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Rebecca Engelke,1 Hyobin Yoo,2, 3 Stephen Carr,4 Kevin Xu,1 Paul Cazeaux,5 Richard Allen,1 Andres Mier

Valdivia,6 Mitchell Luskin,7 Efthimios Kaxiras,1, 6 Minhyong Kim,8 Jung Hoon Han,9 and Philip Kim1, 6

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, Sogang University, Seoul 04107, Republic of Korea

3Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea
4Department of Physics, Brown University, Providence, Rhode Island, 02912, USA

5Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061, USA
6John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, Massachusetts 02138, USA

7School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA
8International Centre for Mathematical Sciences, Edinburgh, UK

9Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
(Dated: February 22, 2023)

Moiré superlattice patterns at the interface of 2-dimensional (2D) van der Waals (vdW) materi-
als, arising from a small displacement between similar lattices, have been extensively studied over
the past decade for their dramatic ability to tune material properties. However, previous work to
understand the structure of these interfaces has largely focused on some special cases, particularly
honeycomb lattices displaced by twist or isotropic scaling. In this work, we develop practical and
analytical tools for understanding the moiré structure that can be generalized to other lattice distor-
tions and lattice types. At large enough moiré lengths, all moiré systems relax into commensurated
2D domains separated by networks of dislocation lines. The nodes of the 2D dislocation line network
can be considered as vortex-like topological defects. However, we find these topological defects to
exist on a punctured torus, requiring different mathematical formalism than the topological defects
in a superconductor or planar ferromagnet. In the case of twisted bilayer graphene, the defects are
characterized by the free group on two generators. We find that antivortices occur in the presence of
anisotropic heterostrain, such as shear or anisotropic displacement, while arrays of vortices appear
under twist or isotropic displacement between vdW materials. Utilizing the dark field imaging ca-
pability of transmission electron microscopy (TEM), we experimentally demonstrate the existence
of vortex and antivortex pair formation in a moiré system, caused by competition between differ-
ent types of heterostrains in the vdW interfaces. We also present a methodology for mapping the
underlying heterostrain of a moiré structure from experimental TEM data, which provides a quan-
titative relation between the various components of heterostrain and vortex-antivortex density in
moiré systems.

I. INTRODUCTION

Moiré patterns are quasi-periodic in-plane projections
of two similar stacked 2-dimensional (2D) periodic lat-
tices. Atomic scale moiré superlattices can be formed
by stacking atomically thin van der Waals (vdW) ma-
terials; one such example is twisted bilayer graphene.
Moiré patterns formed by incommensurately stacking 2D
materials have been used to manipulate a system’s elec-
tronic structure, from Hofstadter’s butterfly [1–3] to the
valley Hall effect [4, 5] to magic angle strongly corre-
lated physics [6, 7]. As the number and type of layers
in experimentally relevant systems proliferates, including
twisted double bilayer [8–10], twisted mono-bi-layer [11–
13], twisted trilayer [14–16] and twisted quadrilayer
graphene [17, 18], as well as hexagonal boron nitride [19]
and transition metal dichacolgenides (TMDs) [20–22], it
is important to be able to predict the structure in vdW
stacked combinations of atomic layers.

Increasing attention has been paid to the effects of
strain disorder on the structure and properties of such
systems [23]. The effect and extent of twist angle dis-
order in magic angle graphene is an active area of re-

search [24, 25]. Strained moiré patterns in excitonic sys-
tems have been proposed as a way to create 1D quantum
wires [26]. In this paper, we present a generalizable topo-
logical interpretation of the structure of moiré interfaces
that allows for the characterization of arbitrary strain
and the proposition of new types of moiré patterns.

A topological description of the moiré structure is ap-
pealing in part because some of the major features of the
structure seem to be fixed once certain boundary condi-
tions, such as total twist angle and strain, are pinned.
For large enough moiré length, moiré systems are known
to relax into domains of nearly commensurate alignment,
separated by domain walls which can be characterized as
dislocation lines [27]. The topological connectivity of the
network of dislocation lines remains fixed even as the do-
main lengths become distorted by local strain fields.

The nodes of the network where dislocation lines meet
in the relaxed moiré system (sometimes known as AA
points in graphene or TMD moiré) have been referred
to as topological defects by Alden et al. [28], and again
by Turkel et al. [29], who also emphasize their role in
transport as tunable, local concentrations of twist angle.
They have also been shown to play the role of defects
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in electrochemistry [30]. However, we find that the or-
der parameter describing the topology of these defects is
rather different from that of the conventional vortex de-
scriptions in the planar magnet or superfluid, where the
order parameter can be described by a complex number.

The complex order parameter space can be mapped to
a circle (S1), hence the fundamental group is π1(S1) = Z.
The fundamental group is a useful tool in the analysis of
topological defects, as defects and their collections can
each be mapped to an element of the fundamental group
[31]. For defects with an S1 order parameter, this mani-
fests as an integer winding number [32]. Interestingly, we
find that the order parameter space describing the relax-
ation structure of a moiré superlattice is not homotopy
equivalent to S1 due to the periodic boundary condition
of the order parameter imposed by the moiré superlat-
tice. We present a mathematical framework, similarly
based on the fundamental group, by which the 2D dislo-
cation network nodes can be characterized as topological
defects.

Throughout the paper, we refer to the space of or-
der parameters as configuration space, in keeping with
the convention adopted in earlier works [33]. For most
of this work, we focus on graphene-like moiré superlat-
tices, where two different domain types, AB and BA, are
separated by dislocation lines meeting at the AA site.
The starting point for our new vortex description of the
AA nodes is the realization that the configuration space
for the graphene-like moiré superlattice is the punctured
torus. The fundamental group of the punctured torus
is a non-Abelian group known as F2, the free group
on two generators. The commutator [a, b] = aba−1b−1

corresponds to a closed loop around a vortex centered
at the AA node of the moiré superlattice (its inverse
[b, a] = [a, b]−1 corresponds to a path around an antivor-
tex). The non-commutativity of the generators is a con-
sequence of the removed point at the AA node, which is
physically motivated by the node’s high energy barrier in
the generalized stacking fault energy [33].

The domain walls that emerge in the moiré superlattice
will be color-coded as R,G,B, which correspond to the
three distinct ways in which the AB stacking order makes
a transition to the BA stacking order as the domain wall
is crossed. The aforementioned generators a and b can
be related to the RGB color coding of the domain walls,
which are experimentally accessible quantities. Exami-
nation of the color distribution of domain walls crossing
an arbitrary closed boundary reveals the vortex content
enclosed within, according to the non-Abelian vortex the-
ory developed here. The use of the free group language to
characterize the topological structure of a moiré super-
lattice is likely to find application in other kinds of su-
perlattices formed from incommensurate stacking of non-
hexagonal crystals, with details of the group determined
by the material-dependent stacking energy profiles and
lattice symmetry.

