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We present a theory and a calculation scheme of structural optimization at finite temperatures within the
quasiharmonic approximation (QHA). The theory is based on an efficient scheme of updating the interatomic
force constants with the change of crystal structures, which we call the IFC renormalization. The cell shape and
the atomic coordinates are treated equally and simultaneously optimized. We apply the theory to the thermal
expansion and the pyroelectricity of wurtzite GaN and ZnO, which accurately reproduces the experimentally
observed behaviors. Furthermore, we point out a general scheme to obtain correct T dependence at the lowest
order in constrained optimizations that reduce the number of effective degrees of freedom, which is helpful to
perform efficient QHA calculations with little sacrificing accuracy. We show that the scheme works properly for
GaN and ZnO by comparing with the optimization of all the degrees of freedom.

I. INTRODUCTION

The thermophysical properties are among the most basic
properties of solids, which play an important role in both
fundamental science and various applications [1-6]. For its
significant consequences, such as the thermal expansion and
the pyroelectricity, it is essential to develop quantitative first-
principles methods to understand and predict materials with
desired properties.

The quasiharmonic approximation (QHA) is a widely used
method [7—-11] that accurately computes the 7-dependent crys-
tal structure of weakly anharmonic solids [12—-14]. In QHA, we
neglect the anharmonic effect except for the crystal-structure
dependence of the phonon frequencies {fiwg,} and approx-
imate the free energy by the harmonic one [15-17]. The
temperature-dependent crystal structure is obtained by mini-
mizing the free energy with respect to the relevant structural
degrees of freedom. In the simple implementation, the phonon
frequencies are calculated on a grid in the parameter space, and
the free energy is fitted to calculate the temperature-dependent
optimal parameters [9, 17-19]. This method works efficiently
in optimizing a single degree of freedom, such as the lat-
tice constant of a cubic material [17, 20, 21]. However, the
computational cost exponentially increases with the number
of degrees of freedom Nyaram because the phonon calculations
must be performed on a multi-dimensional grid.

Several constrained optimization schemes have been pro-
posed that reduce the number of effective degrees of freedom
to perform calculations efficiently. Using strain-dependent
internal coordinates, which are determined to minimize the
static potential energy, is the zero static internal stress ap-
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proximation (ZSISA) [22-24]. ZSISA is correct for the T-
dependent strain at the lowest order [22]. ZSISA combined
with finite-temperature corrections of atomic shifts is used for
calculating the pyroelectricity [23], which is actively studied
recently [25-27]. In further approximation, the free energy is
optimized with respect to the volume, while the other degrees
of freedom are determined to minimize the static energy at
fixed volumes [11, 28-31]. Based on these constrained opti-
mizations, computational methods have also been devised to
decrease computational costs further. The methods that use
the Taylor expansion of the QHA free energy [32, 33] or the
phonon frequencies [30] and those focused on the irreducible
representations of the symmetry groups are proposed [34].
However, the internal coordinates are not optimized indepen-
dently from the strain in these methods.

In this work, we develop a theory and a calculation scheme
to optimize all the external and internal degrees of freedom
within the quasiharmonic approximation. Our method is based
on the interatomic force constant (IFC) renormalization, which
efficiently updates the IFCs using the anharmonic force con-
stants [35, 36]. Due to the compressive sensing method, which
enables efficient extraction of the higher-order IFCs from a
small number of displacement-force data [37-39], the com-
putational cost does not drastically increase for materials with
many internal degrees of freedom. We apply the method to pre-
dict the thermal expansion and the pyroelectricity of wurtzite
GaN and ZnO, for which we obtain reasonable agreements
with the experimental results. The wurtzite materials have
two independent lattice constants and an internal degree of
freedom which is coupled to the electric polarization. The
magnitude of anharmonicity is moderate in these materials,
thus the T-dependent crystal structures are correctly described
by QHA [40].

Furthermore, we prove a general theorem that provides an
important guideline to efficiently get reliable results in con-
strained QHA optimizations. The theorem is mathemati-
cally a straightforward generalization of a previous result on
ZSISA [22], but it is helpful in designing constrained op-
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timization schemes and clarifying their range of applicabil-
ity. Using the theorem, it is possible to get reasonable finite-
temperature structures with Nparam separate one-dimensional
optimizations instead of the grid search on N,yam-dimensional
parameter space, which decreases the computational cost from

O(NSN P to O(NsNparam), Where N is the number of sam-
pling points of each parameter. We implement ZSISA and
several other constrained optimizations, whose results support
the general statement. Note that the pyroelectricity is suitable
to demonstrate the theory because the T-dependence of atomic
positions needs to be investigated.

II. THEORY
A. Quasiharmonic approximation (QHA)

The anharmonic effect at each structure is neglected in the
QHA. Thus, the QHA free energy of a crystal structure given
by X can be written as

FQHA(X, T)
= Uo(X) + Z [%hwk/z(X) + kBTlog(l - e‘ﬁh“’“(x))],
kA
(1

where Uy(X) is the electronic ground state energy and wg(X)
is the X-dependent harmonic phonon frequency. X consists
of the external strain and the internal atomic positions. The
crystal structure at finite temperature 7' can be obtained by
minimizing the QHA free energy as

X(T) = argmin Foua (X, T). )
X

When combined with first-principles calculations, the most
time-consuming part is the calculation of the structure depen-
dence of the harmonic phonon frequencies wg(X).

B. Interatomic force constant (IFC) renormalization

We start from the Taylor expansion of the potential energy
surface, which is introduced in Section I in the supplemen-
tary material [41]. The IFC renormalization is a calculation
method to update the set of IFCs when the crystal structure
is changed [35, 36]. Since the new set of IFCs are calculated
from the IFCs in the reference structure, there is no need to
run additional electronic structure calculations at every step of
the structure update, which makes the calculation significantly
efficient.

