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We study quasi-particle dynamics in a quasi-periodic Ising model with temporally fluctuating transverse fields.
Specifically, we calculate the dynamical exponents of the standard deviation of a quasi-particle spreading under
a field chosen randomly from binary values +/ at every time interval. We find that the short-time behavior of
the dynamical exponents depends on the interval of the temporally fluctuating fields. We also reveal how the
quasi-particle dynamics affects the relaxation of spin-spin correlation functions. The dynamics can be explained
via the overlap between the eigenvectors of a Hamiltonian with +4.

I. INTRODUCTION

Anderson’s pioneering research has opened a door to analy-
sis of localization phenomena in randomly disordered systems
[1]. Through various studies on Anderson localization, much
knowledge has been obtained for cases of one-particle prob-
lems [2-4]. Recently, localization with many-body interac-
tions has attracted much attention in the context of thermaliza-
tion problems in isolated quantum systems [5—7]. Such local-
ization is referred to as many-body localization (MBL). MBL
is also an important phenomenon in quantum information en-
gineering because an MBL phase can retain local information
at an initial state during time evolution. In this way, MBL
provides a vast research stage across various fields of physics.

Anderson localization has also been studied in the field of
quantum walks, which were originally introduced as quantum
versions of classical random walks [8]. The propagation of
walkers in quantum walks is different from that in classical
random walks. While a random walk exhibits a diffusive dy-
namics that is characterized by a standard deviation of the
probability distribution, given as o ~ v, a walker in a quan-
tum walk propagates ballistically as o ~ ¢. Such ballistic
dynamics is obtained in homogeneous cases. The dynamics
in a quantum walk is strongly affected by spatial and temporal
disorder. Spatial disorder localizes quantum walkers as o ~ 1
[9-13]. On the other hand, temporal disorder leads to diffusive
dynamics as o ~ v/, regardless of whether spatial disorder
exists [14-22]. Because quantum walks are almost equivalent
to the dynamics of excitations in tight-binding models, results
for quantum walks are useful in understanding the localization
phenomena and diffusive dynamics in disordered systems.

Quantum walks are formulated in two different ways: as
a discrete-time quantum walk (DTQW), or a continuous-time
quantum walk (CTQW) [23]. The difference between these
formulations is in how the system evolves in time. The time
evolution in a DTQW is implemented by the product of two
unitary operators, a coin operator and a displacement operator.
On the other hand, the time evolution operators in CTQWs are
given by solutions of the Schrodinger equation. In this way,
a CTQW is closer to the formulations of condensed matter
physics and the dynamics is related to non-equilibrium relax-
ation as compared with a DTQW. Sachdev first showed that the
relaxation of observables can be obtained from the classical

trajectories of quasi-particles [24]. These trajectories are esti-
mated from the time evolution of the standard deviation of the
probability distributions of the quantum walkers in CTQWs.
This framework has been applied to integrable and disordered
systems, and it can successfully estimate local quantities and
correlations [25, 26]. Later, Ro6sz et al. analyzed the quasi-
particle dynamics in a one-dimensional transverse field Ising
model (TFIM) whose transverse field fluctuates in the time
domain [27]. The main characteristic parameter of the ran-
domly fluctuating field is its time interval 7. They showed
that the standard deviations exhibit diffusive or super-diffusive
behaviors given by o ~ !/ (0.5 < 1/z < 1), depending on
the interval 7. However, they did not consider spatial disorder,
and in this paper, we reveal whether a super-diffusive dynamics
can be obtained even under spatial disorder.

