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We propose two machine-learning methods based on neural networks, which we respectively call
the phase-classification method and the temperature-identification method, for detecting different
types of phase transitions in the XXZ models without prior knowledge of their critical temperatures.
The XXZ models have exchange couplings which are anisotropic in the spin space where the strength
is represented by a parameter ∆(> 0). The models exhibit the second-order phase transition when
∆ > 1, whereas the Berezinskii-Kosterlitz-Thouless (BKT) phase transition when ∆ < 1. In the
phase-classification method, the neural network is trained using spin or vortex configurations of well-
known classical spin models other than the XXZ models, e.g., the Ising models and the XY models, to
classify those of the XXZ models to corresponding phases. We demonstrate that the trained neural
network successfully detects the phase transitions for both ∆ > 1 and ∆ < 1, and the evaluated
critical temperatures coincide well with those evaluated by conventional numerical calculations.
In the temperature-identification method, on the other hand, the neural network is trained so as
to identify temperatures at which the input spin or vortex configurations are generated by the
Monte Carlo thermalization. The critical temperatures are evaluated by analyzing the optimized
weight matrix, which coincide with the result of numerical calculation for the second-order phase
transition in the Ising-like XXZ model with ∆ = 1.05 but cannot be determined uniquely for the
BKT transition in the XY-like XXZ model with ∆ = 0.95.

PACS numbers:

I. INTRODUCTION

Machine learning techniques are capable of solving
classification and regression problems by extracting hid-
den features in data [1, 2]. Recently, the techniques have
begun to be exploited for scientific research [3]. It is
widely recognized that the architecture of machine learn-
ing that performs classification, prediction, and presump-
tion by learning certain features from enormous data has
compatibility with the procedure of scientific research
particularly in physics, which approaches universal con-
cepts of nature by extracting essences from accumulated
data and knowledge.

Indeed, the machine learning techniques have recently
been applied to the condensed-matter physics inten-
sively [4]. One important subject in research of this kind
is description of quantum many-body states using neural
networks [5–7], which is based on the universal approx-
imation theorem of neural networks and the variational
ansatz. Recently, the ground-state phase diagram of a
frustrated J1-J2 quantum Heisenberg model has been re-
vealed by calculating the energies for optimized neural
networks describing quantum spin states [7]. This phase
diagram has not been obtained by any numerical meth-
ods so far. In this sense, this is an important example
that a machine learning elucidated a new physics.

Another important subject of the machine-learning re-
search in condensed-matter physics is detection of phases
and phase transitions in physical models [8]. Recently,
phase diagrams of several quantum models with ran-
domness have been investigated using machine learning
techniques by classifying spatial-map images of electron
wavefunctions at various parameters to corresponding

phases. The machine learning detections of phases and
phase transitions are basically based on image recogni-
tion and pattern classification. Several kinds of classical
spin models, in particular, the Ising models in two di-
mensions, have been investigated as research targets for
benchmark tests [9–20]. The second-order phase transi-
tion accompanied by spontaneous symmetry breaking in
the square-lattice Ising model exhibits apparent differ-
ence in the spatial spin configurations between the para-
magnetic phase and the (anti)ferromagnetic phase be-
cause of a trivial change in the order parameter. There-
fore, the machine learning technique can detect the phase
transition in this model rather easily.

According to the Mermin-Wagner’s theorem [21], spin
models with continuous symmetry do not show any spon-
taneous symmetry breaking at finite temperatures in one
and two dimensions. Indeed, the XY model in two dimen-
sions has the U(1) symmetry and thus does not exhibit
any phase transitions with symmetry breaking. How-
ever, this model is known to exhibit the BKT transition
which is a topologically characterized phase transition
between a high-temperature phase with individual vor-
tices and antivortices and a low-temperature phase with
vortex-antivortex bound pairs [22, 23]. It is known that
the BKT transition is difficult to detect by numerical
techniques based on the statistical mechanics such as the
Monte Carlo techniques. This is because anomalies, i.e.,
jump, peak, and kink, in the thermodynamic quantities
are not necessarily related with the BKT transition point
directly. For example, a peak of the specific heat does
not show up at the transition point. The magnetic sus-
ceptibility exhibits an anomaly at the transition point
but is suffered from significant finite-size effects with a
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logarithmic correction term, which makes a size-scaling
extrapolation to the thermodynamic limit difficult.

Recently, several attempts have been made to detect
the BKT transition in the XY model and the q-state
clock model with machine learning techniques [24–35].
However, because the BKT transition is a phase transi-
tion without any spontaneous symmetry breakings, the
machine learning techniques based basically on the pat-
tern recognition are not necessarily powerful for its de-
tection. Most of the attempts are based on supervised
learning methods, and they require feature engineering
in advance to make preprocessed input data, that is, the
data of quantity which captures the features of the phases
and the phase transitions such as vortex configurations,
histogram of the spin orientations, and the spin corre-
lation functions. Moreover, they need prior knowledge
of fundamental properties of the model, e.g., number of
phases, approximate transition temperatures, and order
parameters. These are critical problems because the first
one means that we must know features that character-
ize the phases and the phase transitions hosted by the
models in advance, and the second one means that the
method cannot be applied to unknown models.

Here it should also be mentioned that there have been
a lot of experimental efforts to search for the BKT be-
havior in real magnetic materials so far [36–40], but they
are not necessarily successful. A main obstacle for the
observation of the BKT behavior in real materials is the
small but almost unavoidable interlayer coupling com-
bined with the smallness of the easy-plane anisotropy.
From the theoretical point of view, the lack of powerful
theoretical framework to discuss possible BKT behavior
in complicated spin models might be another obstacle.
The BKT phases and the BKT transitions in theoreti-
cal spin models have been studied usually by using the
Monte Carlo techniques. In the Monte Carlo analysis, the
quantity called helicity modulus is usually employed to
detect the BKT transition. The expression of this quan-
tity does not have a general form but has a form specific
to each spin model, which must be derived by hand for
each case. Its derivation becomes difficult for compli-
cated theoretical spin models that describe real magnets
with further exchange coupling, magnetic anisotropies,
and higher-order interactions. Therefore, a powerful and
versatile machine-learning method applicable to general
spin models is highly demanded for further development
of the research on the BKT behavior in real magnets.

In this paper, we propose two machine-learning meth-
ods based on neural networks with simple architectures
as versatile tools to detect the BKT phase and the BKT
transition in classical spin models. The two methods are
referred to as the phase-classification method and the
temperature-identification method, respectively. We em-
ploy the XXZ models for examination of these methods
and try to detect two types of phase transitions, i.e.,
the second-order transition and the BKT transition, in
the XXZ models without prior knowledge of their criti-
cal temperatures. The XXZ models have exchange cou-

plings which are anisotropic in the spin space with an
anisotropy parameter ∆(> 0) and exhibits the second-
order transition when ∆ > 1 (Ising-like case) and the
BKT transition when ∆ < 1 (XY-like case). In the
phase-classification method, the spin or vortex configura-
tions of the XXZ models generated by the Monte Carlo
thermalization are classified into corresponding phases
by utilizing a neural network trained with those of well-
known classical spin models, e.g., the Ising model and the
XY model as inspired by previous studies in Refs. [41–
43]. We demonstrate that the trained neural network suc-
cessfully performs the classification and determines the
phase-transition point for both ∆ > 1 and ∆ < 1. The
evaluated critical temperatures coincide well with those
evaluated by numerical calculations. In the temperature-
identification method, on the other hand, the neural net-
work is trained so as to output correct temperatures at
which the input spin or vortex configurations are gener-
ated by the Monte Carlo thermalization, and the critical
temperatures are evaluated by analyzing the optimized
weight matrix after the training as inspired by studies in
Refs. [9, 11]. We show that the critical temperature eval-
uated by this analysis coincides with the result of Monte
Carlo calculation for the second-order phase transition
for ∆ = 1.05, whereas the critical temperature cannot be
evaluated uniquely for the BKT transition for ∆ = 0.95.
Both of our proposed methods have advantages over

the Monte Carlo methods that have been traditionally
used for studying the phase-transition phenomena in spin
models in terms of computational cost and generality.
Moreover, our methods also have advantages over the
previously proposed machine learning methods, that is,
our methods require no or less prior knowledge of the
models and no or least featrure engineering with prepro-
cessing of input data in contrast to the previous methods.
These advantages will be discussed in the last section in
detail. We expect that our work will pave the way to ex-
ploring novel phases and phase-transition phenomena in
theoretical spin models and will contribute to the further
development of this research field.