As mentioned before, the non-Abelian vortices in a
moiré superlattice have a counterpart in non-Abelian an-

tivortices. We find that the relative strain tensor between
two constituent layers determines the vortex/antivortex
distribution of the sample. The mathematical tools to
understand configuration space combined with experi-
mental information on the configuration distribution in
real space enables us to estimate the strain distribution
underlying a moiré pattern, allowing for the character-
ization or engineering of strain distributions in van der
Waals heterostructures.

The remainder of the paper is organized as follows. In
Sec. II we go over various tools and concepts used in
analyzing the strain patterns and the nature of topologi-
cal defects in the moiré superlattice. The notion of theta
space as the proper configuration space of the graphene-
like moiré superlattice is introduced and justified by en-
ergetic consideration. Sec. III discusses the formal the-
ory of the vortex and antivortex in a moiré superlattice
using the language of the free group and its generators.
The mathematical discussion is followed by Sec. IV in
which the new algebraic formulation of vortices and anti-
vortices is employed to identify antivortex formation in
a real moiré superlattice, by way of a novel method of
strain mapping. Sec. V gives a summary and discussion.
Technical details of the theory of vortex algebra are in-
cluded in Appendix A and Appendix B with the hope
that future investigations of moiré superlattices, includ-
ing lattices other than sublattice-symmetric honeycomb
lattices, can make use of the type of vorticity formula-
tion presented here. Appendix C includes details on the
image processing to experimentally measure the lattice
displacement.

II. ORDER PARAMETER AND
CONFIGURATION SPACE FOR MOIRÉ

SUPERLATTICE

The natural choice of order parameter in a bilayer sys-
tem is the local shift vector, u, determined as the in-plane
vector that points from a lattice site in one layer to the
equivalent lattice site in the other layer. Fig. 1 illustrates
of how we define the shift vector in a graphene-like hon-
eycomb lattice. Because of the periodicity of the lattice,
a shift vector larger than a unit cell, as shown in Fig.
1(b), is equivalent to the shorter vector folded into the
first unit cell. In other words, the configuration space in
which this order parameter exists is a torus [33].

After labeling the two honeycomb lattice sites as A
and B, the standard naming convention for the bilayer
honeycomb stackings is obtained by listing the pair of
vertically aligned sites. The condition u = 0, when every
atom is on top of an equivalent atom in the other layer, is
known as AA stacking. Shifting the top layer along one of
the three atomic bonds from an A site to a B site of the
other layer (Fig. 1(d)), or along the negative of those
three vectors (Fig. 1(c)) yields a structure where only
half the atoms in the top and bottom layers coincide in
the 2D projection. The latter two stacking configurations
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(a) (b)

(c) (d)

(e)

FIG. 1. (a-d) Definition of shift vector: (a) small shift, (b)
shift larger than a unit cell is mapped into the first unit
cell, (c), BA shift (d) AB shift. (e) Shifts from part (a)
shown in configuration space. Dotted lines show an alter-
nate Wigner–Seitz-like designation of the configuration space
unit cell.

are often termed AB and BA stacking, respectively. In
graphene, the AA stacking is energetically unfavorable,
while the AB and BA stackings are symmetry-related
lowest-energy layer stacking configurations, called Bernal
stacking. Note that for each of the two graphene Bernal
stacking configurations, three different shifting directions
result in the same stacking configuration, represented by
a single point on the toroidal configuration space. AB
and BA stacking are connected by spatial inversion, lead-
ing to uAB = −uBA for the corresponding shift vectors
in the configuration space (Fig. 1(e)). The high-energy
nature of the AA stacking can be reflected by removing
u = 0 from the configuration space altogether, rendering
the topology from that of a torus to that of a punctured
torus. This will play a crucial role in the theory of vor-
ticity we develop in Sec. III.

Fig. 1(e) shows the points in configuration space cor-
responding to the real-space configurations in (a-d). The
high symmetry stackings, BA and AB, are represented by

the dark gray and light gray points in Fig. 1(e), respec-
tively. As the unit cell can be defined in various ways, it
is equally valid to use the parallelogram definition of the
unit cell shown in Fig. 1, where AA is the corner, or the
hexagonal unit cell shown in dotted lines, in which AB
and BA are corners of the hexagon.

A. Experimental measurement of order parameter

Transmission electron microscopy (TEM) provides an
experimental route to characterizing local atomic config-
urations in real space, including detecting the change in
u across a domain wall, known as the Burgers vector.
Changes in the stacking order are distinguishable by a
dark field imaging technique that consists of inserting an
aperture into the diffraction plane around a single Bragg
position and recording the resulting filtered real space
image. Depending on the choice of diffraction peak, con-
trast between domains (see Fig. 2(a)) or the partial dis-
locations that form the domain walls (see Fig. 2(b)) in
the bilayer stacking are visible [28]. The Burgers vectors
of the dislocations are exactly determinable, as the vec-
tor perpendicular to the diffraction peak for which their
contrast vanishes in the dark field image [28, 34]. The
Burgers vector of a dislocation in the bilayer is equal to
∆u, the change in shift vector across the boundary.

We note that the dislocations form a network with dis-
tinct topology. Twisted bilayer graphene (Fig. 2(b)) has
a structure where six dislocation lines meet at a node.
Despite being a different material with different symme-
tries, MoS2 slightly twisted from a 3R-like stacking (close
to 0◦ twisting) appears to share the same dislocation net-
work topology as graphene (Fig. 2(c)). In contrast, MoS2

twisted from a 2H configuration (close to 180◦ twisting)
has a structure where three lines meet at a node rather
than six (Fig. 2(d)). As we will explore later, the topol-
ogy of the graphene and 3R-like case is defined by a punc-
tured torus, originating from the single energy maximum
in the stacking fault energy as a function of configura-
tion (and two degenerate minima). However, for twisted
2H MoS2 there are two energy maxima and one mini-
mum, leading the configuration space to be described as
a twice-punctured torus and generating a different topol-
ogy. While in this paper we focus on the topology gen-
erated by the energy profile of bilayer graphene, we are
motivated by the realization that a topological descrip-
tion of each system’s configuration space should distin-
guish the different possible connectivities of the network,
including those arising from materials of different lattice
symmetry, such as a square lattice.