Like random disorder (RD), quasi-periodicity (QP) also
leads to localized eigenstates. The potential or hopping param-
eters of QP systems are spatially modulated with incommen-
surate periods. Although more than 40 years have passed since
Abzel, Aubry and André reported localization in QP systems
[28, 29], fewer studies have been conducted on these systems
than on RD systems. Unlike RD systems, QP systems have
delocalized eigenstates even in one dimension. In addition, QP
systems at critical points have fractalities in their eigenspectra
and eigenfunctions [30-32],and they exhibit anomalous diffu-
sion [33-36]. While QP systems provide these rich properties,
there is not much choice in QP models: the Aubry-André
model is the main stages of studies on localization in QP sys-
tems [37—40]. Recently, another QP model, the quasi-periodic
transverse field Ising model (QP-TFIM), has come to be studied
[41-43]. The QP-TFIM has the complex phase diagram de-
picted in Fig. 1. From the viewpoint of localization, the phases
are roughly categorized into three types: extended, localized,
and critical phases. In the extended phase, quasi-particles
propagate ballistically, whereas no transport is observed in the
localized phase. The critical phase is located between the
other two phases and exhibits extremely slow dynamics. The
dynamics under the static Hamiltonian of the QP-TFIM was
clarified previously [43]. However, because systems are ex-
posed to fluctuating external fields in realistic situations, it is
worthwhile to reveal the dynamical properties in a QP system
under fluctuation in the time domain.

In this study, we consider the quasi-particle dynamics in the
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FIG. 1. Phase diagram of the QP-TFIM. The complexity is due
to the various symmetries in individual parameter regimes. The
abbreviation PM and FM indicate paramagnetic and ferromagnetic,
respectively. The diagram was obtained by A. Chandran et al.

QP-TFIM under temporally fluctuating fields. The transverse
fields are randomly chosen from binary values +/ at every
duration with a certain interval 7. The way the quasi-particles
spread is a key to understanding the relaxation processes, be-
cause the local observables and correlation functions can be
estimated from this dynamics in a semi-classical framework.
Thus, we perform stroboscopic time evolution and average the
probability distribution over realized sequences of temporally
random fields. Our calculations focus on the extended para-
magnetic (extended PM) region shown in Fig. 1, which is in
contact with the critical point of the TFIM. Our results on the
quasi-particle dynamics can be summarized as follows. Short-
time behaviors depend on 7, and the quasi-particle dynamics
is super-diffusive for certain values of 7. However, the quasi-
particle dynamics approaches to be diffusive for any interval 7
in the long time scale. We also calculate the relaxation dynam-
ics of two-point spin-spin correlation functions. The exponents
in the relaxation of these correlation functions is consistent
with the dynamical exponents of the quasi-particles. Such de-
pendence of the dynamical exponents on 7 can be explained by
the overlap between the eigenvectors of the Hamiltonian with
+h. For the TFIM, the overlap has a simple structure, which
leads to nearly ballistic dynamical exponents for certain 7. On
the other hand, finer structures appear as the strength of the
quasi-periodic spin-spin couplings increases, which leads to a
diffusive dynamics for any 7.

The rest of our paper is organized as follows. In Sec. II,
we introduce the details of the model and its formulation. In
Sec. III, we show the numerical calculations for the quasi-
particle dynamics and spin-spin correlation function. In
Sec. IV, we review the theory introduced in Ro6sz’s paper and
extend it to the QP-TFIM. Finally, we summarize our study in
Sec. V.

II. QUASI-PERIODIC ISING MODEL WITH
TEMPORALLY FLUCTUATING FIELDS

A. Hamiltonian

The Hamiltonian of the quasi-periodic Ising model with
temporally random transverse fields is written as

L
A XA 1 n
Aty =—5 Y 10565, - sh(n) Y &%, (1)

Jy=J+Ascos(Q( +1/2)),

where 6-]?1 (a = x,y, z) are Pauli matrices at site j, J; repre-
sents the quasi-periodic spin-spin coupling between sites j and
J + 1, and Q denotes an irrational number given as the golden
ratio: 27 X (V5 + 1)/2. This system is in the open boundary
condition. The system size L is set large enough that the edges
of the system do not affect the dynamics.

In this paper, we consider transverse fields A(t) that are
spatially uniform but temporally fluctuating. The field is ran-
domly chosen from binary values +/h at every discrete time
t, = nt, where 7 is the discrete time interval. Within the
duration defined by (¢,,-1,1,], h(t) takes a constant value.

This QP-TFIM has the complex phase diagram depicted in
Fig. 1. The phases are determined by the uniform component
J, the quasi-periodic component A of the spin-spin coupling,
and the static transverse field 4. In this study, we aim to extend
Ro6sz’s work for the TFIM to the QP-TFIM. Hence, we focus
on the extended PM region (J/ = 1,2 =1,0 < Ay < 1), which
connects with the critical point of the TFIM as Ay — 0. In
this parameter region, the eigenfunctions are spatially extended
and quasi-particles propagate ballistically with time.