II. MODEL

We study ferromagnetic (J > 0) XXZ models on
square lattices. The Hamiltonian is given by,

H = −J
∑

〈i,j〉

(

Sx
i S

x
j + Sy

i S
y
j +∆Sz

i S
z
j

)

, (1)

where Si = (Sx
i , S

y
i , S

z
i ) is a continuous classical spin

vector on the ith site, norm of which is set to be unity
(|Si| = 1). Here the parameter ∆(> 0) describes the
anisotropy of the exchange coupling in the spin space,
and the summation is taken over the nearest-neighbor
site pairs 〈i, j〉. The XXZ models have been studied in-
tensively because many materials and systems such as
ultrathin ferromagnetic films and superconducting films
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FIG. 1: Schematic temperature phase diagrams of the XXZ
models on a square lattice for (a) ∆ > 1 (Ising-like case),
(b) ∆ = 1 (Heisenberg case), and (c) ∆ < 1 (XY-like case).
Here FM and PM denote the ferromagnetic and paramagnetic
phases, respectively. (d) Temperature profiles of the helicity
modulus calculated using the Monte Carlo technique for var-
ious values of ∆. This quantity becomes finite in the XY-like
case with ∆ < 1 below a certain temperature, whereas it van-
ishes in the Ising-like case with ∆ > 1. The calculations are
performed for a system size of L2 with L = 32.

have turned out to be well described by these models [44–
51].
Schematic temperature phase diagrams of the XXZ

models are shown in Figs. 1(a)-(c). We find that
the models exhibit distinct behaviors depending on the
anisotropy ∆. When ∆ > 1, the model exhibits a sin-
gle second-order phase transition as in the Ising model,
whereas the model exhibits a single BKT transition as
in the XY model when ∆ < 1. At ∆ = 1, the model is
equivalent to the classical Heisenberg model in two di-
mensions and thus does not exhibit any phase transition
at finite temperatures.
To see the ∆-dependent behaviors of the XXZ models,

we calculate a quantity called helicity modulus [52–54] by
measuring variations of the free energy when uniform and
infinitesimal twists are introduced in the spin alignment
in a certain direction. Figure 1(d) shows temperature
profiles of the helicity modulus γ for various values of the
anisotropy parameter ∆ calculated by the Monte Carlo
calculations. The calculations are performed for a square
lattice of 32 × 32 sites, and the twist along the x-axis
is considered. We find that γ is suppressed to be zero
at any temperatures for the Ising-like case with ∆ > 1,
whereas it increases with decreasing temperature below
a certain temperature for the XY-like case with ∆ < 1
which manifests the emergence of BKT phase.

III. METHOD

We examine two machine-learning methods based on
neural networks for detecting the phase transitions in
the XXZ models, which are referred to as the phase-
classification method and the temperature-identification
method, respectively. The neural networks used in these
methods are implemented with the machine-learning li-
brary KERAS [55]. We perform supervised learning for
these neural networks using a set of training input and
corresponding answer labels.

A. Phase-classification method

We first implement a neural network shown in
Fig. 2(a). The binary classification of two phases is con-
sidered here. Inputs to this neural network are spin or
vortex configurations of well-known classical spin models
other than the XXZ models, i.e., the Ising models and the
XY models in the present study, prepared by the Monte
Carlo thermalization. The outputs are vectors with two
components, each of which represents a probability that
the input belongs to the phase. This neural network is
referred to as the phase-classification type hereafter.
For detection of the second-order phase transition in

the Ising-like XXZ model with ∆ = 1.05, we simply use
this neural network, which comprises one input layer, one
or two hidden layers, and one output layer. The input
layer has 3L2 nodes corresponding to all the spin compo-
nents on the L× L lattice, whereas the output layer has
two nodes corresponding to the ferromagnetic phase and
the paramagnetic phase. The two outputs are probabil-
ities PFM(T ) and PPM(T ) that the input belongs to the
ferromagnetic phase and the paramagnetic phase, respec-
tively. The number of the hidden nodes in each hidden
layer is determined so as to encode the 3L2-component
inputs into the two-component outputs with the same
compression ratio at each layer. Adjacent layers are con-
nected by weight matrices which weight the importance
of data transmitted from the former layer to the next
layer. The Rectified Linear Unit (ReLU) function is em-
ployed as an activation function for the hidden layers,
whereas the softmax function for the output layer. The
sum of probabilities PFM(T )+PPM(T ) equals to unity be-
cause the softmax function normalizes the components of
output.
For detection of the BKT transition in the XY-like

XXZ model with ∆ = 0.95, the input data are pro-
cessed by using the convolutional neural network [2] be-
fore feeding them into the phase-classification-type neu-
ral network. The convolutional neural network is adopted
to capture two-dimensional features of spatial configura-
tions of vortices and antivortices to judge whether they
are bound or unbound. The convolutional neural network
comprises one input layer, three hidden layers, and one
output layer as shown in Fig. 3, where the first hidden
layer is the convolution layer. The ReLU function is em-
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FIG. 2: Neural networks used for detection of the second-order phase transition in the Ising-like XXZ model with ∆ > 1. (a)
Phase-classification type neural network. Spin configurations of Si = (0, 0, Siz) with Siz = +1 or −1 for the Ising model are used
for training data, while those of Si = (Six, Siy , Siz) for the XXZ model are used for the input data. This neural network output
probabilities PPM and PFM that the input spin configuration is paramagnetic and ferromagnetic, respectively, where their sum
PPM + PFM is normalized to be unity. The weight matrices connecting the layers in this neural network are trained so as to
output a higher probability for the phase to which the spin configuration indeed belongs. (b) Temperature-identification-type
neural network. Spin configurations of Si = (Six, Siy, Siz) for the XXZ model are used for training data. The weight matrices
in this neural network are trained so as to output a correct temperature at which the input spin configuration is obtained.
All the spin configurations used as training and input data are prepared by the Monte Carlo thermalization. The activation
functions adopted in respective hidden and output layers are also presented.

ployed for the three hidden layers, whereas the softmax
function for the output layer. In the convolution layer,
the input data with L2 components are transformed into
a data with (L+ 3)2 components by adding zeros as ad-
ditional components in the so-called zero-padding proce-
dure. The convolutional procedure is performed by ap-
plying a filter with 42 weight components to the (L+3)2

data to obtain L2 data. Then the ReLU function is ap-
plied to each component of the processed L2 data for
activation, and the two-dimensional data are flattened
to one-dimensional L2 data.

The convoluted L2 data are fed to the phase-
classification-type neural network for detection of the
BKT transition. The two nodes in the output layer cor-
respond to the BKT phase and the paramagnetic phase,
which output the probabilities PBKT(T ) and PPM(T )
that the input vortex configuration belongs to the BKT
phase and the paramagnetic phase, respectively. The
sum of probabilities PBKT(T ) + PPM(T ) again equals to
unity. We determine the number of nodes in the hidden
layers in the same manner as the Ising-like case.

