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Monolayer graphene at charge neutrality in a quantizing magnetic field is a quantum Hall ferro-
magnet. Due to the spin and valley (near) degeneracies, there is a plethora of possible ground states.
Previous theoretical work, based on a stringent ultra short-range assumption on the symmetry-
allowed interactions, predicts a phase diagram with distinct regions of spin-polarized, canted an-
tiferromagnetic, inter-valley coherent, and charge density wave order. While early experiments
suggested that the system was in the canted antiferromagnetic phase at a perpendicular field, recent
scanning tunneling studies universally find Kekulé bond order, and sometimes also charge density
wave order. Recently, it was found that if one relaxes the stringent assumption mentioned above, a
phase with coexisting canted antiferromagnetic and Kekulé order exists in the region of the phase
diagram believed to correspond to real samples. In this work, starting from the continuum limit
appropriate for experiments, we present the complete phase diagram of ν = 0 graphene in the
Hartree-Fock approximation, using generic symmetry-allowed interactions, assuming translation in-
variant ground states up to an intervalley coherence. Allowing for a sublattice potential (valley
Zeeman coupling), we find numerous phases with different types of coexisting order. We conclude
with a discussion of the physical signatures of the various states.

I. INTRODUCTION

The quantum Hall effects (QHE) [1, 2], discovered four
decades ago [3] in semiconductor heterostructures, em-
body many phenomena observed there for the first time,
but later found in many systems. The QHE represents
the first and simplest topological insulator [4, 5], as a
consequence of which the electric and thermal Hall con-
ductances are quantized. The bulk is insulating; charge
and heat are carried by edge modes [6] which are robust
against disorder. Due to the quantization of kinetic en-
ergy into discrete values, Landau levels are also the first
example of truly flat bulk bands. As a result, the bulk
physics is controlled entirely by electron-electron inter-
actions in a partially filled Landau level. Notably, this
leads to the fractional QHE (FQHE) states [7], which
host excitations with fractional charge and statistics [8].
Due to spin or other internal degeneracies (such as valley
or layer), ground states at some integer fillings are also
controlled by interactions. Typically, interactions lead to
ferromagnetism, as exemplified by the single layer ν = 1
spin ferromagnet [9] or the bilayer ν = 1 state in GaAs
quantum wells [10–12]. Such quantum Hall ferromagnets
also have interesting topological charged excitations such
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as skyrmions [9] or merons [11, 12].

Graphene [13–16] is a single layer of Carbon atoms
arranged in a honeycomb lattice with two sites (A and
B) in each unit cell. Near charge neutrality, low-energy
electrons in graphene occur in two valleys at the two
inequivalent zone corners K and K′, and obey a Dirac
equation in each valley. In a quantizing perpendicular
magnetic field B, the Dirac spectrum produces particle-
hole symmetric Landau levels n = 0,±1,±2 · · · with en-
ergy E±n ∝ ±

√
B|n| in each valley (ignoring the Zee-

man splitting). Each Landau level is (almost) four-fold
degenerate, with the four states being labelled by spin
and valley. The n = 0 Landau level is special; states
in each valley are localized on one sublattice. Further-
more, since the states are comprised of a superposition
of particle-like and hole-like states of the B = 0 prob-
lem, there is valley mixing at the edge, leading to one
edge mode with a particle-like dispersion and one with a
hole-like dispersion [17].

It was recognized very early [18–21]that partial filling
of the n = 0 manifold of Landau levels (called the zero-
LLs or ZLLs) would lead to a rich set of quantum Hall
ferromagnets at integer fillings, the most interesting of
which is the ν = 0 case, when two of the four ZLLs
are filled. The particular superpositions of the spin and
valley LLs that are occupied determine the nature of the
ground state.

In the non-interacting limit, the orbital part of the ki-
netic energy has an SU(4) spin/valley symmetry in the
continuum limit. The Zeeman coupling EZ splits the
spin ↑ and spin ↓ Landau levels. The ground state is
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fully spin-polarized [22], with the K ↑, and K′ ↑ Lan-
dau levels occupied. The chemical potential lies between
the ↑-spin and ↓-spin sets of ZLLs. Due to the nature of
the edge states of the ZLLs mentioned above [17], at each
edge, the chemical potential intersects a particle-like level
and a hole-like level of opposite spin. Since the system
is symmetric under U(1) spin rotations around the total
B field, these two modes cannot back-scatter, even if po-
tential disorder is present. Therefore the system should
be in a quantum spin Hall (QSH) phase [4, 22, 23].

Now let us add electron-electron interactions. The
dominant long-range part of the Coulomb interaction
does not discriminate between spin and valley indices, be-
ing SU(4) symmetric. The Coulomb interaction changes
the single-particle spectrum at the edge, but leaves the
two gapless, opposite-spin, charge-carrying edge modes
intact, preserving the QSH phase [24]. In transport, such
a state should show a two-terminal conductance of 2e2/h.

Initial experiments [25–28] saw a trivial insulating
state at ν = 0 without any protected edges. A semi-
nal experiment measured the two-terminal conductance
in tilted field [29], which allowed independent tuning of
the Zeeman coupling. It was found that at large EZ ,
the two-terminal conductance does indeed tend asymp-
totically to 2e2/h. Below a critical Zeeman energy E∗Z ,
the system remains a trivial insulator. The gap at the
edge vanishes continuously as one approaches EZ → E∗Z ,
indicating a second-order phase transition.

The fact that the ground state at purely perpendicular
field is not a QSH state means that interactions beyond
the SU(4)-symmetric Coulomb interactions must play an
important role [18–21]. The ground state must be chosen
by SU(4)-anisotropic residual interactions, arising from
lattice-scale couplings. Low-energy effective symmetries
inherited from the B = 0 problem can be used to deduce
a U(1) valley symmetry at the four-Fermi level (reduced
to a Z3 symmetry when higher-Fermi interactions are in-
cluded) [18]. One can classify the four-Fermi anisotropic
residual interactions into two types; an Ising-like coupling
in the valley space vz(q) and an xy-like coupling in the
valley space vxy(q). See Section II A for the full definition
of vz(q), vxy(q) and the interaction Hamiltonian.

Since the residual interactions arise from lattice-scale

couplings, and the magnetic length ` =
√

~
eB is two or-

ders of magnitude larger than the lattice spacing (`� a),
the bare interactions are ultra-short-range (USR). The
first step in obtaining the effective interactions in the
ZLL manifold is to project the bare interactions to this
manifold. Operationally, this assumption implies that vµ
are independent of q in the ZLL. It should be noted that
if one projects USR bare interactions to a N 6= 0 man-
ifold in graphene, the effective interactions will not be
USR [30].

Using the USR assumption for the interactions and
building upon previous work [18–21], Kharitonov [31]
found the phase diagram in the Hartree-Fock approx-
imation for ν = 0 graphene. There are four phases:
A fully polarized phase F , an antiferromagnetic phase

AF (which becomes a canted AF, or CAF in the pres-
ence of the Zeeman coupling), a charge density wave
(CDW) phase, and a phase with inter-valley coherence
(IVC), sometimes also called a Kekulé distorted or bond-
ordered (KD/BO) phase. All the phase boundaries are
first-order, except for the CAF to F transition, which
is second-order. Upon the addition of a valley Zeeman
coupling, the CDW and bond order coexist, leading to a
partially sublattice polarized (PSP) phase [32], but the
transition between the PSP and the CAF phases remains
first-order.

This picture indeed reproduces the phenomenology
of ν = 0 graphene in tilted field [29], assuming that
the anisotropic couplings are such that the system (in
perpendicular field) is in the CAF phase [31]. Subse-
quent magnon transmission experiments [33–36] through
a ν = 0 region surrounded by ferromagnetic ν = 1 regions
also confirm that coherently propagating magnetic exci-
tations are present in the ν = 0 state. In the CAF phase
the natural candidate is the gapless Goldstone mode as-
sociated with the spontaneous symmetry breaking of the
U(1) spin symmetry.

More recently, three scanning tunneling studies [37–39]
on ν = 0 graphene perpendicular B field have introduced
more complexity into this picture. While they cannot di-
rectly confirm or rule out CAF order, all three see Kekulé
bond order, and two of the three [38, 39] see CDW order
as well. Partial alignment of the graphene layer with the
hexagonal Boron Nitride (HBN) substrate is known [40–
43] to produce a sublattice potential/valley Zeeman cou-
pling EV , which can lead to CDW order. This origin of
the CDW order was confirmed in one of the experiments
[38], while it remains unclear in the other experiment
[39].

It is possible that the samples used in the scanning
tunneling experiments are in a different phase from those
used in transport experiments. However, the most parsi-
monious explanation is that CAF and bond order coexist
in all samples, the CAF being undetected in STM experi-
ments and the bond order being undetected in transport.

Since there is no coexistence between CAF and BO in
Kharitonov’s phase diagram [31], one is led to re-examine
the assumption of ultra-short-range interactions. From
the point of view of an effective model in the ZLLs,
there is no reason to assume any particular form for
the symmetry-allowed interactions, because integrating
out high energy Landau levels will lead to renormaliza-
tions in the form of the interactions [44–48]. In a recent
work, three of us [49] used this reasoning, generalizing
the symmetry-allowed interactions vz(q), vxy(q) to be
arbitrary functions of q. This might seem to introduce
an infinite number of new couplings. Remarkably, in the
continuum Hartree-Fock (HF) approximation, assuming
translation symmetry is preserved up to an inter-valley
coherence, only two independent numbers per type of
coupling suffice [49], namely the Hartree and the Fock
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couplings, defined as

gµ,H =
vµ(q = 0)

2π`2
; gµ,F =

∫
d2q

(2π)2
vµ(q)e−q

2`2/2 (1)

where µ = z, xy. For ultra-short-range (USR) interac-
tions gµ,H = gµ,F . Indeed, it was found [49] that given
certain inequalities between the Hartree and Fock cou-
plings, there was a region of couplings which showed
generic coexistence between the CAF and BO orders. We
will refer to this as the B/CAF phase.

It should be noted that non-USR interactions have im-
plicitly been introduced earlier by Goerbig and collabo-
rators in the context of effective nonlinear sigma models
for ν = ±1 in graphene [50, 51]. In ν = −1 for example,
only a single ZLL (some linear combination of the four
possibilities) is occupied. As in any ferromagnet with
single occupancy, the many-body wave function is com-
pletely antisymmetric in space. Thus, USR interactions
cannot contribute to the energy of the state and the entire
physics is controlled by the non-USR couplings [52]. The
case of ν = 1 is related to that of ν = −1 by particle-hole
symmetry. More recently, the connection of the parame-
ters of the effective theory to the non-USR nature of the
microscopic anisotropic interactions was made explicit by
Atteia and Goerbig [52], once again in the context of
ν = ±1.

There is a different line of reasoning coming from
Bernal-stacked bilayer graphene (BLG) in the quantum
Hall regime [53] which also leads to the non-USR con-
dition gµ,H 6= gµ,F . Assuming solely nearest neighbor
hoppings, the B = 0 dispersion has quadratic band
touchings at K and K′. However, upon including the
symmetry-allowed trigonal warping (a hopping between
non-Bernal stacked sites in different layers) the quadratic
band touching reconstructs into four Dirac cones [54].
The inclusion of trigonal warping has a profound effect
[54] on the eight-fold (nearly) degenerate manifold of
states near charge neutrality in a quantizing B. The
upshot is that the the symmetry-allowed interactions,
when projected into the low-energy manifold, now ac-
quire structure on the scale of ` and no longer satisfy the
USR condition gµ,H = gµ,F . This fact is crucial in ob-
taining phases which show coexistence between different
kinds of order in BLG at ν = 0 [53]. There is a deep anal-
ogy between MLG and BLG, as we will see; the states
that we will uncover in the full phase diagram of MLG
are identical to a subset of states found earlier in BLG
[53].