The change of crystal structures can be described by the
combination of the strain and the atomic displacements. We
write the static atomic displacement in normal coordinate rep-
resentation as

0 0
LI;) = Z €04,au VMaugz;l’ 3)

ap

where ufgz is the u(= x, y, z) component of the static displace-

ment of atom a. M, is the mass of atom « and € oy is the
polarization vector of the mode A at I' point. uf,?l)l is inde-
pendent of the primitive cell R because we assume that the
temperature-induced structural change is commensurate to I'
point in the Brillouin zone.
As for the strain, we use the displacement gradient tensor
uy,, as the basic variable, which is defined as
ER P @
Uy = —— — Opy-
Hv o X, Hv
if the atom at & is moved to & by the strain. We restrict u,,, to
be symmetric to fix the rotational degrees of freedom.
The structural change described by the atomic displace-

ments qflo) corresponds to changing the center in the Taylor
expansion of Egs. (S1) and (S2). As we have the polynomial
form of the potential energy surface, which is determined by
the IFCs at the reference structure, it is possible to Taylor-
expand again around the new structure. The expansion coeffi-

cient at the updated structure given by ¢© is written as
Ky Ay, k)
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The derivation of the corresponding formula for the strain is
more complicated. Although the strain is not included in the
Taylor expansion of the potential energy surface [Eqs. (S1)
and (S2)], it is possible to recapture the strain as a set of static
atomic displacements

u(l(%)a/,u = Z M[IV(RV + da/v) = Z M[IVR(YVs (6)

v v

where d,, is the position of the atom « in the primitive cell.
We define R, = R + d,, for notational simplicity. Thus, we
can derive the IFC renormalization in terms of strain as
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See Ref. [35] for more detailed explanations. Using Egs.

(5) and (7), we can get the updated IFCs for arbitrary strain
and atomic displacements as long as the expansion from the
reference structure is valid. Hereafter, ® and ® without notes
in superscripts denote the renormalized IFCs @@ uwr) and
(T)(‘f«))’“w), respectively, unless otherwise stated.

In the calculation, we truncate the Taylor expansion at the
fourth order. As the IFC renormalization by strain [Eq. (7)]



is written down in the real space, we first calculate them and
Fourier-transform to the reciprocal space. The IFC renor-
malization is performed in the order of ®@”=0uwr=0) _,
@@ ?=0u0) 5 @) The details of the procedure is
explained in Ref. [35]

Here, it should be noted that Eq. (7) is notdirectly applicable
to the case n = 0 because of the surface effect of the Born-von
Karman supercell [36], which we explain with an example in
Section II in the supplementary material [41]. As the solution
for this problem is highly complicated, we expand the strain
dependence of the potential energy surface as
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where N is the number of primitive cells in the Born-von
Karman supercell and
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are the second and third-order elastic constants, which we
define as the quantity per unit cell.
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is the strain tensor. The elastic constants are truncated at the
third order in our calculation.

The IFC renormalization in terms of atomic displacements
[Eq. (5)] does not affect the fitting accuracy of the potential
energy surface because it does not alter the potential land-
scape. However, the IFC renormalization by strain [Eq. (7)] is
not necessarily precise because the information in a deformed
cell is not provided in calculating the IFCs in the reference
structure. Thus, we estimate the coupling between the strain
and the harmonic IFCs

00y, 1, (R1ay, Ryaz)
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using the finite displacement method with respect to the
strain [35] to improve the accuracy of the method.

Additionally, the coupling between the first-order IFCs and
the strain

D(01)

, 14
G (14)

is also estimated using the finite displacement method of strain.
This is because the acoustic sum rule of the first-order IFCs
is broken if the rotational invariance is not imposed on the
harmonic IFCs, which we explain in Appendix A. Since the
rotational invariance imposes restrictions on IFCs that the
atomic forces calculated in the DFT supercell do not satisfy,
it causes unreasonable shifts of the phonon frequencies. The
frequency shifts depend on crystal symmetries, which makes
6(13,1],12(6R1a1,R2<12) dlm—

Uy
cult. Thus, we do not impose the rotational invariance on the

harmonic IFCs and calculate %O’D using the finite displace-
%
& D(01)

ment method instead. The higher-order derivatives 5 — ,
Upy OUy sy
& D(01)
Oty vy Oty Oty vy
ance of the higher-order IFCs is required for them to satisfy
the acoustic sum rule, which we also discuss in Appendix A.

the finite displacement estimation of

are set to zero because the rotational invari-

C. Structural optimization within QHA

Using the IFC renormalization, the harmonic phonon dis-
persion and their derivatives can be calculated for updated
crystal structures, which enables efficient minimization of the
QHA free energy. We begin with introducing a notation for
the mode transformation. From here on, we distinguish the
phonon modes in the reference structure and those in the up-
dated structure. The former, which we write with greek letters
without a bar (such as A), is obtained by diagonalizing the
dynamical matrix in the reference structure.
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These modes are fixed throughout the calculation, which serves
as a reference frame. The phonon modes in an updated struc-
ture, which we denote with a bar like A, diagonalize the dy-
namical matrix in the updated structure. We define the mode
transformation matrix

Croai = ), Ghorap rian: (16)

ap

Let us calculate the derivatives of the QHA free energy us-
ing the mode transformation. Considering that the dynamical
matrix is dependent on a parameter s, we can derive a formula

dw? ) OD(~kA, kAy)
s Z 5 R P— a7
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Substituting s = E)(—k/ll, k), we get

O(wgp) 3 Cl*c/u/ick/lzﬂ_
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18
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Therefore, for a general structural degree of freedom X; that
describes the atomic displacement qflo) or the strain u,,,, the
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derivative of the QHA free energy can be calculated as

IFqua(X.T) _ 9l
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The derivatives g—g‘? and M
ferentiating Egs. (5), (7), and (85.
In our calculation, where the IFCs are truncated at the fourth
order and the elastic constants at the third order, the corre-
sponding formulas are written as

can be obtained by dif-
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for the internal coordinates and the strain respectively. The 1 OFqua = Z C ou (25)
derivatives of the IFCs in the RHS of Eq. (23) are estimated N Ouyy Iy e

at the reference structure (qflo) =0,u,, =0).