We prepare sets of the spin (vortex) configurations of
the Ising (XY) model and corresponding phase labels as
training data. The neural network is trained so as to
correctly guess phases to which the input spin (vortex)
configurations belong. We use a cost function to quantify
the difference between the outputs of the neural network
and the answer labels. As a cost function, the cross-
entropy error function is employed, which is given by,

E(ti,yi) =
∑

i

∑

k

tik log y
i
k, (2)

where i is the label of input data, and k is the index of
output nodes. yik represents the kth component of the
output vector from the neural network, and tik represents
the kth component of the answer label for the ith input
training data. In the training procedure, we minimize the
loss function by tuning the components of weight matri-
ces using the optimization algorithm called Adam [56].
After the training procedure, we feed 100 spin or vortex

configurations of the XXZ model generated at each of 200
temperature points to the neural network as the input
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FIG. 3: Data convolution process in the convolutional neural network for detection of the BKT transition in the XY-like
XXZ model with ∆ < 1 on the L× L lattice. Spatial vortex-configuration data with L2 components are made from the spin-
configuration data with 3L2 components generated by the Monte Carlo thermalization. The whole process of the convolution
layer contains four procedures, i.e., padding, convolution, activation, and flattening. The L2 data are transformed to (L+ 3)2

data by adding zeros as additional components in the padding procedure. A 4×4 filter is applied to the (L+3)2 data to obtain L2

convoluted data in the convolution procedure, while the ReLU function is adopted for the activation procedure. The processed
L2 data are fed to a neural network, e.g., the phase-classification-type neural network or the temperature-identification-type
neural network, which are basically the same as those in Fig. 4(a) and (b), respectively, although the number of input nodes
is different. For the phase-classification-type neural network, the vortex configurations for the XY model are used as training
data, while those of the XXZ model is used as input data. This neural network output probabilities PPM and PBKT that the
input vortex configuration belongs to the paramagnetic phase and the BKT phase, respectively, where their sum PPM + PBKT

is normalized to be unity. The weight matrix in this neural network as well as 42 components of the filter are trained so as to
assign the inputted vortex configurations to correct phases. For the temperature-identification-type neural network, the vortex
configurations of the XXZ model are used to train the weight matrix and the filter so as to output correct temperatures at
which the input vortex configurations are generated by the Monte Carlo thermalization.

data. For the lth input data (l = 1, 2, · · · , 100) generated
at temperature T , the probabilities P l

1(T ) and P l
2(T ) are

output from the first and the second nodes in the output
layer, respectively. From the 100 outputs of P l

α(T ) (α =
1, 2), we calculate averaged probabilities P̄α(T ) at each
temperature point as,

P̄α(T ) =
1

Nl

Nl
∑

l=1

P l
α(T ) (Nl = 100). (3)

At the critical temperature, the neural network is con-
fused in the phase classification because pronounced
thermal-fluctuation effect obscures the difference be-
tween two phases. Thus, we determine the critical tem-
perature by the crossing point of P̄1(T ) and P̄2(T ), at
which both P̄1(T ) and P̄2(T ) take 0.5.

B. Temperature-identification method

We next implement a neural network shown in
Fig. 2(b). The multiclass classification of temperatures
is carried out by this neural network. Inputs to this neu-
ral network are spin or vortex configurations of the XXZ
model prepared by the Monte Carlo thermalization at
200 temperature points ranged from Tn=1 = 0.01J to

Tn=200 = 2.00J with constant intervals of ∆T = 0.01J .
The outputs are vectors with 200 components, where the
nth component represents a probability that the input
spin or vortex configuration is generated at Tn = n∆T .
This neural network is referred to as the temperature-
identification type hereafter.
For detection of the second-order phase transition in

the Ising-like XXZ model with ∆ = 1.05, we simply use
this neural network, which comprises one input layer,
three hidden layers, and one output layer. The input
layer has 3L2 nodes corresponding to all the spin compo-
nents on the L× L lattice, whereas the output layer has
200 nodes corresponding to the 200 temperature points.
The number of the hidden nodes in each hidden layer is
determined so as to encode the 3L2-component inputs
into 200-component outputs with the same compression
ratio at each layer. Adjacent layers are connected by
weight matrices. The ReLU function is employed as an
activation function for the first and third hidden layers,
while the softmax function is employed for the second
hidden layer and the output layer.
On the other hand, we use the temperature-

identification-type convolutional neural network [2] for
detecting the BKT transition in the XY-like XXZ model
with ∆ = 0.95. The convolutional neural network com-
prises one input layer, three hidden layers, and one out-
put layer, where the first hidden layer is the convolu-
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tion layer. As activation functions, the ReLU function
is employed for the first and the third hidden layer, the
softmax function is employed for the second hidden layer
and the output layer. The same data processing as in
the convolution layer of phase-classification-type convo-
lutional neural network is performed in the convolution
layer. In the convolutional neural network, input data is
processed as follows: First, two-dimensional input data is
transformed into one-dimensional data in the convolution
layer. The convolution layer connects the second hidden
layer in Fig. 2(b). The rest processes are the same as the
neural network in Fig. 2(b). Here, the output layer has
200 nodes corresponding to the 200 temperature points,
while the number of the hidden nodes is determined as
the same as ∆ = 1.05.
We prepare sets of spin configurations of the Ising-like

XXZ model with ∆ = 1.05 or vortex configurations of
the XY-like XXZ model with ∆ = 0.95 and correspond-
ing temperature labels as training data. Therefore, the
neural networks are trained to correctly estimate the tem-
perature at which the input spin or vortex configurations
are generated. We use the cross-entropy error function
as a cost function. In the training process, using the op-
timization algorithm called Adam [56], we minimize the
loss function by tuning components of weight matrices.
After the training procedure, we focus on the weight

matrix Wj,n connecting the jth node in the last hidden
layer with j = 1, 2, · · ·200 and the nth node in the out-
put layer corresponding to the nth temperature point
Tn = n∆T with n = 1, 2, · · · 200. A gray-scale plot of the
matrix components Wj,n in plane of j and Tn is called
heat map. Heat maps tend to exhibit distinct patterns for
different phases, which can be exploited to detect phase
transitions.
We evaluate critical temperatures by quantitative anal-

ysis of the pattern changes in heat maps. For this pur-
pose, we introduce special kinds of correlation function
CW (T ) and variance VW (T ). The correlation function
CW (T ) is defined by,

CW (Tn) =
1

Nh

n−1
∑

m=1

Nh
∑

j=1

Wj,mWj,m+1, (4)

where Nh(= 200) is the number of nodes in the last hid-
den layer. The product Wj,mWj,m+1 quantifies similarity
or difference between adjacent components. On the other
hand, the variance VW (T ) is defined by,

VW (Tn) =
1

n− 1

Nh
∑

j=1

n−1
∑

m=1

(Wj,m − W̄j)
2,

W̄j =
1

n− 1

n−1
∑

m=1

Wj,m.

(5)

For Tn < Tc, heat maps tend to exhibit a stripe pattern
reflecting an ordered phase. Consequently, the compo-
nents Wj,n take similar values within each row specified
by j and thus the variance VW (Tn) is small. On the

L=80

L=64

L=48

L=32

L=16

Tc /J=0.76

3

2

1

0
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

T/J

0.76

0.80

0.78

0.70

0.72

0.74

L-1

S
p

e
c
if
ic

 h
e

a
t 
C

s
T

c
 /J

(a)

(b)

D=1.05 (Ising-like)

FIG. 4: (a) Temperature profiles of specific heat for the Ising-
like XXZ model with ∆ = 1.05 for various system sizes, each
of which exhibits a peak at the critical temperature Tc of
the second-order phase transition from the paramagnetic to
ferromagnetic phases. (b) Finite-size scaling analysis of Tc.
In the thermodynamic limit of L → ∞, Tc is evaluated to be
Tc/J = 0.76 by extrapolation.

