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Adiabatic quantum algorithms solve computational problems by slowly evolving a trivial state to the desired
solution. On an ideal quantum computer, the solution quality improves monotonically with increasing circuit
depth. By contrast, increasing the depth in current noisy computers introduces more noise and eventually
deteriorates any computational advantage. What is the optimal circuit depth that provides the best solution?
Here, we address this question by investigating an adiabatic circuit that interpolates between the paramagnetic
and ferromagnetic ground states of the one-dimensional quantum Ising model. We characterize the quality of
the final output by the density of defects 𝑑, as a function of the circuit depth 𝑁 and noise strength 𝜎. We find
that 𝑑 is well-described by the simple form 𝑑ideal + 𝑑noise, where the ideal case 𝑑ideal ∼ 𝑁−1/2 is controlled by
the Kibble-Zurek mechanism, and the noise contribution scales as 𝑑noise ∼ 𝑁𝜎2. It follows that the optimal
number of steps minimizing the number of defects goes as ∼ 𝜎−4/3. We implement this algorithm on a noisy
superconducting quantum processor and find that the dependence of the density of defects on the circuit depth
follows the predicted non-monotonous behavior and agrees well with noisy simulations. Our work allows one
to efficiently benchmark quantum devices and extract their effective noise strength 𝜎.

I. INTRODUCTION

Quantum computing has recently achieved several key mile-
stones, including the demonstration of quantum advantage [1–
6] and the democratization of quantum hardware through cloud
services. Although more and better qubits are needed to realize
the full potential of quantum computers, current devices are at
a turning point for the development and testing of algorithms.
The key obstacle of the current hardware is the inherent noise,
which limits the size of the quantum circuits that can be ex-
ecuted reliably [7]. Currently, this number involves, at most,
a few tens of qubits [8, 9]. However, it is expected to grow
significantly, hopefully reaching the hundreds in the next few
years.

Important examples of quantum algorithms that can be
run on intermediate-scale quantum computers include adia-
batic state preparation protocols [10] and variational algo-
rithms [11, 12] such as the quantum approximate optimiza-
tion algorithm (QAOA) [13–15]. These algorithms converge
asymptotically to the correct solution with increasing circuit
depth, i.e., the output becomes better with each additional
layer. However, the presence of noise leads to a fundamen-
tal trade-off between computational power and accuracy: On
the one hand, the user desires to perform complex calcula-
tions and run quantum circuits with a large number of layers.
On the other, increasing the circuit depth leads to an increase
of the noise and, eventually, deteriorates any computational
advantage. A fundamental question faced by the quantum
programmer is at what point does the noise introduced by an
additional circuit layer overcome its algorithmic benefit. In
other words, what is the optimal number of layer to obtain the
best solution in the presence of noise?

We address this question by considering an adiabatic quan-
tum protocol that transforms an equal superposition of all ba-
sis states to a generalized Greenberger-Horne-Zeilinger (GHZ)

state [16] ( |00 . . . 0〉 + |11 . . . 1〉)/
√

2. We quantify the success
of our algorithm by measuring the number of defects in the
final state, defined such that the GHZ state corresponds to the
absence of defects, 𝑑 = 0. For a one-dimensional system of 𝐿
qubits, we characterize the density of defects by

𝑑 =
1

2(𝐿 − 1)
∑︁𝐿−1

𝑖=1

(
1 −

〈
𝑍𝑖𝑍𝑖+1

〉)
∈ [0, 1], (1)

where 𝐿−1 is the number of bonds, and 𝑍𝑖 is the Pauli operator
on qubit 𝑖. For example, the basis state |00001111〉 has one
defect, i.e., a single domain wall separating two continuous
sequences of the same qubit state. In contrast, the initial
state of our protocol has, on average, one defect every two
bonds and corresponds to 𝑑 = 1/2. According to the adiabatic
theorem, the perfect GHZ state (𝑑 = 0) is obtained only in
the limit of infinite circuit depth, while a finite-depth circuit
will induce defects in the final quantum state (𝑑 > 0). Hence,
by monitoring 𝑑 throughout the circuit, we can estimate the
success rate of our algorithm.

In absence of noise, the dependence of the number of defects
𝑑 on the circuit depth 𝑁 is governed by the Kibble-Zurek (KZ)
mechanism [17–19], which has been extensively studied in
the literature [20–34], and observed experimentally in cold
atoms and superconducting qubits [35–37]. According to the
KZ scaling, 𝑑 is proportional to 𝑁−𝛼, where the exponent
𝛼 > 0 is set by the critical exponents of the model. Our
goal is to understand how the density of defects behaves in
the presence of noise. Qualitatively, we expect the density of
defects induced by the noise to be an increasing function of the
circuit depth 𝑁 . The interplay between the KZ mechanism and
the noise will generically lead to a non-monotonous behavior,
which we aim to characterize. Inspired by Ref. [29, 31, 38],
we assume the following ansatz,

𝑑 ' 𝑑ideal + 𝑑noise, (2)
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where 𝑑ideal is the density of defects in an noiseless circuit and
𝑑noise is the density of defects induced by the noise. We verify
this ansatz by extensive numerical simulations, aimed at de-
termining the dependence of 𝑑 on the number of layers 𝑁 and
on the noise strength 𝜎. As a key result of our calculations,
we predict the circuit depth for which the density of defects is
minimal. By comparing experimental results with an empiri-
cal noise model, we propose a method to benchmark quantum
computers by extracting their corresponding noise strength 𝜎.