B. Formulation

In this section, we formulate the stroboscopic time evolu-
tion with respect to the time interval 7. The time-dependent
Hamiltonian has fields whose sign randomly changes at ev-
ery interval . However, the Hamiltonian can be treated as a
static Hamiltonian in the time domain between the intervals.
In this case, the static Hamiltonian is used to construct the time
evolution of the time-dependent Hamiltonian.

As with the TFIM, the Hamiltonian of the QP-TFIM can
be written in a quadratic form of Majorana fermions. The
operators of the Majorana fermions are defined with Pauli
operators as

Paict = (Hm(—frf))@‘f

, 2
Yai = (ﬂjq(—@'f))@'iy
which satisfies the anti-commutation relation
{7719’)7]}226l,j (l:lv ’ZL) (3)



The static Hamiltonian H. can be written as

H, =

I
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where the indices + represent the signs of the transverse fields
+h.

Here, we describe the essential properties of the static
Hamiltonian for explaining our results. First, the chiral trans-
formation changes the sign of the static Hamiltonian as

CH.C = —H., &)

where the chiral matrix C = diag[—1, 1,1, 1,---]. This leads
to a property that, if +€, is an eigenenergy of H., then —¢,
is also an eigenenergy. Second, the Hamiltonian with the
transverse field +A can be converted to that with —/ by the
operation of []; 67 as

Melolll] =

4 4

where H. denotes the respective Hamiltonians with the trans-
verse fields +h. This relation leads to the same eigenspectra
between H_ and H,, whereas the eigenvectors of H. are dif-
ferent from each other and can be obtained by the operation of
[1; 67 on the eigenvectors of the other Hamiltonian.

Next, we move on to formulate the stroboscopic time evolu-
tion with respect to the time interval 7. As mentioned above,
the transverse fields are chosen from the constant values +h
at every discrete time #,,. The Hamiltonian is static within an
individual duration (#,-1,¢,]. Thus, although the Hamilto-
nian is time dependent, its time-evolution operators from ¢ = 0
to t,, can be written in products of time-evolution operators
advancing time by 7 as

O(nt) = U, (1) - - U, (1), 7)

where s,, is the sign of h(r) for the duration (#,,-1,%,] and
Uy, = e Hsn™ denotes the time-evolution operator.
The time evolution from 7;(¢,,_1) to ¥;(t,) is

2L
Pilta) = 3 [0:(D)]575(tn1) ®)
Jj=1

where O.(7) is an orthogonal matrix corresponding to the
time-evolution operator with respect to the Majorana fermions.
This time evolution is obtained from solutions of the Heisen-
berg equations defined as

d 2L
=i = > [Halij9;(0). ©)

t .
j=1

We next perform quantum quenches as follows. The time
evolution starts from one of the degenerate ground states in
the classical Ising limit, J > Aj,h. We describe the state
as |x), which is a product state where all spins point in the
+x direction. After the above preparation, the transverse fields
are suddenly switched on, and the Hamiltonian parameter after

these quenches is in the extended PM region. In the time evo-
lution under the Hamiltonian after the quenches, the transverse
fields rotate the spins in the x — y plane, which creates numer-
ous kinks. At the same time the kinks are created, they begin
to propagate through the system. The Majorana fermions cor-
respond to the creation and annihilation operators of the kinks,
which can be checked by the operation of ¥; on |x). Thus, after
the quenches, numerous Majorana fermions are emitted from
each site and propagate through the system.

To understand the non-equilibrium dynamics following the
quenches, it is important to reveal how the Majorana fermion
propagates through the system. In reference [25], the dynam-
ics of the Majorana fermion is treated in the semi-classical
framework for understanding the relaxation. In this frame-
work, the spin-spin correlation functions (x| 6';‘([)6';‘ (t) |x)
can be estimated from the classical trajectories of the quasi-
particles. Since the Majorana fermions roughly correspond to
kinks, when an odd number of kinks cross the line from (, ) to
(/. 1), the correlation between 6" (¢) and 6']3‘ (1) becomes neg-
ative; that is, & (¢) points to the opposite direction to 6';‘ ().
By averaging the individual signs of the correlation functions
over the number of kinks crossing the line, (x| & (t)@'j).‘ (1) |x)
can be estimated. The negative correlations contribute to re-
laxations of the correlation function. Thus, the speed of the
relaxation is directly determined by how quasi-particles prop-
agate.