While constructing the tools to analyze the topological
defects of the moiré superlattice in configuration space,
we also attain the ability to analyze the configuration
distribution and extract the overall strain profile in the
twisted bilayer. In order to do these analyses, we need to
consider several important quantities of the moiré lattice:
the displacement gradient matrix, the moiré vectors, and
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FIG. 2. Dark field TEM images. (a) {1010} (“first order”)
dark field of twisted bilayer graphene, showing domain con-
trast. (b) {1120} (“second order”) dark field of the area in (a)
showing domain walls meeting at sixfold nodes. Inset: Burg-
ers vectors corresponding to domain wall colors. (c) Second
order dark field of MoS2 twisted from 3R-like stacking has a
similar network topology to graphene. Inset: Burgers vectors
corresponding to domain wall colors. (d) {1010} dark field of
MoS2 twisted from 2H-like stacking has a threefold network
topology. Inset: Burgers vectors corresponding to domain
wall colors. (e) Diffraction pattern of the sample in (a) with
colors of second order diffraction spots circled. Sample (c)
has a similarly oriented diffraction pattern. (f) Diffraction
pattern of the sample in (d) with the colors of first order
diffraction spots circled. Scale bars are 100nm.

the Burgers vectors. All of these quantities give impor-
tant information that allows us to reconstruct u.

B. Displacement gradient matrix

A displacement vector field u which describes the shift
in positions of a lattice (xt) compared to a reference lat-
tice (xb) such that xt = xb + u(xb), is closely related
to strain. Typically, xt is a 2D vector corresponding to
the positions in the strained lattice, and xb is a 2D vec-
tor corresponding to the positions in the intrinsic lattice,
prior to application of forces. In the case of moiré ma-
terials, presented in Fig. 1, the reference lattice (with
coordinates xb) is the bottom layer of the material, and
the displaced lattice (xt) is the top layer. Thus the vector
field that produces a moiré pattern is in a sense analo-

gous to the relative strain (heterostrain) between the two
layers.

The linear strain matrix, used in the modeling of strain
energies, is defined by taking derivatives of the u field and
symmetrizing:

ε =

(
∂xux (∂yux + ∂xuy)/2

(∂yux + ∂xuy)/2 ∂yuy

)
. (1)

Note that this symmetrized linear strain tensor does
not contain rotation contributions to first order in angle,
since rotation of a lattice is just a coordinate change and
does not contribute strain.

If we do not symmetrize, i.e. keep the rotation com-
ponent, the gradient of the u field is known as the dis-
placement gradient matrix, d, obtained from

d = ∇u =

(
∂xux ∂yux
∂xuy ∂yuy

)
. (2)

The vector u can be recovered by integrating d over
distance. If we assume that u(0) = 0 and that the strain
is spatially uniform from 0 to xb, we obtain

u(xb) = dxb. (3)

Thus, xt = xb + dxb or

xt = (1 + d)xb (4)

Any arbitrary displacement of layer 2 relative to layer
1, formed by a combination of twist and strain, can be
written in terms of a displacement gradient matrix, d,
with four independent components. It is useful to define
the four components as follows:

d =

(
α+ β γ − θ
γ + θ α− β

)
, (5)

where θ is a linear approximate of the twist (measured in
radians), α is isotropic strain, and β and γ are uniaxial
and shear strain, respectively [35].

C. Moiré length

The moiré length is the distance over which the lattice
xt has been shifted by a unit vector with respect to lattice
xb, creating a local return to the starting configuration.

Consider the shift vector u, as defined in Fig. 1. If
we twist our lattices about a point where two atoms are
stacked on top of each other, the origin has u = 0. Trav-
eling away from the origin in a direction x, the displace-
ment u increases until we reach the point where the lat-
tices have diverged by a whole unit cell (u = ±a1 or ±a2,
where a1 and a2 are two lattice vectors of the unstrained
lattice) and thus are aligned (u = 0) again, resulting in
moiré periodicity.
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A general interface of 2D lattices with heterostrain,
xt = (1 + d)xb, can be characterized by a pair of moiré
vectors, mi (i =1, 2), which describes the moiré periodic-
ity in the 2D space. Considering the corresponding pair
of two coincident lattice points in the upper and lower
layers, xt,i and xb,i, respectively, the two moiré vectors
can be expressed

mi = xt,i = xb,i + si, (6)

where the constant vectors si can each be ±a1 or±a2, de-
pending on the coincident lattice condition for the moiré
superlattice.

If s1 and s2 are collinear (without m1 and m2 being
collinear), then the matrix d has determinant zero and
the moiré pattern is 1D rather than 2D. We will ignore
this case for now, and assume that a1 and a2 are each
used once.

We can relate the lattice constants ai, the matrix d
and the moiré vectors, by mi = xt,i = (1 + d)xb,i. Thus

if d is invertible, xb,i = d
−1

si and

mi = (1 + d
−1

)si. (7)

Putting Eq. 7 together with the corresponding equa-
tion for the other moiré vector, mi, we obtain a matrix
equation that can be solved for d if we have measured m
and s:

m = (1 + d
−1

)s, (8)

where m and s are 2× 2 matrices formed by horizontally
concatenating the mi and si column vectors, respectively.
Note that if the two mi’s are not linearly independent,
that is again the |d| = 0 case.

D. Burgers vector

The shift vector u is also related to the Burgers vector
of the dislocations that form in the relaxed moiré sys-
tem. To define the Burgers vector, first one considers a
closed path along the lattice points of a perfect crystal,
sometimes called a Burgers circuit. When a dislocation is
introduced within this path the circuit becomes broken,
and the vector connecting the now separated start and
end points of the circuit is called the Burgers vector. In
a moiré superlattice, the twisted interface acts as a dislo-
cation, and we can obtain Burgers vectors by considering
circuits that traverse the interface. The simplest closed
circuits in the aligned, untwisted structure take the fol-
lowing form: travel from a lattice point x0 to x1 along
the top layer, then down vertically into the bottom layer,
then along x1 to x0 in the bottom layer, and finally re-
turn to x0 in the top layer by moving vertically upwards.
To connect the Burgers vector b to the shift vector u, it
is easiest to think of obtaining the twisted geometry by
keeping the bottom layer fixed and introducing a disloca-
tion via rotation of the top layer. In this case, the failure

of the circuit to close after applying the twist is equal to
the relative change in positions of the lattice points that
corresponded to x0 and x1 in the top layer. However this
is simply the change in the local shift between the two
points, e.g.

b =

∫ x1

x0

(dx · ∇)u(x) = u(x1)− u(x0) (9)

where the non-integral form is only true if one does not
map u into the compact unit-cell torus.

