical potential µ0 of the
Hamiltonian

Hhom
N = H0 +HSOC

=
∑
ijµνσ

(
tµνij ciµσ − δijδµνµ0

)
c†iµσcjνσ + λSOC L · S ,

(12)

such that the filling is fixed at n = 5.95 electrons per
lattice point, calculated at a temperature of T = 10 K.
The corresponding bands and Fermi surface (as calcu-
lated from simply transforming the tight binding model
to momentum space) are presented in Fig. 2.

Next, we add the mean field description of the
Hubbard-Kanamori Hamiltonian, Eq. (4), initialize with
random expectation values and calculate the magnetiza-
tion self-consistently to explore the magnetic phase di-
agram and by varying the overall magnitude of the in-
teraction parameters to determine the critical values of
the Hubbard-Kanamori interactions U,U ′, J, J ′. As pre-
sented in Fig. 3, the magnetic instability of stripe mag-
netism requires increasingly high critical U as the spin
orbital coupling λSOC is increased, and the magnetization
direction gets locked in the y-z plane with predominantly
z-component (see inset of the Figure).

B. Homogeneous Spin-orbit Coupled
Superconducting State

Next we study the superconducting properties of the
multiband system in presence of spin orbit coupling. As-

suming in the simplest case only a pairing interaction in
the singlet channel, we employ the Hamiltonian

Hhom
S = H0 +HMF

SC +HSOC (13)

It is to be noted that a priori the superconducting order
parameter in HMF

SC is not known and is calculated from
the eigenvalues and eigenstates of the BdG Hamiltonian
via self-consistent iterations. We choose the supercon-
ducting pairing coefficients Γ on next-nearest neighbor
bonds to be 0.5 eV, yielding a s± groundstate as known
to exist in Fe-based superconductors, corresponding to
a minimum spectral gap in the homogeneous system of
≈ 23 meV.

The order parameter is only of spin singlet nature in
orbital space, but the multiband nature introduces a sub-
dominant spin-triplet component in the superconducting
gap when expressed in band space by use of the unitary
transformation that diagonalizes the normal state Hamil-
tonian, Eq. (12) in presence of spin-orbit coupling. For
details, we refer to appendix (C).

In the homogeneous system, we may Fourier transform

Eq. (9) to obtain ∆(k) = (d0(k) + ~d(k) · ~σ)iσy, where
underlined quantities are matrices in orbital space. In
Fig. 4, we present the Fermi surface again as contour with
arrows describing the (a) real part and (b) imaginary part

of the vector ~d(k) = ~d‖(k) + dz(k)~ez (see Eq. 10) for the
“induced” triplet superconductivity which lies in the x-y
plane, i.e. dz = 0. As shown in panel (c), the supercon-
ducting state is fully gapped since, despite the fact that
for these parameters the s± component is nodal, either
the real or imaginary part of the triplet order parameter
is nonzero.
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FIG. 5. Phase diagram of the system with a vertical de-
fect in presence of the (atomic) spin-orbit coupling. The
color scale represents half the magnitude of the spectral gap.
Filled squares, indicate a topological state as characterized
by Q = −1 and open squares indicate a topologically trivial
state as characterized by Q = +1. ‘spiral magnet’ indicates
a configuration where Mi rotates on the defect axis as shown
in Fig. 7 and coincides with the topological region enclosed
between the red borders.

C. Linear Defect and Locally Magnetic State

Finally, we introduce a line of defects as presented
in Fig. 1 and recalculate the mean fields in presence of
Hubbard-Hund interactions and superconducting pairing
interaction. Note that in our calculations, we start with a
linear defect aligned along the direction towards the near-
est neighbor Fe atoms and not along the directions of the
Se/Te lattice [17]. In contrast to the work in Ref. [31], we
choose the value of the Hubbard parameter U such that
spin fluctuations are strong and eventually the Stoner
instability will be crossed locally close to the impurity
sites, but not for the full system since empirically no
magnetism has been reported in this system. We scan
the U vs Vimp parameter space in search of topological
and local magnetic states of the system, the result of
which is presented in Fig. 5.