The purpose of this paper is to find the complete HF
phase diagram of monolayer graphene in the continuum
approximation, assuming translation invariance up to an
inter-valley coherence. Our previous work [49] was moti-
vated by the STM experiments [37–39], and confined to
values of couplings thought to apply to real samples. Fur-
thermore, the valley Zeeman coupling was ignored. We
will explore the full phase diagram, in the presence of
nonzero EZ , EV for all possible gz,H , gz,F , gxy,H , gxy,F .

The majority of the results in the main text are for the

case when the Hartree and Fock parts of a given coupling
have the same sign:

gz,F
gz,H

> 0;
gxy,F
gxy,H

> 0 (2)

This seems natural for weak LL-mixing, when the renor-
malizations from integrating out the higher energy states
are expected to be small compared to the bare values of
the couplings. However, for strong LL-mixing, one may
well have situations when the Hartree and Fock parts of a
given coupling have opposite signs. We will present some
interesting results in this case as well.

To give a brief preview of our results. We find three
coexistence phases: (i) The coexistence phase occurring
near the BO/CAF boundary in the USR model, which
was found earlier [49]. This phase, which we call the
B/CAF phase, also has a spin-valley entangled order even
at EV = 0, which we label as SVEY (we will explain the
notation shortly in Section II B). (ii) A phase occuring
near the CDW/FM boundary in the USR model. This
phase displays the coexistence between CDW and FM or-
der, mediated by a spin-valley entangled order we label
SVE+ (explained in Section II B). (iii) When

gz,F
gz,H

< 0

we find a phase where FM and SVEX/SVEY order (ex-
plained in Section II B) coexist, without any other order
being present at EV = 0. We call this the FSVE phase.
When EV > 0 many of these phases acquire a CDW order
parameter, but remain largely unchanged otherwise. In
sum, the full phase diagram of monolayer graphene for
generic interactions is much richer than was previously
believed.

The plan of the paper is as follows: In Section II we will
briefly review the previous work on the effective model
for MLG in the continuum approximation. We will gen-
eralize the interactions to be non-USR, discuss the HF
approximation and find the ground state energy. Also in
Section II, we present a parameterization of translation-
invariant ν = 0 states [51, 55, 56] whose energy depends
on four angles. It turns out that the states that have
been found in the USR limit [31] can be characterized in
terms of a single angle. Instabilities of these states, which
can be computed analytically, will signal the occurrence
of more complex states with coexisting order parameters.
In general, the actual ground state in any region of co-
existence has to be found numerically. In Section III we
present our results; since there are six independent tun-
ing parameters, we will present many two-dimensional
sections through the space of coupling constants. Each
two-dimensional section will satisfy different inequalities
between the Hartree and Fock couplings. We end with
our summary, conclusions, and open questions in Sec-
tion IV. The appendices contain the details of our cal-
culations, analytical expressions for various instabilities,
and sample results for strong Landau-level mixing.
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II. MODEL HAMILTONIAN, PARAMETERS,
AND METHODS

We choose the primitive translation vectors for

graphene as a1 = aêx, a2 = a( êx2 +
√
3êy
2 ), with the gen-

eral Bravais lattice site R = n1a1 + n2a2. The noninter-
acting Hamiltonian of graphene at zero magnetic field,
suppressing the spin index for the moment, is

H0 = −t
∑
R,j

c†ARcBR+dj
+ h.c. (3)

where t is the nearest-neighbor hopping matrix element,
cAR, cBR destroy electrons at the A and B sublattice
sites of the Bravais site R, the sum on j = 1, 2, 3 with
d1 = 0,d2 = a1 − a2,d3 = −a2 and h.c. stands for
hermitian conjugate. Note that there is no spin-orbit
coupling in the Hamiltonian of Eq. (3). First-principles
[57, 58] and tight-binding calculations [59, 60] show that
the spin-orbit coupling in graphene is of the order of tens
of µeV , smaller than any other energy scale in the prob-
lem. We will set the spin-orbit coupling to zero here and
henceforth. Fourier transforming Eq. (3), we obtain the
Bloch Hamiltonian at wave-vector k as a matrix in the
sublattice space

H(k) = −t
(

0 f(k)
f∗(k) 0

)
(4)

where f(k) = 1+eik·(a1−a2)+e−ik·a2 . It is easily checked
that f(k) vanishes at the two inequivalent zone corners
(valleys) K = êx

4π
3a = −K′ indicating Dirac crossings.

The low-energy effective Hamiltonian in the K valley
(k = K + p, |p| � 2π/a) can be obtained by expan-
sion.

HK(p) =
ta
√

3

2

(
0 px − ipy

px + ipy 0

)
(5)

The low-energy effective Hamiltonian at the K′ valley
can be obtained by the identity HK′(p) = (HK(−p))∗.

In the continuum limit, we turn on a weak perpendicu-
lar magnetic field B⊥ by allowing the Hamiltonian to act
on slowly varying envelope functions. Operationally, this
involves promoting pi → −i∂i → −i∂i + eAi(r), where
the electron’s charge is −e, and A(r) is the vector poten-
tial satisfying ∇×A = êzB⊥. In order for the continuum
limit to be justified, the magnetic length has to be much

larger than the lattice spacing; ` =
√

~
eB⊥

� a. This is

extremely well-satisfied for realistic fields.
Next, one chooses Landau gauge A = B⊥xêy, and

imposes periodic boundary conditions in the y-direction
with a length Ly. Let us define the Landau level wave-
functions as

〈x, y|n, k〉 =
eiky√
Ly

Φn

(
x− k`2

`

)
(6)

where Φn are the normalized harmonic oscillator wave-
functions. Note that, here and henceforth, k is a
one-dimensional guiding center label, and not a two-
dimensional momentum. Now it is straightforward to

see that the ZLL states are (0, |n = 0, k〉)T in the K val-

ley, and (|n = 0, k〉, 0)
T

in the K′ valley. Thus, in the
ZLLs, valley and sublattice are locked together. Now we
are ready to present our model Hamiltonian.

A. Hamiltonian and the Hartree-Fock
Approximation

In what follows, we will index the fermion operators
with a valley index α, β, which can be K ≡ 0 or K′ ≡ 1,
and a spin index s =↑≡ 0 or s =↓≡ 1. In this notation,
the non-interacting Hamiltonian of the ZLLs is

H1b = −
∑
α,s,k

(EZ(−1)s + EV (−1)α) c†α,s,kcα,s,k (7)

which introduces the Zeeman energy EZ and the valley
Zeeman/sublattice potential EV .

Turning to interactions, Alicea and Fisher [18] noted
that, in addition to the SU(4)-symmetric Coulomb in-
teraction, two other types of low-energy effective inter-
actions were allowed by SU(2) spin-rotation symmetry
and momentum conservation in the B = 0 problem. We
recall that the spin-orbit coupling is negligible [57–60]
and has been neglected. A U(1) symmetry in the valley
space (separate conservation of the number of electrons
in each valley) emerges when restricting oneself to four-
Fermi interactions. Upon including six-Fermi terms this
is reduced to a Z3 symmetry because 3(K−K′) is a re-
ciprocal lattice vector. The full interaction Hamiltonian
for the ZLLs in monolayer graphene, in the Landau gauge
basis discussed earlier, is
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H =H1b +Hint (8)

Hint =HCoul +HZ +Hxy (9)

HZ =
1

2LxLy

∑
k,k′,q

vz(q)e−iqx(k−k
′−qy)`2e−(q`)

2/2 : c†k−qyτZckc
†
k′+qy

τZck′ : (10)

Hxy =
1

2LxLy

∑
k,k′,q

vxy(q)e−iqx(k−k
′−qy)`2e−(q`)

2/2
(

: c†k−qyτxckc
†
k′+qy

τxck′ : + : c†k−qyτyckc
†
k′+qy

τyck′ :
)

(11)

We have used a shorthand notation where the spin/valley
indices are suppressed and summed, and τi is a Pauli ma-
trix in the valley space (it acts as the identity in the spin
space). Furthermore, since the Coulomb interaction has
no role to play in selecting the ground state, we drop it
henceforth. In the generic case, when EZ , EV > 0, the
Hamiltonian has a U(1)s spin-rotation symmetry gener-
ated by total σz, a U(1)v valley-rotation symmetry gen-
erated by total τz (which is also the difference between
the number of electrons in the K and K′ valleys), and
an entangled spin-valley U(1)sv symmetry generated by
total τzσz. In the fine-tuned case EZ = 0 (not realizable
in experimental samples) the spin-rotation symmetry is
enhanced to SU(2)s. In the fine-tuned case EV = 0, the
valley symmetry is enhanced to a U(1)v⊗Z2v, where the
Z2v represents the symmetry exchanging the two valleys.

In the HF approximation, one looks for the single
Slater determinant that has the right electron filling and
minimizes the energy. Such a state, symbolically written
as |HF 〉, can be completely characterized by the set of
1-body expectation values.

∆ss′

αβ(k, k′) = 〈HF |c†α,s,kcβ,s′,k′ |HF 〉 (12)

We will restrict the space of HF states to those obey-
ing translation invariance, up to an intervalley coherence.
This means that the ∆ becomes diagonal in k and inde-

pendent of it.

∆ss′

αβ(k, k′) = δkk′∆
ss′

αβ (13)

Let us make the idea of translation invariance up to
an intervalley coherence more explicit. The ∆ we
have assumed allows nonzero averages of the form

〈HF |c†K,scK′s′ |HF 〉. Clearly these break lattice transla-

tions since K and K′ are not identical up to a reciprocal
lattice vector. Allowing such averages introduces a new
set of reciprocal lattice vectors which are K−K′ and all
their rotated versions, and leads to translation invariance
with an enlarged unit cell of size

√
3 ×
√

3 as compared
to the original. Indeed, this is exactly what is seen STM
experiments [37–39]. The ansatz of Eq. 13 makes sure
that there is no translation symmetry breaking beyond
the minimal one implied by intervalley coherence.

In general, the matrix ∆ is the projector on to the
linear space of the occupied states. Given that two or-
thogonal linear combinations of the four ZLLs (call them
|f1〉 and |f2〉) are occupied at ν = 0 we can write

∆ = |f1〉〈f1|+ |f2〉〈f2| (14)

We can now express the HF energy of the Hamiltonian
of Eq. (11) per guiding center in terms of ∆, with Nφ =
LxLy

2π`2 , as

EHF
Nφ

=− EZTr [σZ∆]− EV Tr [τZ∆] +
gz,H

2
(Tr[τZ∆])

2 − gz,F
2
Tr [τZ∆τZ∆]

+
gxy,H

2

{
(Tr[τx∆])

2
+ (Tr[τy∆])

2
}
− gxy,F

2
(Tr[τx∆τx∆] + Tr[τy∆τy∆]) (15)

Note that gµ,h and gµ,F are defined as in Eq. (1).