II. MODEL, DEFINITIONS, AND METHODS

In this work, we focus on a paradigmatic quantum model,
namely the one-dimensional Ising model in a transverse field,
also known as the quantum Ising model. This model interpo-
lates linearly between the paramagnetic (PM) and ferromag-
netic (FM) Hamiltonians,

𝐻PM = −
∑︁𝐿

𝑖=1
𝑋𝑖 and 𝐻FM = −

∑︁𝐿−1

𝑖=1
𝑍𝑖𝑍𝑖+1, (3)

where 𝑋𝑖 and 𝑍𝑖 are the Pauli operators on qubit 𝑖. The
quantum processor is initially prepared in the ground state of
𝐻PM by applying individual Hadamard gates on all qubits.
We, then, implement an adiabatic protocol going from 𝐻PM

to 𝐻FM. At the end of the protocol, we measure the qubits
in the computational basis (the 𝑧-component of the spin) and
compute the density of defects according to Eq. (1).

The simplest way to perform an adiabatic evolution is to
drive the system according to the Hamiltonian 𝐻 (𝑠) = (1 −
𝑠)𝐻PM + 𝑠𝐻FM with 𝑠 slowly increasing over time from 0 to 1.
This method corresponds to adiabatic quantum computation
and fits analog quantum devices [10]. To work with digital
quantum computers, we perform a first-order Suzuki-Trotter
decomposition of the adiabatic protocol, and split it into 𝑛 =
1, . . . , 𝑁 smaller steps, each described by the unitary operator

𝑈𝑛 = exp
(
−𝑖ℎ𝑥𝑛𝐻PM

)
exp

(
−𝑖𝐽𝑧𝑛𝐻FM

)
, (4)

with step-dependent parameters ℎ𝑥𝑛 and 𝐽𝑧𝑛 following a chosen
procedure. This protocol can be implemented as a quantum
circuit, see Fig. 1(a). Thanks to a mapping to free fermions
through a Jordan-Wigner transformation, the resulting time
evolution can be computed in polynomial time by classical
means [39–43]. If ℎ𝑥 and 𝐽𝑧 are kept fixed, one obtains a
Floquet system where 𝐻PM and 𝐻FM alternate in time [44].
The phase diagram of this model was studied in Ref. [45], see
Fig. 1(b): In addition to the FM and PM phases, the model has a
Floquet topological and a discrete time crystal phases [46, 47].
These phases have been observed experimentally in digital
quantum computers, in Refs. [43], [48], and [49], giving rise
to significant public interest.

In this work, we vary ℎ𝑥𝑛 and 𝐽𝑧𝑛 along the rounded path de-
picted by the blue squares in Fig. 1(b) [43], formally described
by ℎ𝑥𝑛 = cos \𝑛 and 𝐽𝑧𝑛 = sin \𝑛, with \𝑛 = 𝑛𝜋/[2(𝑁 + 1)]
and 𝑛 = 1, 2, . . . 𝑁 . This protocol connects adiabatically 𝐻PM

to 𝐻FM and crosses a quantum phase transition at the step
𝑛 = 𝑁/2. Incidentally, we observe that the time evolution of
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FIG. 1. (a) Quantum circuit representing a single step of our protocol
for 𝐿 = 4 qubits, consisting of parametric gates Rzz and Rx imple-
menting the unitary evolution, controlled, respectively, by 𝐻FM and
𝐻PM, see Eqs. (3) and (4). (b) Phase diagram of the one-dimensional
Floquet quantum Ising model generated by a periodic application of
Eq. (4) with fixed ℎ𝑥 and 𝐽𝑧 . The blue path corresponds to the
protocol considered in this work, while the red path to a possible im-
plementation of a QAOA algorithm with the same number of steps,
𝑁 = 7.

Eq. (4) is the building block of the QAOA, where cos \𝑛 and
sin \𝑛 are substituted by variational parameters, as schemati-
cally drawn by the red dots in Fig. 1(b).