Using the gradients of the free energy, we can simultane-
ously optimize all the internal and external degrees of freedom
to minimize the QHA free energy. We denote the difference of
the crystal structure from the optimum structure by 6qu0) and
Ouy,. These quantities can be estimated by solving the linear

equations

1 aFQHA ~ (O)
N30 Z(D(O/l, 041)64'y 24)
Q,l A

where we approximate the Hessian of the QHA free energy
by CT)(O/L 01;) and C,yy, 4y, - We assume that u,,, is symmetric
to fix the rotational degrees of freedom, which is necessary to
get a unique solution of Eq. (25). The crystal structures are
updated by

0 0 0
4 — 4 - Buixion6q: (26)

Uy < Upyy — ﬂmix,celléupv- 27

The coefficients SBmixion and Bmixcen are introduced for ro-
bust convergence of the calculation. As for the constrained



optimization methods such as ZSISA, we formulate different
schemes of updating the crystal structure, which are described
in detail in Appendix B.

From the above discussions, the calculation flow of the struc-
tural optimization based on IFC renormalization and QHA is
as follows, which we illustrate in Fig. 1.

1. Input IFCs, elastic constants, etc. at the reference struc-
ture. Define the initial structure.

2. Calculate the IFCs in the current structure by IFC renor-
malization.

3. Calculate gradients of the QHA free energy [Eqgs. (19)-
23)].

4. Update the crystal structure [Eqs. (24)-(27)].

5. Check convergence. If the convergence has yet to be
achieved, go to 2.

We implement the theory to the ALAMODE package [37, 42,
43], which is an open-source software for anharmonic phonon
calculation. The developed feature will be made public in its
future release.

D. General scheme of constrained optimizations correct at the
lowest order

Due to the high computational cost of optimizing all the de-
grees of freedom, numerous constrained optimization schemes
have been proposed to decrease the number of effective degrees
of freedom. ZSISA (zero static internal stress approximation),
which uses strain-dependent static internal coordinates [22],
is a representative example. In further approximation, the in-
ternal and deviatoric degrees of freedom are determined by
minimizing the static energy [11, 28-31], which we call vol-
umetric ZSISA (v-ZSISA). We illustrate ZSISA and v-ZSISA
with a schematic in Table I.

Here, we show a general theorem on these constrained
optimizations that reads

Theorem.  Consider optimizing the QHA free energy
with respect to a set of structural degrees of freedom {X;}.
Then, if the other degrees of freedom {)_(j} are determined
to minimize the static energy Uy for given configurations of
{X;}, the obtained T dependence of {X;} agrees at the lowest
order with the result of the optimization of all the degrees of
[freedom (full optimization).

Mathematically, the theorem is just a straightforward corol-
lary of the result in Ref. [22]. However, we discuss it here
because it will be a powerful guiding principle in designing
an efficient and accurate constrained scheme of QHA. Before
the proof of the theorem, we consider some of its applications,
which we summarize in a list below.

* In ZSISA, {X;} represent the strain, and {X;} repre-
sent the internal coordinates. The theorem claims that

initial IFCs @),
elastic constants C,
e.t.c.

v

update IFCs ® by
IFC renormalization

v

calculate gradients of
Fona

’

update crystal structure:
unit cell and
internal coordinates

’

check convergence

J7Yes

optimized structure
at finite temperature

~

No

FIG. 1. The calculation flow of the finite-temperature structural
optimization within the quasiharmonic approximation combined with
the IFC renormalization.

T-dependence of the strain calculated by ZSISA is cor-
rect at the lowest order, which has been pointed out in
Ref. [22].

In v-ZSISA, {X;} represent the hydrostatic strain that
causes volumetric expansion

100
vy = 01 0], (28)
001

while {X;} represent the deviatoric strain and the inter-
nal coordinates. According to the theorem, the volumet-
ric expansion will be properly reproduced by v-ZSISA.

» T-dependence of an arbitrary degree of freedom X; can
be calculated correctly at the lowest order if we relax
all the other degrees of freedom in the static potential.
This fact helps reduce the optimization of multiple de-
grees of freedom to the problem of separate optimization
of each degree of freedom. Compared to the Nparam-
dimensional grid search of the computational cost of



O(NSN ™), the computational cost of the separate one-
dimensional optimization is decreased to O(NsNparam )
where Nj is the number of sampling points of each pa-
rameter.

e.g., consider the calculation of anisotropic expansion
determined by two lattice constants, a and c. The T-
dependence of a can be calculated by optimizing ¢ and
the internal coordinate in the static potential. The T-
dependence of ¢ can be calculated in a similar one-
parameter optimization. The 7T-dependence of c in the
calculation of a and that of a in calculating ¢ should be
disregarded.

It is worth mentioning that these constrained optimizations
do not always reproduce the full optimization precisely be-
cause the higher-order effects can be nonnegligible in actual
calculations. Nonetheless, in Secs. IVB and IV C, we dis-
cuss that the constrained optimization schemes based on the
theorem give qualitatively accurate results more robustly than
other schemes, once we determine the degrees of freedom to
consider.