B. Ansatz for States, Instabilities, and Order
Parameters

We will start with an efficient parameterization [51,
55, 56] for the two orthogonal occupied states |f1〉 and
|f2〉. This parameterization has been used not only for

uniform states but also for describing skyrmions [56].

|f1〉 = cos
α1

2
|n〉 ⊗ |s〉+ eiβ1 sin

α1

2
| − n〉 ⊗ | − s〉 (16)

|f2〉 = cos
α2

2
|n〉 ⊗ | − s〉+ eiβ2 sin

α2

2
| − n〉 ⊗ |s〉 (17)

where n = sin θp cosφpêx + sin θp sinφpêy + cos θpêz, and
s = sin θs cosφsêx+sin θs sinφsêy+cos θsêz are unit vec-
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tors indicating the directions of the state on the valley
and spin Bloch spheres respectively. The spinors |n〉 and
|s〉 are defined in the standard way

|n〉 =

(
cos

θp
2

eiφp sin
θp
2

)
; |s〉 =

(
cos θs2

eiφs sin θs
2

)
(18)

In going from |n〉 → | − n〉 one substitutes θp → π − θp
and φp → φp + π, and likewise for s.

Given this ansatz, which depends on eight angles, we
compute the HF energy.

EHF =− EZ cos θs [cosα1 − cosα2]− EV cos θp[cosα1 + cosα2] +
gz,H

2
cos2 θp [cosα1 + cosα2]

2

− gz,F
16

[
4 cos2 θp (cos(2α1) + cos(2α2))− 8 sin2 θp (cosα1 cosα2 − sinα1 sinα2 cos(β1 + β2)) + 8

]
+
gxy,H

2
sin2 θp [cosα1 + cosα2]

2 − gxy,F
16

[
8 sin2 θp (cosα1 cosα2 − sinα1 sinα2 cos(β1 + β2))

+ 4 sin2 θp (cos(2α1) + cos(2α2))− 16 (cosα1 cosα2 − 1)

]
(19)

There are three noteworthy features of this energy.
The first is that it is independent of φp and φs. This re-
sults from the U(1)v and U(1)s symmetries of the Hamil-
tonian. Therefore we can set φs = φp = 0 without loss of
generality. The second feature is that the dependence of
the energy on β1, β2 occurs only in the interacting part,
and only in the combination β1 + β2. The reason the
one-body HF energy does not involve β1, β2 is that the
averages of τz, σz do not involve βi.

〈fi|τz|fi〉 = cosαi cos θp (20)

〈fi|σz|fi〉 =− (−1)i cosαi cos θs (21)

The dependence of the interaction energy solely on β1+β2
arises from the SU(2)spin symmetry of the interactions,

which implies that the U(1) rotation |s〉 → eiχ/2|s〉; | −

s〉 → e−iχ/2| − s〉 cannot change the interaction energy.
Ignoring overall phase factors, this rotation has the net
effect β1 → β1 − χ; β2 → β2 + χ. This demonstrates
that the energy can only depend on β1 + β2. Thirdly,
the dependence on β1 + β2 occurs via the term cos(β1 +
β2), which appears linearly. Depending on the sign of its
coefficient, the minimum energy will occur at cos(β1 +
β2) = ±1.

The bottom line is that the minimum of the HF energy
for uniform states can be found in a subspace in which
|f1〉, |f2〉 can both be chosen real.

Below, we will call states which have Kekulé/BO,
and/or CDW order B/CO states (because they have both
bond order and/or charge order). The states originally
found by Kharitonov [31] can be represented in terms of
the above angles as follows (details in Appendix A),

|FM〉 = |α1 = 0, α2 = π, θp = π/2, θs = 0, β1 = β2 = π〉 (22)

|CAF 〉 = |α1 = θCAF , α2 = π − α1, θp = π/2, θs = 0, β1 = β2 = π〉; gxy,F < 0 (23)

|B/CO〉 = |α1 = α2 = 0, θp = θB/CO, θs = 0, β1 = β2 = 0〉 (24)

where

θCAF = cos−1
(

EZ
2|gxy,F |

)
; gxy,F < 0 (25)

θB/CO = cos−1
(
EV
gV

)
; gV > EV (26)

θB/CO = 0; gV < EV (27)

gV = 2gz,H − gz,F − 2gxy,H + gxy,F (28)

If θB/CO = 0 the state is a pure CDW, if 0 < θB/CO <
π/2 it has coexisting BO and CDW order, and if θB/CO =

π/2 the system is in a pure Kekulé state. The reason we
call these states “simple” is that they can all be described
by at most a single nontrivial angle, which can be analyt-
ically computed as a function of the couplings. Generic
states may depend on more than one nontrivial angle, in
which case it is not possible to solve for the angles or the
ground state energy analytically.
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The ground state energies of the simple states are

EFM =− 2(EZ + gxy,F )− gz,F

ECAF =
E2
Z

2gxy,F
− gz,F ; 0 < EZ < −2gxy,F

EB/CO =− E2
V

gV
− gxy,F + 2gxy,H ; 0 < EV < gV

ECDW =− 2EV − gz,F + 2gz,H (29)

Our strategy is to examine the stability of these “sim-
ple” states by finding the eigenvalues of the Hessian ma-
trix of second derivatives of the energy functional with
respect to the four angles α1, α2, θp, θs.

Eij =
∂2EHF
∂χi∂χj

(30)

where χi represents all four angles. For the “simple”
states one can compute the entire Hessian matrix ana-
lytically, and also obtain the eigenvalues analytically.

All eigenvalues being positive means the state is sta-
ble to arbitrary small deformations. As the coupling
constants are varied, a formerly positive eigenvalue may
vanish, indicating an instability of the state in question.
This allows us to map out the regions of stability of the
“simple” states in our coupling constant space.

It can happen that when some of the angles take par-
ticular values, the projector on to the occupied subspace
becomes independent of certain other angles. This occurs
in the FM and B/CO phases. Consequently, certain rows
and columns Eij vanish, which means that one eigenvalue
always vanishes in that state independent of the cou-
pling constants. In such cases, the instability is marked
by the vanishing of an eigenvalue that does depend on
coupling constants. Once the region of possible coexis-
tence has been found, we use numerical self-consistent
Hartree-Fock to obtain the ground state and confirm the
coexistence predicted by the Hessian.

In preparation for showing the results, let us list all the
order parameters which we will encounter and the sym-
metries they break. We have chosen a parameterization
in which the projector matrix of the occupied states is
real. Thus, out of all possible hermitian matrices that
represent order parameters, only real matrices will have
nonzero expectation values.

FM =〈σz〉/2
CAF =〈τzσx〉/2
BO =〈τx〉/2

CDW =〈τz〉/2
SV EX =〈τxσx〉/2
SV EY =〈τyσy〉/2
SV E± =〈τxσx ± τyσy〉/2 (31)

The SVE (spin-valley entangled) type of order parame-
ters are so called because they break the spin and valley
symmetries simultaneously in an entangled way.

Let us examine the symmetries broken by the vari-
ous order parameters. In the fine-tuned case EZ = 0
(not realizable in experiment) the FM order parameter
spontaneously breaks the SU(2)s symmetry. In the fine-
tuned case EV = 0 (which is potentially realizable in
experiment) the CDW order spontaneously breaks the
Z2v symmetry. In the generic case EZ , EV 6= 0 the
FM and CDW order parameters do not break any sym-
metries of the Hamiltonian. The CAF order parameter
breaks U(1)s and U(1)sv, but preserves U(1)v. Bond or-
der breaks U(1)v and U(1)sv but preserves U(1)s. The
SVE order parameters break U(1)s and U(1)v but pre-
serve U(1)sv. All three U(1)s are spontaneously broken
in the B/CAF phase.

We emphasize that while the U(1)s symmetry is pro-
tected by the assumed vanishing of the spin-orbit cou-
pling in graphene (Eq. (3)), there is no such protection
for U(1)v or U(1)sv. As mentioned in the introduction,
since 3(K −K′) is a reciprocal lattice vector, any U(1)
related to the valley space will be broken down to a Z3

upon including six-Fermi and higher interactions. Thus,
there are no Goldstone modes associated with the spon-
taneous breaking of the U(1)v symmetry. However, a
spontaneous breaking of the U(1)s and/or the U(1)sv
symmetries will lead to a phase with a Goldstone mode.

III. RESULTS

There are six coupling constants in our Hamilto-
nian, EZ , EV , gz,H , gz,F , gxy,H , gxy,F . Since the full six-
dimensional phase diagram is impossible to visualize, we
will be forced to take two-dimensional cuts.

We will often draw a correspondence between MLG
and Bernal-stacked BLG [61, 62]. In BLG, in addition
to spin and valley, an orbital index n = 0, 1 also appears
[54]. For BLG states that have no orbital mixing, and are
orbitally symmetric, there is a one-to-one correspondence
with states in MLG. Specifially, the role of EV in MLG is
played by the perpendicular electric field D in BLG [53].

While RG arguments tell us that generic effective in-
teractions must have nonzero range, one does not know
precisely how the LL-mixing and the intergration of high-
energy states affects the Hartree and Fock parts of the
couplings in the ZLL manifold. For weak LL-mixing, a
natural assumption is that the sign of gµ,H , gµ,F are the
same, but the magnitudes could be different. The ma-
jority of the results we present in the main text assume
this to be true. For strong LL-mixing, it is conceivable
that the effective gµ,H and gµ,F have opposite signs. For
completeness we have analyzed this case as well, though
most of the details are relegated to the appendices.

In Section III A, we will present results EV = 0, re-
stricting the Hartree and Fock parts of the couplings
to have the same sign. This will allow us to examine
how the original Kharitonov phase diagram [31] changes
when we relax the USR assumption. We confirm the
existence of the B/CAF phase found earlier [49] for
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gxy,F /gxy,H > 1. This phase also has the order param-
eter SVEY (Eq. (31)). Thus, this phase breaks U(1)s,
U(1)v, and U(1)sv spontaneously. Another coexistence
phase occurs near the boundary between the FM and
CDW phases when gz,F /gz,H > 1. We call this the
SVE+ phase because the corresponding order parameter
(Eq. (31)) is nonzero in this phase. This phase breaks
U(1)s and U(1)v but preserves U(1)sv. The bilayer ana-
log of this phase was found earlier in Bernal-stacked BLG
[53], although at nonzero EV .

Next, in Section III B we will keep the restriction that
the Hartree and Fock parts of the couplings have the
same sign, but turn on EV . Already, for USR interac-
tions, one finds a phase with coexisting CDW and Kekulé
order [56], which we call the B/CO phase. Guided by
the intuition that new phases are most likely to appear
near the transition lines of the original USR model, we
will examine these carefully. When 0 > gxy,H > gxy,F ,
the B/CAF phase shrinks as EV increases (all other cou-
plings remaining constant), and vanishes for large enough
EV . For any EV > 0, both SVEX and SVEY order pa-
rameters are nonzero in the B/CAF phase. However, the
symmetries that are spontaneously broken do not change
in any of the phases at small EV .

Going to larger EV is even more interesting: in certain
cases, even if coexistence does not occur for EV = 0,
it can occur for intermediate EV , and disappear for
large EV . For example, for gz,F = 0.75gz,H , gxy,F =
0.75gxy,H , both the B/CAF and SVE+ phases are ab-
sent at EV = 0. However, both phases are present for a
range of intermediate EV . This is consistent with earlier
results for BLG [53], which also found coexistence phases
for intermediate values of the perpendicular electric field
D, which plays the same role in BLG as EV plays in
MLG.