TABLE I: Critical temperatures of the Ising-like XXZ model
with ∆ = 1.05 for various system sizes in units of J . The case
of L → ∞ denote results in the thermodynamic limit.

L 16 32 48 64 80 ∞

TMC
c /J 0.760(5) 0.760(5) 0.760(5) 0.760(5) 0.760(5) 0.760(0)

TPC
c /J 0.724(6) 0.735(3) 0.749(4) 0.755(3) 0.763(6) 0.766(5)

contrary, for Tn > Tc, heat maps tend to exhibit a sand-
storm pattern reflecting a disordered phase, and the com-
ponents Wj,n take scattered values along each row. As
a result, the variance VW (Tn) increases from Tc with in-
creasing Tn. Pattern changes in the heat map manifests
themselves in the Tn-profiles of CW (Tn) and VW (Tn) in
distinct manners.

IV. RESULTS FOR ∆ = 1.05 (ISING-LIKE CASE)

A. Monte Carlo calculation

We first determine the critical temperature Tc of
the second-order phase transition in the Ising-like XXZ
model with ∆ = 1.05 from specific heat calculated by
the Monte Carlo calculation. Figure 4(a) shows the cal-
culated temperature profiles of specific heat for several
lattice sizes. For each lattice size, the specific heat has
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a peak at Tc. A finite-size scaling analysis is performed
to evaluate Tc in the thermodynamic limit. We derive
the size dependence of Tc. The spin correlation length
ξ behaves as ξ ∝ |T − Tc| near the critical tempera-
ture because the second-order phase transition belongs
to the Ising universality class. Because the correlation
length ξ satisfies ξ = L at the critical temperature Tc(L)
for finite-size systems, the size dependence of the critical
temperature is given by,

Tc(L) = Tc(∞) +
a

L
. (6)

Here Tc(∞) is the critical temperature in the thermody-
namic limit, and a is a constant. Figure 4(b) presents
the size dependence of the critical temperature Tc(L)/J .
From the extrapolation to L−1 → 0, the critical tem-
perature in the thermodynamic limit is evaluated as
TMC
c /J = 0.76. The critical temperatures for several

system sizes are summarized in Table I.

B. Spin configurations used as training data

We prepare many spin configurations of the Ising
model and the Ising-like XXZ model with ∆ = 1.05 for
several lattice sizes L×L (L = 16, 32, 48, 64, 80) as train-
ing data of the neural network. The spin configurations
are generated by the Monte Carlo thermalization with
12000 iterative steps based on the single-flip Metropolis
algorithm. For the Ising model, 100 spin configurations
are prepared at each of 400 temperature points from
T = 0.01J to T = 4.00J at intervals of ∆T = 0.01J .
For the Ising-like XXZ model, on the other hand, 200
spin configurations are prepared at each of 200 tempera-
ture points from T = 0.01J to T = 2.00J at intervals of
∆T = 0.01J .

The temperature phase diagram and the examples of
spin configurations for the Ising model are presented in
Figs. 5(a)-(c). The blue (red) arrows in Figs. 5(b) and (c)
denote +1 (−1) spins. Most of the spins are pointing in
the same direction in the ferromagnetic phase [Fig. 5(b)],
whereas +1 and −1 spins are randomly distributed in
the paramagnetic phase [Fig. 5(c)]. On the other hand, a
schematic temperature phase diagram and the examples
of spin configurations for the Ising-like XXZ model are
presented in Figs. 5(d)-(f). The arrows in Figs. 5(e) and
(f) denote the in-plane components of the spins, while
the colors of pixels represent their out-of-plane compo-
nents. The image for the ferromagnetic phase [Fig. 5(e)]
is almost unicolored by red or blue because most of the
ordered spins are pointing along the z axis, while the red
and blue pixels are randomly distributed in the image
for the paramagnetic phase [Fig. 5(f)]. The existence of
in-plane spin components might make the situation com-
plicated for detection of the phase transition in the XXZ
model.

0 Tc /J= 2.269

T/JFM PM

(b) FM phase (T/J=1.0) (c) PM phase (T/J=3.5)

(a) Ising model

0 Tc /J

T/JFM PM

(d) XXZ model (D>1, Ising-like)

(e)

Low-T phase (T/J=0.65)

(f)

High-T phase (T/J=0.85)

Siz
-1         0         1

FIG. 5: Spin configurations of the Ising model on square lat-
tices are used for data to train the neural network aiming
for detection of the second-order phase transition in the XXZ
model with ∆ > 1. (a) Schematic temperature phase diagram
of the square-lattice Ising model, which exhibits the second-
order phase transition from the paramagnetic (PM) phase to
the ferromagnetic (FM) phase at Tc/J = 2.269. Spin config-
urations generated by the Monte Carlo thermalization in the
temperature range 0.01 ≤ T/J ≤ 2.01 (2.52 ≤ T/J ≤ 4.00)
are used for the training data for the FM (PM) phase. (b),
(c) Typical spin configurations of (b) FM phase (T/J = 1.0,
L = 16) and (c) PM phase (T/J = 3.5, L = 16). Spin config-
urations of the XXZ model with ∆ = 1.05 at various tempera-
tures are entered to the trained neural network as input data.
(d) Schematic temperature phase diagram of the Ising-like
XXZ model with ∆ > 1. (e), (f) Typical spin configurations
at (e) lower temperatures (T/J = 0.65) and (f) higher tem-
peratures (T/J = 0.85) of the XXZ model with ∆ = 1.05. It
turns out that the neural network trained by the binary-spin
configurations of the Ising model is capable of detecting the
phase transition of the three-dimensional vector-spin states in
the XXZ model.

C. Phase-classification method

We attempt to detect the second-order phase transition
in the Ising-like XXZ model with ∆ = 1.05 by the phase-
classification-type neural network shown in Fig. 2(a). As
the training dataset, 100 ferromagnetic spin configura-
tions of the Ising model (instead of the XXZ model)
are prepared at each temperature point ranged from
T = 0.01 to T = 2.01, while 100 paramagnetic spin con-
figurations are prepared within a temperature range from
T = 2.52 to T = 4.00 at intervals of ∆T = 0.01. Here,
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FIG. 6: (a) Temperature profiles of the averaged probabili-
ties P̄PM and P̄FM of the Ising-like XXZ model with ∆ = 1.05
obtained by the phase-classification-type neural network for
various system sizes. Here, P̄PM(T ) and P̄FM(T ) are averages
of the probabilities that a set of the spin configurations gen-
erated at temperature T by the Monte Carlo thermalization
are classified to the paramagnetic phase and the ferromag-
netic phase, respectively. The summation P̄PM + P̄FM is al-
ways normalized to be unity. Each crossing point of P̄PM and
P̄FM, at which both probabilities take 0.5, is assigned to a
transition temperature for the corresponding system size. (b)
Finite-size scaling analysis of Tc. Tc in the thermodynamic
limit of L → ∞ is evaluated to be Tc/J = 0.766 by extrap-
olation, which coincides well with Tc/J = 0.76 evaluated by
the conventional Monte Carlo analysis.

the spin configurations around Tc = 2.269 are excluded
from the training data. Each spin configuration of the
Ising model on the L×L square lattice has only L2 com-
ponents. We, therefore, transform the binary spin vari-
ables Si(= ±1) into three-component vectors (0, 0, Si).
This transformation is justified by the uniaxial magnetic
anisotropy in the XXZ models.