While this expression was obtained under the assump-
tion of a uniformly twisted system, the result is quite
general. For the relaxed systems that occur in experi-
mental devices, one finds that the Burgers vector is only
non-zero if a “dislocation line” (that is, a domain wall) is
enclosed in the circuit. Each dislocation line between a
pair of AA nodes can be associated with a specific Burg-
ers vector, as was done experimentally using DF TEM
in Fig. 2. The pair of AA nodes also provides a moiré
vector mi, which can be linked to si obtained from the
Burgers vectors. Therefore, knowledge of the moiré vec-
tors mi and the Burgers vectors across the dislocations
associated with mi is sufficient to solve for the displace-
ment gradient matrix using Eq. 8. As the moiré vectors
and Burgers vectors can be measured from experimental
dark field and diffraction images, it is possible to obtain
a map of d from the information provided by DF TEM
images, as we will discuss in Sec. IV B.

E. Configuration space

Although a torus is topologically nontrivial, a small
loop around the AA site (u = 0) on the torus can be
contracted to a point and thus does not inherit any non-
trivial topological properties from the torus. The topo-
logical defects associated with winding around the holes
of the torus are the dislocations [32], but this descrip-
tion alone provides no constraint on the manner in which
the dislocations meet at the nodes. In the case of a
graphene moiré superlattice, the three dislocation lines
with different Burgers vector, colored red(R), green(G),
and blue(B), converge at the AA defect and diverge out
again. What we need is a proper mathematical descrip-
tion of the topological nature of the AA nodes consistent
with the experimental findings.

We start by investigating the distribution in configu-
ration space of the order parameter for unrelaxed and
relaxed moiré systems. Fig. 3(a) shows an unrelaxed
twisted bilayer of a honeycomb lattice, and Fig. 3(d)
shows the configuration space, colored via a scheme that
is used consistently throughout this work. A Gaussian in-
tensity distribution of a chosen color is centered around
each key point in configuration space. The region of con-
figuration space centered around the AA point is colored
white, and those centered around AB (BA) are dark gray
(light gray). Red, green, and blue regions are placed on
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(a) (b) (c)

(d) (e) (f )

FIG. 3. (a-c) schematic of real space arrangement for (a)
unrelaxed moiré structure, (b) partially relaxed moiré struc-
ture, (c) fully relaxed moiré structure. Colors denote region
in configuration space corresponding to local stacking order.
(d-f) distribution in configuration space of local stacking or-
der sampled at each plaquette of the lattice for (d) unrelaxed
moiré structure, (e) partially relaxed moiré structure, (f) fully
relaxed moiré structure.

the midpoint of the three equidistant shortest paths be-
tween AB and BA, two of which require crossing the unit
cell boundaries. The coloring in real space in Fig. 3(a-c)
is determined for each point, by determining the local
shift vector, finding it as a point in configuration space,
and adopting the color corresponding to that point.

Fig. 3(b-c) depict real space structures that have been
modulated by a periodic lattice distortion to mimic relax-
ation, with two different amplitudes. As the amplitude
of relaxation is increased from Fig. 3(a) to (b) to (c),
light or dark gray regions, corresponding to nearly AB
or BA stacking, take up increasing areas in real space,
while AA regions shrink, and red, green, and blue regions
evolve into lines. Because the red, green, and blue color
tell us which path on the torus was used to get between
BA and AB, i.e. ∆u, the color tells us the Burgers vector
of that line. The corresponding distributions in config-
uration space are shown in Fig. 3(d-f). As relaxation
strength increases, decreasing point density around the
AA configuration reveals that fewer points in real space
correspond to AA stacking, while configurations on the
red, green, and blue lines, and especially AB and BA
sites, become more numerous. Thus, the atomic lattice
relaxation process in real space can be viewed as empty-
ing out most of configuration space and populating only
the AB and BA points and dislocation lines connecting
them.

A similar emptying of AA and concentration at AB,
BA, and the colored lines between AB and BA, oc-
curs for the three strain types: isotropic, uniaxial, and
shear. Fig. 4(a-c) show the configurations formed by
xt = (1 + d)xb with a spatially constant displacement
gradient matrix d, corresponding to only one nonzero
component α, β, or γ in Eq. 5. Fig. 4(d-f) show corre-
sponding structures after applying the modulation func-
tion to mimic atomic scale relaxation. We note that the

(a) (d)

(b) (e)

(c) (f )

FIG. 4. Schematics of real space structure for the three strain
components. Moiré from (a) isotropic scaling, (b) uniaxial
strain (c) shear strain. Relaxed moiré from (d) isotropic scal-
ing, (e) uniaxial strain, (f) shear strain. Colors correspond to
configurations, as defined in Fig. 3.

order and orientation of red, green, and blue lines differs
in real space for each strain component, as well as twist.
In this sense, the colors (encoding local order parameter)
provide information about which strain components are
present.

III. THEORY OF DISLOCATION NETWORK
NODES IN MOIRÉ SUPERLATTICES

As emphasized previously, the proper order parameter
space for a moiré superlattice and the various network
structures observed in it is the space of shift vectors u
with the boundary conditions of a torus and one point
u = 0 removed due to energy considerations (and the
ensuing atomic relaxation), as shown in Fig. 5(b). But
the TEM images shown in Fig. 2 suggest an even more
constrained space for the order parameter. For moiré
regions with a sufficiently large moiré length scale, the
order parameter is locked to either the AB (uAB) or BA
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(uBA) point in the configuration space. There are three
equivalent ways to make a transition from BA to AB
stacking orders, designated by red, blue, and green ar-
rows in Fig. 5(d) with corresponding label R, G, and B.
The AB to BA transition is accomplished by their in-
verses, shown as R−1, G−1 and B−1 in Fig. 5(d). Since
the uAB , uBA and the three RGB lines connecting the
two points span the entirety of the relevant order param-
eters, one can “gouge out” the unnecessary portions of
the punctured torus. The result is the theta space shown
in Fig. 5(c). This is the relevant configuration on which
to make a proper definition of vorticity, not the circle
(S1) where the usual homotopic classification of vortic-
ity takes place [32].

Before developing the formal theory of vorticity in the
next subsection we complete the phenomenological classi-
fication of possible vortex patterns around the AA node.
According to the TEM data, a path around a single AA
node in real space simultaneously implies encircling the
AA spot in configuration space by u. Closed paths in
real space that encircle a node of the dislocation network
now correspond to non-contractible paths in configura-
tion space. The vortex winding number w can be intu-
itively defined as +1 or −1 if the configuration space loop
cycles the same or opposite direction as the real space
loop, respectively (Fig. 5(d)). Recalling that the red,
green, and blue paths in configuration space correspond
to Burgers vectors of dislocations in real space, the possi-
ble orderings of Burgers vectors in real space surrounding
an AA node can be determined. There are four distinct
arrangements: starting at either AB or BA in Fig. 5d,
one can circle either clockwise (w = +1, Fig. 5(e-f), de-
scribing vortices) or counterclockwise (w = −1, Fig. 5(g-
h), describing antivortices). Comparing the locations of
red, green, and blue lines in Fig. 5(e-h) and in Fig. 4, it
can be concluded that twist and isotropic strain produce
vortex-type defects at the nodes, and uniaxial or shear
strain produce antivortex-type defects at the nodes. Note
that reversing the direction of twist or exchanging layers
does not convert vortices into antivortices. The only way
to produce antivortices is to have an anisotropic heteros-
train between the layers.