From the point of view of experiment, the most in-
teresting phases is the B/CAF phase, which occurs for
0 > gxy,H > gxy,F . At any nonzero EV , the B/CAF
phase evolves into one with coexisting CAF, Kekulé, and
CDW order. An analogous phase breaking all three U(1)
symmetries was found earlier in BLG [53]. (Of course, the
U(1)v symmetry will be reduced to a Z3 upon the inclu-
sion of higher-Fermi interactions, and thus does not lead
to a Goldstone mode). Such a phase would be consistent
with observations of magnon transmission [33, 35, 36]
through the ν = 0 state, which implies some kind of
magnetic order, and the STM experiments [37–39] which
show Kekulé and CDW order.

Finally, in Section III C we will present some results
for the signs of gµ,H and gµ,F being different for either or
both of gz and gxy. As may be expected, the topology of
the phase diagram can change considerably in such cases.
However, a new type of coexistence phase appears, which
is not present when the signs of the H and F parts of
both couplings are identical. This phase, which we call
the FSVE phase, has coexisting FM and SVEY order,
without any other order being present at EV = 0. Such
a state breaks U(1)s and U(1)v while preserving U(1)sv.

As usual, many phases acquire nonzero CDW order when
EV > 0. A more detailed set of results for the H and F
parts of gxy/z being of opposite signs are presented in the
appendices.

A. Vanishing Valley Zeeman Coupling with
gµ.F /gµ,H > 0

Throughout this section we will assume that we are
“close” to the USR model in the sense that the Hartree
and Fock couplings of a given type have the same sign
(gµ,F /gµ,H > 0), and that there is perfect sublattice sym-
metry EV = 0. In order to enable comparisons with the
USR model, we show the Kharitonov phase diagram [31]
in Fig. 1. Here we choose EZ = 1.0 (in arbitrary units)
as a fixed parameter. All the lines between phases are
first-order transitions, except for transition between the
CAF and FM phases, which is second-order. Our con-
vention here and henceforth is that solid lines represent
first-order phase transitions while dashed lines represent
continuous phase transitions.

FM

CAF

BO

CDW

-1.5 -1.0 -0.5 0.0 0.5

-1.0

-0.5

0.0

0.5

FIG. 1. Parameters are EZ = 1.0, gz,F = gz,H = gz, gxy,F =
gxy,H = gxy, EV = 0.0,this is the Kharitonov’s Ultra short
range limit.Here as one can see their is no coexistence phase.

When one relaxes the USR assumption, it turns out
the inequalities gxy,F /gxy,H ≶ 1 and gz,F /gz,H ≶ 1 play
a crucial role in determining whether coexistence occurs
at EV = 0 (we will see later that nonzero EV overcomes
this limitation). Briefly, coexistence between Kekulé and
CAF order occurs only when gxy,F /gxy,H > 1, while co-
existence between CDW and FM order occurs only when
gz,F /gz,H > 1. This is illustrated in Figs. 2 and 3 for
specific values of other couplings, and turns out to be
generic as long as EV = 0.
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CAF

BO

1st order phase boundary of CAF & BO

BO instability line

CAF instability line

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4
-1.0

-0.5

0.0

0.5

1.0

1.5

FIG. 2. Instability lines for the BO and CAF phases as a
function of gxy,H and gz,F for EZ = 1.0, gz,H = 2.0, gxy,F =
−1.0, EV = 0.0. The BO phase is unstable above the black
line, while the CAF phase is unstable below the green line.
The red line is where the energies of the BO and CAF phases
cross. The vertical dashed line represents gxy,H = gxy,F . One
can see that coexistence between BO and CAF state only
occurs when 0 > gxy,H > gxy,F . The coexistence phase is
shaded blue.

FM

CDW

1st order phase boundary of FM & CDW

CDW instability line

0.5 1.0 1.5 2.0 2.5
-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

FIG. 3. Instability lines for the CDW and FM phases as a
function of gxy,F and gz,H for EZ = 1.0, EV = 0.0, gz,F =
−2.7. The FM phase is unstable below the red line, while
the CDW phase is unstable above the blue dotted line. The
dashed horizontal line represents gz,H = gz,F . The coexis-
tence between CDW and FM (the SVE+ phase, shaded green)
occurs only for 0 > gz,H > gz,F .

In what follows, we will fix the ratio of gµ,F to gµ,H ,
µ = xy, z, and plot the phase diagrams with the axes
being gxy,H and gz,H . This should merely be thought
of as taking a certain two-dimensional section of the full
space of coupling constants, and does not represent any
physical assumption about the proportionality between
gµ,F and gµ,H , say, as B varies.

Fig. 4 shows the phase diagram for the case gxy,F =
1.25gxy,H , gz,F = 1.25gz,H . As found earlier [49], there
is a region of coexistence between Kekulé and CAF order
near the first-order line of the USR model. This phase,
which we call B/CAF, also has SVEY order. In addition,
there is a region of coexistence between CDW and FM
order (the SVE+ phase) in the neighborhood of the phase

transition between the CDW and FM phases in the USR
case. The transitions bordering the coexistence regions
of the phase diagram are second-order, represented by
dashed lines. As in Fig. 1, EZ = 1.

FM

CAF

BO

CDW

-1.5 -1.0 -0.5 0.0 0.5
-1.5

-1.0

-0.5

0.0

0.5

FIG. 4. Phase diagram for EZ = 1.0, gz,F = 1.25gz,H , gxy,F =
1.25gxy,H , EV = 0.0. The ratios gµ,F /gµ,H > 1 for both types
of couplings. There are two different coexistence phases: The
B/CAF coexistence phase (shaded blue) was already found
previously [49], and also has SVEY order. The first-order
transition between the FM and CDW phases for USR inter-
actions has broadened into the SVE+ phase (shaded green)
with coexistence between CDW and FM order parameters,
so called because it has a spontaneous spin-valley entangled
order parameter.

Fig. 5 shows the phase diagram for the case
gz,F /gz,H < 1, gxy,F /gxy,H > 1. As mentioned above,
this satisfies the condition for coexistence between CAF
and BO order (the B/CAF phase), but fails to meet the
condition for the existence of the SVE phase between the
CDW and FM phases. The B/CAF phase with its atten-
dant SVEY order is still present, though reduced in ex-
tent. Similarly, Fig. 6 has gz,F /gz,H > 1, gxy,F /gxy,H <
1, allowing the SVE+ phase to exist but forbidding coex-
istence between BO and CAF order. Finally, Fig. 7 has
gz,F /gz,H < 1, gxy,F /gxy,H < 1, disallowing any coex-
istence. The reason for the difference in detail between
the Kharitonov phase diagram Fig. 1 and Fig. 7 is that
the boundaries between phases sometimes depend on the
Hartree coupling and sometimes on the Fock coupling, as
seen by the ground state energies in Eq. (29).
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FM

CAF

BO

CDW

-2.0 -1.5 -1.0 -0.5 0.0 0.5
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-0.5

0.0

0.5

1.0

FIG. 5. Phase diagram for EZ = 1.0, gz,F = 0.75gz,H , gxy,F =
1.25gxy,H , EV = 0.0. The ratios of couplings ensure
gxy,F /gxy,H > 1, but gz,F /gz,H < 1. The B/CAF coexis-
tence region (shaded blue) still occurs but there is no coex-
istence near the CDW/FM phase boundary, which remains
first-order.
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CAF

BO

CDW

-1.5 -1.0 -0.5 0.0 0.5 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

FIG. 6. Phase diagram for EZ = 1.0, gz,F = 1.25gz,H , gxy,F =
0.75gxy,H , EV = 0.0. Now the conditions are no longer met
for the B/CAF phase to occur. However, the SVE+ phase
(shaded green) does occur near the CDW/FM phase bound-
ary, which is now split into two second-order lines.
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BO

CDW

-1.5 -1.0 -0.5 0.0 0.5
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-0.5
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0.5

FIG. 7. Phase diagram for EZ = 1.0, gz,F = 0.75gz,H , gxy,F =
0.75gxy,H , EV = 0.0. There is no coexistence.

It is of experimental interest to ask how the system
evolves with increasing Zeeman coupling when all inter-
action parameters are fixed, and EV = 0. This corre-
sponds to applying a tilted field to the system [29], keep-
ing the perpendicular component of B constant. The
evolution of the order parameters depends on the val-
ues chosen for gz,H/F , gxy,H/F . Clearly, if the system is
in the FM phase already at EZ = 0, there will be no
further evolution with increasing EZ . Similarly, if the
system is in the CAF phase at EZ = 0, it can only evolve
into the FM with increasing EZ . Since these possibilities
have been thoroughly explored in the past literature, we
will ignore them in favor of more interesting possibilities.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
EZ

0.00

0.25

0.50

0.75

1.00

FM

CDW

SVE+

FIG. 8. Evolution of order parameters vs EZ for
gz,H = −1.2, gz,F = 1.25gz,H , gxy,H = −0.5, gxy,F =
1.25gxy,H , EV = 0.0. The ratios of the H and F couplings cor-
responds to Fig. 4. The system is in CDW phase at EZ = 0.
As EZ increases there is a second-order transition to a phase
where FM and CDW order coexist. This coexistence is me-
diated by the presence of the SVE+ order parameter, which
spontaneously breaks the U(1)s and U(1)v symmetries. For
large enough EZ the system goes into FM phase.

Let us first consider the case gz,F /gz,H >
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
EZ

0.00
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SVEY

FIG. 9. Evolution of order parameters vs EZ for
gz,H = −0.5, gz,F = 1.25gz,H , gxy,H = −1.0, gxy,F =
1.25gxy,H , EV = 0.0.The ratios of the H and F couplings cor-
responds to the phase diagram of Fig. 4. The system is in
BO phase at EZ = 0. As EZ increases the system undergoes
a second-order transition to the intermediate B/CAF phase,
where BO, CAF, and SVEY order coexist. As EZ increases
further, there is another second-order transition to the pure
CAF phase, and eventually a third second-order transition to
the FM phase at large EZ .

1, gxy,F /gxy,H > 1, which corresponds to the phase di-
agram of Fig. 4. Fig. 8 shows the evolution of order pa-
rameters with EZ when the system is in the CDW phase
at vanishing Zeeman coupling. In addition to the FM
and CDW order parameters, we also show the SVE+ or-
der parameter. As EZ increases, the system undergoes
a phase transition from the CDW phase into the SVE+
phase (coexisting FM, CDW, and SVE+ order), and then
into the FM phase. Alternatively, as shown in Fig. 9 the
system could start in the BO phase at EZ = 0. In this
case the system first goes into the B/CAF phase (which
also has SVEY order), then into the pure CAF phase,
and finally into the FM phase at large EZ .

Coming next to the case of gz,F /gz,H <
1, gxy,F /gxy,H > 1, which corresponds to the
phase diagram of Fig. 5, Fig. 10 shows the evolu-
tion of order parameters as a function of EZ for
gz,H = −0.2, gxy,H = −1.2. The system starts in the
BO phase at vanishing Zeeman coupling, undergoes
a second-order transition to the B/CAF coexistence
phase, undergoes yet another second-order transition to
the pure CAF phase, and finally goes into the FM phase
at large EZ .

Finally, we consider the case gz,F /gz,H <
1, gxy,F /gxy,H > 1, which corresponds to the
phase diagram of Fig. 6. Fig. 11 shows the evolu-
tion of the order parameter as a function of EZ for
gz,H = −1.5, gxy,H = −0.5. The system starts in the
CDW phase at vanishing EZ , makes a second-order
phase transition to the SVE+ phase at intermediate
EZ , and finally goes into the FM phase via another
second-order phase transition at large EZ .