The vectors (0, 0, S1, · · · , 0, 0, Si, · · · , 0, 0, SL2), which
is arrays of the vectors (0, 0, Si) at all sites, is fed to the
neural network. On the other hand, the answer labels for
the training data are vectors with two components, which
represent probabilities that the input spin configuration
belongs to the paramagnetic phase and the ferromagnetic
phase, respectively. The vector (1, 0) is given as the an-
swer labels for the input spin configurations generated
below Tc, while the vector (0, 1) is given for those gener-
ated above Tc. The former (latter) vector mean that the
input is absolutely for the ferromagnetic (paramagnetic)

phase. The neural network is trained so as to correctly
guess phases to which the input spin configurations be-
long.
After completing the training procedure, we input the

spin configurations of the XXZ model to the trained neu-
ral network, where each input is an array of the spin vec-
tors, i.e., (Sx

1 , S
y
1 , S

z
1 , · · · , S

x
i , S

y
i , S

z
i , · · · , S

x
L2 , S

y

L2 , S
z
L2).

As the iput dataset, 100 spin configurations are pre-
pared at each temperature point within a range from
T = 0.01J to T = 2.00J at intervals of ∆T = 0.01J .
For the 100 spin configurations generated at T , 100 out-
put vectors (P l

FM(T ), P l
PM(T )) are obtained, where l

(= 1, 2, · · · , 100) is the index of the input data. We calcu-
late the averages of P l

FM(T ) and P l
PM(T ) over 100 input

data to obtain the averaged probabilities P̄FM(T ) and
P̄PM(T ).
Figure 5(a) shows the temperature profiles of P̄FM(T )

and P̄PM(T ). We find that P̄FM(T ) ≈ 1 and P̄PM(T ) ≈
0 at lower temperatures, whereas P̄FM(T ) ≈ 0 and
P̄PM(T ) ≈ 1 at higher temperatures. This indicates that
the neural network correctly guesses phases to which the
input data belong. The critical temperature Tc for each
lattice size is determined from a crossing point of the
two profiles. Moreover, Tc in the thermodynamic limit is
evaluated to be TPC

c /J = 0.766 by the finite-size scaling
analysis using Eq. (6). This value coincides well with the
value TMC

c /J = 0.76 obtained by the Monte Carlo calcu-
lation. The values of Tc for several lattice sizes evaluated
by the present phase-classification method are summa-
rized in Table I. Now it has been successfully demon-
strated that the phase-classification-type neural network
can detect the phases and the second-order phase transi-
tion in the Ising-like XXZ model.

D. Temperature-identification method

Next we attempt to detect the second-order phase
transition in the Ising-like XXZ model with ∆ =
1.05 by the temperature-identification-type neural net-
work shown in Fig. 2(b). As the training dataset,
100 spin configurations of the XXZ model are pre-
pared at each temperature point Tn = n∆T (n =
1, 2, · · · , 200) ranged from T = 0.01J to T =
2.00J at intervals of ∆T = 0.01J . The vectors
(Sx

1 , S
y
1 , S

z
1 , · · ·S

x
i , S

y
i , S

z
i , · · · , S

x
L2 , S

y

L2 , Sz
L2), which are

arrays of the spin vectors (Sx
i , S

y
i , S

z
i ) at all sites i (=

1, 2, · · · , L2), are fed to the neural network as inputs for
training. As the answer labels, we adopt temperatures
Tn, at which the input spin configurations are generated.
Here, the answer label is represented by a vector with 200
components. When the answer is T/J = Tn/J , only the
nth component of the vector is set to be unity, while the
other components are set to be zero. The neural network
is trained so as to correctly guess temperatures at which
the input spin configurations are generated.
After the training procedure, we focus on the weight

matrix connecting the last hidden layer and the output
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FIG. 7: (a) Heat map of the weight-matrix components Wj,n

in the temperature-identification-type neural network, which
connect the jth node in the last hidden layer and the nth
node in the output layer in the plane of j (= 1, 2, · · · , 200)
and Tn = n∆T (n = 1, 2, · · · , 200) for the Ising-like XXZ
model with ∆ = 1.05 on the square lattice of L = 80. A clear
change in pattern is seen at Tc/J = 0.757, which is ascribed
to the phase transition from the paramagnetic (PM) phase to
the ferromagnetic (FM) phase at this temperature. (b) Corre-
lation function CW (T ) of the weight-matrix components Wj,n

defined by Eq. (3) as a function of Tn, which clearly shows
a change in slope at Tc. (c) Variance VW (T ) of the weight-
matrix components Wj,n defined by Eq. (4) as a function of
Tn, which shows an abrupt change at Tc.

layer. Components of the weight matrix are visualized
as a heat map in Fig. 7(a). Here, the horizontal axis
represents the index n of output nodes or corresponding
temperature Tn/J(= n∆T/J), and the vertical axis rep-
resents the index j of hidden nodes. A clear change in
pattern is observed between the regimes above and below
T ≈ 0.76, where a stripe (sandstorm) pattern appears
in the lower (higher) temperature regime. To analyze
this pattern change more quantitatively, we calculate the
correlation function CW (T ) and variance VW (T ), which
are, respectively, defined by Eq. (4) and Eq. (5). Fig-
ures 7(b) and (c) show the temperature profiles of CW (T )
and VW (T ), respectively. The plot of CW (T ) shows a
clear change in slope associated with the phase transi-
tion at Tc/J = 0.757. The plot of VW (T ) also shows
a clear difference in behavior between the regimes above
and below Tc. It is constant below Tc, starts increasing at
Tc, and monotonically increases above Tc. The evaluated
critical temperature coincides well with that obtained by
the conventional Monte Carlo analysis.
Here it should be mentioned that the variance VW (Tn)

is calculated using the weight-matrix components Wj,m

at discretized temperature points Tm (m = 1, 2, · · · , n−
1) below Tn. When Tn is small, the number of the tem-
perature points that can be used for the variance calcu-
lation, i.e., n − 1, is small so that the calculated vari-
ance VW (Tn) might contain a certain error. Therefore,
the variances VW (Tn) in Fig. 7(c) are calculated only for
Tn/J > 0.4 to suppress the errors. The calculated profile
of VW (Tn) is very smooth, and the errors are negligi-
bly small even around Tn/J ∼ 0.4. We think that this
variance-based analysis is applicable even to much lower
temperatures.

V. RESULTS FOR ∆ = 0.95 (XY-LIKE CASE)

A. Monte Carlo calculation

We determine the critical temperature TBKT of the
BKT transition in the XY-like XXZ model from helic-
ity modulus γ calculated by the Monte Carlo calculation.
The helicity modulus of the XXZ model is calculated us-
ing the following formula given in the form of thermal
average,

γXXZ =
J

L2

〈

∑

〈i,j〉x

√

1− S2
iz

√

1− S2
jz cos(φi − φj)

〉

−
βJ2

L2

〈





∑

〈i,j〉x

√

1− S2
iz

√

1− S2
jz sin(φi − φj)





2
〉

.

(7)

For the derivation of this formula, see Appendix. This
quantity exhibits a universal jump from γ = 0 to γ =
2TBKT/π at TBKT. For each lattice size, TBKT is de-
termined by the crossing point between the temperature
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TABLE II: Critical temperatures of the XY-like XXZ model with ∆ = 0.95 for various system sizes. The case of L → ∞ denote
results in the thermodynamic limit.