In the vicinity of, but slightly below the critical Hub-
bard repulsion (for driving the full system through the
magnetic transition), a sufficiently strong impurity po-
tential gives rise to local magnetic states of the itinerant
electrons. We stress at this point that we have used an
entirely spin-rotationally invariant BdG framework to in-
corporate the interplay of magnetism and superconduc-
tivity in channels of differing parity. Specifically, we allow
for the formation of noncollinear magnetic order, which

can generate an effective spin-orbit interaction when per-
forming a position-dependent rotation of the basis in spin
space [32–34]. We further notice that the direction of the
magnetization will be locked due to the spin orbit cou-
pling, but the phase of the superconducting order pa-
rameter comes out to exhibit a random overall phase
since for the initial guess a complex order parameter was
used. First, we observe the different configurations of
magnetic order on the impurity chain which are labeled
in the phase diagram. In the antiferromagnetic phase at
large Vimp, there are alternating magnetic moments as
moving along the impurity chain. Working with a small
Vimp at any particular value of U favors a ferromagnetic
chain. Between these two regimes, the system stabilizes
into a spin-spiral magnetic state with the pitch compat-
ible with the boundary condition along the defect chain.
An example of such a spiral magnetic state is presented
in Fig. 6.

Non-zero components of the spiral lie completely in the
x − z plane (which is perpendicular to the defect axis).
The absolute value of the spiral magnetization is largest
on the defect chain but decays rapidly in the direction
perpendicular to the chain, see panel (a) of Fig. 6. The
same can also be seen in Fig. 7 where the induced magne-
tization for a typical pair of U and Vimp values is shown
both in tilted and defect axis view for better visualiza-
tion.

Indeed, the full system will not be magnetized in this
regime, but the local electron density is suppressed by
the impurity potential on the impurity line. As expected
from the potential scattering and the additional scatter-
ing on the magnetic moment, the superconducting order
parameter gets depleted in the vicinity of the defect as
expected.

The topological effect of assumed spin-spiral order in
linear magnetic adatom chains has been discussed in the
literature earlier [32, 35, 36]. However, we report here via
our self-consistent microscopic simulations the emergence
of stable spin-spiral order in an itinerant electronic sys-
tem and no magnetic impurities in the vicinity of linear
nonmagnetic defects.

D. Linear Defect and Topological State

Once magnetism develops (in the superconducting
state), the Hamiltonian only exhibits particle-hole sym-
metry and therefore belongs to the topological class D
of Cartan classification in one dimension (see Appendix
B) as shown in table I, thus exhibiting a Z2 invariant in
one dimension which is given in Eq. 14. The (particle)

parity operator P has the eigenvalues (−1)N̂ where N̂ is
the particle number operator and it commutes with the
Hamiltonian, [H,P ] = 0 as given in Eq. (1). Therefore
a common set of eigenstates can be found with states
having either even or odd particle number (parity).

The Z2 invariant of an infinite (one dimensional) sys-
tem can be calculated as the product of the parity at
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FIG. 6. Spin spiral order and superconductivity (for U = 0.94 eV, Vimp = 1.9 eV) leading to topologically nontrivial state:
(a) Visualization of the magnetization vector Mi showing the spiral nature (b) absolute value of the magnetization Mi in the
whole system which is only sizeable along the defect line and in the neighborhood (c) local depression in the electron density in
the vicinity of the defect and slight enhancement of the same away from defect. (d) Visualization of the superconducting order
parameter (magnitude by colorscale) and phase by direction of the arrows. The order parameter ∆̄i ≡

∑
ν

∑
j∈NNN(i) ∆ĩj̃

exhibits local depression close to the impurity chain and slight modulation (with maxima around x = ±5 of the same in the
entire system.

defect axis

FIG. 7. Another visualization of emergent spin-spiral along
the potential impurity defect and in its vicinity: (a) a tilted
view (b) view along the defect axis. The variation in color
of the arrow with angle/rotation is to facilitate visualization
and indicates the y-component of the position of Mi.

the time-reversal invariant momenta (TRIM). Here, we
refer to the momenta as obtained from building an in-
finite one dimensional system by repeating the unit as
shown in Fig. 1 in the y direction and constructing a su-
percell Hamiltonian H(ky) as outlined in Appendix A.
In summary, the topological invariant Q for fully gapped
Hamiltonians can be calculated as [37]

Q =
∏

ky∈TRIM

Q(ky), Q(ky) = sgn(Pf(H(ky)τx)) (14)

where τx is the x-component of the Pauli matrices in

particle-hole space, ‘Pf’ is the Pfaffian (which satisfies for
an even-sized skew-symmetric matrix Pf(A)2 = det(A))
and the product is taken over time reversal invariant mo-
menta (TRIM), ky = 0 and ky = π in this scenario. We
calculate the Pfaffians numerically using a numerical al-
gorithm as described in Ref. [38].