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
EZ

0.00

0.25
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1.00
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BO

SVEY

FIG. 10. Evolution of order parameters vs EZ for
gz,H = −0.2, gz,F = 0.75gz,H , gxy,H = −1.2, gxy,F =
1.25gxy,H , EV = 0.0. The ratios of the H and F couplings cor-
respond to the phase diagram of Fig. 5. The system is in the
BO phase at EZ = 0. As EZ increases there is a second-order
transition to the B/CAF phase (with BO, CAF, FM, and
SVEY order). For larger EZ , there is another second-order
transition to the pure CAF phase. Finally, the system goes
through another second-order transition into the FM phase
at very large EZ .

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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FIG. 11. Evolution of order parameters vs EZ for
gz,H = −1.5, gz,F = 1.25gz,H , gxy,H = −0.5, gxy,F =
0.75gxy,H , EV = 0.0. The ratios of the H and F couplings
correspond to the phase diagram of Fig. 6. The system is
in the CDW phase at EZ = 0. As EZ increases, the system
enters the SVE+ phase (coexisting CDW, FM, and SVE+
order) via a second-order transition. For larger EZ there is
another second-order transition to the FM phase.

B. Nonvanishing Valley Zeeman Coupling and
gµ,F /gµ,H > 0

In this subsection we consider how the phase diagrams
change when EV > 0. We will still stay “close” to the
USR model, assuming gµ,F /gµ,H > 0. The most obvi-
ous change is already present in the USR limit: The BO
phase is replaced by the B/CO phase, in which both bond
order and CDW order coexist. This is analogous to the
replacement of the antiferromagnetic phase at EZ = 0 by
the CAF phase at arbitrarily small EZ . Concurrently,
the first-order phase transition between the CDW and
BO phases in the USR phase diagram Fig. 1 is converted
into a second-order transition. These are all previously
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known results [53, 56].

The introduction of small EV does not modify the
SVE+ phase (whenever it occurs). While EV > 0 does
not change the symmetries broken in the B/CAF phase,
it does change the phase quantitatively. Let us first look
at Fig. 12, which shows the order parameters at EV = 0
along a horizontal cut across Fig. 4 at gz,H = −0.45.
Recall that the B/CAF phase, at EV = 0, has BO,
CAF, FM, and SVEY order. The SVEY order parame-
ter changes discontinuously at the first-order phase tran-
sition with the SVE+ phase. All these features change
when one adds a tiny EV . In Fig. 13 we show the evo-
lution of order parameters along the same horizontal cut
(gzH = −0.45) when EV = 0.01. It can be seen that
the SVE+ phase does not change character qualitatively.
However, the B/CAF phase now changes significantly.
Firstly, it acquires a nonzero CDW order parameter, be-
cause the B/CO phase also has CDW order. More im-
portantly, it now has both SVEX and SVEY order, and
undergoes a second-order phase transition to the SVE+
phase. Thus, even a very tiny EV can affect certain
phases and phase transitions significantly.

−0.55 −0.50 −0.45 −0.40 −0.35 −0.30
gxy,H

0.00
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SVE−

FIG. 12. Evolution of order parameters at EV = 0 as a
function of gxy,H for gz,H = −0.45, gz,F = 1.25gz,H , gxy,F =
1.25gxy,H . The ratios of the H and F couplings correspond
to the phase diagram of Fig. 4. It can be seen that the sys-
tem undergoes a first-order transition from the B/CAF to the
F/CDW phase.
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FIG. 13. Evolution of order parameters as a function of gxy,H
for gz,H = −0.45, gz,F = 1.25gz,H , gxy,F = 1.25gxy,H for van-
ishingly small EV = 0.01. The ratios of the H and F couplings
correspond to the phase diagram of Fig. 4. The first-order
transition between the B/CAF and SVE+ phases has now
become second-order.

Next we turn a moderate value of EV = 0.25. Fig. 14
shows the phase diagram for the ratio of Hartree and Fock
parts of the couplings being gz,F /gz,H = gxy,F /gxy,H =
1.25, the same as in Fig. 4. The topology of the phase
diagram is identical to that of Fig. 4, with the solitary
change that the first-order transition between the B/CAF
and SVE+ phases has been replaced by a second-order
transition. The B/CAF region has shrinks, while the
SVE+ region expands.
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B/CO
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FIG. 14. For this figure the coupling ratios of gxy and gz
are same as in Fig. 4 and we have considered a small valley
Zeeman EV = 0.25.By comparing this figure with Fig. 4 one
can see that for this choice of coupling ratios, the presence of
finite EV doesn’t qualitatively change the nature of the phase
diagram.
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FIG. 15. For this figure the coupling ratios of gxy and gz are
same as in Fig. 5 and we have considered a valley Zeeman field
EV = 0.5.By comparing this figure with Fig. 5 one can see
that for this choice of coupling ratios, the presence of finite
EV reduce the coexistence phase area of B/CAF. And here
CDW and CAF phases, CDW and FM phases are separated
by first order lines.

FM

CAF

B/CO

CDW

-1.5 -1.0 -0.5 0.0 0.5
-1.0

-0.5

0.0

0.5

FIG. 16. Phase diagram at EV = 0.5 for the coupling ratios
gz,F /gz,H = 1.25, gxy,F /gxy,H = 0.75. Comparing this with
the phase diagram for the same ratios at EV = 0 (Fig. 6) one
can see that for this choice of coupling ratios, EV has sup-
pressed the B/CAF phase completely and shrunk the SVE+
phase.

Fig. 15 shows the phase diagram at EV = 0.5 when the
ratios are gz,F = 0.75gz,H ; gxy,F = 1.25gxy,H . As in the
case of the previous figure, some of the phase boundaries
move, but the topology remains the same as at EV = 0.
The same is true for gz,F /gz,H = 1.25; gxy,F /gxy,H =
0.75, shown in Fig. 16 and gµ,F /gµ,H = 0.75 shown in
Fig. 17.
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FIG. 17. Phase diagram at EV = 0.5 for the coupling ratios
gµ,F /gµ,H = 0.75. There is no qualitative change as compared
to the corresponding phase diagram at EV = 0 (Fig. 7)

More interesting phenomena occur if one increases EV
to an even larger value. Recall that for gz,F /gz,H =
gxy,F /gxy,H = 0.75, there is no coexistence anywhere in
the phase diagram (Fig. 7) at EV = 0, or at EV = 0.5
(Fig. 17). The phase diagram for this ratio of the H and F
parts of the couplings, at EV = 1.4, is shown in Fig. 18.
It can be seen that a sufficiently large EV can induce
coexistence, even when it does not occur at EV = 0. A
similar phenomenon is seen in previous work in BLG [53].
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FIG. 18. Phase diagram for EZ = 1, and EV = 1.4.
The ratios of the Hartree and Fock couplings are gz,F =
0.75gz,H ; gxy,F = 0.75gxy,H as in Fig. 7 and Fig. 17. In con-
trast to those cases where there is no coexistence anywhere
in the phase diagram, we do obtain the coexistence phases
B/CAF (blue shaded region) and SVE+ (green shaded re-
gion).
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CAF

B/CO

1st order phase boundary of CAF & B/CO

B/CO instability line

CAF instability line
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FIG. 19. The coupling constants are fixed such that at EV =
0 there is no B/CAF phase. We choose EZ = 1, gz,H =
3.4, gxy,H = −2.5, gxy,F = −2.1. Varying the other two
parameters, gz,F , EV , we see that there is an intermediate
regime in both in which the B/CAF phase does appear.

Fig. 19 shows a slightly different way of looking at the
occurrence of the B/CAF phase as EV varies. We have
fixed the Zeeman coupling at EZ = 1, and the xy inter-
actions such that gxy,F /gxy,H < 1, implying that coex-
istence will not occur for EV = 0. The coupling gz,H is
also fixed. We show the range of parameters in EV , gz,F
where the B/CAF phase occurs. As can be seen, there is
an intermediate range of EV and gz,F where the B/CAF
phase appears.

FM

CDW

1st order phase boundary of FM & CDW

CDW instability line

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

FIG. 20. The parameters are EZ = 1.0, gz,F = 0.8, gxy,F =
−0.6. One can see from this figure also that only when
(|gz,H | > |gz,F |) (for both gz,H , gz,F > 0), their can be a
coexistence phase of (FM+CDW) for some range of EV . The
vertical dashed line denotes gz,H = gz,F .

Fig. 20 shows the fate of the SVE+ phase at large EV .
Once again, we choose gz,F /gz,H < 1, which implies that
the SVE+ phase does not occur for EV = 0. We see that
for large enough EV , the SVE+ phase is stabilized.

It is also interesting to consider the evolution of the
order parameters as EZ increases in Fig. 18. If one starts
in the B/CO phase, the expected sequence of phases as
EZ increases for small or vanishing EV , provided the
B/CAF phase occurs, is B/CO → B/CAF → CAF →

FM. However, for EZ = 1.4 the sequence is different:
BO→ B/CAF→ SVE+→ FM. This is shown in Fig. 21.

1.10 1.15 1.20 1.25 1.30 1.35 1.40
EZ

0.00

0.25

0.50

0.75

1.00

FM

CAF

BO

CDW

SVE+

SVE−

FIG. 21. Evolution of order parameters vs EZ for gz,H =
0.9, gz,F = 0.75gz,H , gxy,H = −0.8, gxy,F = 0.75gxy,H , EV =
1.4. The ratios of the H and F couplings correspond to the
phase diagram of Fig. 18. The system is in the B/CO phase
at EZ = 0. As EZ increases there is a second-order transition
to the B/CAF phase (with BO, CDW, CAF, FM, SVEX and
SVEY order). For larger EZ , there is another second-order
transition to the SVE+ phase(with FM and CDW order).
The system finally goes into the FM phase at very large EZ .

C. Hartree and Fock parts of gz/xy having opposite
signs

It is conceivable that for strong LL-mixing, the renor-
malizations of the interactions could be large enough to
make the signs of the Hartree and Fock parts of gz/xy
opposite. For completeness we present some phase dia-
grams for this type of situation in this subsection.

First we consider the case gz,F /gz,H = −1, but
gxy,F /gxy,H > 1. The most obvious change is in the
topology of the phase diagram. The CAF phase is com-
pletely surrounded by other phases. In addition, there
are two coexistence phases. The blue shaded region is
the B/CAF phase familiar from the previous subsections.
It has BO, CAF, and SVEY order. The brown shaded
region represents a new type of coexistence phase which
does not occur when gµ,F /gµ,H > 0. This phase has
FM order coexisting with SVEX/SVEY order (all the
ground states generated from SVEX by U(1)s ⊗ U(1)v
are degenerate), with no other order parameters being
present. This state spontaneously breaks the U(1)s and
U(1)v symmetries, but preserves U(1)sv. Fig. 23 shows
the order parameters along a horizontal cut in the phase
diagram of Fig. 22 at gz,H = 1. We will call this the
FSVE phase.
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FIG. 22. Phase diagram for EZ = 1.0, EV = 0.0, gz,F = −1.0∗
gz,H , gxy,F = 1.25 ∗ gxy,H . The CAF now occurs in a finite
region of the parameter space. There are two coexistence
phases. The blue shaded region is the B/CAF phase with BO,
CAF, and SVEY order. The region shaded brown shows a new
type of coexistence between FM and SVEX/SVEY order.
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FIG. 23. Nonzero order parameters along a horizontal cut
of the phase diagram of Fig. 22 at gz,H = 0.8. All other
coupling constants are the same as in Fig. 22. One starts in
the BO phase at large negative gxy,H . There is a second-order
transition into the B/CAF phase with BO, CAF, and SVEY
order. Next, there is another second-order transition into the
FSVE phase showing the coexistence of FM and SVEX/SVEY
order, the two being degenerate. We have chosen to plot SVE-
= 〈|τxσx−τyσy|〉/2, which is continuous across the transition.
Finally, for larger gxy,H the system goes into the FM phase.