A. Algebraic formulation of vorticity

To understand the algebraic structure of paths in the
theta space (Fig. 5(c)), it is useful to consider the same
path through configuration space in both the unit-cells
shown in Fig. 1(e). Let us consider the full encirclement
of the AA node shown in Fig. 5(d). We begin by observ-
ing that the BA → AB → BA transition through the R
and G−1 dislocations in Fig. 5(d) becomes, in the paral-
lelogram scheme shown in Fig. 6(a), a non-contractible
loop about the torus’ periodic boundary conditions. The
other BA→ AB→ BA transition through the B and R−1

arrows in the hexagonal scheme becomes another non-
contractible loop in the parallelogram unit cell shown in
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FIG. 5. Energy landscape in the configuration space torus
determines the topology of the network, which can be equiv-
alently viewed (a) on the unit cell, (b) as a torus with a
puncture (AA configuration is removed from space), or (c)
as theta space. (d) Using the hexagonal unit cell, it can be
seen that clockwise or counterclockwise paths around an AA
point determine the order in which R, G and B elements are
encountered. (e-h) Real space arrangement of dislocations
corresponding to clockwise paths in configuration space, gen-
erating vortices (e, f) and counterclockwise paths in config-
uration space, generating antivortices (g, h). Each domain
wall is colored and labeled based on the R, G or B move in
configuration space. The direction of the configuration space
move, equivalent to the Burgers vector, is shown by the black
arrows. Comparison with Fig. 4 identifies the structures as
generated from: (e) isotropic, (f) twist, (g) uniaxial, (h) shear
displacement.

Fig. 6(b). We label the first and the second transitions
as a and b, which will soon be identified with two gener-
ators of the free group F2 [36, 37]. The third BA → AB
→ BA move through G and B−1 arrows of the hexagon
can be decomposed as the inverse of a followed by the in-
verse of b, or a−1b−1 [Fig. 6(c)]. A complete loop around
the edges of the hexagonal unit cell is equivalent to the
algebraic operation aba−1b−1 ≡ [a, b]. Our convention is
to perform the operation appearing on the left side of the
product first.

The commutator [a, b] in the language of the free group
with two generators a, b represents a “vortex” centered
about the AA defect. The vorticity of this topological de-
fect can naturally defined as the commutator [a, b] (more
detailed discussion in Appendix A). Similar to the con-
ventional vortex defined in S1, this vorticity defined for
the AA node is non-trivial in the sense that it is not
contractible to an identity, as illustrated in Fig. 6(d).
After cancelling out the paths that are traversed both
ways, the overall path for [a, b] becomes equivalent to
four partial loops around the four corners of the paral-
lelogram, equal to a full loop round u = 0. On a torus
such a loop can be contracted to zero and become trivial,
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a

(a)

b

(b)

*

a  -1 b  -1

(c)

(d)

FIG. 6. (a) The RG−1 move in the hexagonal zone scheme of
the configuration space is translated into a non-contractible
loop in the parallelogram zone scheme. It is labeled by a. (b)
The BR−1 move in the hexagonal zone scheme of the configu-
ration space is translated into a second non-contractible loop
in the parallelogram scheme. It is labeled by b. (c) The GB−1

move in the hexagonal zone scheme is translated into a third
non-contractible loop that can be decomposed as a product
of the previous two moves, a−1b−1. (d) The aba−1b−1-loop
is equivalent to a circle round the point u = 0. It is a non-
contractible loop due to the high-energy barrier for the u = 0
configuration.

but not for a punctured torus. The anti-vortex has the
algebraic representation [b, a] = bab−1a−1 = [a, b]−1. Ge-
ometrically, this amounts to starting from the same BA
point on the upper left corner of the hexagonal unit cell
in Fig. 5(d) and making a complete counter-clockwise
loop. Appendix A gives a more complete account of the
vortex structures in the language of free groups with two
generators a, b. One can find group-theoretic representa-
tions for vortex dipoles (vortex + antivortex) and vortex
quadrupoles (two vortices and two antivortices) as well.

B. RGB formulation of vorticity

As we described in Section IIA, dark field TEM imag-
ing can identify the dislocation lines with given Burgers
vectors and the AB and BA domains separated by them.
Each dislocation line converging on a given AA node can
then be color-coded as R, G, B or one of their inverses
R−1, G−1, B−1 considering Burgers vector and the neigh-
boring AB/BA domains in the TEM measurement. The
free group language of the previous subsection gives a
mathematically complete account of the vortex and an-
tivortex structures, but it is helpful to translate the same
statement to the more tangible and experimentally mea-

surable RGB scheme according to

a↔ RG−1, b↔ BR−1 ba↔ BG−1. (10)

By direct substitution we obtain the commutator

[a, b] = RG−1BR−1GB−1, (vortex) (11)

which is a product of transition vectors over the six do-
main walls in succession. In the same scheme we have
the antivortex commutator

[b, a] = BG−1RB−1GR−1 (antivortex). (12)

Any cyclic permutation of the six letters gives rise to the
equivalent vortex or antivortex.

While the sign of the exponent in R, G, and B opera-
tors can be obtained considering the order of the neigh-
boring AB and BA domains by combining the DF TEM
images with the first and second order Bragg peaks as
shown in Fig. 2, there is a simpler scheme to assign the
sign of the operators, considering AB/BA domains are al-
ways complementary. For example, if the six dislocation
lines converging on an AA node appear, for instance, in
the order of RGBRGB while going clockwise around it,
it ought to be interpreted as RG−1BR−1GB−1 given in
Eq. (11) and classified as a vortex. If the colors appear
as RBGRBG, it is an anti-vortex according to Eq. (12).
One only needs to keep in mind that the sequence of col-
ors is to be understood as one color letter followed by the
inverse of another color letter, and vice versa. General-
izations of the RGB scheme to vortex-antivortex dipole
and/or vortex quadrupole structure are discussed in the
Appendix B.

IV. EXPERIMENTAL OBSERVATION OF
ANTIVORTICES AND STRAIN

A. Detection of antivortices

While moiré patterns and commensurated domain sys-
tems with vortex-type nodes have been studied exten-
sively, those with antivortex-type nodes have not been
demonstrated. We postulate this is due to the energy
required to maintain sufficient strain, whereas twist and
lattice constant mismatch can create vortex-type moiré
without global strain. Nonetheless, we observe a line
of antivortex nodes along a boundary of non-uniformly
strained moiré superlattice.