At the same time, we check for the spectral gap by
explicit calculation of the eigenvalues of H(ky) and tak-
ing its minimum in the Brillouin zone. Together with
the topological invariant, this allows us to complete the
topological phase diagram in Fig. 5 where for each pair
of (U, Vimp), a full symbol represents Q = −1 a topo-
logical nontrivial state and an open symbol represents a
topologically trivial state with Q = +1. The color gives
the lowest eigenvalue, i.e. half the topological gap for the
case Q = −1. In Fig. 8 we show (a) the typical spectrum
of the homogeneous case (where bands have just been
folded into the first Brillouin zone of the system 6 × 20
and in panel, (b) the bands in presence of a defect line
driving the system into the topological state.

Examining the topological phase diagram, we see that
the spiral states turn out to be topological, with the
topological gaps reaching values up to 0.183 Ω0 where
Ω0 ≈ 23 meV is the spectral gap of the homogeneous
system which we for calculation purposes have chosen
artificially large. However, our conclusions are expected
to be robust since no Lifshitz transition is present on the
energy scale of ∆0 as we used it in our calculations.

The range of Vimp in which the system supports spiral
magnetism shifts up with increasing U , as expected. A
homogeneous 20 × 6 system shows vertical spin stripes
above the critical Hubbard-Hund repulsion and the mag-
netic stability of the stripe increases with increasing re-
pulsion parameter(s). It is therefore expected that higher
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a) b)

FIG. 8. Typical spectrum (for U = 0.925 eV, Vimp = 1.9 eV) as a function of the supercell momentum in the system: (a) in
absence of the defect, i.e. in homogeneous system (trivial state). (b) spectrum in presence of the defect (topological state).

values of Vimp will be required to twist a vertical ferro-
magnetic spin-order on the impurity line into an anti-
ferromagnetic spin-order through an intermediate spiral-
spin-order. To figure out the importance of the spin-
orbit coupling, we studied the phase diagram in absence
of the atomic spin-orbit coupling as well. Removing the
atomic spin-orbit coupling shrinks the area of topolog-
ical/spiral phase space, although an effective Rashba-
type spin-orbit-coupling effect along the defect still re-
mains because of the formation of the spin-spiral order
[35]. Details about the form of the spin-orbit coupling is
presented in the Appendix (D). The effective spin-orbit
term generated by the spiral is not completely identical
to the Rashba interaction, but still successfully induces
the topological state.

The non-trivial topology of the infinite line defect in
a suitable parameter regime has significant implications.
Real systems can only have arrangements of potential
impurities of finite length. As a result, there should be
a change in topology from one dimensional defect to the
two dimensional bulk at the end of the chain. As this
defect subsystem that hosts the non-trivial topology be-
longs to the class D in one dimension, it should admit
a Z2 invariant, as also corroborated by the two values
of the topological invariant Q. Therefore Majorana zero
modes are expected to appear at the endpoints of the
finite linear defects as edge states.

TABLE I. Cartan classification of topological symmetries
of Hamiltonians: The current effective system is one-
dimensional and belongs to class D, shown in blue.

Classes TRS PHS SLS d=1

A 0 0 0

AI 1 0 0

AII -1 0 0

AIII 0 0 1 Z
BDI 1 1 1 Z
CII -1 -1 1 Z
D 0 1 0 Z2

C 0 -1 0

DIII -1 1 1 Z2

CI 1 -1 1

IV. DISCUSSION AND CONCLUSION

In summary, we have explored the possibility to real-
ize a topological superconductor on a one dimensional
chain of impurity atoms where magnetism is generated
from correlations in the multiband electronic structure.
For self-consistently calculating the magnetic oder pa-
rameter and the (inhomogeneous) superconducting order
parameter, we used a spin-rotationally invariant mean
field approach to decouple the Hubbard-Hund interac-
tion. The topologically non-trivial state can be reached
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once a spin-spiral state along the impurity chain forms
in vicinity of competing magnetic ground states. The in-
teraction parameters are tuned to mimic physical prop-
erties of the Fe(Se,Te) system. It is known that FeTe is a
(π/2, π/2) double stripe magnet, and that the doped sys-
tem has strong stripelike (π, 0) magnetic correlations[39–
42]. Therefore it is natural to expect Fe(Se,Te) to be in
proximity of the spiral magnetic instability.