When EV > 0, the FSVE phase acquires both SVEX
and SVEY order in addition to FM and CDW order
(which is natural since EV > 0). Thus, the FSVE phase
remains different from the B/CAF phase (because there
is no CAF order in the FSVE phase) and the SVE+
phase, which requires a precise equality of the SVEX
and SVEY order parameters. More details are in the
appendices.

As a second example, we show the case when
gz,F /gz,H = 1.25 > 0 and gxy,F /gxy,H = −1 < 0, which
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CDW
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FIG. 24. Phase diagram for the ratios gz,F /gz,H = 1.25 > 0
and gxy,F /gxy,H = −1 < 0. The other couplings are EZ =
1, EV = 0. While the topology has changed, the SVE+ phase
that interpolates between the CDW and FM phases occurs
here as well.

is shown in Fig.24. As expected for negative ratios be-
tween the H and F parts of the coupling, the phases are
drastically rearranged in the phase diagram. However,
the nature of the phases remains the same as in Sec-
tion III A. There is no B/CAF phase, but the SVE+
phase does occur, interpolating between the CDW and
FM phases.

A more complete set of figures for other cases when
one or both of the H and F coupling ratios are negative
appears in the appendices.

IV. CAVEATS, CONCLUSIONS, AND OPEN
QUESTIONS

Monolayer graphene at charge neutrality in the quan-
tum Hall regime is an example of quantum Hall fer-
romagnetism [9–12]. While earlier theoretical [31] and
experimental work [29, 33] seemed to suggest a simple
canted antiferromagnetic phase at perpendicular mag-
netic field, recent scanning tunneling observations [37–
39] clearly show Kekulé and even charge density wave
order.

A major assumption underlying most earlier theoreti-
cal work [18, 20, 21, 31] is that the residual interactions
(other than Coulomb), being descended from lattice-scale
couplings, should be ultra-short-range on the scale of the
magnetic length `. Recently, based on renormalization
group ideas, it was argued [49] that the effective low-
energy interactions will naturally acquire the length scale
` even if they were ultra-short-range microscopically. It
should be noted that this argument does not depend on
whether one considers the N = 0 manifold (the ZLLs) or
some other manifold of Landau levels of graphene. For
such generic interactions, coexistence between CAF and
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Kekulé order in the physically relevant region of the cou-
pling constant space was shown to occur [49] in a robust
regime of couplings.

Our goal in this paper was to present a more complete
phase diagram of MLG at charge neutrality (and more
generally, in any half-filled manifold of Landau levels).
As in previous theoretical work, we assume a clean sys-
tem with four-Fermi interactions only. Momentum con-
servation constrains the residual four-Fermi interactions
to have a U(1) valley symmetry (reduced to a Z3 upon
including higher-Fermi interactions, which we ignore).
This still leaves two coupling functions vz(q), vxy(q) to
be determined. In the Hartree-Fock approximation, re-
stricting to ground states respecting translation invari-
ance up to an intervalley coherence, the energetics can
be captured by a Hartree coupling and a Fock coupling
for each of the two types. After the inclusion of the Zee-
man and valley Zeeman couplings EZ , EV , one has six
coupling constants to deal with.

Our main physically relevant finding is that coexis-
tence between CAF and B/CO order (the bond order
always coexists with CDW order when EV > 0) occurs
in a large region of the coupling constant space when
gxy,H , gxy,F < 0. Depending on the particular values
of the interaction couplings, the valley Zeeman coupling
may either enhance or suppress coexistence. In fact, in a
certain range of couplings, a re-entrant transition from a
pure B/CO through a coexistence phase back to a pure
B/CO is possible upon increasing EV . The fact that
coexistence is generic is consistent with the ubiquity of
B/CO order seen in STM observations [37–39].

We found two other coexistence phases in regions of
the phase diagram which may not be directly relevant
to graphene. The first, called the SVE+ phase, interpo-
lates between the CDW and FM phases, and also has a
spin-valley entangled SVE+ order parameter. The corre-
sponding phase in BLG was found in previous work [53].
The second one, called the FSVE phase, occurs when
gz,F is allowed to be of the opposite sign as gz,H , which
could conceivably occur for strong Landau-level mixing.
For generic EV > 0, the FSVE phase has FM, CDW,
SVEX and SVEY order, but no CAF or bond order.

Our results are complete given our assumptions, but
they come with caveats. We have ignored sponta-
neous translation symmetry breaking beyond that re-
quired by intervalley coherence, static disorder, and
quantum/thermal fluctuations. Let us consider each in
turn. Intervalley coherence is allowed in our approach,
and is a signal of minimal translation symmetry breaking
because it implies a new reciprocal lattice vector K−K′.
In combination with the reduction of the Uv(1) symme-
try to Z3 upon including higher-Fermi interactions, this
leads to the Kekulé order, which does break lattice trans-
lation symmetry with a three-fold enlargement of the unit
cell. Thus, this type of translation symmetry breaking in
implicitly included in our approach. Since the STM ex-
periments see only this minimal type of translation sym-
metry breaking, we believe our assumption of translation

invariance up to an intervalley coherence is not a serious
limitation. Next, static disorder is present in all samples.
When B/CO order is present, it is expected to be pinned
by the local value of disorder. In fact, since the B/CO
order couples to static disorder while the CAF order does
not, one expects the region of the coupling constant space
where B/CO order is present to increase as disorder in-
creases. Otherwise, static disorder is expected to have a
quantitative effect on the transport gaps, but leave the
nature of the state unaffected.

Now we turn to quantum fluctuations. The Hartree-
Fock approximation has an excellent track record in de-
scribing quantum Hall ferromagnets at zero temperature
[9–12]. Near a second-order phase boundary, HF will
always predict a mean-field transition. Quantum fluc-
tuations will shift the phase boundary, and correct the
critical behavior to the appropriate universality class; for
example, the transition from the B/CO to the coexistence
phase with the CAF order should have the universality
class of the three-dimensional XY model. If a phase oc-
curs in a very narrow sliver of coupling constant space,
one might envisage quantum fluctuations making it dis-
appear. However, since all the phases we find are robust,
occurring over substantial ranges of coupling constants,
we expect quantum fluctuations to alter the phase bound-
aries in detail, but not affect the phase diagram qual-
itatively. An important potential exception is the first-
order transition seen in many parameter regimes between
the FM and CDW phases. When EZ , EV > 0, neither
of these phases breaks any symmetry of the Hamilto-
nian. One cannot rule out a first-order transition with-
out a change in symmetry between the two phases: An
example is the liquid-gas transition. However, a phase
transition between the FM and CDW phases is not nec-
essary, since both have the same symmetry. Quantum
fluctuations may destroy the first-order line in favor of a
smooth crossover between the CDW and FM. Consider
parameter regimes when the SVE+ phase intervenes be-
tween the CDW and FM mean-field phases. Since the
SVE+ phase breaks U(1)s and U(1)v spontaneously, a
second-order phase transition is allowed between it and
the FM or CDW regions. Quantum fluctuations may
change the topology of the phase diagram to make the
SVE+ phase an island in the middle of the crossover be-
tween the CDW-dominated and FM-dominated regions.

Finally, we turn to T > 0 and thermal fluctuations.
Recall that spontaneous intervalley coherence is sub-
ject to a Z3 symmetry, and hence does not result in a
Goldstone mode. Long-range B/CO order is expected
to be survive to a critical temperature Tc > 0. The
Uspin(1) symmetry is an almost exact symmetry, being
broken only by the tiny spin-orbit coupling (≈ 10µeV )
in graphene [57–60]. Thus, setting spin-orbit coupling
to zero, any spontaneous breaking of the U(1)s symme-
try leads to a gapless Goldstone mode at T = 0. For
T > 0 the system is in the universality class of the
two-dimensional XY -model. Long-range order is absent
at any nonzero T , and there should be a Berezinskii-
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Kosterlitz-Thouless (BKT) transition [63, 64] at TKT ,
below which there is power-law order. TKT should van-
ish as the CAF order parameter vanishes, because the
stiffness vanishes as well. Thus, there is an intermediate
temperature regime in the B/CAF phase which is above
TKT but below the Tc of the Z3 bond order.

Let us turn to experimental signatures of coexistence.
STM experiments can directly measure the B/CO or-
der; thus the key question is how to detect CAF order.
Any order parameter that spontaneously breaks U(1)s
will lead to a gapless Goldstone mode. Thus, the CAF
phase and all three coexistence phases we have found
would support a Goldstone mode at T = 0. Magnon
transmission experiments [33, 35, 36] reveal the presence
of magnetic excitations, but because the magnons are
created in ferromagnetic regions with a gap of EZ , such
experiments are unable to reveal whether the magnetic
excitations at ν = 0 are gapless. In Bernal-stacked bi-
layer graphene, where a CAF state is also expected to
be present, a very recent experiment has confirmed the
presence of the gapless Goldstone mode [65]. If such an
experiment can be carried out for MLG it would be direct
confirmation of the spontaneous breaking of spin-rotation
symmetry U(1)s. More broadly, in the context of trans-
port, a measurement of the bulk thermal conductivity
below TKT should reveal the Goldstone mode. Addition-
ally, the BKT transition itself should have a signature in
Rxx [66].

A more indirect way to probe the CAF order param-
eter is to examine the detailed structure of spin/valley
skyrmions, which can be induced by external charges. A
thorough analysis of skyrmions in the ultra-short-range
model of charge-neutral graphene was carried out very
recently [56]. Using this framework, an analysis of the
B/CO texture near a charge defect shows [38] that it is
consistent with theory, assuming that the true ground
state is pure B/CO. A phase with coexistence between
B/CO and CAF order will have skyrmions that differ in
detail from those of the pure B/CO phase.

There are two broad open questions. Firstly, given
a microscopic model at some intermediate energy scale
much larger than ~ωc, how does one reliably deduce the
effective coupling functions in the manifold of the n = 0
Landau levels? Kharitonov [31], following earlier RG
treatments [67, 68], carried out just such a procedure,
under the assumption that the couplings (other than
Coulomb) remained ultra-short-range under RG, imply-
ing a finite number of couplings to renormalize. Based
on a general fermionic RG procedure [69] which includes
all low-energy interactions, there has been quite a bit of
previous work attempting to integrate out higher Lan-
dau levels perturbatively [44–48]. While these works
restricted themselves to the Coulomb interaction, it
should be straightforward to extend them to include all
symmetry-allowed interactions.

The second broad question is complementary to the
first. Given an experimental sample, is there a com-
plete set of measurements that could determine the cou-

plings gz,H , gz,F , gxy,H , gxy,F ? Given that EZ is deter-
mined by the total field, and EV can be deduced from
zero-magnetic-field gap measurements at charge neutral-
ity, this would fully determine the effective theory at the
mean-field level. One way to approach this is via a de-
tailed investigation of skyrmions [56]. As long as the size
of the skyrmions is much larger than the magnetic length,
a nonlinear sigma model approach is capable of captur-
ing their structure and energetics. The parameters that
enter the nonlinear sigma model are exactly those that
enter the mean-field theory, with the exception of the
stiffness, which is determined by the dominant Coulomb
interaction.

Last, but not least, let us briefly consider fractionally
filled states in the n = 0 manifold of Landau levels in
graphene. For the case of SU(4) Coulomb interactions
plus ultra short range residual interactions, it is possible
to construct variational states with integer and/or frac-
tional fillings in the different flavors and compute their
energies [70, 71]. Determining whether this construction
can be extended to generic residual interactions of arbi-
trary range is an important open question.