III. DEFECTS IN NOISELESS AND NOISY ADIABATIC
PROTOCOLS

A. Noiseless case: the Kibble-Zurek scaling

We first turn our attention to the density of defects 𝑑ideal
induced by a finite number of layers 𝑁 in a noiseless scenario.
In general, because the initial and final states belong to dif-
ferent phases of matter (paramagnetic versus ferromagnetic),
a phase transition is expected to happen on the way [50]. If
the transition is second order, in the vicinity of the transition
point the spectral gap between the ground state and the first
excited state closes as ∼ 𝐿−𝑧 , where 𝑧 the dynamical critical
exponent. This minimal gap is the relevant energy scale for
an adiabatic evolution and dictates the maximal velocity 𝑢 at
which the protocol can be carried such that the system remains
close to its instantaneous ground state [10]. According to the
KZ mechanism, the density of defects at the end of the protocol
should scale as 𝑑 ∼ 𝑢𝑧/(𝑧+a) , where a is the correlation-length
critical exponent [19]. In the context of gate-based quan-
tum computing, the protocol is performed using 𝑁 discrete
steps. For fixed initial and final points, the velocity 𝑢 is in-
versely proportional to 𝑁 and one expects 𝑑ideal ∼ 𝑁−𝑧/(𝑧+a) .
The applicability of the KZ scaling to the discrete evolution
of integrable models was first demonstrated in Ref. [28] and
dubbed Floquet-Kibble-Zurek mechanism. This result can be
understood by noting that the KZ scaling is determined by
the low-frequency component of the single-particle spectrum,
which is identical for the continuous and discrete (Floquet)
adiabatic evolution.
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FIG. 2. Density of defects in the ideal case as a function of the
number of steps 𝑁 , for various system sizes 𝐿. For large system
sizes, 𝑑 follows the KZ scaling 𝑑ideal = 0.3213(3)/

√
𝑁 (dashed line,

data fitted for 𝑁 > 50 on 𝐿 = 256), while for small systems, 𝐿 � 𝑁2,
the suppression becomes exponential.

For the one-dimensional quantum Ising model of Eq. (3), the
correlation-length and dynamical exponents are a = 𝑧 = 1 [50,
51], leading to a square-root decay of the density of defects
with the number of layers, i.e., 𝑑ideal ∼ 1/

√
𝑁 . This scaling is

verified in Fig. 2 for the largest system size. For smaller system
sizes, we observe a systematic deviation from the expected
power-law, which can be understood as follows. The density
of defects is associated with a defect-free length scale bideal ∼
𝑑−1

ideal ∼
√
𝑁 . The KZ scaling is valid in the limit where

the system size 𝐿 is much larger than bideal, or equivalently
𝑁 � 𝐿2, such that finite-size effects can be neglected. If
the number of steps exceeds this limit, one expects to recover
the result of a finite system, where the density of excitations
(defects) decays exponentially with 𝑁 .

B. Noisy case: Step-dependent noise and static disorder

The main goal of this work is to study the KZ mechanism
in a noisy environment. We introduce noise in the form of the
following modifications to Eq. (3),

𝐻PM
𝑛 = −

∑︁𝐿

𝑖=1

[
1 + [𝑛,𝑖

(
𝜎noise

)
+ [𝑖

(
𝜎disorder

) ]
𝑋𝑖 , (5)

and,

𝐻FM
𝑛 = −

∑︁𝐿−1

𝑖=1

[
1 + [𝑛,𝑖

(
𝜎noise

)
+ [𝑖

(
𝜎disorder

) ]
𝑍𝑖𝑍𝑖+1, (6)

where the above Hamiltonians now have an explicit depen-
dence on the Floquet evolution step 𝑛. Here, [(𝜎) is a random
variable, normally distributed with mean zero and standard
deviation 𝜎, characterizing the strength of the noise. These
equations introduce two types of randomness: The first one,
referred to as noise, is qubit- and step-dependent. The sec-
ond, called disorder, is only qubit-dependent and does not
vary at each step. Equations (5) and (6) are analogous to the
models introduced in Refs. [29, 31, 52, 53] in the context of
continuous-time adiabatic annealing. Specifically, Ref. [29]

FIG. 3. Density of defects 𝑑 for 𝐿 = 120 for various noise strengths.
The purple dashed line represents the KZ scaling 𝑑 ≡ 𝑑ideal =
0.3046(5)/

√
𝑁 for the ideal case (data fitted for 𝑁 > 50). The black

dashed curves are obtained using Eq. (1) where 𝑑ideal is given by the
noiseless data and 𝑑noise = 2.499(4)𝜎2𝑁 (data fitted for 𝑁 > 10 and
𝜎noise = 10−2). Each data point is generated from the average over
ten random samples.

considered a model of spatially uniform noise, described by a
time-dependent field that couples to 𝐽𝑧 → 𝐽𝑧 (𝑡), rather than
to the individual qubits. Our noise model is analogous to
the infinite temperature limit of the Ohmic bath considered in
Ref. [52], and our disorder to the random magnetic field used
in Ref. [53] to account for kink correlations. We will comment
more on these analogies below.

To describe phenomenologically the effects of noise and
disorder, we extend the ansatz of Eq. (2) regarding the different
contributions to the density of defects to,

𝑑noise −→ 𝑑noise + 𝑑disorder, (7)

with 𝑑noise the contribution of the step-dependent noise specif-
ically and 𝑑disorder the contribution of the static disorder. We
seek to find a functional form for the two contributions as a
function of the randomness strength and number of steps. The
modifications of Eqs. (5) and (6) conserve the free fermionic
nature of the circuit, which allows us to use the same technique
as the noiseless case for investigating the system.

1. Step-dependent noise

We first consider the step-dependent noise case, setting
𝜎noise > 0 and 𝜎disorder = 0. In the limit of an infinite num-
ber of steps, for any noise strength, the circuit falls into the
class of random unitary free fermion circuits [54] and leads to
a random Gaussian state. It follows that the total density of
defects according to Eq. (1) for such a state is 𝑑 = 1/2. Here,
we are interested in the regime before the defects density sat-
urates. Figure 3 shows the density of defects as a function of
the number of steps for various values of the noise strength
𝜎noise ∈ [0, 0.1]. At small but nonzero noise, the data initially
follows the ideal case (𝜎noise = 0) and decreases in the first
steps as ∼ 1/

√
𝑁 , but then deviates and begins to increase.

