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Abstract

We introduce a ZN stabilizer code that can be defined on any spatial lattice of the

form Γ × CLz , where Γ is a general graph. We also present the low-energy limit of

this stabilizer code as a Euclidean lattice action, which we refer to as the anisotropic

ZN Laplacian model. It is gapped, robust (i.e., stable under small deformations), and

has lineons. Its ground state degeneracy (GSD) is expressed in terms of a “mod N -

reduction” of the Jacobian group of the graph Γ. In the special case when space is an

L×L×Lz cubic lattice, the logarithm of the GSD depends on L in an erratic way and

grows no faster than O(L). We also discuss another gapped model, the ZN Laplacian

model, which can be defined on any graph. It has fractons and a similarly strange

GSD.
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1 Introduction

In recent years, there has been a rapid development in the study of exotic lattice models

in condensed matter systems. Some models, known as fractons [1–3] exhibit a variety of

surprising features. These include a robust ground state degeneracy (GSD) that grows sub-

extensively in the system size [4], as well as particle excitations with restricted mobility.

Many of these unusual properties can be understood as following from their exotic global

symmetries. These symmetries are also the underlying reasons why these lattice models defy

a conventional continuum limit. See [5–10] for reviews on these novel topological phases of

matter and their exotic global symmetries.

Most of these exotic lattice models are defined on a cubic lattice, or lattices with ad-

ditional structure such as foliation [11–21]. It is then natural to ask if there are exotic

models that can be defined on a general lattice graph. Recently, two such lattice models, the

Laplacian φ-theory and the U(1) Laplacian gauge theory, were proposed in [22,23] using the

discrete Laplacian operator ∆L. (See also [24] for a model along this line.) The former has

a large GSD being the number of spanning trees of the spatial graph, which is a common

measure of complexity, but it does not have fractons. The latter has defects representing

immobile fracton particles, but it has no large GSD.

The ZN version of the U(1) Laplacian gauge theory has a large GSD and fractons, but the

GSD is not robust against perturbations by local operators. This motivates us to consider
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Figure 1: The spatial lattice Γ × CLz : the black lines correspond to the edges of the graph
Γ, and the green lines represent the z-links between two copies of Γ. Each site of the lattice
is labelled as (i, z), where i denotes a vertex of the graph Γ and z denotes a vertex of CLz .

a certain anisotropic generalization, which we call the anisotropic ZN Laplacian model.1 It

has the following salient features, some of which are reminiscent of the celebrated Haah’s

code [2]:

• It can be placed on a spatial lattice of the form Γ×CLz , where Γ is a general graph and

CLz is a cycle graph on Lz vertices, or a 1d periodic chain with Lz sites. See Figure 1.

• The GSD is robust2 and is given by

GSD = | Jac(Γ, N)|2 , (1.1)

where Jac(Γ, N) is a “mod N -reduction” of the Jacobian group Jac(Γ) of Γ.

• It has lineons that can only move in the z-direction if Γ is an infinite two-dimensional

square lattice.

• In the special case when the spatial lattice is a Lx × Ly × Lz cubic lattice and when

1The relation between the ZN Laplacian model and its anisotropic uplift is analogous to that between
the 2+1d ZN Ising plaquette model [25] and the 3+1d anisotropic lineon model in [13,26].

2On a general graph, there is no notion of locality and therefore we cannot discuss local operators and
match them between the UV and the IR theories. Consequently, the discussion of robustness is ambiguous.
This is not the case on regular lattices where the usual discussion of local operators and robustness applies.
In that case, the anisotropic model is robust as we will show in Section 3.2.4.
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Model Spatial Lattice GSD Defects Robust?

Laplacian φ-theory
[22,23]

Γ | Jac(Γ)| None No

U(1) Laplacian gauge theory
[22,23]

Γ 1 Fracton Yes

ZN Laplacian model
Appendix D

Γ | Jac(Γ, N)| Fracton No

Anisotropic ZN Laplacian model
Sections 3 and 4

Γ× CLz | Jac(Γ, N)|2 Lineon Yes

Table 1: The comparison of four exotic lattice models that can be defined on a general graph
Γ. The model is robust if it has no relevant local operator. See Section 3.2.4 for more details
on what we mean by robustness.

N = p is prime, we have

logp GSD = 2 dimZp
Zp[X, Y ]

(Y (X − 1)2 +X(Y − 1)2, XLx − 1, Y Ly − 1 )
. (1.2)

The definition and the explicit evaluation of this formula are discussed in Appendix C.

It depends on the number-theoretic properties of Lx, Ly. Interestingly, there exists a

sequence of Lx, Ly going to infinity such that the logp GSD ∼ O(Lx, Ly), but there is

also a sequence such that logp GSD stays at order 1 if p > 2. See Figure 2.

We present this model both in terms of the low-energy limit of a stabilizer code in the

Hamiltonian formalism, and in terms of a Euclidean lattice model using an integer BF

action [27]. We compare the four Laplacian lattice models in Table 1.3

Following [28,25,29–31,26,32,27,33–35,22,23], we focus on the exotic global symmetries

of this model. The symmetries of the models on Γ (the first three models in Table 1) are not

subsystem global symmetries. The symmetry operators are supported on most (or all) of

the sites of Γ, rather than on a small subset of them. The precise subset depends delicately

on the details of Γ. Yet, there are many such symmetries. In this sense these symmetries are

generalizations of the dipole symmetries [36, 37] on cubic lattices, which are also supported

on the entire lattice. The difference is that the dipole symmetries have simple dependence

on the coordinates, while here the dependence on the coordinates is more complicated.