The propagation of the Majorana fermions can be described
by a two-point correlation function defined as

1
V2

The physical meaning of this correlation function is the prob-
ability amplitude of the Majorana fermion propagating from
a space-time point (L, 0) to (i, t), where the space coordinate
is written in the Majorana representation. The initial site L
represents the central position of the system. At the initial
time 7 = 0, G.(0) = 1/V2,G141(0) = i/V2. By using the
orthogonality of time-evolution matrices O, one can find that

Gi(1) = —= 7P |x) . (10)

2L
DG =1. (11)
i=1

Because the Hamiltonian (4) has spatial variation, the time
evolution of the two-point correlation function (10) may de-
pend on where the Majorana fermions are initially created.
Fortunately, in the extended PM regime, such dependence is
negligibly small after the averaging over the various realiza-
tions of the fluctuating fields. Hence, we focus on the case
in which the Majorana fermion is created at the center of the
system. By analogy with CTQWs, we define the probability
distributions as

pi(1) = |Gai (P +1G2u () (1= 1,2, L). (12)
By combining Egs. (9) and (10), one can find the following
equation:

4 2L
iEGi(t) = Z[Hi]ijGj(t)- (13)

J=1



This equation takes the same form as that of the Majorana
fermion operators. The time-evolution operators O, (1) ad-
vance {G;(tp-1)} to {G;(t,)} as

2L

Gi(tn) = ) [0()]iG j(tn-1). (14)

J=1

As mentioned in Sec. IV, the eigenvectors of H.. are useful for
explaining the relaxation of the quasi-particle dynamics under
temporal noise.

The temporally fluctuating transverse fields lead to the de-
pendence on the random sequence. To obtain a result that does
not depend on each realization, we take an average of p; (t) over
Ngamp realizations of temporally random transverse fields. We
denote the distribution obtained for k-th (k = 1,2,-- -, Nsamp)
sequence of the field as p;.x(f), and we define the averaged
probability distributions as

N,
1 samp
it) = ik (7). (15)
P () Nsa , gl P k()

III. RELAXATION ON TEMPORAL NOISE
A. Quasi-Particle Dynamics

To analyze how the quasi-particles propagate, we introduce
the following standard deviation in the probability distribution:

o(ty) = \/Z Pl(tn)(l - 10)25 (16)
1

where o = (L + 1)/2 is the center position of the system. As
is well known for random walks (quantum walks), the time
dependence of the standard deviation is obtained as ¢'/2 (¢!).
We expect the standard deviation to take the form of

o (1) ~t'/? (17)

where the dynamical exponent z depends on the class of the
dynamics. Typically, 1/z = 0 for localized systems, 1/z = 1/2
for diffusive systems, and 1/z = 1 for ballistic systems. As
mentioned above, we deal with the discrete time evolution
here, and we calculate the dynamical exponent at the discrete
time ¢, from

1 Injot)/o(o)]
a(t) ln[tn/t,l,l] .

The previous study on the TFIM investigated the dynam-
ics of the quasi-particles under the temporally random fields
with the fluctuation time 7 [27]. The study showed that, de-
pending on 7, the dynamical exponents took three different
values corresponding to diffusive, super-diffusive and nearly
ballistic dynamics. Note that the previous study focused on
the spatially homogeneous system.