We move on to the proof of the theorem. Since we assume
that the reference structure is optimized in terms of the static
potential Uy, the Taylor expansion of Uy(X, X) is written as

Uo(X, X)
1 52U0
=UyX=X=0 —X,- X;
= Uo( )+ 24 49X, 0%, "
8%U, Uy - -
+ i + et . 29
Zaxax 2Zax L 0X, %1 X2 29)

The Taylor expansion of the QHA free energy is

Fonua(X, X, T)
1 R
= F{ X=X=0T —X; X;
QHA( 0 )+ 2 (9X (9X 11
Uy _ - 62U0
+Zax&x X zzax 0%, %3 X+
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QHA o QHA
+ i — Xj + ... (30)
Z 0X ZJ aX;

Thus, in the lowest order approximation, the crystal structure
that gives the minimum of the QHA free energy is calculated
by solving

0*Uy  9°Up IFiia
xox axoX |[X)-_| o 31
92Uy 6*Up (X) aFélng - 6D
0X0X 0X0X ox

To eliminate X from the equation, we use

2 -1 2 vib
(e ) e ) (S )] o
0X0X 0XoX ox

where we abbreviate the subscripts. The derivatives are esti-
mated at X = X = 0 in this section, except noted otherwise
explicitly. Substituting to Eq. (31), we get

[( 82U, )_( 82U, )( 02U, )‘( 82U, )]X

XX oxox )\ oxox XX

) ) ) )
X 0X0X 0X0X 0X

(33)

as the equation for X.

Next, we consider the constrained optimization that X is
determined to optimize Uy for given configurations of X. In
the lowest order,

(‘9_U_0) z(_"”2[]0);”(5’U°);‘(:0. (34)
X Jg=xx) 0X0X 0X0
Hence, we get
_ 2 -1 2
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Substituting to
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we get
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Thus, the constrained optimization, which finds the solution
of Eq. (37) = 0, is equivalent to the full optimization of Eq.
(33) at the lowest order.

E. Calculation of pyroelectricity

We consider the effect of the static structural change for the
T dependence of the electric polarization P(T).

Pu(T) = P,(T = 0)+Z ol + D Dty (38)

Hiv1

where Z;, ,,, is the Born effective charge, and dy, ., is the ion-
clamped piezoelectric tensor. We neglect the electron-phonon
renormalization term, which originates from the thermal vi-

brations of the atoms [23, 44, 45].



TABLE I. The schematic explanation of some different optimization schemes of QHA. Full optimization is the simultaneous optimization of
all the degrees of freedom. In the table, QHA means that the degree of freedom is optimized at finite temperatures to minimize the QHA
free energy, whereas static means that the degree of freedom is optimized in the static potential energy surface, which does not include the

contribution of the lattice vibrations.

| [ cell volume [

deviatoric strain [

atomic positions ‘

: = L
- Ly > «: O
; = L SN
full optimization QHA QHA QHA
ZSISA QHA QHA static
v-ZSISA QHA static static

The pyroelectricity is calculated by taking the temperature
derivative of the spontaneous polarization.

dpP,(T)
T)=—*£
Pﬂ( ) aT
(0)
dum, duy,,
Z o + 3 g dMTH (39)
H1V1
= PBorn,u (1) + ppiezo,u(T)' (40)

The pyroelectricity can also be split into the primary pyro-
electricity p'" and the secondary pyroelectricity p®. The
primary pyroelectricity is the clamped-lattice pyroelectric-
ity, while the secondary pyroelectricity is the remaining part.
Since ppiezo is zero for fixed strains, pporm can be divided into
the primary pyroelectricity and a part of the secondary pyro-
electricity

p;z(T) = PBom, ,u(T) + ppiezo,/l(T)

(1 2
= (1) + P (1) + DpicropT). (A1)

III. SIMULATION DETAILS

The developed method is applied to the thermal expansion
and pyroelectricity of wurtzite GaN and ZnO. In this section,
we present the details of the calculation of these materials.
Note that we use the same setting for both materials unless
stated otherwise.

A. Calculation of the interatomic force constants

The lattice constants of the reference structures are deter-
mined by the structural optimization based on density func-
tional theory (DFT); a =3.2183 A and ¢ =5.2331 A for GaN,
and a =3.2359 A and ¢ =5.2247 A for ZnO. The 4 x 4 x 2
supercell, which contains 128 atoms, is employed for calcu-
lating the harmonic IFCs of both GaN and ZnO. The Taylor
expansion of the potential energy surface is truncated at the

fourth order. For calculating the anharmonic IFCs, the 3x3x2
supercell containing 72 atoms is employed. We generate 300
random configurations by uncorrelated random sampling from
harmonic IFCs [46] at 500 K. The atomic forces are calculated
by DFT calculations. The details of the DFT calculations are
explained later in this section. The IFCs are extracted from the
obtained displacement-force data using adaptive LASSO im-
plemented in the ALAMODE package [37]. The cutoff radii
are set as 12 Bohr for cubic IFCs and 8 Bohr for quartic IFCs.
The quartic IFCs are restricted up to three-body terms. We
impose on the IFCs the acoustic sum rule (ASR), the permuta-
tion symmetry, and the space group symmetry considering the
mirror images of the atoms in the supercell [35]. The fitting
error of the displacement-force data was 0.7696 % for GaN
and 2.1930 % for ZnO, which indicates that the obtained set
of IFCs well captures the potential landscape.

The second and third-order elastic constants are calculated
by fitting the strain-energy relation. The crystal symmetry is
used to decrease the number of strain modes to calculate [47—
49]. For each strain mode, the ground state energy was cal-
culated for 13 strained structures from n = —0.03 to n = 0.03
(See Ref. [48] for the definition of 7). The strain-energy rela-
tion was fitted by a cubic polynomial, whose coefficients are
linear transformed to elastic constants.

0Py iy (Ryay, Ryay)
— own, and

are determined by finite-difference method of first order.

The strain-IFC coupling constants
B@(O/l)
u

The harmomc IFCs and the atomic forces are calculated for the
six strain modes uy, = 0.005, uy,, = 0.005, u,, = 0.005, u,, =
uzy = 0.0025,u;x = uy; = 0.0025,uxy = uyx = 0.0025. The
other entries of the displacement gradient tensor u,,, are zero in
each strain mode. Then, the coupling constants are obtained
by dividing the differences from the results at the reference
structure u,, = 0.

In the QHA calculations, we use 8 X 8 X 8 g mesh. We do not
include nonanalytic correction in calculating the 7-dependent
crystal structures.