L 16 32 48 64 80 96 112 ∞

TMC

BKT/J 0.6351 0.6243 0.6201 0.6188 0.6177 - - 0.606

TPC

BKT/J - - 0.574(5) 0.576(2) 0.578(5) 0.582(9) 0.584(7) 0.603(5)
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FIG. 8: (a) Temperature profiles of helicity modulus for the
XY-like XXZ model with ∆ = 0.95 for various system sizes. A
point at which the curve and the dashed line cross is assigned
to the transition temperature TBKT from the paramagnetic
phase to the BKT phase for each system size. The dashed
line represents a linear function f(T ) = 2(T/J)/π. (b) Finite-
size scaling analysis of TBKT. In the thermodynamic limit
of L → ∞, TBKT is evaluated to be TBKT/J = 0.606 by
extrapolation.

profiles of γ and the line f(T ) = 2T/π. Fig. 8(a) shows
the temperature profiles of γXXZ for the XY-like XXZ
model with ∆ = 0.95 for several lattice sizes.
We evaluate the BKT transition temperature in the

thermodynamic limit TBKT(∞) by a finite-size scaling
analysis. Kosterlitz and Thouless revealed that the cor-
relation length behaves as exp(c/

√

|t|) at temperatures
slightly above TBKT(∞). Here c is a constant, and t is a
relative temperature defined by,

t =
T − TBKT(∞)

TBKT(∞)
. (8)

For finite-size systems, ξ equals to the lattice size L at
TBKT. Therefore, TBKT(L) is given as a function of the
system size L,

TBKT(L) = TBKT(∞) +
c′

(lnL)2
. (9)

The size dependence of TBKT(L) for the XY-like XXZ
model with ∆ = 0.95 is shown in Fig. 4(b). We eval-
uate TMC

BKT/J = 0.606 in the thermodynamic limit from
the extrapolation. The obtained values of TBKT(L) for
several sizes are summarized in Table II.

B. Vortex configurations used as training data

We prepare many vortex configurations of the XY
model and the XY-like XXZ model with ∆ = 0.95 for
several lattice sizes L×L (L = 16, 32, 48, 64, 80) as train-
ing data of the neural network, which are made from the
spin configurations by calculating the vorticity on each
plaquette. Here the spin configurations are generated by
the Monte Carlo thermalization with 105 iterative steps
based on the single-flip Metropolis algorithm. For the
XY model and the XY-like XXZ model, vortex configu-
rations are prepared at each temperature point.
The temperature phase diagram and the examples of

vortex configurations for the XY model are presented
in Figs. 9(a)-(c). The red circles and blue crosses indi-
cate vortices and antivortices, respectively, in Figs. 9(b)
and (c). Corresponding spin configurations are also
shown in these figures where the arrows represent the in-
plane components of spin vectors. One vortex-antivortex
bound pair is seen in Fig. 9(b) for the BKT phase,
whereas six free vortices and antivortex are seen in
Fig. 9(c) for the paramagnetic phase. On the other hand,
a schematic temperature phase diagram and the exam-
ples of vortex configurations for the XY-like XXZ model
are presented in Figs. 9(d)-(f). Two vortex-antivortex
bound pairs are seen in Fig. 9(e) for the BKT phase,
whereas there are many free vortices and antivortices in
Fig. 9(f) for the paramagnetic phase. Here the colors of
pixels represent their out-of-plane components or the z
components.
Here it should be mentioned that we have also ex-

amined the bare spin configurations as input data in-
stead of the vortex configurations. We have found that
the machine learning method often fails to detect the
BKT transition in this case. The neural network tends
to detect the growth of global magnetization component
more sensitively than the evolution of vortex configura-
tion, which makes it difficult to detect the BKT tran-
sition characterized by the bound and unbound states
of vortex-antivortex pairs. In fact, this aspect has been
pointed out in previous work [25]. This problem might
be more crucial for the weakly easy-plane XXZ models
with three-dimensional continuous vector spins than the
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FIG. 9: Vortex configurations of the XY models on square
lattices are used for data to train the neural network aim-
ing for detection of the BKT transition in the XXZ model
with ∆ < 1. (a) Schematic temperature phase diagram of
the square-lattice XY model, which exhibits the BKT transi-
tion from the paramagnetic (PM) phase to the BKT phase
at TBKT/J = 0.899. Vortex configurations generated by
the Monte Carlo thermalization in the temperature range
0.75 . T/J ≤ 0.89 (0.90 ≤ T/J . 1.05) are used for the
training data for the BKT (PM) phase. (b), (c) Typical spin
and vortex configurations of (b) BKT phase (T/J = 0.75,
L = 16) and (c) PM phase (T/J = 1.05, L = 16). Loca-
tions of vortices and antivortices are indicated by solid circles
and cross symbols. Spin configurations of the XXZ model
with ∆ = 0.95 at various temperatures are entered to the
trained neural network as input data. (d) Schematic temper-
ature phase diagram of the XY-like XXZ model with ∆ < 1.
(e), (f) Typical spin configurations at (e) lower temperatures
(T/J = 0.5) and (f) higher temperatures (T/J = 0.7) of the
XXZ model with ∆ = 0.95. It turns out that the neural
network trained by the two-dimensional planar-spin configu-
rations of the XY model can detect the phase transition of
the three-dimensional vector-spin states in the XXZ model.

XY model with pure planar vector spins. In our previ-
ous work [35], we examined the q-state clock model and
found that the machine-learning method can detect the
BKT transition successfully even with bare spin configu-
rations as input data, which might be attributable to the
two-dimensional discrete spin degrees of freedom.
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FIG. 10: (a) Temperature profiles of the averaged probabili-
ties P̄PM and P̄BKT of the XY-like XXZ model with ∆ = 0.95
obtained by the phase-classification-type neural network for
various system sizes, where the summation P̄PM+ P̄BKT is al-
ways normalized to be unity. Each crossing point of P̄PM and
P̄BKT is assigned to a transition temperature for the corre-
sponding system size. (b) Finite-size scaling analysis of TBKT.
TBKT in the thermodynamic limit of L → ∞ is evaluated to
be TBKT/J = 0.603 by extrapolation, which coincides well
with TBKT/J = 0.606 evaluated by the conventional Monte
Carlo analysis.

C. Phase-classification method

We attempt to detect the BKT phase transition in
the XY-like XXZ model with ∆ = 0.95 by the phase-
classification-type neural network [Fig. 2(a)] combined
with the convolutional neural network [Fig. 3]. As the
training dataset, 100 vortex configurations for the BKT
(paramagnetic) phase in the XY model (instead of the
XXZ model) are prepared at each temperature point
within a range from T ∼ 0.75J to T = 0.89J (from
T = 0.90J to T ∼ 1.05J) at intervals of ∆T = 0.01J .

We input vectors with L2 components, which are ar-
rays of the vorticities Vi on all plaquettes in the square
lattice with periodic boundary conditions, to the neural
network. On the other hand, the answer labels for the
training data are vectors with two components, which
represent probabilities that the input vortex configura-
tion belongs to the BKT phase and the paramagnetic
phase, respectively. More specifically, (1, 0) is given as
answer labels for the input vortex configurations pre-
pared at T < TBKT, whereas (0, 1) is given for those
prepared at T > TBKT. The neural network is trained
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so as to correctly guess phases to which the input vortex
configurations belong.
After completing the training procedure, we input the

vortex configurations of the XXZ model to the trained
neural network, where each input is an array of the L2

vorticities. As the input dataset, 100 vortex configu-
rations are prepared at each temperature point within
a range from T = 0.01J to T = 2.00J at intervals of
∆T = 0.01J .For the 100 vortex configurations generated
at T , 100 output vectors (P l

BKT(T ), P l
PM(T )) are ob-

tained, where l (= 1, 2, · · · , 100) is the index of the input
data. We calculate the averages of P l

BKT(T ) and P l
PM(T )

over 100 input data to obtain the averaged probabilities
P̄BKT(T ) and P̄PM(T ).
Figure 10(a) shows the temperature profiles of

P̄BKT(T ) and P̄PM(T ). In these plots, P̄BKT(T ) ≈ 1 and
P̄PM(T ) ≈ 0 at lower temperatures, whereas P̄BKT(T ) ≈
0 and P̄PM(T ) ≈ 1 at higher temperatures, indicating
that the neural network correctly guess phases to which
the input data belong. The critical temperature TBKT for
each lattice size is determined from a crossing point of the
two profiles. Moreover, TBKT in the thermodynamic limit
is evaluated as TPC

BKT/J = 0.603 by the finite-size scaling
analysis using Eq. (9). This value coincides well with
the value TMC

BKT/J = 0.606 obtained by the Monte Carlo
calculation. The values of TBKT for several lattice sizes
evaluated by the present phase-classification method are
summarized in Table II. Now we have succeeded in
demonstrating the detections of the BKT transition in
the XY-like XXZ model by the phase-classification-type
neural network.