In this study, we consider the systems with the weakly quasi-
periodic modulation instead of the TFIM. The dynamics of the
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FIG. 2. Dynamics of inverse dynamical exponents, where all calcula-
tions were performed with L = 2048, Ngamp = 10%. (a) Dependence
of the fluctuation times 7 on the dynamics of 1/z(#,) at Ay = 0.5.
The inverse dynamical exponent 1/z(¢,) approaches to the diffusive
value 0.5 for most fluctuation times 7, except for 7/27 = 1.2,2.4. (b)
Dependence of the quasi-periodic spin couplings Ay at 7/2x = 0.25.
The dynamical exponent at Ay = 0 (TFIM) does not drop to the
diffusive value 0.5. In contrast, the other dynamical exponents reach
the diffusive value in the long time scale, with the speed of the de-
cay tending to be faster with increasing Ay. (c) Log-log plot of the
relaxation curves in (b). The dynamical exponents exhibit power-law
decay, and the slopes of the curves become the same in the long time
scale.

quasi-particles are determined by the four parameters J, Ay, h
and 7, where we set 4 = 1 to normalize the Hamiltonian
without loss of generality. Our calculations are performed in
the extended PM region in contact with the TFIM. Here, we
limit the discussion to the line of J = 1 in the phase diagram
(Fig. 1). The remaining independent parameters are given by
Ay and 7.

The system size L is set to 2048 to avoid effects of the
system edges in the time range of the calculation. The quasi-
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FIG. 3. Scaling of the shapes of the probability distributions for
Ay =0,0.1,0.2 (a-c, respectively). For Ay = 0 (TFIM), two outside
peaks can be seen, and the distributions are not on the quadratic curve
of the diffusive scaling. The peaks are suppressed as A increasing.
For Ay =0.2,t,/7 = 28, the distribution can be fit by the quadratic
curve.

particle on the center of the system at the initial time propagates
outward to the edges, and then reflects at the edges. The
reflection attributes to the boundary effect, and is not caused
by the property of the bulk of the QP-TFIM. Since our purpose
is to extract the dynamical exponent in the bulk of the QP-
TFIM, the reflection should be omitted from the calculation. In
addition, as the system size increases, the time till the reflection
increases. Thus, the system size need to be prepared large
enough and the time range of the calculation need to be short
enough so that the size effect dose not appear.

We first calculate the dynamical exponent for Ay /h = 0.5
and 7/27 = 1.0 — 1.4 or 2.2 — 2.6 to check the dependence on
the fluctuation time 7, as depicted in Fig. 2 (a). The dynamics
following the quenches is separated into two time sectors,
for short-time behaviors and long-time behaviors. For long-
time behavior, the dynamical exponents tend to approach the
diffusive value 1/z = 0.5 for any 7. In contrast, the dependence
on 7 appears in the short time scale. For 7/2n = 1.2, the
relaxation of the dynamical exponent is slower as compared
with other fluctuation times. The same behavior can be seen
for 7/2m = 2.4, as shown in the inset of Fig. 2(a). We choose

Ay = 0.5 as arepresentative value, because we have confirmed
that the same slow relaxations happen for other A; values in
the extended PM region.

Next, in Fig. 2(b), we show how the nearly ballistic dynam-
ics in the TFIM becomes diffusive with increasing A;. For
Ajy/h = 0 and T = /2, the dynamical exponent takes the
nearly ballistic value 1/z ~ 0.9 and never decays, even in the
long time scale. However, for A; # 0, the dynamical exponent
decays to the diffusive value. Figure 2(b) shows that the decay
of the dynamical exponents becomes faster as A ; increases. As
seen in Fig. 2(c), the relaxation of 1/z in the long time scale
follows a power of the time r. The slopes of the relaxation
curves for all A; except zero in this log-log plot correspond to
the same value of ~ —1.06 in the long time scale. The values
of the slopes are evaluated by the least square method.

It is shown that the dynamical exponent becomes diffusive
in the long time scale in Fig. 2, but it is still unclear whether the
shape of the probability distribution also becomes diffusive.
To check that, we also analyze the shapes of the probability
distributions in the same setting as that used for Fig. 2(b). The
probability distribution for a diffusive quasi-particle, p;(¢), can
be represented by using the diffusive scaling function p(x) as

pu() =125 (1= 1)) (19)