B. Settings of the DFT calculations

The Vienna ab initio simulation package (VASP) [50] is em-
ployed for the electronic structure calculations. The PBEsol
exchange-correlation functional [51] and the PAW pseudopo-
tentials [52, 53] are used. The convergence criteria of the SCF
loop is set to 1078 eV, and accurate precision mode, which
suppresses egg-box effects and errors, is used to calculate the
forces accurately. The basis cutoff we use is 600 eV for both
materials. We use a 4 X 4 x 4 Monkhorst-Pack k-mesh for su-
percell calculations for both 4x4x2 and 3x3x2 supercells. We
use the conventional DFT-based structural optimization in the
primitive cell to determine the reference structure. Here, we
use 8x8x8 Monkhorst-Pack k-mesh, and perform structural
optimization until the change of the total energy becomes less
than 1077 eV between two consecutive steps. The Born effec-
tive charges and the clamped-lattice piezoelectricity is calcu-
lated by density functional perturbation theory (DFPT) [54, 55]
in the reference structure.

IV. RESULTS AND DISCUSSION
A. Finite-temperature structural optimization within QHA

We apply the developed method to the thermal expansion
and the pyroelectricity of wurtzite GaN and ZnO. We first
check the accuracy of the IFC renormalization, which is shown
to reproduce the results of DFT calculations correctly. Thus,
the method can be regarded as a DFT-based first-principles
calculation. The result of the validations of the IFC renor-
malization is summarized in Section III in the supplementary
material [41].

Simultaneously optimizing both the internal coordinates and
the strain within QHA, we get the calculation results shown
in Figs. 2-5. As seen in the figures, the thermal expansion
of both GaN and ZnO are quantitatively well reproduced with
our method. The thermal expansion is anisotropic, and the
expansion coefficient of the lattice constant a is larger than
that of ¢. This anisotropy is determined by a delicate inter-
play of internal and external degrees of freedom, which is
accurately reproduced by the simultaneous optimization of all
these degrees of freedom.

The calculation and experiment also show good agreement
for the pyroelectricity as depicted in Figs. 2 (b) and 4 (b). The
magnitude of the pyroelectricity is slightly underestimated for
GaN. This can be because the experimental data are measured
with thin films, not with bulk samples. Another possible
reason is that the electron-phonon renormalization, which we
neglect in this work, has a significant contribution, as proposed
in Ref. [23].

B. ZSISA and v-ZSISA

We perform the structural optimization using the IFC renor-
malization in ZSISA and v-ZSISA. The calculation results are
shown in Figs. 6-9. According to Figs. 6 (a) and 8 (a), the
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FIG. 2.  The thermal expansion and the pyroelectricity of GaN
calculated by QHA combined with the IFC renormalization. Both
the internal coordinates and the strain are optimized to minimize the
QHA free energy. (a) The thermal expansion coefficients of a and
c axes (@g = ég—? and a, = %g—% respectively). The experimental
results are taken from Ref. [56] (orange circle for @, and cyan square
for @) and Ref. [57] (red triangle for a4, and blue diamond for ).
(b) The purple line, green line, and cyan lines represent the total

0
pyroelectricity, the Born term pgorny = Yy Zauy dg(%‘)',
. .. 1 du(;)‘),

primary pyroelectricity pI(J) =Yar Z;‘mv (ﬁ)ﬁmd el
defined in Sec. I1 E. The experimental results are taken from Ref. [58]
(orange circle for the C-doped case, yellow square for the Fe-doped
case, and blue triangle for the Mn-doped case), Ref. [59] (red inverted
triangle), Ref. [60] (black diamond), and Ref. [61] (black hexagon).

and the

, which are

thermal expansion coefficient calculated by ZSISA agrees well
with the simultaneous optimization of all the degrees of free-
dom (full optimization). This is because ZSISA is correct at
the lowest order for the T dependence of the strain [22]. From
Figs. 6 (b) and 8 (b), we can see that T-dependent pyroelec-
tricity calculated by ZSISA well agrees with the secondary
pyroelectricity in the full optimization, which is consistent
with a previous calculation [40]. As the internal coordinates
are optimized at zero temperature in ZSISA, only the strain-
induced secondary effects are taken into account. Some works
add finite temperature effect of internal coordinates afterward
as a correction [23, 40], which reproduces the full optimization
results at the lowest order.
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FIG. 3. The temperature dependence of the lattice constants a and ¢
of GaN calculated by QHA combined with the IFC renormalization.
Both the internal coordinates and the strain are optimized to minimize
the QHA free energy. The calculation results are shifted by a constant
to reproduce the experimental result at zero temperature. The exper-
imental data are taken from Ref. [62] (cyan circle), Ref. [63] (orange
square for bulk), Ref. [64] (blue triangle for bulk rough side and red
inverted triangle for bulk smooth side), Ref. [65] (blue diamond), and
Ref. [66] (black filled square).

We next look into the results of v-ZSISA. As illustrated
in Figs. 6 and 8, v-ZSISA significantly underestimates the
anisotropy of the thermal expansion. As the 7T-dependent
strain is not properly calculated, the secondary pyroelectricity
is not correctly obtained either. However, as shown in Figs. 7
and 9, v-ZSISA gives precise results for the volumetric ther-
mal expansion coefficient. Here, we note that v-ZSISA can
be regarded as a special case of the constrained optimization
scheme discussed in Sec. II D. Because the volume of the unit
cell is

Veell () = Veenl (e = 0) X det(l + uuv)
Veell (ttyy = 0) X (1 + Truyy ), (42)

R

v-ZSISA corresponds to optimizing the hydrostatic strain
Tr u,,,, or the cell volume at finite temperature while the other
degrees of freedom are determined to minimize the DFT en-
ergy, which explains its success in calculating the volumetric
expansion. Hence, we elucidate the range of applicability of
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FIG. 4.  The thermal expansion and the pyroelectricity of ZnO
calculated by QHA combined with the IFC renormalization. Both
the internal coordinates and the strain are optimized to minimize the
QHA free energy. (a) The thermal expansion coefficients of a and
c axes (@g = ég—? and a, = %g—; respectively). The experimental
data are taken from Ref. [67] (red circle for @, and blue square for
ac), Ref. [68] (orange triangle for @, and cyan inverted triangle for
ac), and Ref. [69] (brown diamond for @, and gray filled circle for
a¢). (b) The purple line, green line, and cyan lines represent the total

(0)
pyroelectricity, the Born term ppomy = Yoy (*wv%, and the
0
primary pyroelectricity p/(ll) =Dav wav(ds%v wdcell which are

defined in Sec. I1 E. The experimental data is takenxfrom Ref. [70].

v-ZSISA, that v-ZSISA produces reliable results for the vol-
umetric thermal expansion but not for the anisotropy and the
internal coordinates.