This is not the case in the anisotropic ZN Laplacian model (the fourth model in Table

3In the table we assume the θ-angle of the U(1) Laplacian theory is not π, otherwise the GSD is 2.
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1). Here the symmetries act at fixed z and in that sense they are subsystem symmetries.

(See [38, 39] for other anisotropic fractal models with symmetries that act at fixed z.) In

fact, as we will discuss below, at low energy these symmetries are independent of z and are

similar to one-form global symmetries.4

The rest of the paper is organized as follows. In Section 2, we introduce some necessary

graph theory background, including the discrete Laplace operator and the Jacobian group of

a graph. In Section 3, we introduce the stabilizer code and the Euclidean integer BF action

for the anisotropic ZN Laplacian model. We derive the general expression for the GSD (1.1)

and discuss the restricted mobility of the lineon defects from time-like symmetries.5 Section

4 considers the special case when the spatial lattice is a cubic lattice and when N is prime.

The GSD reduces to (1.2) and we discuss its asymptotic behaviors. Appendix A discusses

ZN -valued discrete harmonic functions on a general graph. Appendices B and C contain

the detailed computation of the GSD and the mobility restrictions for the anisotropic ZN
Laplacian model on a cubic lattice with N a prime number. In Appendix D, we study the

ZN Laplacian model of fractons, which is not robust.

Notes added: As we were finalizing this paper, [40] appeared on arXiv, which studies the

same anisotropic ZN Laplacian model using its stabilizer code.

2 Graph theory primer

In this section, we review some well-known facts about a finite graph, and ZN -valued func-

tions on the graph. A good reference on this subject is [41]. See also [22] for more discussion

on these topics in related lattice models.

Let Γ be a simple, undirected, connected graph on N vertices.6 Here, simple means there

is at most one edge between any two vertices and no self-loop on any vertex, undirected

means the edges do not have any orientation, and connected means there is a path between

any two vertices of the graph. We use i to denote a vertex (or site), and 〈i, j〉 to denote an

edge (or link) of the graph. We write 〈i, j〉 ∈ Γ if there is an edge between vertices i and j

in Γ.

4More generally, we can classify symmetries by the difference operators that annihilate the transformation
parameters α. For example, on a regular lattice, an ordinary symmetry has ∆xα = ∆yα = ∆zα = 0, a dipole
symmetry has ∆x∆xα = ∆x∆yα = ∆y∆yα = 0, etc. (And of course, α can carry more indices for the various
fields or directions in spacetime.). More interesting examples arise in theories associated to Haah’s code [2],
where the difference equations are (∆x+∆y+∆z)α = 0 and [∆x∆y+∆y∆z+∆z∆x+2(∆x+∆y+∆z)]α = 0.

5See [35] for a definition of space-like and time-like global symmetries and their applications to the ground
state degeneracy and restricted mobility constraints.

6Note that N in ZN is different from N, the number of vertices of Γ.
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Figure 2: The logarithm of the ground state degeneracy logN GSD of the 3+1d anisotropic
ZN Laplacian model of lineons on a cubic lattice with L× L× Lz sites (i.e., Γ = CL × CL)
for N = 2 (red) and N = 3 (blue), and 1 ≤ L ≤ 100. While logN GSD grows steadily as
∼ 4L for N = 2, it behaves erratically for N = 3. In fact, for N = 3, there are infinitely
many L for which it is just 2, and also infinitely many L (powers of 3) for which it is ∼ 4L.
Here, the GSD for both N = 2, 3 was calculated using techniques from commutative algebra
explained in Appendix C.1. In Section 4.2, we give a simpler derivation of the GSD for
N = 2 by relating the 3+1d anisotropic Z2 Laplacian model to the 3+1d anisotropic Z2

lineon model [13,26] on a tilted lattice.

Let di be the degree of vertex i, i.e., the number of edges incident on i. The Laplacian

matrix L of Γ is an N× N symmetric matrix defined as follows: Lii = di for every vertex i,

Lij = −1 if there is an edge 〈i, j〉 between vertices i and j, and Lij = 0 otherwise.

2.1 Discrete Laplacian operator ∆L and its Smith decomposition

Consider a ZN -valued function f(i) on the vertices of the graph. We define the discrete

Laplacian operator ∆L as

∆Lf(i) :=
∑
j

Lijf(j) = dif(i)−
∑

j:〈i,j〉∈Γ

f(j) =
∑

j:〈i,j〉∈Γ

[f(i)− f(j)] , (2.1)

6



where the equalities are modulo N . This is one of the most natural and universal difference

operators that can be defined on any such graph Γ.

We are interested in the following two questions:

1. What are all the ZN -valued functions h(i) that satisfy the discrete Laplacian equation

∆Lh(i) = 0 mod N ? (2.2)

They are known as the ZN -valued discrete harmonic functions, and we denote the set

of such functions as H(Γ,ZN).7

2. We define an equivalence class of ZN -valued functions by saying that two functions

g(i) and g̃(i) belong to the same class if there is a ZN -valued function f(i) such that

g̃(i)− g(i) = ∆Lf(i) mod N . (2.3)

In this case, we write g̃(i) ∼ g(i). What are all the distinct equivalence classes under

the equivalence relation “∼”?