We show In[r'/2p;(r)] against (I — lo)t~'/? in Fig. 3.  As
shown in Fig. 3(a), for A; = 0, In[t'/%2p;(¢)] have two sym-
metric peaks moving outward over time, and one peak located
at the center. Although the symmetric peaks get smaller with
time, they remain even in the long time scale. The shape of
the central peak of In[¢'/2p;(r)] is time-independent and is a
quadratic function of (I — lo)t~"/?in |(I = lo)t~"/?| < 3. This
quadratic form verifies that the distribution around the central
peak belongs to the same class as particle distributions for
random walks. For finite A, as shown in Figs. 3(b) and (c),
the outer peaks in In[7'/2p;(f)] become indistinct and almost
disappear after a sufficiently long time. In addition, as seen
in Fig. 3(c), the central peak in In[t'/2p;(¢)] deviates from
its early form and converges to another diffusive scaling func-
tion. It is verified that the quasi-particle becomes diffusive
by the quasi-periodicity not only in the viewpoint of the dy-
namical exponent but also in the viewpoint of the probability
distribution.

B. Spin-Spin Correlation Function

In the semi-classical framework introduced by Sachdev, cor-
relation functions are estimated from the classical trajectories
of quasi-particles. To connect the quasi-particle dynamics an-
alyzed above to the relaxation of correlations, we calculate a
spin-spin correlation function by using Wick’s theorem. We
consider the time dependence of a spin-spin correlation de-
fined as

Ci(1) = (x| 5‘2/2_1/2(1)(}2/2”/20) |x) . (20)

At the initial time, no transverse field is applied to the sys-
tem, and the state, |x), is in one of the degenerate ground
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FIG. 4. Time dependence of the spin-spin correlation function with
L =1024, 1 =510, J =1, Ay =0.5, h =1, Ngamp = 1000 and
7/2n = 1.0 — 1.4. The inset depicts the time-dependence of the
dynamical exponents for the same setting as depicted in Fig. 2(a).

states, giving C;(0) = 1. At t = 0, the transverse field is sud-
denly switched to a finite value with temporal fluctuation. As
described in Sec. III.A, the quasi-particle propagates super-
diffusively for certain time intervals in the short time scale,
and its dynamics becomes to diffusive in the long time scale.
From the viewpoint of the semi-classical framework, the re-
laxations of the correlation functions are expected to have the
same features as those of the quasi-particle dynamics.

The correlation function can be written in the Majorana
representation as

(x| 67 ()07 (1) lx) o (x| P2i (D P2i1 (1) -+ - P21 (1) x) -
2

Wick’s theorem then enables us to calculate C;(¢) by the Pfaf-
fian Pf[X(¢)], where the skew matrix X(¢) is defined by

o (i=J)
X”(’)‘{<xm<r>&j(t> W Gepy

Figure 4 shows numerical results for several time intervals
7. Because the decay of the spin-spin correlation function over
time is expected to be

Ci(t) ~ e, (23)

we estimate the exponent a from linear fitting by the least
square method. After along time, the value of a for r/2m = 1.2
approaches the same value as for the other 7. The exponent
a =0.724 for 7/2m = 1.2, while a ~ 0.6 for the other 7 in the
short time scale. These exponents a are close to the dynamical
exponents 1/z(t), which are depicted in the inset of Fig. 4, in
the short time scale, In(7/27) < 3.

IV.  THEORY OF STROBOSCOPIC EIGENVECTORS

In this section, we review the theory of stroboscopic eigen-
vectors as adapted for the TFIM by Ro6sz [27], and we extend
the theory to the QP-TFIM. The key to understanding the above
results is to grasp how an eigenvector of H.. can be written with
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FIG. 5. Density of states (DOS) of the matrix H with L = 2048, h =
1,/ =1,and Ay =0,0.2,0.5,0.7, 1. The introduction of A to the
TFIM (A = 0) causes gaps in the continuous density of states. The
red arrows in the DOS for A; = 0.5 depict peaks corresponding to
€y = +0.833.

eigenvectors of Hs. For the TFIM, the eigenvectors of H.. are
spanned by those of Hz in a simple manner, which leads to the
non-diffusive quasi-particle dynamics. For the QP-TFIM, the
finite quasi-periodicity prevents such a simple manner, and this
lack of the simple relation of overlap between the eigenvectors
of H, and H_ leads to diffusive behavior in the long time scale
for any fluctuation time.
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A. Theory for TFIM

The temporally random fields in question are considered by
choosing either O, or O_ at each duration as a time-evolution
operator. Generally, because an eigenvector of O, is not an
eigenvector of O_, after the operation of O_, an eigenvector
is no longer an eigenvector of both O, and O_. After the
random operations of O, the system exhibits the diffusive
dynamics. In Ro6sz’s theory, if one of the eigenvectors of H.,
is an eigenvector of both O, and O_, then it will survive even
under random operations of O.. We review this theory more
precisely below.