D. Temperature-identification method

Finally we attempt to detect the BKT transition in the
XY-like XXZ model with ∆ = 0.95 by the temperature-
identification-type neural network combined with the
convolutional neural network. As the training dataset,
100 vortex configurations of the XXZ model are prepared
at each temperature point ranged from T = 0.01J to
T = 2.00J at intervals of ∆T = 0.01J . We input the
vortex configurations to the neural network in the form
of vectors with L2 components. As the answer labels, we
adopt temperatures Tn, at which the input vortex con-
figurations are generated. Again the neural network is
trained so as to correctly guess temperatures at which
the input vortex configurations are generated.
After the training procedure, we again focus on the

weight matrix of the neural network connecting the last
hidden layer and the output layer, components of which
are visualized as a heat map in Fig. 11(a). We find
that a stripe (sandstorm) pattern appears in the lower
(higher) temperature regime. However, their boundary
is difficult to identify by eyes because the stripe and
sandstorm patterns are mixed in the in-between regime
of 0.3 < Tn/J < 0.7. To analyze the pattern change
more quantitatively, we calculate the correlation func-
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FIG. 11: (a) Heat map of the weight-matrix components Wj,n

in the temperature-identification-type neural network for the
XY-like XXZ model with ∆ = 0.95 on the square lattice
of L = 80. (b), (c) Temperature profiles of (b) correlation
function CW (T ) and (c) variance VW (T ) of the weight-matrix
components Wj,n. These profiles exhibit changes in slope at
several points (A, B, and C), but A and C do not correspond
to the BKT transition points. On the other hand, B is located
almost at the real transition point of TBKT/J = 0.606.

tion CW (T ) and variance VW (T ) defined by Eq. (4) and
Eq. (5). Again we calculated VW (Tn) for Tn/J > 0.4.

Figs. 11(b) and (c) present the temperature profiles of
CW (T ) and VW (T ), respectively. We find that CW (T )
exhibits changes in slope three times at points A, B,
and C, whereas VW (T ) exhibits abrupt changes in be-
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FIG. 12: Temperature profiles of the vortex density in the
XY-like XXZ model with ∆ = 0.95 on square lattices for
various system sizes. Inset magnifies an area indicated by
the dashed rectangle, around which the vortex density starts
increasing.

havior twice at B and C. To understand possible origins
of these anomalies, we calculate temperature profiles of
the vortex density for several lattice sizes of L × L with
L = 16, 32, 48, 64, 80 (Fig. 12). Here, the vortex density
is calculated as the total number of vortices and antivor-
tices per one plaquette. In these profiles, we find that
A corresponds to a temperature at which the profiles
start to increase, whereas C corresponds to its inflection
point. At the point A, the neural network might de-
tect the emergence of vortices and antivortices. On the
other hand, the anomaly C might be related with a peak
of the specific heat. We indeed observed the specific-
heat peak around this temperature in the Monte Carlo
calculations (not shown). Because the specific heat and
the vortex density are related with each other through
the spin configurations, they could have anomalies (i.e.,
a peak and an inflection) simultaneously when a cer-
tain crossover occurs. The neural network might de-
tect an anomaly associated with the crossover around
the point C. On the contrary, the anomaly B seems to
correspond to TBKT. Accordingly, we conclude that the
temperature-identification-type convolutional neural net-
work seemingly captures the BKT transition in the XY-
like XXZ model, but it fails to determine the transition
point uniquely.

VI. CONCLUSION AND DISCUSSION

In summary, we have examined two machine learn-
ing methods, which are, respectively, referred to as
the phase-classification method and the temperature-
identification method, for detecting the second-order
transition in the Ising-like XXZ model with a weak
easy-axis anisotropy of ∆ = 1.05 and the BKT transi-
tion in the XY-like XXZ model with a weak easy-plane

anisotropy ∆ = 0.95.

In the phase-classification method, the neural network
trained by the spin configurations of the Ising model is
used to classify the spin configurations of the Ising-like
XXZ model into the ferromagnetic phase and the para-
magnetic phase. On the other hand, the neural network
trained by the vortex configurations of the XY model is
used to classify the vortex configurations of the XY-like
XXZ model into the BKT phase and the paramagnetic
phase. For both cases, we have evaluated the critical tem-
peratures for several system sizes and have performed
finite-size scaling analyses. The obtained critical tem-
peratures in the thermodynamic limit coincide well with
those evaluated in the previous studies for both cases.

In the temperature-identification method, the neural
network is trained so as to correctly answer the temper-
atures at which the spin (vortex) configurations of the
XXZ model with ∆ = 1.05 (∆ = 0.95) are generated by
the Monte Carlo thermalization. After the training is
completed, we focus on the weight matrix connecting the
last hidden layer and the output layer to evaluate the crit-
ical temperatures. We have introduced two quatities, i.e.,
the correlation function CW (T ) and the variance VW (T )
to quantitatively analyze the pattern changes in the heat
map that visualizes the weight-matrix components. The
evaluated critical temperature for the second-order tran-
sition in the XXZ model with ∆ = 1.05 coincide with
that obtained in the previous study. On the contrary,
in the case of the XXZ model with ∆ = 0.95, the neu-
ral network detects not only the BKT transition but also
other cross-over behaviors and thus fails to determine the
BKT transition temperature uniquely.

The phase transitions in theoretical spin models have
been usually studied by statistical analyses based on the
Monte Carlo technique. Our machine learning methods
have some advantages over this traditional technique.
First, the computational cost can be significantly re-
duced. Both of our machine learning methods require
the spin or vortex configurations generated by the Monte
Carlo thermalization, but they do not necessarily have to
be thermal equilibrium states. Namely even imperfectly
thermalized spin or vortex configurations can work for
the detection of the phase transitions, which enables us
to save the numerical cost significantly. This is in striking
contrast to the Monte Carlo method, which requires the
huge number of samplings after sufficient thermalization
procedure to improve the accuracy of the thermal aver-
ages. We have confirmed that the analysis which takes
approximately an hour by our machine learning methods
typically takes several hours or even a few days if it is
done by the Monte Carlo method.