Interestingly, both questions can be answered using the Smith decomposition [43] of the

Laplacian matrix L [44]. The Smith normal form of L is given by three matrices R, P , and

Q, such that

R = PLQ , or Rab =
∑
i,j

PaiLijQjb , (2.4)

where P,Q ∈ GLN(Z), and R = diag(r1, . . . , rN). Here, ra’s are nonnegative integers, known

as the invariant factors of L, such that ra divides ra+1 for a = 1, . . . ,N − 1. While R is

uniquely determined by L, the matrices P and Q are not. For a connected graph Γ, we have

ra > 0 for a = 1, . . . ,N− 1, and rN = 0.

We state the answers to the two questions here (see Appendix A for details):

1. Any ZN -valued discrete harmonic function takes the form

h(i) =
N∑
a=1

NQiapa
gcd(N, ra)

mod N , (2.5)

where pa = 0, . . . , gcd(N, ra)− 1 for a = 1, . . . ,N. In other words, H(Γ,ZN) is isomor-

phic to the finite Abelian group
∏N

a=1 Zgcd(N,ra). Here, the group operation is simply

the sum. It is well-defined because if h1, h2 ∈ H(Γ,ZN), then h1 + h2 ∈ H(Γ,ZN).

7It is also known as the group of balanced vertex weightings [42].
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2. Any equivalence class is uniquely represented by the ZN -valued function

g(i) =
N∑
a=1

pa(Q
−1)ai mod N , (2.6)

where pa = 0, . . . , gcd(N, ra) − 1 for a = 1, . . . ,N. In other words, the set of all

equivalence classes is isomorphic to the finite Abelian group
∏N

a=1 Zgcd(N,ra). Here, the

group operation is simply the sum which is well-defined because if g̃1 ∼ g1 and g̃2 ∼ g2,

then g̃1 + g̃2 ∼ g1 + g2.

It follows that the number of ZN -valued discrete harmonic functions and the number of

equivalence classes are both
∏N

a=1 gcd(N, ra), which is the order of the finite Abelian group∏N
a=1 Zgcd(N,ra). We will have more to say about this group below.

2.2 Jacobian group of a graph

The finite Abelian group encountered above is intimately related to the Jacobian group

Jac(Γ), which is a natural finite Abelian group associated with a general graph Γ.8 In terms

of the invariant factors of the Laplacian matrix L, we have the following isomorphism

Jac(Γ) ∼=
N−1∏
a=1

Zra . (2.7)

The order of Jac(Γ) is the most fundamental and well-studied notion of complexity in graph

theory. What we have here is a “mod N -reduction” of the Jacobian group:

Jac(Γ, N) ∼=
N∏
a=1

Zgcd(N,ra) . (2.8)

As we will see below, the group Jac(Γ, N) plays an crucial role in the ZN Laplacian models.

3 Anisotropic ZN Laplacian model on a graph

In this section, we study a robust gapped lineon model on a spatial lattice of the form

Γ×CLz , where Γ is a simple, connected, undirected graph, and Lz is the number of sites in

the z-direction (see Figure 1). We refer to it as the anisotropic ZN Laplacian model because

8It has several different names in the graph theory literature, including the sandpile group [45], or the
group of components [46], or the critical group [47] of Γ, and it is related to the group of bicycles [42] of Γ.
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Figure 3: The two kinds of stabilizer terms in the Hamiltonian (3.1).

it is the anisotropic extension along the z-direction of the ZN Laplacian model analyzed in

Appendix D.

3.1 Hamiltonian for the stabilizer code

In the Hamiltonian formulation of the anisotropic ZN Laplacian model, there are a ZN
variable U(i, z) and its conjugate variable V (i, z), i.e., U(i, z)V (i, z) = e2πi/NV (i, z)U(i, z),

on every site of Γ×CLz . There are also a ZN variable Uz(i, z+ 1
2
) and its conjugate variable

Vz(i, z + 1
2
), i.e., Uz(i, z + 1

2
)Vz(i, z + 1

2
) = e2πi/NVz(i, z + 1

2
)Uz(i, z + 1

2
), on every z-link of

Γ× CLz .

The Hamiltonian is

H = −γ1

∑
i,z

G(i, z)− γ2

∑
i,z

F (i, z + 1
2
) + h.c. , (3.1)

where
G(i, z) = Vz(i, z + 1

2
)†Vz(i, z − 1

2
)
∏

j:〈i,j〉∈Γ

V (i, z)V (j, z)† ,

F (i, z + 1
2
) = U(i, z + 1)†U(i, z)

∏
j:〈i,j〉∈Γ

Uz(i, z + 1
2
)Uz(j, z + 1

2
)† .

(3.2)

The two kinds of terms are shown in Figure 3. Since all the terms in this Hamiltonian

commute with each other, it is a stabilizer code.
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The model enjoys the duality transformation

U(i, z)→ Vz(i, z + 1
2
) , Uz(i, z + 1

2
)→ V (i, z) ,

V (i, z)→ Uz(i, z + 1
2
)† , Vz(i, z + 1

2
)→ U(i, z)† .