In this section, Hy and H_ denote the Hamiltonians, where
s represents the sign of 4(¢). For the TFIM with the periodic
boundary condition, one can find that the eigenvectors of Hg,
and H_; are related by

s _ - _ -5

Uy, = Cyplly,” + CypUy . 24)
Here, uﬂ, u},® are the respective eigenvectors of Hg, H_g, and
Cyu = (u)® u#) where (-,-) denotes an inner product as

(a,b) = 3, a},b,. The respective eigenvalues corresponding
to uy;* are denoted by €, and 1 represents the eigenvector
+s
=—e'.
H

with eigenvalue €;*

The correlation functions given by Eq. (10) can be written
in linear combinations of the eigenvectors of H.y. The time
evolution is implemented by random operations of Oy or O_g

as in Eq. (7). We now check whether u;, survives under the
operation of both O; and O_;. The operation of Og = e iHsT
only changes a coefficient and does not change the eigenvector

itself. By contrast, O_g = e H-s7 operates on uy, as

—1e~S
O_S’u,S — e 677

" ©TepuGs (25)

cypuy® +el
By assuming the relation as
€°T=m_gm, m_g=1,2,--, (26)

we obtain w,, as an eigenvector of the time-evolution operator
O_; even though U‘L7 is not an eigenvector of H_;.

While the Hamiltonian of the TFIM has no eigenvector sat-
isfying the assumption for 7 < x/2, the Hamiltonian does
have eigenvectors whose eigenvalues satisfy the assumption
for 7 > m/2, as depicted in Fig. 5(a). For 7 > n/2, the cor-
relation function includes the components of the eigenvectors
satisfying the assumption for 7, which are never disturbed by
the temporal noise. Such eigenvectors that survive under the
temporal noise contribute to the non-diffusive dynamics of the
quasi-particles for 7 > 7 /2.

B. Theory for QP-TFIM

For the QP-TFIM, we obtain the non-diffusive dynamics in
the short time scale and the relaxation of the dynamical expo-
nents to the diffusive regime in the long time scale. Here, we
extend Rodsz’s theory to the QP-TFIM to explain the difference
between the dynamics in the TFIM and the QP-TFIM.

In the presence of the quasi-periodicity, Eq. (24) no longer
holds. For the QP-TFIM, more than two pairs of the eigen-
vectors are necessary to describe the eigenvectors of the other
Hamiltonian. To check this expectation, we define overlap
between the eigenvectors of Hg and H_g as

M,y = |(u‘;,u;“)|2 + |(ufl,u;s)|2. 27

Here, M,,, represents how w;, is spanned by the pairs of u}*
Figure 6 shows calculated results of M,,,. In the TFIM case
(Ay = 0.0), we find that a single eigenvector ul‘;‘ has an ampli-
tude only for a certain v, which shows that uf, is spanned only
by the pair {u;,*, u*}. A finite A; leads to fine structures in
addition to the clear line of the TFIM, and such structures get
smeared with increasing A ;. This result shows that more than
two pairs {u},*, u_*} are necessary to span an eigenvector uy,
in the QP-TFIM.

Consider the simplest case, in which u), is spanned by only
two pairs, {u,*, u=*} and {u}?, u;}:

s _ —s _ —s -5 _ —s
Uy = Cypty” + CyplUy + Cutly” +Cq, U (28)

The Operation of O_; on u;, leads to

s _ . —ie; St —s et —s
O_Suy =Cyue” ™ Uyt ey e’™ Tus
—ie;

s e i -5 e
+oue v Tu)t +cjﬂe‘9 Tuj“. (29)

Here, even if either e¥i& "7 or e*i€1” T equals +1, the other one

cannot be +1. In this study, we do not consider the case of



€,° = ne&*, n € Z. Thus, when w, is spanned by multiple
pairs {u,’, u;s}, u/‘l cannot be an eigenvector of O_;.