Second, our machine learning methods do not require
the derivation of model-sensitive expression of the he-
licity modulus for detection of the BKT transition. As
mentioned in the introduction section, the physical quan-
tity called helicity modulus is usually used to detect the
BKT transition in the Monte Carlo analysis. The ex-
pression of this quantity does not have a general form
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but has a form specific to each spin model, which must
be derived by hand for each case. Its derivation becomes
difficult when the theoretical spin model is not simple.
Our methods can avoid this difficulty and thus can be
applied to general spin models. In addition, in the case of
the phase-classification method, the neural network can
be applied to other models without any extra training
procedure, if it is once trained.
We should also mention that several machine learning

methods have been applied to theoretical spin models
as argued in the introduction section, most of which are
based on supervised learning techniques. Our propos-
als have several advantages over them. One advantage
is that our methods require no or less information of
the model in advance. Conventional machine learning
methods often require the prior knowledge of fundamen-
tal properties of the model, e.g, the number of phases, the
approximate transition temperature(s), and even the or-
der parameter(s) to assign the answer labels to the train-
ing data. Thus, they include a contradiction that the
properties of the model we are about to examine must
be known in advance. In contrast, both of our meth-
ods require the prior knowledge of neither the transition
temperatures nor the order parameters. In the case of
the temperature-identification method, we do not need
to know even the number of phases.
For detection of phase transitions in theoretical spin

models, the previously proposed machine learning meth-
ods often require preprocessing of input data to extract
the features of the phases and phase transitions. In par-
ticular, for detection of the BKT phase, the methods
using the vortex configurations, the spin-direction his-
togram, and some correlation functions have been pro-
posed, which are made from the bare spin-configuration
data. Among these quantities, the vortex configura-
tions are relatively natural to be employed because the
BKT behavior is characterized by the bound and un-

bound states of the vortex-antivortex pairs. Moreover,
they are easily made from the spin-configuration data.
In this sense, the least requirement of the feature en-
gineering is another advantage of our methods. Here
we note that in Ref. [35], we applied the temperature-
identification method to the q-state clock model with
q = 8 and demonstrated that the BKT phase and the
successive BKT transitions in this model can be success-
fully detected even using the bare spin configurations as
input data. This might be attributed to the fact that
less degrees of freedom of the two-dimensional discretized
spin vectors of the clock models. On the contrary, the
three-dimensional continuous spin vectors of the weakly
easy-plane XXZ models have larger degrees of freedom,
which might make the detection of the BKT behavior
more difficult.
Finally, we discuss possible future challenges for fur-

ther development of our work. First, the examination of
the XXZ models with different anisotropy values might
be worth doing. In the present work, we have exam-
ined only two cases with ∆ = 1.05 and ∆ = 0.95, which
are, respectively, the Ising-like case with a weak easy-axis
anisotropy and the XY-like case with a weak easy-plane
anisotropy on the verge of their boundary. We chose
these rather difficult cases to test the efficiency of our
methods. However, it must be interesting to examine
how the performances of our machine learning methods
depend on the distance from the boundary at ∆ = 1,
which is expected to scale with the clarity of phase transi-
tions. Second, the application of the phase-classification
method to other spin models that can host the BKT
phase is also an issue of interest. Through this research,
we might be able to clarify what features contained in the
input data are indeed detected by the neural network and
to establish a guiding principle of the systematic machine
learning scheme for detection of phase transitions in spin
models.

VII. APPENDIX A: HELICITY MODULUS FOR THE XXZ MODEL

The helicity modulus is a physical quantity which describes the degree of increase in free energy when a global
twist is applied to the system. Specifically, in a system with lattice size of L in one direction, we consider the gradual
twisting of spins with an equivalent twisting angle of δ/L from the left end to the right end so as to achieve a situation
that the rightmost spin is twisted by an infinitesimal angle δ relative to the leftmost spin. When the Hamiltonian
contains only terms symmetric with respect to the spin exchange, the increment of the free energy F in this case does
not depend on the sense of the twist, i.e., the sign of δ, and thus can be expanded by the square of δ. The helicity
modulus γ is defined as the coefficient of the leading term of the expansion as,

F (δ)− F (0) =
γ

2
δ2 +O(δ4). (10)

Through transforming into the second-order differencial form and taking the limit of δ → 0, we see that γ is given by
the second-order derivative of the free energy F with respect to δ as,

γ ≈ 2
F (δ)− F (0)

δ2
=

1

δ

(

F (δ)− F (0)

δ
−

F (0)− F (−δ)

δ

)

≈
∂2F

∂δ2

∣

∣

∣

∣

δ=0

. (11)
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The three-dimensional spin vector Si can be written with Sz
i and φi as,

Si = (Sx
i , S

y
i , S

z
i ) =

(

√

1− Sz
i
2 cosφi,

√

1− Sz
i
2 sinφi, S

z
i

)

. (12)

Using this expression, the distribution function Z(δ) of the twisted system is given by,

Z(δ) =

∫ −2π

−2π

dφ1

∫ −2π

−2π

dφ2 · · ·

∫ −2π

−2π

dφL2 e−βH̃(δ) ≡

∫

Dφ e−βH̃(δ). (13)

Here H̃(δ) is the Hamiltonian of the twisted system. The helicity modulus γ is calculated as,

γ =
∂2F

∂δ2

∣

∣

∣

∣

δ=0

=
∂2

∂δ2

(

−
1

β
lnZ(δ)

)∣

∣

∣

∣

δ=0

=

∫

Dφ ∂2H̃
∂δ2

e−βH̃

Z(δ)

∣

∣

∣

∣

∣

δ=0

− β

∫

Dφ
(

∂H̃
∂δ

)2

e−βH̃

Z(δ)

∣
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∣
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∣
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=
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∂δ

〉2
∣

∣

∣

∣

∣

∣

δ=0

. (14)

When the system contains only symmetric exchange interactions associated with Si ·Sj, the following relation holds,

〈

∂H̃

∂δ

〉∣

∣

∣

∣

∣

δ=0

=

〈

∂F

∂δ

〉∣

∣

∣

∣

δ=0

= 0. (15)

Consequently, the last term in Eq. (14) vanishes, and we obtain the following expression for a general form of the
helicity modulus,

γ =

〈

∂2H̃

∂δ2

〉∣

∣

∣

∣

∣

δ=0

− β

〈(

∂H̃

∂δ

)2〉
∣

∣

∣

∣

∣

∣

δ=0

. (16)

Now we discuss the derivation of the formula of the helicity modulus for the XXZ model. The Hamiltonian of the
XXZ model can be written using Sz

i and φi as,

H = −J
∑

<i,j>

{

√

1− Sz
i
2
√

1− Sz
j
2(cosφi cosφj + sinφi sinφj) + ∆Sz

i S
z
j

}

= −J
∑

<i,j>

{

√

1− Sz
i
2
√

1− Sz
j
2 cos(φi − φj) + ∆Sz

i S
z
j

}

. (17)

We consider the twisting of spin alignment in the x direction. Subsequently, the term in the Hamiltonian associated
with the bonds along the x axis is modified as,

H̃x(δ) = −J
∑

<i,j>x

{

√

1− Sz
i
2
√

1− Sz
j
2 cos

(

φi − φj −
δ

L

)

+∆Sz
i S

z
j

}

. (18)

Note that the term associated with the bonds along the y axis does not change. For the above Hamiltonian, we
obtain,

∂2H̃

∂δ2
=

∂2H̃x

∂δ2
=

J

L2

∑

<i,j>x

√

1− Sz
i
2
√

1− Sz
j
2 cos

(

φi − φj −
δ

L

)

, (19)

∂H̃

∂δ
=

∂H̃x

∂δ
=

J

L

∑

<i,j>x

√

1− Sz
i
2
√

1− Sz
j
2 sin

(

φi − φj −
δ

L

)

. (20)
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Eventually, we obtain the following expression of the helicity modulus for the XXZ model,

γXXZ =

〈

∂2H̃

∂δ2

〉∣

∣

∣

∣

∣

δ=0

− β
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J
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−
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〈





∑
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√
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2
√
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2
〉

. (21)

Sustituting Sz
i = 0 into this expression, we obtain the expression for the XY model as,

γXY =
J

L2

〈

∑

<i,j>x

cos(φi − φj)

〉

−
βJ2

L2

〈





∑

<i,j>x

sin(φi − φj)





2
〉

. (22)
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