(3.3)

It exchanges the two kind of terms in the Hamiltonian and therefore it maps the model with

(γ1, γ2) to the model with (γ2, γ1). As a result, for γ1 = γ2, this model is self-dual.

The ground states satisfy G(i, z) = 1 and F (i, z+ 1
2
) = 1 for all i, z. The excited states are

violations of G = 1 or F = 1, which we call electric and magnetic excitations respectively.

These excitations are mobile along the z direction so they are at least z-lineons. Their

mobility constraints along the graph Γ are more complicated. We postpone that discussion

to Section 3.2.3.

We could also take γ1, γ2 → ∞, in which case, the Hilbert space consists of only the

ground states, and the Hamiltonian is trivial. The Euclidean presentation of this model in

this limit will be discussed later in Section 3.2.

We are particularly interested in those operators that commute with the Hamiltonian

(3.1) and act nontrivially on its ground states. They are the global symmetry operators

of the model in the low energy limit, and they are also known as the logical operators of

the stabilizer code. We choose a basis of these symmetry operators as follows: the electric

symmetry operators are9

W̃z(a) =
∏
i,z

V (i, z)(Q−1)ai , a = 1, . . . ,N ,

W̃ (a; z + 1
2
) =

∏
i

Vz(i, z + 1
2
)

N
gcd(N,ra)

Qia , z = 0, . . . , Lz − 1 ,
(3.4)

and the magnetic symmetry operators are

Wz(a) =
∏
i,z

Uz(i, z + 1
2
)(Q−1)ai , a = 1, . . . ,N ,

W (a; z) =
∏
i

U(i, z)
N

gcd(N,ra)
Qia , z = 0, . . . , Lz − 1 ,

(3.5)

where Q and ra are defined in (2.4). These operators generate a Jac(Γ, N)2 electric symmetry

and a Jac(Γ, N)2 magnetic symmetry.

9In fact, the operator
∏
z V (i, z), which is local in Γ and extends in the z direction, also commutes with the

Hamiltonian. Here we choose to work with the basis of W̃z(a) because the latter has a simpler commutation
relation with W (a; z). Similarly,

∏
z Uz(i, z + 1

2 ) also commutes with the Hamiltonian and is local in Γ, but
we choose to work in the basis of Wz(a) for the same reason.
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For each a, the four operators in (3.4) and (3.5) are all Zgcd(N,ra) operators. Clearly,

W (a; z)gcd(N,ra) = W̃ (a; z + 1
2
)gcd(N,ra) = 1. (In fact, when acting on the ground states, the

operators W̃ (a; z + 1
2
) and W (a; z) are independent of z.) Moreover, the operator Wz(a)

satisfies Wz(a)ra = 1 when acting on the ground states,10 which when combined with the

obvious relation Wz(a)N = 1 gives the relation Wz(a)gcd(N,ra) = 1. The same conclusion

holds for W̃z(a) as well.

The basis of symmetry operators defined in (3.4) and (3.5) is chosen such that they satisfy

the following commutation relations:

W (a; z)W̃z(b) = exp

[
2πiδab

gcd(N, ra)

]
W̃z(b)W (a; z) , a, b = 1, . . . ,N , (3.6)

and similarly for the other pair. So for each a = 1, . . . ,N, there are two independent copies

of Zgcd(N,ra) Heisenberg algebras, leading to a ground state degeneracy of11

GSD =
N∏
a=1

gcd(N, ra)
2 = | Jac(Γ, N)|2 . (3.7)

3.2 Euclidean presentation

We now discuss the Euclidean presentation of the anisotropic ZN Laplacian model. We place

the theory on a Euclidean spacetime lattice CLτ ×Γ×CLz , where Γ×CLz is the spatial slice.

We use (τ, i, z) to label a site in the spacetime lattice, where i denotes a vertex of the graph

Γ.

We use the integer BF formulation of [27]. The integer BF -action of the anisotropic ZN
Laplacian model is

S =
2πi

N

∑
τ,i,z

(
− m̃τ (τ, i, z + 1

2
)
[
∆zm(τ, i, z + 1

2
)−∆Lmz(τ, i, z + 1

2
)
]

+ m̃z(τ + 1
2
, i, z)

[
∆τm(τ + 1

2
, i, z)−∆Lmτ (τ + 1

2
, i, z)

]
+ m̃(τ + 1

2
, i, z + 1

2
)
[
∆τmz(τ + 1

2
, i, z + 1

2
)−∆zmτ (τ + 1

2
, i, z + 1

2
)
] )

,

(3.8)

10This is because Wz(a)ra =
∏
i,z Uz(i, z + 1

2 )ra(Q
−1)ai =

∏
i,j,z Uz(i, z + 1

2 )PajLji =∏
j

(∏
z U(j, z + 1)U(j, z)†

)Paj
= 1, where we used the facts that RQ−1 = PL, and F = 1 on the ground

states.
11The power of 2 in (3.7) is related to the fact that the anisotropic ZN Laplacian model is the anisotropic

extension of the ZN Laplacian model of Appendix D, whose GSD is | Jac(Γ, N)| (D.14). This is similar to
the relation GSD3+1d anisotropic ZN lineon model = (GSD2+1d ZN Ising plaquette model)

2.
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where the integer fields (mτ ,m,mz) have a gauge symmetry

mτ ∼ mτ + ∆τk +Nqτ ,

m ∼ m+ ∆Lk +Nq ,

mz ∼ mz + ∆zk +Nqz ,

(3.9)

where k and (qτ , q, qz) are integers, and similarly for (m̃τ , m̃, m̃z). (Note that, when working

modulo N , the second line of (3.9) is exactly the equivalence relation discussed in (2.3).)