The quasi-particle of the TFIM avoids the diffusive dynam-
ics even in the long time scale. The reason is that the eigen-
vector of the TFIM is preserved under the random operations
of O, because of the simple overlap shown in Fig. 6. How-
ever, the QP-TFIM has more complex overlap than the TFIM,
and there is no preservation of the eigenvector under the ran-
dom operation of O.. Thus, the quasi-particle dynamics of
the QP-TFIM relaxes to the diffusive regime in the long time
scale.

The relation given by Eqs. (24) and (28) determines the
speed of the relaxation shown in Fig. 2. For small A;, the
overlap in Fig. 6 shows clear lines, which corresponds to the
dominance of the first and second terms in Eq. (28), where
as the other terms are tiny. Because w,, is almost the same
as the eigenvector of O_; in the case of small A, the single
operation of O_; transforms w,, to a vector that is slightly
different from wy,. Such slight changes accumulate through the
random operations of O, and the eigenvector loses its quantum
nature in the long time scale. On the other hand, for large A,
the third, fourth, and subsequent terms are comparable to the
first and second terms, and even a single operation of O_g
transforms w;y, to a vector that is greatly different from wy,.
The eigenvector also reaches a mixed state in the long time
scale, where the speed to reach the mixed state is faster than
for small A;.

Note that we also obtain the slower relaxation of the dy-
namical exponent for 7/27 = 1.2 and 2.4 than for the other
7. The slower relaxation can be explained by considering the
modification in eigenenergy structures with increasing A in
Fig. 5. The corresponding energies with 7/27 = 1.2 and 2.4
are e_; = 0.833 for m_g; = 2 and m_g = 4, respectively. Small
peaks at e_; = +0.833 can be seen in Fig. 5. Thus, the as-
sumption is satisfied for 7/27 = 1.2 and 2.4, but not for the
other 7; accordingly the super-diffusive dynamics occurs only
for 7/27n = 1.2 and 2.4.

V. SUMMARY

In this paper, we have studied the quasi-particle dynamics
in a quasi-periodic Ising model with temporally random fields
(QP-TFIM). Specifically, we analyzed the stroboscopic time
evolution of the probability distributions of the quasi-particles

after the quenches. Our results can be summarized as follows.
The quasi-particles exhibit the two different behaviors depend-
ing on the time scale. The short-time behavior depends on the
time interval, and the dynamical exponents are higher for the
certain intervals than for the other intervals. In contrast, the
long-time behavior becomes diffusive for any time interval.
We showed the time dependence of the spin-spin correlation
function. The exponents for the relaxation of the correlation
function are consistent with the dynamical exponents of the
quasi-particles. These results can be explained by the overlap
of the eigenvectors of each Hamiltonian. For the TFIM, the
structure of the overlap is simple. For the QP-TFIM, however,
the quasi-periodicity complicates the overlapping structure,
which causes the diffusive dynamics of quasi-particles in the
long time scale.

As mentioned in the introduction, both quasi-periodicity
and random disorder are origins of localization, but the en-
ergy levels in these systems have statistical properties different
from each other. The energy levels in quasi-periodic systems
are uniquely determined for a single set of Hamiltonian’s pa-
rameters, which lead the slow relaxation of the quasi-particle
dynamics as discussed in this paper. On the other hand, the
energy levels in random disordered systems are not fixed for
certain parameters of the Hamiltonian but depend on configu-
rations of these random potentials. For this reason, we expect
that certain intervals leading to the slow decay of the dynami-
cal exponent do not exist in random disordered systems. In this
study, we have treated the randomly fluctuating fields with cer-
tain intervals, whose situation is related to that under periodic
drivings, as in Floquet systems [44]. Recently, the Floquet sys-
tems are actively studied in the context of the thermalization
[45-49]. Tt is worthwhile investigating the quasi-particle dy-
namics for the Foquet systems and the overlap relation between
eigenvectors of the time evolution operators. These analyses
are left for future works.
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