The mechanism for topological superconductivity is
based on an effectively (pseudo-spin) triplet order param-
eter forming from the multiband superconductivity in
conjunction with the non-collinear magnetic order. Ad-
ditional (atomic) spin orbit coupling enhances this effect
and allows to reach the topological phase for a broader
set of model parameters.

One may ask if the type of defect considered here,
namely a line of Fe vacancies, is of general relevance to
Fe-based systems, and to Fe(Se,Te) in particular, i.e. is
it the only type of defect that produces the magnetically
driven topological state? The observation that motivated
our work[17, 18] corresponds to a line of Se/Te vacancies
along a diagonal direction in the coordinates of the maps
shown here. In the current formalism, where the elec-
tronic structure has been mapped onto a Fe-only tight
binding model, this would correspond to a line of poten-
tials on the Fe sites that are neighboring the vacancies,
i.e. a double chain. Furthermore, one has to consider
supercells both in x and y directions for obtaining an
Hamiltonian describing an infinite chain along the diag-
onals in order to calculate the topological invariant from
the product of Pfaffians at the TRIM. An alternative ap-
proach would be to set up a diamond geometry rather
than a rectangle. Another technical issue that we antici-
pate is the larger unit cell needed because of the double
line of impurities, such that we postpone discussion of
this case to a future study.

We emphasize other novel aspects of the work de-
scribed in this paper compared to the previous works
in similar directions. Firstly, here we consider a realis-
tic band-structure suitable for iron-based superconduct-
ing materials rather than a model single-band structure
[32, 36]. Secondly and most importantly, all previous
works that have dealt with topological consequences of
spin chains, whether ferromagnetic or antiferromagnetic
or spiral, assumed the existence of the chain of localized
magnetic moments, whereas the moment formation de-
scribed in this paper arises completely self-consistently
from itinerant electrons present in the system itself. We
believe that to understand how to recreate and possibly
engineer Majorana modes on other platforms, it is im-
portant to have a realistic theory of topological effects
arising self-consistently from itinerant electrons and in-
herent defects in the Fe(Se,Te) system.

It is important to check possible consistency of our
scenario with the observations of experiment, e.g. Ref.
[17]. In the experiment, zero-energy bound state peaks
at chain ends extending over apparently only a few lat-
tice constants were observed for defect chains of order ∼

15 lattice constants. These two facts are consistent with
the observed sharp unsplit zero-bias peaks if the chain
length is indeed several times the MZM size. In results
presented in Fig. 5, the magnitude of the topological
spectral gap found in our work can reach a fraction of
0.183 Ω0 of the spectral gap of the homogeneous super-
conductor, Ω0, which is found to be 23 meV in the calcu-
lation as stated above. Since we have – for numerical pur-
poses – worked with gap sizes that are artificially large,
it seems appropriate to assume that the correct topologi-
cal gap in our scenario scales with the ratio (Ω0,topo/Ω0),
where Ω0 = 23 meV as stated above. The true gap in
bulk Fe(Se,Te) is ≈ 2Tc ≈ 30K, or about 2.6 meV [43].
So for purposes of our estimate, we expect a topologi-
cal gap of roughly ∆topo ' 0.48 meV from Fe(Se,Te) in
our scenario, while for the monolayer Fe(Se,Te) with the
higher Tc of 62 K[17], a spectral gap of 12 meV is found
experimentally, leading to a topological gap of roughly
∆topo ' 2.2 meV in this case. With a Fermi velocity

of Fe(Se,Te) of roughly 0.2 eV-Å[44], this corresponds to
a decay length of ξ ' vF /(π∆topo) ∼ 130Å∼ 33a, or
ξ ∼ 8a respectively. For an impurity chain of a length
significantly longer than this decay length, one would ex-
pect MZMs at the ends of the chain which we don’t show
explicitly since it would require self-consistent calculation
with too many parameters to converge. This is clearly
much larger than the observed bound state radius, and
would in addition lead to hybridization of the end chain
states and splitting of the zero bias peak, which is not ob-
served. One therefore needs to ask if, by judicious choice
of Hamiltonian parameters, the topological gap can be
increased by nearly an order of magnitude to be of order
of the bulk gap. This would then correspond to a decay
length roughly consistent with experiment.