We look forward to addressing these and other ques-
tions in the near future.
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Appendix A: Different Phases and Hessian

For charge-neutral graphene, assuming that interac-
tions are ultra-short-range (USR), there are four phases,
namely, the ferromagnet (FM), the canted antiferromag-
net (CAF), the bond-ordered phase (BO), and the charge
density wave (CDW) phase. We call these phases “sim-
ple”, because they can all be described by a single non-
trivial angle which is known analytically in terms of the
couplings. As shown in the main text, when one removes
the USR restriction on the interactions, other coexistence
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phases become possible. Among them is a spin-valley en-
tangled phase SVE+, which can also be described by a
single angle, and is also “simple”.

A primary tool in our investigation of the phase dia-
gram is a study of the stability of a given ground state.
Recall that each candidate state is described by filling
in two linear combinations of the four spin-valley degen-
erate states at each guiding center. We reproduce the
equations from the main text here for convenience, [50–
52, 55]

|f1〉 = cos
α1

2
|n〉 ⊗ |s〉+ eiβ1 sin

α1

2
| − n〉 ⊗ | − s〉 (A1)

|f2〉 = cos
α2

2
|n〉 ⊗ | − s〉+ eiβ2 sin

α2

2
| − n〉 ⊗ |s〉 (A2)

where n = sin θp cosφpêx + sin θp sinφpêy + cos θpêz, and
s = sin θs cosφsêx+sin θs sinφsêy+cos θsêz are unit vec-
tors indicating the directions of the state on the valley
and spin Bloch spheres, respectively. The spinors |n〉 and
|s〉 are defined in the standard way

|n〉 =

(
cos

θp
2

eiφp sin
θp
2

)
; |s〉 =

(
cos θs2

eiφs sin θs
2

)
(A3)

As shown in the main text, the U(1)s symmetry allows
us to set φs = 0, and the U(1)v symmetry allows us to set
φp = 0. The SU(2)s symmetry of the interactions forces
the HF energy to depend only on β1+β2. The energy de-
pends on β1+β2 only via cos(β1+β2), which appears lin-
early in the energy. Therefore, we can restrict considera-
tion to the two discrete possibilities β1 + β2 = 0, π mod
2π. The HF energy of a given state thus depends only
on the four continuously varying angles α1, α2, θp, θs.

We now indicate how to determine the values of the
four angles for the “simple” states shown in Section II B.
We begin by examining the expressions for the order pa-
rameters as functions of the four angles:

FM =
〈σz〉

2
=

(cos[α1]− cos[α2]) cos[θs]

2
,

CAF =
〈τzσx〉

2
=

1

2

[
cos[θs]

(
cos[β1] sin[α1]

+ cos[β2] sin[α2]
)

sin[θp]

]
,

BO =
〈τx〉

2
=

(cos[α1] + cos[α2]) sin[θp]

2
,

CDW =
〈τz〉

2
=

(cos[α1] + cos[α2]) cos[θp]

2
(A4)

First we focus on the CAF phase. In this phase the BO
and CDW order parameters should vanish identically, im-
plying that α2 = π − α1. Examining the FM and CAF
order-parameters, we see that we can choose θs = 0 and
θp = π/2 because cos θs and cos θp appear as a overall
normalization factors which can be set to one. After im-
posing these constraints on the angles, the HF energy

will depend only upon the angles α1, β1, β2, and can be
expressed as

EHF =
1

4

(
− 8EZ cos(α1)

+ 2 sin2(α1)(gxy,F − gz,F ) cos(β1 + β2)

− cos(2α1)(3gxy,F + gz,F )

− 5gxy,F − 3gz,F

)
. (A5)

The CAF phase occurs for gxy,F < 0, gz,F > 0.
This restricts cos(β1 + β2) = 1, allowing us to choose
β1 = β2 = π. The CAF and FM order-parameters are
FM = cos[α1] , CAF = sin[α1]. Here α1 is the single
non-trivial angle which varies through the CAF phase.

It has the functional dependence α1 = cos−1
[
−EZ

2gxy,F

]
,

which we found by minimizing Eq. (A5). Clearly when
EZ > 2|gxy,F |, the angle α1 will be fixed to zero and this
corresponds to the FM phase. The parameterization of
the FM phase is subsumed in the above.

Now we turn our attention to the B/CO phase which
generally occurs for EV > 0. Since the CDW and
BO phases are restricted versions of the B/CO phase,
their parameterizations are subsumed in that of the
B/CO phase. In the B/CO phase the FM and CAF
order-parameters should vanish identically, allowing us to
choose α1 = α2 = 0. The B/CO phase is a singlet, which
means that the direction of s can be chosen arbitrarily,
allowing us to fix θs = 0. With this choice of angles
the BO and CDW order-parameters are BO = sin[θp],
CDW = cos[θp]. Thus, in this phase the angle θp is the
non-trivial angle. To find its functional dependence, we
examine the HF energy with the constraints on angles
α1 = α2 = θs = 0, which is

EHF =− 2EV cos(θp) +
1

2
gV cos(2θp)

− gxy,F
2

+ gxy,H −
gz,F

2
+ gz,H , (A6)

where gV = 2gz,H − gz,F − 2gxy,H + gxy,F . Minimiz-
ing Eq. (A6) leads to the functional dependence θp =

cos−1
[
EV

gV

]
for the B/CO phase. For EV > gV , the an-

gle θp will be fixed to zero, which corresponds to the pure
CDW phase. For EV = 0, the angle θp = π/2, which cor-
responds to the BO phase.

Having described how to fix the angles for the simple
states, we now turn to the instabilities of these states.

Any HF state must be at least a local extremum. Thus,
all the first derivatives of the energy EHF with respect
to α1, α2, θp, θs must vanish. To look for instabilities we
need to compute the second derivatives of EHF with re-
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spect to the four angles (the Hessian matrix).

E(α1, α2, θp, θs) =


∂2EHF

∂2α1

∂2EHF

∂α1∂α2

∂2EHF

∂α1∂θp
∂2EHF

∂α1∂θs
∂2EHF

∂α2∂α1

∂2EHF

∂2α2

∂2EHF

∂α2∂θp
∂2EHF

∂α2∂θs
∂2EHF

∂θp∂α1

∂2EHF

∂θp∂α2

∂2EHF

∂2θp
∂2EHF

∂θp∂θs
∂2EHF

∂θs∂α1

∂2EHF

∂θs∂α2

∂2EHF

∂θs∂θp
∂2EHF

∂2θs

 .

(A7)

The eigenvalues of the Hessian determine the stability
of the given state. An eigenvalue crossing zero signals an
instability of the given state. For “simple” states, one
can analytically obtain the Hessian matrix and its eigen-
values. We will use the Hessian eigenvalues of “simple”
states to map out the gross features of the phase dia-
gram. Finer details of the phase diagrams are obtained
by self-consistent iterative HF.

In the following sections we will present explicit ex-
pressions for the Hessian and its eigenvalues and atten-
dant instabilities in the CAF (Appendix B), the B/CO
(Appendix C), the FM (Appendix D), the CDW (Ap-
pendix E), and the SVE (Appendix F) phases. In Ap-
pendix G we present phase diagrams when the Hartree
and Fock parts of either/both of the couplings have oppo-
site signs, which may be relevant for very strong Landau-

level mixing.

Appendix B: CAF phase

The CAF phase occurs only for gxy,F < 0 and EZ <
2|gxy,F |. It is described by the following values of the
angles

α1 = cos−1
[ −EZ

2gxy,F

]
= π − α2 (B1)

θp =
π

2
, θs = 0 (B2)

β1 =β2 = π (B3)

The energy of the CAF phase is

ECAF =
E2
Z

2gxy,F
− gz,F . (B4)

The Hessian matrix for the CAF state has the following
block diagonal form:

ECAF =

(
A3×3 03×1

01×3 − E2
Z

gxy,F

)
4×4

, (B5)

where

A =
1
4

(
E2

Z(gxy,F−gxy,H)

g2xy,F
− 6gxy,F + 4gxy,H + 2gz,F

)
1
2 (gxy,F + 2gxy,H + gz,F )− E2

Z(gxy,F+gxy,H)

4g2xy,F
−EV

√
1− E2

Z

4g2xy,F

1
2 (gxy,F + 2gxy,H + gz,F )− E2

Z(gxy,F+gxy,H)

4g2xy,F

1
4

(
E2

Z(gxy,F−gxy,H)

g2xy,F
− 6gxy,F + 4gxy,H + 2gz,F

)
−EV

√
1− E2

Z

4g2xy,F

−EV
√

1− E2
Z

4g2xy,F
−EV

√
1− E2

Z

4g2xy,F

(E2
Z−4g

2
xy,F )(gxy,F−gz,F )

2g2xy,F

 .

(B6)

Thus we find the instability equations of the CAF phase are

gxy,F = −EZ
2

(B7a)

EV =

√
gxy,F − gz,F

√
E2

Zgxy,H

2 + g3xy,F − g2xy,F (2gxy,H + gz,F )

gxy,F
. (B7b)

The first instability corresponds to the second-order line
between the FM and CAF phases, while the second cor-
responds to the instability in the B/CAF phase.

Appendix C: BO phase

The angles β1 and β2 never appear in the expression
for the HF energy of the BO state. Thus, β1 and β2 are
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undetermined at this point. The other angles are

α1 =α2 = θs = 0 (C1)

θp = cos−1
[
EV
gV

]
, (C2)

with

gV = 2gz,H − gz,F − 2gxy,H + gxy,F . (C3)

The energy in the BO phase is

EBO = −E
2
V

gV
− gxy,F + 2gxy,H . (C4)

The Hessian matrix and its eigenvalues do depend on
β1 + β2, with the eigenvalues depending on cos[2(β1 +
β2)]. The most severe constraint on the region of stability
occurs when cos[2(β1 + β2)] = 1. Below, we choose β1 =
β2 = 0, and obtain the form of the Hessian

EBO =

(
A2×2

2 02×2
02×2 B2×2

)
4×4

(C5)

where

A =

 E2
V (gz,F−gxy,F )

(gxy,F−2gxy,H−gz,F+2gz,H)2 + 2EZ + gxy,F − 4gxy,H − gz,F (gxy,F − gz,F )
(

1− E2
V

(gxy,F−2gxy,H−gz,F+2gz,H)2

)
(gxy,F − gz,F )

(
1− E2

V

(gxy,F−2gxy,H−gz,F+2gz,H)2

)
E2

V (gz,F−gxy,F )
(gxy,F−2gxy,H−gz,F+2gz,H)2 − 2EZ + gxy,F − 4gxy,H − gz,F

 ,

(C6)
and

B =

(
− 2E2

V

gxy,F−2gxy,H−gz,F+2gz,H
+ 2gxy,F − 4gxy,H − 2gz,F + 4gz,H 0

0 0

)
. (C7)

The instability lines in the BO phase are

gz,H =
1

2
(EV − gxy,F + 2gxy,H + gz,F ) (C8a)

EV =

√
(E2

Z − 2gxy,H(−gxy,F + 2gxy,H + gz,F )) (gxy,F − 2gxy,H − gz,F + 2gz,H)2

2gxy,H(gxy,F − gz,F )
. (C8b)

These correspond to the instability of the CDW phase
and the instability of the B/CAF phase, respectively.