The theory is self-dual under the map (mτ ,m,mz) → (m̃τ , m̃, m̃z) and (m̃τ , m̃, m̃z) →
−(mτ ,m,mz).

The integer BF -action (3.8) describes the ground states of a stabilizer code given by the

Hamitonian (3.1). Here, we will not elaborate on the relation between the Euclidean and

Hamiltonian presentations. We refer the readers to Appendix C.2 of [27] for an analogous

discussion of the relation between the 2+1d ZN toric code and the 2+1d ZN gauge theory

in the integer BF presentation.

3.2.1 Ground state degeneracy

We can count the number of ground states by counting the number of solutions to the

“equations of motion” of (m̃τ , m̃, m̃z) modulo gauge transformations:

∆zm−∆Lmz = 0 mod N ,

∆τm−∆Lmτ = 0 mod N ,

∆τmz −∆zmτ = 0 mod N .

(3.10)

A gauge field (mτ ,m,mz) that satisfies (3.10) is a flat ZN gauge field. We can use the gauge

freedom in k to set mτ (τ + 1
2
, i, z)|τ 6=0 = 0 mod N , and mz(τ, i, z + 1

2
)|z 6=0 = 0 mod N . In

this gauge choice, the last line of (3.10) implies that

∆τmz(τ + 1
2
, i, z + 1

2
)|z=0 = 0 mod N ,

∆zmτ (τ + 1
2
, i, z + 1

2
)|τ=0 = 0 mod N .

(3.11)

The first two lines of (3.10) then imply that

∆τm(τ + 1
2
, i, z) = 0 mod N ,

∆zm(τ, i, z + 1
2
) = 0 mod N ,

(3.12)

12



which in turn imply that

∆Lmz(i, z + 1
2
)|z=0 = 0 mod N ,

∆Lmτ (τ + 1
2
, i)|τ=0 = 0 mod N .

(3.13)

The remaining τ and z-independent gauge freedom, m(i) ∼ m(i) + ∆Lk(i), is exactly

the equivalence relation in (2.3). So, after gauge fixing, we can set m(i) to be of the form

(2.6), i.e., there are | Jac(Γ, N)| independent holonomies in m(i). Since mz(i, z + 1
2
)|z=0 and

mτ (τ + 1
2
, i)|τ=0 satisfy (3.13), which is exactly the discrete Laplace equation (2.2), they

are of the form (2.5). So there are | Jac(Γ, N)| independent holonomies in both of them.

Finally, the set of gauge transformations k(τ, i, z) that do not act on (mτ ,m,mz) satisfy

∆τk = ∆zk = ∆Lk = 0 mod N . In other words, k(τ, i, z) = k(i) is independent of τ, z, and

k(i) satisfies the discrete Laplace equation (2.2). So such gauge transformations are of the

form (2.5), and there are | Jac(Γ, N)| of them. Therefore, the ground state degeneracy is

GSD =
| Jac(Γ, N)|3

| Jac(Γ, N)|
= | Jac(Γ, N)|2 =

N∏
a=1

gcd(N, ra)
2 . (3.14)

3.2.2 Global symmetry

There is an electric symmetry associated with the shift of (mτ ,m,mz) by a flat ZN gauge

field. By the analysis following (3.10), up to gauge transformations, the electric (space-like)

symmetry acts as12

m(τ, i, z)→ m(τ, i, z) + λ(i) , λ(i) =
N∑
a=1

pa(Q
−1)ai ,

mz(τ, i, z + 1
2
)→ mz(τ, i, z + 1

2
) + δz,0λz(i) , λz(i) =

N∑
a=1

NQiapz,a
gcd(N, ra)

,

(3.15)

where pa and pz,a are both integers modulo gcd(N, ra) for a = 1, . . . ,N. There is also a

magnetic (space-like) symmetry which acts on m̃ and m̃z in a similar way.

12These are symmetries of the action (3.8) because ∆τm, ∆zm, and ∆τmz are clearly unaffected by the
shifts, whereas ∆Lmz is shifted by δz,0∆Lλz(i) = 0 mod N because λz(i) is a ZN -valued discrete harmonic
function (2.5).
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The electric (space-like) symmetry is generated by the Wilson operators of (m̃τ , m̃, m̃z):

W̃z(a) = exp

[
2πi

N

∑
i,z

(Q−1)aim̃z(τ + 1
2
, i, z)

]
,

W̃ (a; z + 1
2
) = exp

[
2πi

gcd(N, ra)

∑
i

m̃(τ + 1
2
, i, z + 1

2
)Qia

]
,

(3.16)

for a = 1, . . . ,N and z = 0, . . . , Lz − 1. The electrically charged operators are the Wil-

son operators of (mτ ,m,mz), i.e., W (a; z) and Wz(a). Similarly, the magnetic (space-like)

symmetry is generated by W (a; z) and Wz(a), while the magnetically charged operators are

W̃z(a) and W̃ (a; z + 1
2
). These are the operators in (3.4) and (3.5) in the low energy limit.