In order to find ways to reach a larger topological gap
within our scenario, one first needs to discuss what qual-
itatively affects its size. In view of the analogy to the Ki-
taev chain, the gap is determined generally by the overall
size of the (pseudospin) triplet component of the order
parameter. In our case, a triplet component can be gen-
erated in two ways: The first is discussed in Fig. 4 where
the (atomic) spin orbit coupling induces a triplet compo-
nent when transforming to band space. Indeed, a larger
value of the spin orbit coupling constant λSOC, or con-
sidering additionally surface-induced spin orbit coupling
(Rashba-type) would increase this effect. It could lead to
a triplet component at the Fermi points as large as the
singlet order parameter provided that spin-flip terms in
the normal state Hamiltonian are dominant at the Fermi
surface. The values of the spin orbit coupling are how-
ever constrained by experimental measurements [26], so
that spin-orbit coupling induced band splittings at the
Fermi points with gap minima could come close to that
limit.

We have discussed our result that even completely
without spin-orbit coupling, there is a (small) topological
phase. This in our view can be understood as follows:
To map our Hamiltonian onto an effective Kitaev-like
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model, one needs to perform local changes of the basis
by rotations in spin space in a way that the magnetic
moment becomes ferromagnetic everywhere. For a ho-
mogeneous superconducting order parameter, this map-
ping will not lead to any (pseudospin) triplet component,
while an inhomogeneous order parameter, as obtained
in our self consistent mean field approach, transforms
to such a component. Therefore, increasing the inho-
mogeneity in principle increases this component as well.
Larger inhomogeneities are expected for (1) increasing
the impurity potential Vimp or (2) inducing pairbreaking
from magnetic scattering by larger local magnetization,
which occurs from increasing U . Exactly these tenden-
cies are seen in our phase diagram in Fig. 5 where larger
topological gaps are observed on the right boundary of
the topological phase (large U and therefore larger Mi),
i.e. in the direction of larger impurity potentials. In our
self-consistent approach this can however not be tuned
into a sweet spot because larger U will turn the local
magnetization into a ferromagnet and large Vimp closer
to unitary scatterers makes the width (in U) of the phase
with spiral magnetism smaller.

Other physical parameters in the specific case we have
evaluated here may be less than optimal for the creation
of a robust, localized topological state. For example, we
have not explored the role of varying Hund’s exchange J
ratio to Coulomb strength U , etc. Numerical cost con-
straints have generally prevented us from exploring pa-
rameter space fully. While we intend to follow up the
most promising avenues, some of which we have identi-
fied here, our principal result and conclusion is that topo-
logical states can indeed be driven by self-organized spi-
ral states around nonmagnetic impurity chains, and that
Rashba spin-orbit coupling due to the surface, while it
may play a role, is not necessary for the effect. Whether
or not the end-chain bound states observed in experi-
ment are indeed isolated Majorana zero modes remains
an open question, but a plausible mechanism to create
them indeed exists.
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Appendix A: Supercell Method

Due to translation invariance, real space BdG calcu-
lations can instead be readily obtained from the corre-
sponding equations in momentum space in case of a ho-
mogeneous system. Arbitrarily dense momentum space
can be chosen for this, which in real space would corre-
spond to a bigger and bigger part of an infinite homoge-
neous lattice. One can also construct this ‘larger portion
of lattice’ by stitching the ‘lattice-portion correspond-
ing to the coarse momentum grid’ together one after an-

other. In the current work, we only need this supercell
construction in the vertical direction (Fig. 9, panel a)).
The ‘entire lattice-portion corresponding to the coarse
momentum grid’ is usually named a ‘supercell’ in real
space. The momentum corresponding to the periodicity
of these supercells is termed ‘supercell momentum’. Ob-
viously, the neighboring supercells couple with each other
through the sites near their margin/boundary only, the
supercell being just an imaginary construct of grouping
lattice sites together. Hence, for a rectangular lattice
(which has been used in this article), only nearest neigh-
bor (NN) can couple with each other unless the supercell
size is not critically small compared to the hopping range
of the original lattice sites.