The deviation from the ideal case happens for a smaller and



4

(a)

(b)

(c)

FIG. 4. (a) Density of defects in the presence of noise, as a function
of the number of steps 𝑁 , for various noise strengths 𝜎noise. We
consider a system size of 𝐿 = 20 and average the data over five
random realizations. We observe a linear dependence with 𝑁 . (b)
Density of defects, as a function of the noise strength, for a fixed
number of steps 𝑁 = 3×103. There is no size dependence as the data
for 𝐿 = 20, 𝐿 = 30, and 𝐿 = 40 fall onto each others. The data is
averaged over five random realizations. We find an algebraic increase
with the noise strength ∼ 𝜎2

noise. (c) Density of defects in presence
of static disorder, as a function of the disorder strength 𝜎disorder, for
various number of steps 𝑁 (data averaged over five hundred random
realizations). We find no dependence with 𝑁 and checked that there
is no system size dependence either (data not shown). We observe
that the density of disorder-induced defects grows as ∼ 𝜎2

disorder.

smaller number of steps as the noise strength increases. We ob-
serve a noise-dependent minimum as a function of the number
of steps, corresponding to the optimal number of steps 𝑁opt
that minimizes the number of defects in the noisy adiabatic
circuit. We come back to this minimum in Sec. III C.

If the ansatz of Eq. (2) is valid, we can isolate the noise-
induced defects by subtracting the adiabatic contribution com-
ing from the use of a finite number of steps𝑁 , 𝑑noise ' 𝑑−𝑑ideal.
For 𝐿 = 20 at fixed value of the noise strength 𝜎noise = 10−3,

we compute the dependence of 𝑑noise with the number of steps
𝑁 and plot it in Fig. 4(a). As expected, the noise increases the
density of defects. We find that it grows linearly as 𝑑noise ∼ 𝑁 ,
to be compared with 𝑑ideal ∼ 1/

√
𝑁 in the ideal noiseless

case. We repeat the procedure for a fixed number of steps
𝑁 = 3 × 103 (𝐿 = 40) and vary the noise strength 𝜎noise. The
data is displayed in Fig. 4(b) and shows an algebraic depen-
dence compatible with 𝑑noise ∼ 𝜎2

noise. Put together, the two
results lead to,

𝑑noise ' 𝑎noise𝑁𝜎
2
noise, (8)

with 𝑎noise = 2.61(2) and 𝑎noise = 2.24(8) evaluated by least-
square fitting from the data of Figs. 4(a) and 4(b), respectively.
We attribute the negligible difference between these two values
to finite-size effects and consider the average 𝑎noise = 2.42(8)
in the following. Equation (8) is analogous to the results
obtained in Refs. [55] and [56] for the case of a sudden quench,
according to the identification of bnoise = 𝑑−1

noise ∼ (𝑁𝜎2
noise)

−1.
In Fig. 3 we compare the numerical data with 𝑑 = 𝑑ideal+𝑑noise,
where 𝑑noise is given by Eq. (8). A good agreement is found
with the simulations, including for the position of the minimum
of defects as a function of the number of steps. Note that the
expression of Eq. (8) does not account for the saturation of the
density of defect to 𝑑 . 1/2 as 𝑁 → +∞, which is, therefore,
not captured.

We now present an intuitive argument aimed at explain-
ing the scaling of Eq. (8). For simplicity, we consider a
single qubit in the |0〉 state and to which one applies 𝑁
random fields of average intensity 𝜎noise in the 𝑥 direction:∏𝑁

𝑛=1 exp[−𝑖[𝑛 (𝜎noise)𝑋] |0〉. The resulting dynamics cor-
responds to a random walk in the intersection of the Bloch
sphere with the YZ plane. If we denote by \ the angle
of the qubit with respect to its initial state, we find that at
step 𝑁 , the variance of \ will be given by E[\2] = 𝜎2

noise𝑁 .
Thus, the probability to find the qubit in the |1〉 state is
𝑑noise = 1 − E[cos \] = 1 − exp(−𝑁𝜎2

noise/2), where we used
the central limit theorem along with properties of Gaussian
variables. For small 𝜎noise, one obtains 𝑑noise = 𝑁𝜎2

noise/2, in
agreement with the result of Eq. (8).