The commutation relation (3.6) can now be understood as a mixed ’t Hooft anomaly between

electric and magnetic space-like symmetries.

3.2.3 Time-like symmetry and lineons

The integer BF -action has defects, which extend in the time direction, such as

Wτ (i, z) = exp

[
2πi

N

∑
τ

mτ (τ + 1
2
, i, z)

]
. (3.17)

This describes the world-line of an infinitely heavy particle of unit charge at position (i, z). It

also represents the low energy limit of an electric excitation at position (i, z) in the stabilizer

code (3.1). We can deform the defect to

exp

[
2πi

N

∑
τ<0

mτ (τ + 1
2
, i, z)

]
exp

[
2πi

N

∑
z≤z′′<z′

mz(0, i, z
′′ + 1

2
)

]

× exp

[
2πi

N

∑
τ≥0

mτ (τ + 1
2
, i, z′)

]
.

(3.18)

This configuration describes a particle moving along the z-direction.

Next, we discuss the mobility of the particle along the graph Γ. Such a motion is con-

strained by the time-like global symmetry, which acts on extended defects rather than the

operators or states of the Hilbert space (see [35] for more discussions on time-like global
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symmetries). Up to gauge transformation, the electric time-like symmetry acts as13

mτ (τ + 1
2
, i, z)→ mτ (τ + 1

2
, i, z) + δτ,0λτ (i) , λτ (i) =

N∑
a=1

NQiapτ,a
gcd(N, ra)

, (3.19)

where pτ,a = 0, . . . , gcd(N, ra) − 1. Hence, the group of electric time-like symmetry is

Jac(Γ, N).

Two defects at sites (i, z) and (i′, z′) carry the same time-like charges, or equivalently, a

particle can hop from (i, z) to (i′, z′), if and only if14

Qia = Qi′a mod gcd(N, ra) , ∀a = 1, . . . ,N . (3.21)

In other words, the time-like charges Qia encode the superselection sector of a defect.

Similarly, there are defects of m̃τ which represent the low energy limit of magnetic exci-

tations of the stabilizer code (3.1). By the self-duality, similar mobility restrictions apply to

the defects of m̃τ due to a Jac(Γ, N) dual magnetic time-like symmetry.

While this selection rule (3.21) is not very intuitive, we will give strong mobility con-

straints in the special case where the spatial lattice is a cubic lattice (i.e., Γ is a 2d torus

graph CLx × CLy) in Section 4. In particular, under some mild conditions, the particles can

move only along the z-direction, i.e., they are lineons.

3.2.4 Robustness

Let us examine the robustness of the low-energy theory. Typically, in order to address this

question we should map local operators in the UV theory to local operators in the IR theory.

However, if Γ is a general graph, it has no notion of locality and we cannot discuss local

operators. Therefore, the usual discussion of robustness does not apply. Instead, we will

restrict Γ to be a regular lattice (such as square lattice, honeycomb lattice, cubic lattice, etc.),

13This is a symmetry of the action (3.8) because ∆zmτ is clearly unaffected by the shift, and ∆Lmτ is
shifted by δτ,0∆Lλτ (i) = 0 mod N because λτ (i) is a ZN -valued discrete harmonic function (2.5).

14Indeed, when this condition holds, the defect that “moves” a particle from (i, z) to (i′, z′) at time τ = 0
is given by

exp

[
2πi

N

∑
τ<0

mτ (τ + 1
2 , i, z)

]
exp

−2πi

N

∑
a,j

(
Qia −Qi′a
gcd(N, ra)

)
r̃aPajm(0, j, z)


× exp

2πi

N

∑
z≤z′′<z′

mz(0, i
′, z′′ + 1

2 )

 exp

2πi

N

∑
τ≥0

mτ (τ + 1
2 , i
′, z′)

 ,

(3.20)

where for each a, r̃a is the integer solution of the equation r̃ara = gcd(N, ra) mod N .
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where there is an unambiguous notion of locality and we can consider localized operators.

(One might be able to extend the discussion to the case of an infinite graph Γ with some

restrictions on its connectivity. We will not attempt to do it here.)

The only operators that act nontrivially on the ground states are W̃ (a; z) and W̃z(a) of

(3.16), and similarly, W (a; z) and Wz(a). It is clear that Wz(a) and W̃z(a) are supported

over Lz sites in the z-direction, so they are not finitely supported in the infinite volume limit.

Now, we show that W (a; z) is not finitely supported when Γ is a regular lattice. Assume to

the contrary that it is finitely supported. It generates a Jac(Γ, N) magnetic symmetry that

shifts the gauge field m̃(τ + 1
2
, i, z′) by δz′,zf(i), where f(i) is a ZN -valued discrete harmonic

function. The support of f(i) is precisely the support of the operator W (a; z), so f(i) is also

finitely supported. However, on a regular lattice, there is no nontrivial finitely-supported

discrete harmonic function.15 Therefore, W (a; z) cannot be finitely supported. Similarly,

W̃ (a; z + 1
2
) is also not finitely supported.