The corresponding scenario of stitching together the
inhomogeneous lattices of a finite size is particularly use-
ful for increasing smoothness of the spectrum. In this
case, within the supercell there is no notion of momentum
because of lack of translational invariance and the eigen-
states of the inhomogeneous finite lattice are to be ob-
tained by numerical diagonalization, often starting from
the real space basis. However, subsequently, the use of
many supercells effectively creates a narrow band of en-
ergy around each of these numerically obtained eigenen-
ergies (Fig. 9, panel b)), thereby increasing the spectrum
resolution.

If M supercells are used, the supercell BdG equation
in matrix form can be written as(

H(ky) ∆(ky)

∆†(ky) −HT (−ky)

)
U:,ns(ky) = Ens(ky)U:,ns(ky)

(A1)
with

H(ky) =
∑
I

TI0e
ikyYI , (A2)

∆(ky) =
∑
I

∆I0e
ikyYI . (A3)

Here ky is supercell momentum, YI is the coordinate of
the Ith supercell, TI0 is the supercell hopping matrix
(of size 2N1N2No × 2N1N2No where the size of the su-
percell is N1 × N2 and each site has No orbitals with
two possible spins) between the supercell at origin and
the Ith supercell, and ∆I0 is the supercell gap matrix
(of size 2N1N2No × 2N1N2No containing both the sin-
glet and triplet components) between the supercell at
origin and the Ith supercell. The matrix U diagonalizes
the Hamiltonian and U:,ns(ky) is the ns column-vector
of U(ky). In this work we have No = 5 and number
of lattice points N = N1N2. Most of the matrix ele-
ments of TI0 and ∆I0 (for I 6= 0) are zero unless they
involve sites near the supercell-boundary which maintain
the supercell-supercell coupling. T00 and ∆00 are exactly
same as the hopping matrix and the gap matrix (exclud-
ing periodic terms) of theN1×N2 inhomogeneous lattice,
solved by explicit iterative self-consistent diagonalization
to get eigenenergies indexed by n. ky can take values as
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FIG. 9. Illustration of the supercell method: A supercell
lattice of size 3 consisting of supercells of size N1 ×N2 (peri-
odically continued vertically) where each lattice site hosts No
orbitals. The double-way arrows show the supercell-supercell
coupling in which the sites near the supercell boundaries par-
ticipate.

ky =
m

M
, m = 0, 1, 2, ...M −1 in units of

2π

N2a
where a is

lattice constant, and for each ky the supercell BdG diag-
onalization is done just once to obtain the eigenvectors
U:,ns(ky), each of size 4N1N2No. So, as already men-
tioned, corresponding to each n, a band of additional
M − 1 eigenenergies are obtained. The entire scheme is
presented in Fig. 9.

Appendix B: Matrix Representation of Symmetries
in the System for Topological Classification

The fermionic basis used in the particle-hole and spin-
space is

c† =
(
c†↑ c†↓ c↑ c↓

)
. (B1)

Under the particle-hole transformation this goes to

c† =
(
c†↑ c†↓ c↑ c↓

)
→
(
c↑ c↓ c†↑ c†↓

)
. (B2)

So, the particle hole transformation operator in the
particle-hole and spin space reads

c†↑
c†↓
c↑
c↓

 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


︸ ︷︷ ︸

MPH,spin
P = σPH

x ⊗ Ispin
2


c↑
c↓
c†↑
c†↓

 (B3)

The full particle-hole transformation operator reads

MP = σPH
x ⊗ Ispin

2 ⊗ Ilattice
MN ⊗ Iorbital

5 (B4)

where the system size is M ×N .
Under the time-reversal transformation the basis goes

to

c† =
(
c†↑ c†↓ c↑ c↓

)
→
(
ic†↓ −ic

†
↑ ic↓ −ic↑

)
(B5)

So, the time-reversal transformation operator in the
particle-hole and spin space reads