C. Constrained optimization of a and c axis

We consider optimizing the a axis and c axis separately.
Aside from the full optimization, we try three optimization
schemes, which we explain for the case of calculating the
T-dependence of a. The first one is a special case of the con-
strained optimization in Sec. II D, which gives correct results
for the considering degrees of freedom at the lowest order. In
this method, we optimize the QHA free energy with respect to
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FIG. 5. The temperature dependence of the lattice constants a and ¢
of ZnO calculated by QHA combined with the IFC renormalization.
Both the internal coordinates and the strain are optimized to minimize
the QHA free energy. The calculation results are shifted by a con-
stant to reproduce the experimental result at zero temperature. The
experimental data are taken from Ref. [71] (cyan circle) and Ref. [72]
(orange square).

a while we determine the a-dependence of ¢ and the internal
coordinates by minimizing the static potential energy Uy (con-
strained optimization for a). In the other two schemes, we fix ¢
at the value of the reference structure. The internal coordinates
are also fixed in the second scheme (fixed ug),), and ¢), while
they are relaxed at the ZSISA level in the third one (ZSISA,
fixed ¢). We try similar calculation schemes for calculating
the T-dependence of ¢ as well.

The calculation results are shown in Figs. 10 and 11. As
shown in Figs. 10 (a) and 11 (a), all the optimization schemes
give similar results for @, , which is close to the result ob-
tained by simultaneous optimization of all degrees of freedom
(full optimization). Focusing on a., the constrained optimiza-
tion for ¢ well reproduces the results of the full optimization
(Fig. 10(b)), albeit not precisely for ZnO (Fig. 11(b)). The
other methods that fix a considerably overestimate the thermal
expansion along the c axis. This reflects that the constrained
optimization for c is correct for calculating 7 dependence of
c in the lowest order. Note that the 7-dependence of degrees
of freedom that are relaxed in static potential (those in {)_(j}
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FIG. 6.  The thermal expansion and the pyroelectricity of GaN
calculated by QHA combined with the IFC renormalization. We
compare the result of ZSISA and v-ZSISA with the result of the
simultaneous optimization of the internal coordinates and the strain
(full optimization). (a) The thermal expansion coefficients of a and ¢
axis (@q = éfl_% and @ = L4¢ respectively). The full optimization
results overlap with the ZSISA results. (b) The calculation results of
- NG )
the pyroelectricity. The (soe:condalzz/) pyroelectricity p;;” = PBorn.u
dug,y dug,y duyyy
Ppiezo,u = Zav Z(*I/JV[ dMT _( 7 7
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is plotted for the full optimization case, while the total pyroelectricity
0)

Pz and the Born term pggmz =Yav Z(*mv dg%" are plotted for ZSISA

and v-ZSISA. The different contributions to the pyroelectricity are

defined in Sec. I E.

in Sec. I D) significantly deviates from the full optimization
results. Therefore, the constrained optimization scheme dis-
cussed in Sec. II D is useful to robustly get reasonable results
by separately optimizing different degrees of freedom.

V. CONCLUSIONS

We formulate and develop a calculation method to simul-
taneously optimize all structural degrees of freedom, i.e., the
strain and the internal coordinates, within the quasiharmonic
approximation (QHA). Our method is based on the Taylor ex-
pansion of the potential energy surface and the IFC renormal-
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FIG. 7. The volumetric thermal expansion coefficient ay = ‘l, g—‘T/

of GaN calculated by QHA combined with IFC renormalization. We
compare the result of ZSISA and v-ZSISA with the result of the
simultaneous optimization of the internal coordinates and the strain
(full optimization).

ization, which efficiently updates the interatomic force con-
stants (IFCs) with the change of crystal structures. We apply
the method to the thermal expansion and the pyroelectricity
of wurtzite GaN and ZnO, which shows good agreement with
experiments.

Furthermore, we derive a general scheme of constrained op-
timization to obtain the correct 7 dependence of considering
structural degrees of freedom at the lowest order, in which we
optimize all the other degrees of freedom in the static poten-
tial Up. We perform calculations using several constrained
optimization schemes, such as ZSISA, v-ZSISA, and separate
one-parameter optimization of a and ¢ axis, whose results con-
firm the general scheme. Based on the general scheme, it is
possible to reduce the optimization in the Nparam-dimensional

parameter space to Nparam S€parate one-parameter optimiza-

. . . N aram
tions, which reduces the computational cost from O(N; ™)

to O(NsNparam), Where we denote the number of sampling
points of each parameter as Ns.
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Appendix A: Rotational invariance and acoustic sum rule (ASR) on the renormalized atomic forces

In IFC renormalization by the strain, special care must be taken for the acoustic sum rule (ASR) of the first-order IFCs. In n-th
order IFCs with n > 2, the renormalized IFCs satisfy the ASR

D g (O, -+, Ry gy, Ryaa) =0, (A1)
R, a,

if the higher-order IFCs of the reference structure satisfy the ASR. However, for the renormalized first-order IFCs to satisfy the
ASR, we show that the rotational invariance on the higher-order IFCs must also be satisfied in the reference structure. Note that
we assume that the IFCs in the reference structure satisfy the ASR and the permutation symmetry, which assumption holds in
our calculation. The space group symmetry is also imposed in the calculation, but it is not necessary for the discussion in this
Appendix. We show that

Proposition. For n > 2, assume that the IFC renormalization from the (n — 1)-th order IFCs to the first-order IFCs

satisfy the ASR. Then, if the rotational invariance between the n-th order and the (n — 1)-th order IFCs is satisfied, the IFC
renormalization from the n-th order IFCs to the first-order IFCs satisfy the ASR.