2. Static disorder

We now turn our attention to the static disorder case with
𝜎disorder > 0 and 𝜎noise = 0. The presence of disorder and
the free-fermionic nature of the model leads to the Ander-
son localization of all single-particle states [57, 58], and thus
all eigenstates. In one dimension, the localization induces a
length scale bloc ∼ 𝜎−2

disorder [59, 60]. The ground state of
the model is still characterized by a phase transition between
a paramagnetic and ferromagnetic phases. However, instead
of belonging to the Ising universality class in 1 + 1 dimen-
sions [50, 51], it proceeds via an infinite-randomness criti-
cal point [61]. This transition differs from the disorder free
case for several reasons: (i) At the critical point, all excited
eigenstates are localized, with only the ground state showing
a diverging length scale; (ii) the dynamical exponent takes the
value of 𝑧 = ∞, meaning that the relationship between energy
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FIG. 5. Optimal number of steps, as a function of the noise
strength. The error bars correspond to the optimal value plus/minus
5%. Each data point 𝑁opt has been computed from curves aver-
aged over 10 random realizations. We find that the optimal number
of steps follows Eq. (11) with 𝑁opt = 0.137(9)𝜎−4/3

noise for 𝐿 = 20,
𝑁opt = 0.164(9)𝜎−4/3

noise for 𝐿 = 30, and 𝑁opt = 0.167(7)𝜎−4/3
noise for

𝐿 = 50.

and length scales at the transition is exponential instead of
being a conventional power-law; (iii) close to such a transi-
tion, physical observables𝑂 can behave differently depending
if one looks at the disorder average value E[𝑂] or the typical
value ln(E[exp𝑂]). To the best of our knowledge, there are no
analytical or numerical studies of the KZ mechanism across
this type of transition.

In the present study, we restrict ourselves to the limit of
small 𝜎disorder. In this limit, the disorder leads to perturbative
corrections that are unaffected by the asymptotic properties of
the critical point. We find that one can effectively isolate the
defects induced by the disorder through 𝑑disorder ' 𝑑 − 𝑑ideal,
with 𝑑ideal the density of defects in the ideal disorder-free case.
In Fig. 4(c), we show that the density of disorder-induced
defects is independent of the number of steps 𝑁 and only
depends on the disorder strength,

𝑑disorder ' 𝑎disorder𝜎
2
disorder, (9)

with 𝑎disorder = 1.36(5) a fitting parameter evaluated by least-
square fitting on the 𝑁 = 20 data of Fig. 4(c). The scaling
of Eq. (9) can be explained by the scaling of the localization
length 𝑑disorder ∼ b−1

loc ∼ 𝜎
2
disorder.

C. Minimizing defects: Optimal circuit depth

In the previous section, we established the validity of the
ansatz of Eq. (2) concerning the density of defects: The total
density of defects is well-described by the sum of individual
sources of defects,

𝑑 ' 𝑎ideal√
𝑁

+ 𝑎noise𝑁𝜎
2
noise + 𝑎disorder𝜎

2
disorder. (10)

with the first term corresponding to the ideal scenario de-
scribed by the Kibble-Zurek mechanism and the two following

terms describing the noise- and disordered-induced defects, re-
spectively. The functional form of Eq. (10) versus the number
of steps makes the determination of the optimal number of
steps 𝑁opt minimizing the total density of defects straightfor-
ward,

𝜕𝑑

𝜕𝑁

����
𝑁=𝑁opt

= 0 ⇒ 𝑁opt ' 𝜎−4/3
noise

(
𝑎ideal

2𝑎noise

)2/3
. (11)

This result follows the same scaling law predicted in Refs. [29,
31] for the case of a spatially uniform noise. Remarkably,
disorder-induced defects, with no dependence on the number
of steps 𝑁 , play no role in Eq. (11). From Fig. 3, display-
ing the density of defects as a function of the number of
steps for various noise strengths 𝜎noise, we extract 𝑁opt, the
optimal number of steps that minimizes the number of de-
fects. In Fig. 5, we plot 𝑁opt versus 𝜎noise and compare it to
Eq. (11). Using estimates from Fig. 4 for 𝑎ideal and 𝑎noise, we
get (𝑎ideal/2𝑎noise)2/3 = 0.164(8), which is consistent with the
coefficient obtained by fitting independently the data of Fig. 5.

IV. REALISTIC NOISE MODELS AND EXPERIMENTAL
VALIDATION

The noise model from Eqs. (5) and (6) studied in Sec. III B
has the advantage of being simple, with a single parameter
controlling the noise strength, and the possibility of large-
scale simulations thanks to its free-fermionic nature. In what
follows, we aim to compare the results of this approach with
established noise models that have a better clear microscopic
justification, as well as experimental results.

A. Stochastic Pauli error model

The first model is based on stochastic Pauli error models.
The effect of this noise on adiabatic state preparation was first
considered in Ref. [37]. There, it was found that an error rate
𝑝 leads to a noise-induced length scale bnoise ∼ 1/𝑝. This
expectation translates into a density defects growing linearly
with 𝑝. Comparing this results with the simpler noise model of
Eqs. (5) and (6) allows one to relate the parameters controlling
the noise strength in the two respective models, 𝑝 ∼ 𝜎2

noise.
To obtain a realistic description of the real hardware, we

consider a stochastic Pauli error model with several quan-
tum channels E𝑖 𝑗 applied after each two-qubit gate on qubits
(𝑖, 𝑗) [62],

E𝑖 𝑗
(
𝜌
)
=

∑︁
`,𝜐∈[𝐼 ,𝑥,𝑦,𝑧 ]