Since there are no finitely-supported operators that act nontrivially in the space of ground

states, the anisotropic ZN Laplacian model is robust. We can deform the microscopic model

with finitely-supported operators. As long as their coefficients are small enough, they map to

localized deformations of the low-energy theory. However, since there are no local point-like

operators acting in the low-energy theory, it cannot change.

4 3+1d anisotropic ZN Laplacian model on a torus

In this section, we analyze the GSD and restricted mobility of the anisotropic ZN Laplacian

model on an Lx × Ly × Lz cubic lattice with periodic boundary condition, i.e., Γ is a 2d

torus graph CLx ×CLy . On Γ = CLx ×CLy , we have the following identification between the

lattice points:

(x, y) ∼ (x+ Lx, y) ∼ (x, y + Ly) . (4.1)

Throughout this section, we use (x, y) to denote a vertex of the 2d torus graph, and reserve

i to denote a vertex of a general graph Γ. Then, the discrete Laplacian operator ∆L takes

the more familiar form ∆2
x + ∆2

y in the xy-plane.

15For example, on a square lattice with coordinates (x, y), let f(x, y) be a finitely-supported discrete
harmonic function. Consider a large rectangular region R that contains the support of f(x, y), i.e., f(x, y) = 0
for (x, y) outside R. Using the discrete Laplace equation ∆Lf(x, y) = 0 at the points immediately outside
R, one can show that f(x, y) = 0 at the points immediately inside R. By induction, f(x, y) = 0 everywhere
inside R. This argument extends to any regular lattice. It also extends to a more general class of graphs
but we do not discuss this here.
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4.1 Upper bound on logN GSD

It is clear from (3.7) that the GSD depends only on properties of Γ and is independent of

Lz. Here, we give an upper bound on how fast logN GSD can grow with Lx, Ly.

Recall that the GSD of the anisotropic ZN Laplacian model is | Jac(Γ, N)|2 (3.7). As

we showed in Section 2.1, | Jac(Γ, N)| is also the number of equivalence classes under the

equivalence relation “∼” in (2.3). Combining these facts, we have

GSD =

∣∣∣∣ {g(i)}
g(i) ∼ g(i) + ∆Lf(i)

∣∣∣∣2 , (4.2)

where g(i) and f(i) are ZN -valued functions on the graph Γ.

When Γ is the 2d torus graph CLx × CLy , interpreting the equivalence relation as a

gauge symmetry, we can gauge fix g(x, y) = 0 mod N everywhere except at x = 0, 1, or

at y = 0, 1. In other words, the number of sites where g(x, y) 6= 0 after gauge fixing is

at most 2 min(Lx, Ly). Since g(x, y) is ZN -valued, it follows that the number of nontrivial

configurations of g(x, y) is at most N2 min(Lx,Ly). Therefore,

logN GSD ≤ 4 min(Lx, Ly) . (4.3)

4.2 N = 2

When N = 2, the stabilizer terms (3.2) simplify to

G(x, y, z) = Vz(x, y, z + 1
2
)Vz(x, y, z − 1

2
)
∏

εx,εy=±1

V (x+ εx, y + εy, z) ,

F (x, y, z + 1
2
) = U(x, y, z + 1)U(x, y, z)

∏
εx,εy=±1

Uz(x+ εx, y + εy, z + 1
2
) .

(4.4)

Here, the product of the four V ’s in G and the product of the four Uz’s in F both involve

only the four sites around the “π
4
-tilted plaquette” centered at (x, y). This is illustrated

in Figure 4. Therefore, each stabilizer term of the 3+1d anisotropic Z2 Laplacian model

is equivalent to a stabilizer term of the 3+1d anisotropic Z2 lineon model of [13, 26] on a

“π
4
-tilted” lattice.

Let us define the coordinates (x′, y′) = (x+y
2
, y−x

2
) for the tilted lattice. The tilted lattice

decomposes into two sublattices: those with integral (x′, y′) and those with half-integral

(x′, y′). These are shown in blue and red in Figure 4. Observe that any tilted plaquette

consists of sites from only one of the sublattices. Therefore, locally, there are two copies of
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(x, y)

y

x

y
0

x
0

Figure 4: The stabilizer terms (4.4) of the 3+1d anisotropic Z2 Laplacian model are equiv-
alent to those of the 3+1d anisotropic Z2 lineon model of [13, 26] on a “π

4
-tilted” lattice

(the z-direction is suppressed in this figure). In particular, the product of V ’s in G and the
product of Uz’s in F involve only the four sites around the “π

4
-tilted plaquette” centered

at (x, y). Such a plaquette consists of only red sites, or only blue sites but not both. One
such red tilted plaqutte is shown. The red and blue sublattices might or might not give
independent copies of the 3+1d anisotropic Z2 lineon model depending on the parities of Lx
and Ly in the identifications (4.1). We use the coordinates (x′, y′) for the tilted lattice, which
are related to the original coordinates (x, y) as x′ = x+y

2
and y′ = x−y

2
. They are integers on

the blue sublattice, and half-integers on the red sublattice.

the 3+1d anisotropic Z2 lineon model, one on each sublattice. On an infinite lattice, these

two copies are independent. However, the identifications (4.1) can couple them: when Lx
and Ly are both even, the two sublattices are decoupled and there are two copies of the

3+1d anisotropic Z2 lineon model, whereas when Lx or Ly is odd, the two sublattices are

identified, so there is only one copy of the 3+1d anisotropic Z2 lineon model. In all these

cases, the identifications on the tilted lattice for the 3+1d anisotropic Z2 lineon model are

given in (B.6), (B.9), and (B.13).