Fig. 7(a) shows combined DF TEM images of a twisted
bilayer graphene sample that contains a ∼1 µm sized
bubble formed underneath the sample. Near the bound-
ary of the bubble, non-uniform relative strain builds up in
the moiré superlattice, which in turn creates the various
strain components discussed in Eq. 5. The antivortices
(vortices) can be identified by the RBG (RGB) order in
which the dislocations occur in a clockwise loop. The
antivortices, which form along the top edge of a closed-
loop dislocation, are each capable of annihilating with a
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FIG. 7. a) Dark field image of twisted bilayer graphene con-
taining antivortices along a bubble edge. Left region shows
colored second order image, right region shows first order im-
age. Inset: Burgers vector directions corresponding to dislo-
cation colors, superimposed on diffraction pattern. b) Zoom
in on tracing of region of white box in 1a. Loops are drawn
and topological number of each loop is counted. A) Vortex-
antivortex pair, w = 0. B) Antivortex, w = −1. C) Vortex,
w = +1. D) Closed-loop dislocation, w = 0. E) Linear
domains, w = 0. c) Vortex density map computed from in-
terpolated displacement gradient matrix of image (a)

nearby vortex, keeping the net winding number w con-
stant within a fixed-boundary region. In Fig. 7(b), loop
A surrounds a vortex-antivortex pair, with w = 0. Loop
D, which surrounds the entire closed-loop dislocation,
also has net w = 0 as the entire feature could annihilate if
the local strain were removed, in which case it would be-
come similar to loop E. When circling a single antivortex
(B) or vortex (C), the winding number is nonzero.

B. Strain mapping

Existence of antivortices is a measure of the fact that
anisotropic strains (uniaxial and shear) are dominating
over the isotropic and twist components. Anisotropic

strains alter the band structure and can produce pseu-
domagnetic fields [38]. We can quantify the various
strain components from the displacement gradient ma-
trix. Computation of the displacement gradient matrix
from a DF TEM image is discussed in Appendix C. In
brief, one component of the order parameter is known
at every colored line, and an elastic model is used to in-
terpolate in between, obtaining an estimate of the order
parameter in the continuum. The displacement gradi-
ent matrix can be obtained by differentiating the order
parameter. This method can be readily applied to any
DF TEM images with prominent relaxation effect, such
that the dislocation lines and their nodes are identifiable.
For twisted graphene, this corresponds to angles approx-
imately 1◦ and below [27].

The density of vortices or antivortices is computed in
Fig. 7(c), by taking the determinant of the displacement
gradient matrix, |d|, which by the definition in Eq. 5 is
equal to (α2 + θ2)− (β2 + γ2) in terms of the strain and
twist components. If |d| > 0, vortices are present and if
|d| < 0, antivortices are present (see Appendix C). Thus,
if the isotropic components (twist and isotropic scaling)
outweigh the anisotropic components (shear and uniaxial
strain), vortices form, and if the opposite, antivortices
form. If |d| = 0, 1D domains are observed [26, 39].

We further use our estimated displacement gradient
matrix to create strain maps of the three strain com-
ponents, plus twist. Note that the moiré pattern only
provides information on the heterostrain, or difference
in strain between the two lattices. Furthermore, in this
work we are interested in the large-scale strain pattern
that leads to distorted moiré cells, rather than the local
strain concentrated in the domain walls upon relaxation.
Unlike other methods to estimate the large-scale heteros-
train from the spatial structure of a moiré pattern [40],
this DF TEM method includes knowledge of the lattice
orientation and Burgers vector information, avoiding the
need to make additional assumptions. Still, the need to
interpolate within the moiré cell means that information
smaller than the moiré scale is not deterministic from
the data. This method for strain mapping could sup-
plement other experimental techniques that image the
domain wall pattern in conjunction with Burgers vector
information [41, 42], to determine the large-scale strain
distribution.

In Fig. 8, strain maps are shown for a heterostruc-
ture of MoSe2 and WSe2. The intrinsic lattice constant
mismatch of 0.3% should show up in the isotropic com-
ponent. However, isotropic mismatch smaller than 0.3%
is measured, indicating that the lattice attains a global
strain to achieve closer to epitaxial matching. As global
lattice mismatch is often assumed to be fixed when calcu-
lating moiré lengths, this example illustrates how strain
mapping can reveal useful information about the phe-
nomenology of moiré materials.
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FIG. 8. a) Dark field image of WSe2/MoSe2 heterobilayer, in-
cluding domains larger than the lattice-mismatch limit. Scale
bar is 100 nm Inset: Diffraction pattern from a nearby region
and Burgers vectors. (b) Vortex density map. (c) Isotropic
strain map showing average mismatch lower than the 0.3%
expected from the intrinsic lattice mismatch. (d) Uniaxial
strain map, showing opposite sign strain when domains are
slanted left vs right. (e) Shear strain, showing magnitudes
around 1% in the highly elongated domains. (f) Twist map,
showing twist as the largest contributor to the moiré pattern.

V. CONCLUSION

In conclusion, we have presented a general and rigor-
ous approach to describing the topology of nodes formed
in moiré materials. Vortex and antivortex are described
as the commutator [a, b] and its inverse [b, a] of the free
group F2 on generators a and b. The two generators
have an intuitive geometric interpretation as two distinct
ways by which to make a transition from the AB to BA
stacking order, and then back to AB. High-quality TEM
measurements are then utilized to represent the abstract
generators in terms of colors of domain walls, leading to
a dictionary by which to infer the vortex content inside a
given boundary. This dictionary relies upon the order in
which the colored domain walls cross the boundary. The
idea is schematically illustrated in Fig. 9.

We discover an antivortex-type node and present a DF
TEM based method for characterizing the type of node
and strain field, which does not rely on the usual assump-
tion that the dominant component creating the moiré
pattern is twist. This opens the door for the design and
characterization of moiré materials based on anisotropic
strain fields.

G
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G-1

G

B-1

B-1B-1 R

B

G

B

R-1

R-1

FIG. 9. General configuration of RGB lines extending from
an arbitrary circle drawn on an experimentally TEM image.
By writing out the RGB letters along the circumference of the
circle, one can read off the total vorticity, number of dipoles,
etc. contained in the circle.
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Appendix A: Vortex algebra

We have avoided explicit use of the language of group
theory in the main body of the paper. The two generators
a, b and their commutators [a, b], [b, a] were introduced
through physical motivation. Here we provide more in-
depth discussion and generalizations based on the theory
of the free group.