Appendix D: FM phase

The FM phase is described by the angles

α1 = 0, α2 = π (D1a)

θp =
π

2
, θs = 0 (D1b)

β1 =β2 = π (D1c)

The ground state energy of the FM phase is

EFM = −2(EZ + gxy,F )− gz,F . (D2)

The form of the hessian matrix of the FM phase is

EFM =

(
A2×2

2 02×2
02×2 B2×2

)
4×4

, (D3)

where

A =

(
2EZ + 3gxy,F + gz,F gz,F − gxy,F

gz,F − gxy,F 2EZ + 3gxy,F + gz,F

)
,

(D4)

and

B =

(
0 0
0 2EZ

)
. (D5)

The instability lines in the FM phase are

gxy,F =− EZ
2

(D6a)

gz,F =− EZ − gxy,F . (D6b)

The first is the second-order line between the FM and
CAF phases, while the second is the instability towards
the CDW phase. Note that this is not the actual position
of the dominant instability, which should depend on EV
as well. The reason is that EV does not appear in the
Hessian matrix for the FM phase. Note that one eigen-
value is always zero, which means one direction in angle
space is flat. While we believe that some higher-order
derivative of the ground state energy must reveal the in-
stability towards the SVE+ phase, we have not pursued
this issue because we can find the instability easily from
the SVE+ side.
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Appendix E: CDW phase

The CDW phase is described by the angles

α1 = α2 = θp = θs = 0. (E1)

The angles β1, β2 never appear in the expression of the
ground state energy, which is

ECDW = −2EV − gz,F + 2gz,H . (E2)

The angles β1 and β2 also do not appear in the Hessian
matrix, which has the following form

ECDW = EV + EZ − gxy,F + gz,F − 2gz,H 0 0 0
0 EV − EZ − gxy,F + gz,F − 2gz,H 0 0
0 0 2(EV − gxy,F + 2gxy,H + gz,F − 2gz,H) 0
0 0 0 0

 .

(E3)

Note that one eigenvalue is always zero. This does not
indicate instability but rather the fact that one of the
four continuously varying angles does not appear in the
Hessian. The lines of instability of the CDW phase are

gz,H =
1

2
(EV − gxy,F + 2gxy,H + gz,F ) (E4a)

gz,H =
1

2
(EV − EZ − gxy,F + gz,F ). (E4b)

The first is the instability toward the B/CO phase, while
the second is the instability towards the SVE+ phase.

Appendix F: SVE+ phase

The SVE+ phase occurs near the boundary of the FM
and CDW phases. In addition to the FM and CDW order
parameters, this phase also has a nonzero expectation
value of

SV E+ = 〈[τxσx + τyσy] /2〉 (F1)

Ordering the rows and columns as K ↑, K ↓, K′ ↑, K′ ↓,
the projector matrix has the form

∆SV E+ (ξ) =


1 0 0 0

0 cos
(
ξ
2

)2
− sin(ξ)

2 0

0 − sin(ξ)
2 sin

(
ξ
2

)2
0

0 0 0 0

 , (F2)

with

ξ = cos−1
(
EZ − EV + gxy,F + gz,H

gz,F − gz,H

)
. (F3)

Clearly, the phase exists only for the cosine argument
having a magnitude smaller than unity. The angles de-
scribing this phase are

α1 =0; α2 = ξ (F4a)

θp =θs = 0 (F4b)

β1 =β2 = π (F4c)

The HF energy is ESV E+ =

E2
V − 2EV (EZ + gxy,F + gz,F ) + E2

Z + 2EZ(gxy,F − gz,F ) + 4gz,H(EZ + gxy,F ) + g2xy,F + 2gz,F (gz,H − gxy,F )− g2z,F
2(gz,F − gz,H)

(F5)
The Hessian matrix is

ESV E+ =

(
A2×2 02×2
02×2 B2×2

)
4×4

(F6)

where,

A =

(
EV (gxy,F+gz,F )−(EZ+gxy,F+gz,F )(gxy,F−gz,F+2gz,H)

gz,F−gz,H 0

0
(EV −EZ−gxy,F−gz,F )(EV −EZ−gxy,F+gz,F−2gz,H)

gz,F−gz,H

)
(F7)
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and

B =

(
C 0
0 D

)
(F8)

with C = − (EV −EZ−gxy,F−gz,F )(EV (gxy,F−gxy,H)+EZ(−gxy,F+gxy,H+gz,F−gz,H)−g2xy,F+gxy,F gxy,H+gxy,F gz,F−2gxy,F gz,H+gxy,Hgz,F )
(gz,F−gz,H)2

and D =
EZ(EV −EZ−gxy,F+gz,F−2gz,H)

gz,F−gz,H .

The instabilities of SVE+ phase are given by

gz,F =EV − EZ − gxy,F (F9a)

gz,H =
1

2
(EV − EZ − gxy,F + gz,F ) (F9b)

gz,H =
(gxy,F − gxy,H)(EV − EZ − gxy,F ) + gz,F (EZ + gxy,F + gxy,H)

EZ + 2gxy,F
(F9c)

EV =
(EZ + gxy,F + gz,F )(gxy,F − gz,F + 2gz,H)

gxy,F + gz,F
. (F9d)

The first corresponds to the instability towards the FM phase, while the second corresponds to the instability towards
the CDW phase. The third is the instability towards the B/CAF phase, while the fourth seems to not be relevant.

Appendix G: Hartree and Fock couplings having
opposite signs

When Landau-level mixing is strong, it could happen
that the Hartree and Fock parts of a given coupling are
of opposite sign. We will present sample results for the
three cases (i) gz,F /gz,H < 0; gxy,F /gxy,H > 0. (ii)
gz,F /gz,H > 0; gxy,F /gxy,H < 0. (iii) gz,F /gz,H <
0; gxy,F /gxy,H < 0.

We have found that if the ratio F/H of a particular cou-
pling is negative, the magnitudes of H and F parts of that
particular coupling seem to be irrelevant to the phase di-
agram. This is in contrast to the case when the ratio
F/H is positive, where it matters a great deal whether
the ratio is bigger or smaller than unity.

Consider first case (i): gz,F /gz,H < 0; gxy,F /gxy,H >
0. We set gz,F = −gz,H , and vary the ratio gxy,F /gxy,H .

FM

CAF

BO

CDW

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

FIG. 25. Phase diagram for gz,F /gz,H = −1, and
gxy,F /gxy,H = 0.75, EZ = 1 and EV = 0.0. The topology
of the phase diagram changes; in particular, the CAF region
no longer extends to infinity, but is enclosed by the other
phases. There is no coexistence anywhere in the phase dia-
gram.

The phase diagram for gxy,F /gxy,H < 1 is shown in
Fig. 25. The topology of the phase diagram changes dra-
matically, but there is no coexistence anywhere. The
phase diagram for gxy,F /gxy,H > 1 is shown in Fig. 26),
in which there are two coexistence regions. The first one
is the B/CAF phase, with BO, FM, CAF, and SVEY or-
der, which we already encountered when gz,F /gz,H > 0.
The second phase, which we call the FSVE phase, only
occurs when gz,F /gz,H < 0.
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CAF
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CDW
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FIG. 26. Phase diagram for gz,F /gz,H = −1, and
gxy,F /gxy,H = 1.25, EZ = 1 and EV = 0.0. The blue shaded
region is the B/CAF phase, which has BO, FM, CAF, and
SVEY order. The brown shaded region is a new coexistence
phase with FM and either of SVEX or SVEY order.

At EV = 0 this phase shows the coexistence of FM
and either SVEX or SVEY order (they are degenerate).
Fig. 27 shows the order parameters along a horizontal
section of the phase diagram at gz,H = 0.8.

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1
gxy,H

0.00

0.25

0.50

0.75

1.00

FM

CAF

BO

SVEY/−

FIG. 27. Nonzero order parameters vs gxy,H for gz,H = 0.8.
All other coupling constants are the same as in Fig. 26. The
B/CAF phase shows BO, FM, and SVEY (=SVE-) order,
while the FSVE phase shows FM and SVEY order.

Fig. 28 shows the changes that occur on this section
when EV is turned on. The B/CAF phase changes in a
familiar manner, acquiring a CDW order parameter as
well as unequal SVEX and SVEY order parameters in
addition to the BO and CAF order already present. The
FSVE phase splits into two phases, both having some
CDW order. The first has FM and unequal SVEX and
SVEY order parameters, while the second is the familiar
SVE+ phase.

Let us now go on to case (ii), gz,F /gz,H >
0; gxy,F /gxy,H < 0. We choose gxy,F = −1.0 ∗ gxy,H .

Fig. 29 shows the phase diagram for gz,F /gz,H < 1. The
topology again changes dramatically, but there are no
coexistence phases. Fig. 30 shows the phase diagram for
gz,F /gz,H > 1. The familiar SVE+ phase interpolates
between the FM and CDW phases.

Fig. 31 shows the order parameters vs gxy,H along a
section of Fig. 30 at gz,H = −1.3. One sees the first-
order transition from the BO to the SVE+ phase, and the
subsequent second-order transition into the CDW phase.
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FIG. 29. For this phase diagram we have considered EZ =
1.0, EV = 0.0, gz,F = 0.75 ∗ gz,H , gxy,F = −1.0 ∗ gxy,H . One
can clearly see that as here gxy,F = −1.0 ∗ gxy,H CAF is the
stable phase for gxy,H > EZ

2
.
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FIG. 30. Phase diagram for EZ = 1.0, EV = 0.0, gz,F =
1.25 ∗ gz,H , gxy,F = −1.0 ∗ gxy,H . The topology of the phase
diagram is different from the earlier cases, but now the SVE+
coexistence phase appears between the FM and CDW phases.
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FIG. 28. Order parameters vs gxy,H for various values of EV , with EZ = 1.0, gz,F = −1.0, gz,H = 0.8, gxy,F = 1.25gxy,H .
(a) For a tiny EV = 0.05 the FSVE phase splits into two phases. One of them has CDW, FM, and unequal SVEX and SVEY
order parameters, while the other is the familiar SVE+ phase with CDW, FM, and SVE+ order.(b) As EV increases to 0.2,
the B/CAF and FSVE phases shrink, while the SVE+ phase expands at their expense. (c) At EV = 0.5 the FSVE phase has
vanished, leaving behind the B/CAF and SVE+ phases.
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FIG. 31. Nonzero order parameters vs gxy,H for gz,H = −1.3.
All other coupling constants are chosen as in Fig. 30. The
system is in the BO phase at the extreme left, makes a first-
order transition into the SVE+ phase, and finally, a second-
order transition into the CDW phase at the extreme right.

Finally we turn to case (iii), gz,F /gz,H <
0; gxy,F /gxy,H < 0. The various panels of Fig. 32 show
the phase diagrams for different F/H ratios. The common
feature is the presence of the FSVE coexistence phase.
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FIG. 32. Phase diagrams for case (iii) gz,F /gz,H < 0; gxy,F /gxy,H < 0. (a) EZ = 1.0, EV = 0.0, gz,F = −0.75 ∗ gz,H , gxy,F =
−0.75 ∗ gxy,H (b) EZ = 1.0, EV = 0.0, gz,F = −0.75 ∗ gz,H , gxy,F = −1.25 ∗ gxy,H (c) EZ = 1.0, EV = 0.0, gz,F =
−1.25 ∗ gz,H , gxy,F = −1.25 ∗ gxy,H (d) EZ = 1.0, EV = 0.0, gz,F = −1.25 ∗ gz,H , gxy,F = −0.75 ∗ gxy,H . The brown shaded
region denotes the FSVE phase in all the figures.
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