𝑝`𝜐𝜎
`
𝑖 𝜎

𝜐
𝑗 𝜌𝜎

`
𝑖 𝜎

𝜐
𝑗 , (12)

with 𝜌 the density matrix describing the system, 𝜎𝐼 ,𝑥,𝑦,𝑧 are
Pauli matrices with 𝜎𝐼 ≡ 𝐼 (identity), and 𝑝`𝜐 are the error
rates fulfilling

∑
`𝜐 𝑝`𝜐 = 1. Note that 𝑝𝐼 𝐼 is the fidelity and

corresponds to the probability of a perfect operation.
The parameters 𝑝`𝜐 are determined using the noise recon-

struction protocol described in Refs. [63] and [64]. The pro-
tocol estimates the marginal rate of each set of Pauli errors by
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FIG. 6. Density of defects versus the number of steps obtained for
𝐿 = 6 in three different ways using 212 bitstrings for each data point:
The stochastic Pauli noise model of Eq. (12), the decoherence noise
model of Eq. (13), and the experimental data from Rigetti Aspen-
11. All produce phenomenologically similar curves. Note that the
decoherence model data is biased downwards by the decay, especially
for large number of steps. 𝑁 = 0 corresponds to a layer of Hadamard
gates on individual qubits leading to 𝑑 = 1/2 from a theoretical
perspective.

preparing the qubit register in a basis state which is sensitive
to the selected Pauli error, and then repeating the cycle of two-
qubit gates 𝑚 times. Inserted between each cycle of two-qubit
gates is a set of random Pauli gates. By repeating this mea-
surement with different sets of interleaved Paulis, the noise is
tailored to be stochastic. Finally, by varying 𝑚, an exponen-
tial decay rate for the Pauli error can be estimated for each
channel, similar to randomized benchmarking [65]. Thus, we
are able to estimate the average probability of each Pauli er-
ror occurring on a two-qubit gate during the given cycle. We
perform the experiment on the superconducting quantum chip
Rigetti Aspen-11. We use the hardware-native one-qubit gates
Rz (𝜑) = exp(−𝑖𝜑𝜋𝑋/2) and Rx (Z) = exp(−𝑖Z𝜋𝑋/2) as well
as the two-qubit gate CPHASE(𝜑) = diag(1, 1, 1, 𝑒𝑖𝜑) in the
usual basis {|00〉, |01〉, |10〉, |11〉} for compiling the circuit of
Fig. 1(a). For the CPHASE(𝜑) gate, the angle of 𝜑 = 𝜋 is char-
acterized. Since the phase is implemented digitally, the gate
error is expected to be independent of the parametric phase.

Once estimated, the parameters can be used to simulate
Eq. (12). We collect 212 bitstrings and compute the average
density of defects of Eq. (1) for 𝐿 = 6 qubits versus different
number of steps. We plot the results as red squares in Fig. 6 and
find that this more realistic noise model shows qualitatively
the same features as the simpler one previously studied. In
particular, the density of defects shows a minimum for an
optimal number of steps before increasing again to saturation.
This result confirms that the noise model of Eqs. (5) and (6) is
phenomenologically valid.

B. 𝑇1 and 𝑇2 error model

The stochastic Pauli error model noise model of Eq. (12)
put the individual qubit states |0〉 and |1〉 on the same footing
by acting isotropically on the Bloch sphere. However, relax-
ation will make qubits decay from their excited state |1〉 to
their ground state |0〉, and thus favor |0〉 qubit states in the
output bitstrings. As a result, the measured density of de-
fects of Eq. (1) will be lower. This effect can be modeled by an
amplitude-damping channel on qubit 𝑖 (𝑇1), which we combine
with a phase-damping channel (𝑇2) [62],

E𝑖
(
𝜌
)
= 𝐾1

𝑖 𝜌𝐾
1†
𝑖 + 𝐾2

𝑖 𝜌𝐾
2†
𝑖 + 𝐾3

𝑖 𝜌𝐾
3†
𝑖 , (13)

with Kraus operators 𝐾1
𝑖 , 𝐾2

𝑖 , and 𝐾3
𝑖 ,

𝐾1
𝑖 =

(
1 0
0

√︃
1 − 𝛾𝑖 −

(
1 − 𝛾𝑖

)
_𝑖

)
, 𝐾2

𝑖 =

(
0 √

𝛾𝑖
0 0

)
,

𝐾3
𝑖 =

(
0 0
0

√︃(
1 − 𝛾𝑖

)
_𝑖

)
, 𝛾𝑖 , _𝑖 ∈ [0, 1],

(14)

where 𝛾𝑖 = 1 − exp(−𝛿𝑡/𝑇1𝑖) and _𝑖 = 1 − exp(−𝛿𝑡/𝑇2𝑖) with
𝑇1𝑖 and 𝑇2𝑖 the relaxation and dephasing times of qubit 𝑖, and
𝛿𝑡 the operation time. For the six qubits used experimentally
on Rigetti Aspen-11, the average values are: 𝑇1 ≈ 30.1 `s and
𝑇2 ≈ 14.5 `s. The gates are sorted into cycles with 𝛿𝑡 ≈ 32
ns for the one-qubit gate cycle and 𝛿𝑡 ≈ 176 ns for the two
two-qubit gate cycles (one cycle for even and one cycle for
odd bonds). We find in Fig. 6 that such 𝑇1-𝑇2 error model
is qualitatively similar to the others and leads to a density of
defects showing a minimum for an optimal number of steps,
before increasing again to saturation. However, unlike the
simpler noise model and the stochastic Pauli error model, the
saturation at large 𝑁 is obtained at 𝑑 ≈ 0.5, which is much
lower than the theoretical value for a random state 𝑑 = 1/2.
This behavior is expected from the asymmetry between the
qubit states |0〉 and |1〉 of the noise model: The decay process
described by𝑇1 drives the qubits to the |0〉 state and effectively
reduces the number of defects in the chain.