The fundamental group of the punctured torus is F =
F2, the free group on two generators a, b [36, 37]. The
a and b generators correspond to the two independent
ways in which one can encircle the torus. In an ordinary
torus the two operations a and b do commute (Abelian),
and the only elements of the fundamental group of the
torus are ambn, which count the number of loops in both
directions. For a punctured torus such commutativity is
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lost, and consequently the group structure becomes non-
Abelian.

Elements of the free group F2 consist of every conceiv-
able sequence of “letters” such as abaabbbaa · · · called
“words”. Keep in mind that both letters a and b have
specific geometric moves associated with them. At this
point it is helpful to go over well-established theorems in
free groups to guide our thinking.

We now use F to denote the original free group F2.
Given two elements x, y ∈ F , the commutator is denoted
[x, y] ≡ xyx−1y−1. The “lower central series” of the free
group can be defined as follows. One begins with F 1 = F
which is the original free group, then F 2 = [F, F ] is the
subgroup of F consisting of all commutators [x, y] and
their products, i.e., all elements of the form

[x1, y1][x2, y2] · · · [xn, yn], (xi, yi ∈ F ).

The subgroup F 2 is also a normal subgroup, meaning
that the quotient space F 1/F 2 is a group.

Now one can proceed inductively and define

Fn = [F, Fn−1],

the subgroup generated by all elements of the form [x, y]
where x ∈ F and y ∈ Fn−1. It is easy to check from the
definition that

F 1 ⊃ F 2 ⊃ F 3 ⊃ F 4 · · ·

Much like the study of van der Waals materials, such “fil-
tration” gives a nice way to study a free group structure
‘one layer at a time’ !

Some facts that are worth noting about the lower cen-
tral series are summarized:

1. Any element f1 of F 1 = F can be uniquely written
am1bn1f2 with n1,m1 ∈ Z and f2 ∈ F 2.

2. Any element f2 of F 2 can be uniquely written
[a, b]m2f3 where m2 ∈ Z and f3 ∈ F 3.

3. Any element f3 of F 3 can be uniquely written
[a, [a, b]]m3 [b, [a, b]]n3f4 with m3, n3 ∈ Z and f4 ∈
F 4.

4. Any element f4 of F 4 can be uniquely written
([a, [a, [a, b]])m4([a, [b, [a, b]]])n4([b, [b, [a, b]]])p4f5
with m4, n4, p4 ∈ Z and f5 ∈ F 5.

By putting all of the above statements together, one sees
that any element f in the free group can be uniquely
written as

f = am1bn1 [a, b]m2 [a, [a, b]]m3 [b, [a, b]]n3([a, [a, [a, b]])m4([a, [b, [a, b]]])n4([b, [b, [a, b]]])p4f5 (A1)

and so on. In general, each F k is a normal subgroup,
and F k/F k+1 ' Zrk , meaning the quotient group is iso-
morphic to a product of rk integer groups Z × · · · × Z.
The number of generators is rk for a given quotient group
F k/F k+1. Although the free group itself is non-Abelian,
the quotient group F k/F k+1 is Abelian, characterized by
a set of rk integers. These integers then go on to play
the role of topological quantum numbers in physical con-
texts.

Elements of the free group (A1) for which m1 = n1 = 0
refer to closed loops in real-space graphical representa-
tion. It is clear that these are the only elements of F
that we are interested in. Elements for which f5 = e
(an identity) and m3 = n3 = m4 = n4 = p4 = 0 are
f = [a, b]m2 with nonzero m2. These are the elements
of the quotient group F 2/F 3 and represent the vortices
(m2 > 0) and antivortices (m2 < 0) in physical contexts.

To consider higher-order topological defects, consider
elements for which f5 = e and all integers in Eq. (A1)
equal to zero except (m3, n3):

f = [a, [a, b]]m3 [b, [a, b]]n3 . (A2)

Pictorial representations for the double commutators
[a, [a, b]], [b, [a, b]] are easily obtained by tracing out paths

according to definitions of a and b given in Fig. 6. We
encourage readers to perform such exercises themselves
and arrive at their graphical representations shown in
Fig. 10. They are precisely the graphical representation
of vortex-antivortex pairs (vortex dipoles) lying along the
two crystallographic directions of the triangular lattice.

Next in line is the description of vortex quadrupole
structure as triple commutators. According to Eq. (A1),
there are only three generators of the quotient group
F 4/F 5 ' Z× Z× Z. How does one know there are only
three generators at this level of filtration?

There is a theorem that gives the number of generators
(rk) at each level k through the formula

gk =
∑
d|k

d · rd. (A3)

In this formula the sum runs over all divisors d of the
given integer k. For a free group with only two genera-
tors we have g = 2 on the left side of the equation. To
see how the formula works with g = 2, first set k = 1
to find 2 = r1. It means that the quotient group F 1/F 2

has two generators, namely a and b. At k = 2 we have
22 = r1 + 2r2 = 2 + 2r2 or r2 = 1, hence there is only one
generator of F 2/F 3 which is the commutator [a, b]. At
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FIG. 10. Graphical representation of the double commutators
[a, [a, b]], [b, [a, b]]. They give vortex dipoles oriented along the
two directions of the triangular lattice. Filled (empty) square
is a vortex (anti-vortex).

k = 3 we have 23 = r1 + 3r3 = 2 + 3r3, and r3 = 2 is the
number of generators for F 3/F 4, namely [a, [a, b]] and
[b, [a, b]]. Finally, at k = 4 we get 24 = r1 + 2r2 + 4r4 =
2 + 2 + 4r4, and r4 = 3 is the number of generators of
F 4/F 5 given by [a, [a, [a, b]]], [a, [b, [a, b]]], [b, [b, [a, b]]]. It
is an arduous, but fun exercise to draw the real-space
paths corresponding to each of the triple commutator.
The results are the three distinct vortex quadrupole con-
figurations in real space shown in Fig. 11.

Appendix B: RGB scheme for higher-order vortices

In Sec. III we discussed ways to characterize a vorticity
in terms of the RGB color scheme. A similar RGB scheme
to characterize various higher-order vortex structures can
be developed.

Fig. 12 shows the vortex dipole and quadrupole
configurations in terms of intersecting RGB loops. A
small circle drawn around each intersection can de-
termine the vorticity of that point. For instance
the filled (empty) circle round the top (bottom) in-
tersection in Fig. 12(a) reads the product of letters
RG−1BR−1GB−1 (BG−1RB−1GR−1) going counter-
clockwise, corresponding to a vortex (an antivortex).
Vortex quadrupole construction is done by having the
three RGB loops intersect at four different points, as
shown in Fig. 12(b). In both cases, a large circle drawn
far away from the loops fails to cross any of the RGB
lines.