−ic↓
ic↑
−ic†↓
ic†↑

 =


0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0


︸ ︷︷ ︸

MPH,spin
T = IPH

2 ⊗ σspin
y


c↑
c↓
c†↑
c†↓

 (B6)

The full time-reversal transformation operator reads

MT = IPH
2 ⊗ σspin

y ⊗ Ilattice
MN ⊗ Iorbital

5 (B7)

Appendix C: Triplet Superconductivity from Singlet
Component and Spin-orbit Coupling

Let’s denote the unitary matrix that diagonalizes the
normal state momentum-space Hamiltonian for spin ↑ as
U↑↑(k) and its counterpart for spin ↓ as U↓↓(k). Then the
transformation matrix for the normal state Hamiltonian
in Nambu space reads as


U↑↑(k) 0 0 0

0 U↓↓(k) 0 0

0 0 U∗↑↑(−k) 0

0 0 0 U∗↓↓(−k)

 (C1)

Hence in absence of spin-orbit coupling the supercon-
ducting gap matrix reads as

∆ =

(
U†↑↑(k) 0

0 U†↓↓(k)

)(
∆↑↑(k) ∆↑↓(k)

∆↓↑(k) ∆↓↓(k)

)

×

(
U∗↑↑(−k) 0

0 U∗↓↓(−k)

)

=

(
U†↑↑(k)∆↑↑(k)U∗↑↑(−k) U†↑↑(k)∆↑↓(k)U∗↓↓(−k)

U†↓↓(k)∆↓↑(k)U∗↑↑(−k) U†↓↓(k)∆↓↓(k)U∗↓↓(−k)

)
(C2)

in the same basis. So, clearly there is no mixture among
equal-spin and opposite-spin components of the super-
conducting gaps.

However, when a spin-orbit coupling is present, U↑↑(k)
and U↓↓(k) are no longer good diagonalizing matrices for
the respective spins and the full normal state diagonaliz-
ing matrix looses the block-diagonal character by devel-
oping small off-diagonal blocks

(
U↑↑(k) M1(k)

M2(k) U↓↓(k)

)
(C3)
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so that now the superconducting gap matrix reads as

∆ ≈

(
U†↑↑(k) M†2 (k)

M†1 (k) U†↓↓(k)

)(
∆↑↑(k) ∆↑↓(k)

∆↓↑(k) ∆↓↓(k)

)

×

(
U∗↑↑(−k) M∗1 (−k)

M∗2 (−k) U∗↓↓(−k)

) (C4)

in the same basis that diagonalizes the full normal state
Hamiltonian. Hence, clearly the singlet component of
the superconducting gap contributes to the pseudo-spin
triplet component. Obviously this triplet component has
no equal-spin character. It is to be noted that no spin-
triplet superconductivity is explicitly driven in the self-
consistency by any non-zero spin-triplet pairing coeffi-
cient. Hence there is no dominant ∆↑↑(k) or ∆↓↓(k)
which could contribute to the pseudo-singlet component
because of spin-mixing. This also explains why the d
vector for induced triplet component lies entirely in the
xy plane.

Appendix D: Spin-spiral Induced Effective
Spin-orbit Coupling

The spin spiral in the self-consistent solution rotates
on the xz-plane as a function of y coordinate. It can be

described as

S = S(cos(Pyi − φ), 0, sin(Pyi − φ)) , (D1)

where P is the pitch of the spiral. A position dependent
gauge transformation in the spin-space of the fermion
operators as (

ci↑
ci↓

)
→ eiσyPyi

(
c̃i↑
c̃i↓

)
(D2)

effectively aligns the quantization axis along the local
self-consistent spin direction. As a result, the effective
hopping between sites i and j reads as

Heff
0 =

∑
ij

tij

(
c̃†i↑ c̃†i↓

)
e−iσyP (yi−yj)

(
c̃i↑
c̃i↓

)
=

∑
ij

tij

(
c̃†i↑ c̃†i↓

)(
cos{P (yi − yj)} −sin{P (yi − yj)}
sin{P (yi − yj)} cos{P (yi − yj)}

)

×

(
c̃j↑
c̃j↓

)
(D3)

Thus, the spin-spiral generates an effective spin-orbit
coupling term in the effective tight-binding Hamiltonian.
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