C. Experimental verification

Finally, we compare the output of the noise models with
the results of a real quantum computer, Aspen-11 by Rigetti.
The average density of defects, Eq. (1) is plotted in Fig. 6 ver-
sus the number of steps 𝑁 , for 𝐿 = 6 qubits. We observe the
non-monotonous behavior predicted by the theoretical models,
with a minimal number of defects at 𝑁 = 5 steps. Interestingly,
this value is larger than the one predicted by both the stochas-
tic Pauli and 𝑇1-𝑇2 realistic noise models. This effect may be
attributed to correlations between the real noise occurring in
the different layers, which are not captured by the theoretical
models. For a long number of steps 𝑁 & 15, the number of
defects saturates to an intermediate value 𝑑 ≈ 0.45 between
the two theoretical models, respectively giving 𝑑 ≈ 0.5 and
𝑑 ≈ 0.4. These observations indicate that, while the predicted
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FIG. 7. Experimental density of defects computed on Rigetti Aspen-
M-1 for 𝐿 = 4, 𝐿 = 5, and 𝐿 = 6 from 212 bitstrings for each data
point. Lines are fit of the form 𝑑 = 𝑑ideal + 𝜎2

noise𝑁 + 𝜎2
disorder for

𝑁 ≤ 11 with 𝑑ideal the density of defects in an ideal simulation. Here,
𝜎noise and 𝜎disorder are fitting parameters, see Eq. (10).

minimum is a universal effect, neither theoretical models are
sufficient to achieve a quantitative description of the experi-
ment.

To check the resilience of these results to the details of the
noise source, we repeat the same experiment on a different
quantum device, the Rigetti Aspen-M-1, where we consider
𝐿 = 4, 𝐿 = 5, and 𝐿 = 6 qubits, see Fig. 7. We find that
all the system sizes follow the non-monotonous behavior pre-
dicted by the theoretical models. The optimal number of
steps increases with system size from 𝑁opt = 2 for 𝐿 = 4
to 𝑁opt = 6 for 𝐿 = 6. By fitting the data according to
Eq. (10), we can extract an effective noise strength for each
system size independently. Because this expression does not
capture the saturation of the density of defects at large 𝑁 ,
we restrict the fitting window to 𝑁 ≤ 11 before the satura-
tion takes place. We find the following fitting parameters:
For 𝐿 = 4, 𝜎noise = 0.180(6) and 𝜎disorder = 0.27(3); for
𝐿 = 5, 𝜎noise = 0.155(5) and 𝜎disorder = 0.076(9); for 𝐿 = 6,
𝜎noise = 0.142(5) and 𝜎disorder = 0.11(1). This result indi-
cates that both 𝜎disorder and 𝜎noise decrease with the number of
qubits, as reflected by an increasing 𝑁opt as a function of 𝐿.
At first, this result seems counter-intuitive because one usu-
ally expects superconducting circuits to become noisier as the
system size is increased, while we observe an opposite effect.
This phenomenon is also observed in the numerical simula-
tions of Fig. 8. The simulations also reveal that the increase of
𝑁opt with 𝐿 comes with an absolute larger density of defects,
and from that perspective, the larger systems are not neces-
sarily less noisy. This effect was not observed in the previous
larger-scale simulations and is attributed to finite-size effects.

A similar non-monotonic behavior of the density of defects
has also been recently observed in a quantum annealing experi-
ment leveraging 2, 000 qubits of a D-Wave quantum processor,
see Fig. 2(a) of Ref. [53] (see also Ref. [31]): The density of
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3

fdisorder = fnoise = 0.1
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FIG. 8. Density of defects 𝑑 as a function of the number of steps 𝑁
for different small system sizes 𝐿. Top panel: Noise model of Eqs. (5)
and (6) with 𝜎noise = 𝜎disorder = 0.1. The data points are averaged
over 5000 random realizations. Bottom panel: Stochastic Pauli noise
model of Eq. (12) with each data point averaged over 213 bit strings.

defects initially decreases as a function of the anneal time
(which plays the role of the number of steps in our discrete
algorithm) and then increases back to a saturation point. The
saturation value was shown to depend on the temperature of
the quantum processor, which was used as an independent
knob. As mentioned earlier, our noise model is equivalent to
an infinite temperature bath, which drives 𝑑 to the saturation
value of 1/2. For low-temperature baths, the saturation value
is smaller and determined by the relevant Boltzmann statistics.
At very low temperatures, or equivalently at large values of
𝐽𝑧 , the saturation point goes below the level of experimental
detectability and the effect of the bath is rather described by a
decay process analogous to the 𝑇1-𝑇2 model introduced above.
This experiment demonstrates the validity of our approach
across different protocols.
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V. CONCLUSION