We start from the explanation of this statement. The rotational invariance is the constraints on IFCs which comes from
the invariance of the total energy for rigid rotation of the whole system. The rotational invariance is a set of constraints that
connects the n-th order and the (n — 1)-th order IFCs, which reads as follows.

The rotational invariance between the n-th order and the (n — 1)-th order IFCs is that Eq. (A2) is symmetric under the
exchange of u and v.

n
Z Dy, ---#,,H(Rla'l, o, Ryan, Ra)Roy + Z q),uia;t(Rla'l < Ryan)ou,ys (A2)
Ra i=1

where y; — u signifies py - i—1 1Mi+1 * * * Mn-
The IFC renormalization from the n-th order IFCs to the first-order IFCs by the strain is

6(1)”(0&1)

m = Z Dy, (0ar, Rpaa, - -+, Ryan)Roayy, = - Ruayvn (A3)

{Ra}

Thus, the ASR on the IFC renormalization from the n-th order IFCs to the first-order IFCs is
Z Z (I)#l 7™ (Oals RZQ'Zs Y Rna'n)RZ(lzvz T Rna/,,vn =0 (A4)
ay Rzaszna,l

Let us now move onto the proof of the proposition. We first prove the following lemma.
Lemma 1. The LHS of Eq. (A4) is anti-symmetric under the exchange of u; < (.
Starting from LHS of Eq. (A4),

Z Z (D,ul U (Oa'l» RZQ’Z, Y Rnan)Rlafzvz e Rn(xnvn

a) Rran---Ruan

= Z Z q)[l] Mn (R]Q’], R20’2, ) Rnan)(RZQz - Rl(l[ )Vz e (Rn(x,, - Rl(Y] )Vn

o Rar--Ruay,

= Z Z q)m e Un (Rla'l» Ry, -, Rnan)(RZQz - le )Vz(R3Q3 - RZag)vn cc (Rna,, - RZQz)vn

o Roar--Ruan,

= - Z Z q)m«—mz(R2a’2s Riay,---, Rnan)(Rlaq - R2az)vz(R3a/3 - R2(1/2)V3 ce (Rnan - RZGQ)V,L . (A5)

a; Rran-—-Ruan

From the first line to the second line, we used the translational symmetry of the crystal lattice. From the second to the third line,
we use the acoustic sum rule on i-th atom for i = 3,---,n. Here, we note that R; is not a dummy index but fixed somewhere
in the crystal. Thus, the sum is restricted to a finite range where the atoms R; and R; interact. Although R;,, — Rjaj can be
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infinitely large for distant atoms, the sum can be considered as a finite sum of finite elements, which is extremely important to
change the order of the summation. We now fix R; instead of R, which is allowed due to the translational symmetry. Changing
the names of the dummy indices and using the translational symmetry, we get

Z Z (Dlll ©HMn (Oah RZQ’Z’ Y Rnan)RZszg e Rna/,,v,,

a Ryay-Ryay,

== Z Z (I)leuz(Rla’h Ry, - -, Rn(ln)(RZtrz - le)vz te (Rna,, - Rlal)vn

a) RyapRpan

=->" > Ouew(0ar, Roan, -+, Rutn)Roam, - Ruayy (A6)

a) RyapRpan

thus Lemma 1 has been proved.

Lemma 2. Assume that the IFC renormalization from the (n — 1)-th order IFCs to the first-order IFCs satisfy the
ASR, and the rotational invariance between the n-th order and the (n — 1)-th order IFCs is satisfied. Then the LHS of Eq. (A4) is
symmetric under the exchange of u, and v;.

Again starting from the LHS of Eq. (A4),

Z Z (Dyl ~~~,un(0al, RZQ'Z, Tt Rnal’l)RZ(leZ Tt Rmxnv,,

a1 Rhar--Ryap

= Z Z R3a3V3 ce Rna/nvn [ Z cD,ul---yn (Oay, Ryay, -+ -, Rnan)RZszz (AT)

a) Rzaz--R,an Ry

Using the permutation symmetry of IFCs and the rotational invariance between the n-th and the (n — 1)-th order IFCs [Eq. (A2)],
we can show that Eq. (A8) below is symmetric under the exchange of , < v

Z Z R3a3V3 T Rnar,,v,, [ Z q),ul Ry (Oa'h Ry, -+, Rna'n)RZClgvz

@1 Rzaz-Rpan Rya;
+ 3 s Oy (01, R, -+, Ryar)|. (A8)
i#2

The second term in the square bracket vanishes when the summation is taken due to the ASR on the IFC renormalization from
the (n — 1)-th order IFCs to the first-order IFCs. Lemma 2 is derived by comparing the RHS of Egs. (A7) and (A8).

Lemma 3. Assume that the IFC renormalization from the (n — 1)-th order IFCs to the first-order IFCs satisfy the
ASR, and the rotational invariance between the n-th order and the n — 1-th order IFCs is satisfied. Then the LHS of Eq. (A4) is
symmetric under the exchange of u; and v;.