It is possible to construct examples of vortex dipole
configurations with loops extending out to infinity (hence
crossing an arbitrary large circle) as in Fig. 13(a) and

FIG. 11. Graphical representation of the three triple com-
mutators [a, [a, [a, b]], [a, [b, [a, b]]], [b, [b, [a, b]]] correspond to
three different kinds of vortex quadrupoles in real space.

FIG. 12. a) RGB graphical representation of a vortex dipole
with v(vortex, filled circle) and v(anti-vortex, empty circle)
sites. (b) Quadrupole configuration with alternating vvvv
cores.

(b). The group elements assigned to each configuration
can be calculated straightforwardly, leading to [a, [b, a]]
and [ab, [b, a]] for the left and right configurations, re-
spectively.

This kind of scheme is applicable to experimental sit-
uations. Draw a large loop enclosing a given TEM im-
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FIG. 13. (a) Extended vortex dipole con-
figuration characterized by the letter sequence
RG−1BG−1RB−1GR−1BR−1GB−1. After simple cal-
culation, this becomes equivalent to [a, [b, a]]. (b) Another
extended vortex dipole configuration, expressible as the
double commutator [ab, [b, a]].

age in the manner shown in Fig. 9, then start count-
ing the dislocation lines according to the RGB scheme.
The RGB-based words can be converted to the ab-letter
scheme with the help of the dictionary given in Eq. (10).
The ab-based word can subsequently be converted to var-
ious commutators and higher-order commutators until it
is cast in the general form given in Eq. (A1), from which
the total vorticity, dipole numbers, quadrupole numbers
and so on can be read off.

Appendix C: TEM image processing

TEM DF images were taken on a JEOL 2010F micro-
scope, with 80kV accelerating voltage. A 5µm objective
aperture was used to form the dark field images. RGB-
colored composite images were formed using Adobe Pho-
toshop blending modes from three distinct second order
images of a given sample region.

To create strain maps in Fig. 8, we performed image
processing using Python programming codes on images of
red, blue and green lines, such as in Fig. 7(b), to prepare
to interpolate shift vector values. Ideally an algorithm
could be created to extract the lines straight from TEM
images but we skip that step for now, and manually trace
the red, green, and blue lines to create an “ideal” (i.e.
noiseless), but still raster, image. It is then necessary
to split all lines into individual line segments and points
of intersections, which we call nodes. First, using the
connectedComponents function in Python’s OpenCV li-
brary, nodes are found by searching for places where red,
green, and blue pixels coincide. In a similar manner, pix-
els that belong to each red, green, or blue line are grouped
into lists after dilating them to ensure continuity. We in-
clude each line in a dictionary that describes the color of
the line and what nodes are part of it. Next, a circle cen-

tered around each node is removed from the image (set
to R,G,B = 0,0,0), effectively breaking the lines into line
segments. Again, the pixels of each segment are found
and a dictionary is created for each line segment. The
parent line of each segment is identified, as well as the
nodes that are its endpoints.

Next, each node must be assigned three integer values
corresponding to the coefficients of aR,aG and aB, where
aR is the lattice vector associated with the red line, and
so on. An origin node is picked arbitrarily and assigned
the coefficients (uR, uG, uB) = (0, 0, 0). Then, a red seg-
ment adjacent to the starting node is chosen to reach a
second node, which is assigned (uR, uG, uB) = (0, 1,−1).
Now that a second node is assigned, the choices are not
arbitrary because the direction of increase for each vec-
tor has been determined. Note that it is the case that
uG+uG+uB = 0 at every node, because aR+aG+aB = 0.
We also know that ur is constant on red lines, ug on
green lines, etc. From each node, we move to its neigh-
boring nodes (those connected by a segment), and use
these properties to fill in the rest of the coefficients. A
nice property of this manner of assigning coefficients is
it does not need to be told whether a given point is a
vortex or an antivortex. Lastly, using the csap and scipy
libraries, we fit B-splines to each line segment while forc-
ing the spline to pass through the nodes of the segment,
and then use the knots of the splines to generate a Gmsh
mesh file.

The next part of the computation is done in the Ju-
lia programming language. The vector values of aR and
aG (measured from a diffraction pattern) must be input
(aB can be found from the other two). Recall that the
vectors in the image plane should appear in the order of
RGB while going clockwise to correctly distinguish vor-
tices and antivortices. Coefficients are then attributed to
points on lines of the mesh and interpolated via an elastic
model using the Gridap library [43] and its interface with
Gmsh [44]. The elastic model applies a cost to a large
derivative in the u-field, as well as a cost to deviating
from the known values on the lines. The resulting u-field
is differentiated to get strain components. The values are
defined on a mesh that is small compared to the moiré
length. For plotting, the mesh values are interpolated
onto a grid in the Matlab software package.

In addition to spatially mapping each strain compo-
nent, knowledge of the displacement gradient matrix can
be used to map the density of vortices and antivortices.
Antivortices are distinguished from vortices by the chi-
rality of the rotation in configuration space as you make a
loop in real space. To quantify the chirality, we can com-
pare the sign of the cross product of a pair of real-space
vectors to their corresponding vectors in configuration
space. Consider the real space cartesian vectors x and
y where x × y is positive. They correspond to dx and
dy in configuration space, by Eq. 3. If the sign of the
cross product in configuration space is also positive, it is
a vortex. If negative, it is an antivortex.
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Given that x and y are basis vectors and the matrix

d =

(
a b
c d

)
=

(
α+ β γ − θ
γ + θ α− β

)
,

dx × dy = (ad − cb)xy. Thus the condition for a vortex
is det[d] > 0 and for antivortex is det[d] < 0.

Writing in terms of the strain components, the condi-
tion is

sgn[(α2 + θ2)− (β2 + γ2)] =

{
1 vortex

−1 antivortex.
(C1)
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[39] A. Sinner, P. A. Pantaléon, and F. Guinea, preprint
(2022).

[40] D. Halbertal, S. Shabani, A. N. Passupathy, , and D. N.
Basov, ACS Nano 16, 1471 (2022).

[41] N. P. Kazmierczak, M. V. Winkle, C. Ophus, K. C.
Bustillo, S. Carr, H. G. Brown, J. Ciston, T. Taniguchi,
K. Watanabe, and D. K. Bediako, Nature Materials 20,
956 (2021).

[42] Y. Li, X. Wang, D. Tang, X. Wang, K. Watan-
abe, T. Taniguchi, D. R. Gamelin, D. H. Cobden,
M. Yankowitz, X. Xu, and J. Li, Advanced Materials 33,
2105879 (2021).

[43] S. Badia and F. Verdugo, Journal of Open Source Soft-
ware 5, 2520 (2020).

[44] C. Geuzaine and J.-F. Remacle, International Journal on
Numerical Methods in Engineering 79, 1309 (2009).