A. Summary

In this work, we investigated the density of defects in the
final state of a noisy, adiabatic, state-preparation circuit. On
the one hand, one wants the number of layers in the circuit to
be as large as possible to be in the genuine adiabatic limit and
get the final state most accurately. On the other hand, inher-
ent hardware noise will induce defects in the state preparation
with each additional layer. To address this interplay in a sim-
ple scenario, we considered the evolution of a paramagnetic
ground state to a ferromagnetic state in one dimension, by
interpolating their respective parent Hamiltonians in 𝑁 steps.
We found that the density of defects 𝑑, characterized by the
density of domain walls according to Eq. (1), takes a simple
form adding up two contributions 𝑑 = 𝑑ideal +𝑑noise: (i) A con-
tribution from the noiseless ideal case due to the finite number
of layers 𝑁 , and (ii) a contribution from the noise of strength
𝜎. We introduced noise in the form of a random component
to the parent Hamiltonians and simulated numerically up to
hundreds of qubits and thousand of steps thanks to the model
mapping to free fermions.

In the noiseless case, the density of defects is controlled by
the KZ mechanism with 𝑑ideal ∼ 1/

√
𝑁 , which goes to zero in

the adiabatic limit as 𝑁 → +∞. We studied two versions of
the noise. The first one was step- and qubit- dependent and
led to a density of defects contribution proportional to 𝑑noise ∼
𝑁𝜎2

noise. We found that a simple random walk argument on the
Bloch sphere could explain the scaling. The second version
of noise was only qubit-dependent and therefore analogous to
a disordered system. In that case, we observed that 𝑑disorder ∼
𝜎2

disorder, independently of the number of steps 𝑁 . The free-
fermionic nature of the system leads to Anderson localization
in presence of disorder, with a localization length going as
bloc ∼ 𝜎−2

disorder, explaining the scaling of the density of defects
through 𝑑disorder ∼ b−1

loc. By obtaining a functional form for
the density of defects as a function of the number of steps and
the disorder strength, we derived an expression for the optimal
number of steps 𝑁opt minimizing the overall density of defects.
We arrived to 𝑁opt ∼ 𝜎−4/3

noise , which we verified numerically.
We, next, considered two realistic noise models based, re-

spectively on Pauli matrices and 𝑇1 −𝑇2 dissipative processes.
These models reproduced the non-monotonous behavior of the
number of defects, highlighting the universal nature of this ef-
fect. Finally, we confronted the results of the noise models
with those of actual noisy quantum computers. We realized
the circuit on the superconducting chips Rigetti Aspen-11 and
Rigetti Aspen-M-1, and found a good agreement, validating
the phenomenology of the noise model. By fitting the experi-
mental density of defects to the functional form established in
this work, we showed that one can benchmark noisy quantum
processors by extracting their effective noise strength 𝜎. This
allows for an easy comparison of the performance of different
hardware.

B. Outlook

The building blocks of the quantum circuit studied in this
work are the same as for the QAOA algorithm [13–15]: In-
stead of being fixed by the interpolation, the angles 𝐽𝑧 and ℎ𝑧
are variational parameters optimized such that the final state
minimizes the energy of the desired Ising Hamiltonian. Due
to the similarities between QAOA and a circuit for adiabatic
state preparation, we believe our results naturally extend to that
case. In fact, the free fermionic nature of the circuit allows
its lossless compression to a depth scaling linearly with the
number of qubits [66–68], showing that a QAOA-like circuit
with depth 𝑂 (𝐿) can represent any 𝑁-step adiabatic protocol.
Although the numerical prefactors may be different, we expect
that the predicted power-law dependence between 𝑁opt and 𝜎
should still be valid in this case.

Our results do not extend straightforwardly to higher dimen-
sions and disordered Hamiltonians, corresponding to so-called
spin glass problems [69–72]. First, the definition of a defect
based on a domain wall, as in Eq. (1), is specific to one dimen-
sion. A generalized quantity would be the excess of energy
with respect to the exact ground state energy, but would re-
quire prior knowledge or estimation of the exact ground state
energy. Second, the critical exponents governing the ideal
noiseless case would be different depending on the dimen-
sionality of the problem. For instance, in two dimensions, the
critical exponents would be those of the Ising universality class
in (2+ 1) dimensions [73–76], for which a KZ mechanism has
been confirmed experimentally in a cold atom setup [33] and
numerically by neural-network-based simulations of quantum
dynamics [34]. Finally, one would need to investigate whether
the effect of noise in inducing an excess of energy ∼ 𝑁𝜎2

noise
according to Eq. (8) remains valid beyond one dimension. We
note that a qubit-dependent and step independent noise “disor-
der” would probably have a very different effect as Anderson
localization is a unique property of noninteracting models (the
mapping to free fermions is only valid in one dimension), and
that the existence of its many-body counterpart, namely the
many-body localization phenomenon [77–79], is still actively
debated beyond one dimension [80].

Outside of quantum computing, and as discussed in the
main text in relation to disorder-induced defects, we believe
that interesting theoretical questions remain regarding the KZ
mechanism across infinite-randomness critical points.
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