We show the last lemma for the proof of the proposition. We can use Lemma 1 and Lemma 2 from the assumption of
Lemma 3. Thus,

(H1p12, v2) = = (u2 1, v2) (Lemma 1)
=~ (u2v2, u1) (Lemma 2)
=(vau2, p1) (Lemma 1), (A9)

where (11 o, v2) is a shorthand notation of the LHS of Eq. (A4) which focuses on the permutation of the indices u, uo, v».
proof of the proposition. Finally, we show the proof of the proposition. From Lemmas 2 and 3, we get

(H1p2, v2) =(v2p12, 1) (Lemma 3)
=(vap1, u2) (Lemma 2)
=(u2p1,v2) (Lemma 3) (A10)

On the other hand, Lemma 1 claims that

(12, v2) = —(uop1, v2) (Lemma 1) (A1l)



Therefore, from Eqgs. (A10) and (A11), we get

(112, v2) =0,

which proves the proposition.

In the numerical calculation, we have confirmed the IFC
renormalization from the harmonic to the first-order IFCs sat-
isfies the ASR when we impose the rotational invariance on
the harmonic IFCs. On the other hand, we have checked
that the IFC renormalization to the first-order IFCs from the
higher-order IFCs do not satisfy the ASR if we do not impose
the rotational invariance. Therefore, it is numerically demon-
strated that the ASR and the permutation symmetry alone are
not sufficient for the ASR on the renormalized atomic forces
to be satisfied.

Appendix B: Implementations of ZSISA and v-ZSISA

The calculation of ZSISA, which fix the internal coordinates
at the static positions in the potential energy surface, can be
performed by fitting the strain-dependence of the free energy
after relaxing the internal coordinate in the static potential.
However, in our formalism combined with the IFC renormal-
ization, it is better to simultaneously optimize the internal and
the external degrees of freedom to avoid the fitting error and to
simplify the calculation scheme. In v-ZSISA, the complicated
implementation of fixed-volume optimization will be a prob-
lem in calculating the volume-dependent v-ZSISA free energy
to curve-fit for minimization. In this Appendix, we explain
that ZSISA and v-ZSISA optimization can be performed by
replacing the derivatives of QHA free energy in Eqgs. (24) and
(25) by appropriate functions.

We first explain the implementation of ZSISA. As the inter-
nal coordinates need to be relaxed to the static position of the
potential Uy, we replace the RHS of Eq. (24) by

©
O FqQna OFzsisa aU(q ) B1
(0) o - (0) (B1)
0q, 0q, 0q,

It should be emphasized that ZSISA is not formulated as a
global minimization of a single function of internal coordi-

nates ¢® and strain u,,. Thus, % should not be inter-
q

preted as a derivative of a function AFZSISA, but is used for

notational simplicity. The formula for the strain is similar to
©

Egs. (36) and (37) in Sec. II D. We define (gz ) JSISA

derivative in which ¢(*) is adjusted to the strain so that the

atomic forces are invariant. This deﬁnition generalizes the

derivative of the true strain dependence q, )(uw,) in ZSISA to

as the

arbitrary configurations of q B
calculated as

) and . The derivative can be

2 ~_ D(01,)
(6uﬂv )ZSISA - ;((Dz D, (Twl) (B2)
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(A12)

(

where (&35 1) is the inverse matrix of ®(01;,0.1,) in terms of
the mode indices, which can be shown in a similar way to the
derivation of Eq. (35) in Sec. II D. The IFCs and the derivatives
in RHS of Eq. (B2) are estimated at the current structure with
strain and atomic displacements. The ZSISA derivative of the
free energy is

OF F, dFoun (0"
ZSISA _ QHA Z QHA( q, (B3)

Oty Oty y aqflo) 6M#V)ZSISA’

with which we replace 6 2 in Eq. (25).

In the calculation of V-ZSISA, we separate the strain to the
hydrostatic strain, which causes volumetric expansion, and the
deviatoric strain. The mode of the hydrostatic strain uy is
calculated as

o det(I +u)

Uy uy &
Ouyy

=+ wWprt i1+ Wyi212
(B4)

where we use x = 0,y = 1,z = 2 (mod 3) for notational sim-
plicity. We normalize uy ,, so that 3, [uy W|2 = 1. Here,

we calculate the structural change (641(0)V “ZSISA OSSR, in

which the atomic forces and the dev1atoric stress tensor are
unaltered in the first order. These quantities can be obtained
by solving the equation

- AD(0.)
®(04,01) —— (0)v-ZSISA 0
_ Auyy 0q, o , (B5)
dD(01) ~ Suy ZSISA uy v
61/{ H1V1,H2V2
uv
1 Uy

where C,Ulvl,ﬂsz =N W The matrix elements in the

LHS of Eq. (B5) are IFC-renormalized by the strain and atomic
displacements. We solve the equation assuming that the tensor
uy,, is symmetric to fix the rotational degrees of freedom. We
normalize the solution of Eq. (BS) so that it satisfies

Dy oSS = 1, (B6)
nv

Then, the v-ZSISA derivative of the free energy in the direction
of hydrostatic strain is

OFy.zs15A Z SuYZSISA ‘3 OFqua Z 5qOvESISA dFgna
3MV C()CIEIO)
_ Z S ZSISA aFZSISA B7)

Buﬂ,,

- (1 + M)u+1,v+2(1 + ”)u+2,v+1,



We denote the deviatoric strain modes, the modes perpendic-
ular to uy, as u;. The v-ZSISA derivative of the free energy in
the direction of u; is

(@ upy)
OF,.zs15A _ an ! (B8)
614[ 6ui ’

since they should be relaxed in the static potential. Transform-

16

ing to the Cartesian representation, we get

O0Fy.zs15A
Ouyy
_ o121 OFzsisa
= uy,uy u,u’v’ a—
wv' Uy
0 0 (q©
9" uuy)
+ (au — Uy, uv Z uv, v o )UO ", (B9)
I3,7
uy v u'v

where the normalizations of uy ,, and 6uV',%,SISA are assumed.

The v-ZSISA derivative of the free energy in terms of the strain
is

(q (0),“ v)
oy, "

0
aqg)

OFy.zs15A _

0
ﬁqg)

(B10)

The v-ZSISA optimization can be performed by replacing the

RHS of Egs. (24) and (25) by oF, ZESA and ‘”(;V'ZS‘SA respectively.
8q, Uy
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