We present the GSD and mobility restrictions in this model for Lx = Ly = L and refer

the readers to Appendix B on results for arbitrary Lx and Ly. The ground state degeneracy

is given by

GSD =

{
24L , L even ,

24L−2 , L odd .
(4.5)

This is in agreement with the plot for N = 2 in Figure 2, and it saturates the bound in (4.3)

when L is even. Furthermore, a z-lineon cannot hop between different sites in the xy-plane.
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In contrast, a dipole of z-lineons separated in the (1,±1) direction can move in the (1,∓1)

direction in the xy-plane. These mobility restrictions follow from the relation between the

3+1d anisotropic Z2 Laplacian model and the 3+1d anisotropic Z2 lineon model on the tilted

lattice.

To conclude, the N = 2 anisotropic Laplacian model is made out of the known anisotropic

lineon model of [13, 26], with a relatively simple GSD (4.5). The next subsection discusses

the anisotropic Zp Laplacian model with p an odd prime, which is a genuinely new model

and has a much more intricate GSD.

4.3 N = p prime larger than 2

When N = p is a prime larger than 2 we can follow [48] and use techniques from commutative

algebra to compute the ground state degeneracy. We show that the GSD is given by (1.2).

See Appendix C.1 for the meaning and derivation of this expression.

The expression in (1.2) can be simplified in some special cases. Let q 6= p be another

odd prime such that p is a primitive root modulo qm, where m ≥ 1, i.e., p is the generator

of the multiplicative group of integers modulo qm, denoted as Z×qm .16 Then, for Lx = pkxqm

and Ly = pkyqm, where kx, ky,m ≥ 0, we show that

logp GSD = 2
[
2pmin(kx,ky) − δkx,ky

]
. (4.6)

We see that the bound (4.3) is saturated whenever kx 6= ky and m = 0, i.e., there are

infinitely many Lx, Ly for which logp GSD scales as O(Lx, Ly). On the other hand, when

kx = ky = 0, we have logp GSD = 2 for any m, i.e., there are also infinitely many Lx, Ly for

which logp GSD remains finite.

The last statement relies on the existence of an odd prime q such that p is a primitive

root modulo qm for all m ≥ 1. A sufficient condition for this is that p is a primitive root

modulo q2 [49, Section 2.8]. For example, 3 is a primitive root modulo 52, so for p = 3, we

can choose q = 5. Similarly, for p = 5, 7, we can choose q = 7, 11 respectively. In fact, one

can verify numerically that for all p . 109, there is such a q. However, there is no proof of

existence of such q for arbitrary p.

Interestingly, Artin’s conjecture on primitive roots [50] states that there are infinitely

many prime q such that p is a primitive root modulo q.17 Whenever Lx = Ly = q for any

16For any positive integer n, the set of all integers a such that 1 ≤ a < n and gcd(a, n) = 1 form a group
under multiplication, known as the multiplicative group of integers modulo n, and denoted as Z×n . It is cyclic
exactly when n = 1, 2, 4, qm, or 2qm, where q is an odd prime and m ≥ 1 [49, Section 2.8]. Whenever Z×n is
cyclic, it has a single generator, and the notion of “primitive root modulo n” is well-defined.

17Note that p being a primitive root modulo q does not imply that p is a primitive root modulo q2.
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such q, we find that logp GSD = 2. This gives another infinite family of Lx, Ly for which

logp GSD remains finite. However, Artin’s conjecture is still unproven, except under the

assumption of the generalized Riemann hypothesis [51], which is also unproven.

We can apply similar techniques to determine the mobility of z-lineons in the xy-plane

as well. (See Appendix C.2 for more details.) There exist certain special values of Lx, Ly
(e.g., Lx = Ly = qm, where q is an odd prime such that p is a primitive root modulo qm) for

which the z-lineons are completely mobile in the xy-plane. However, on an infinite square

lattice, any finite set of z-lineons is completely immobile (unless they can be annihilated),

assuming that their charges and the separations between them are fixed during the motion,

i.e., they cannot move “rigidly.”

It is surprising that the set of Lx, Ly for which logp GSD remains finite and the z-lineons

are completely mobile is intimately related to well-known open problems in number theory.
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A More on ZN-valued functions on a graph

In this appendix, we analyze the space of ZN -valued harmonic functions and the equivalence

classes of ZN -valued functions on a general graph Γ. We use the Smith decomposition (2.4)

of the Laplacian matrix L to give complete answers of these two questions mentioned in

Section 2.1.

Recall that the Smith normal form of L is given by R = PLQ, where P,Q ∈ GLN(Z),

and R = diag(r1, . . . , rN). Here, ra’s are nonnegative integers such that ra divides ra+1 for

a = 1, . . . ,N− 1. While R is uniquely determined by L, the matrices P and Q are not.

In the index notation of (2.4), we have Rab = raδab =
∑

i,j PaiLijQjb. While all the

indices here run from 1 to N, only i, j have a natural interpretation as vertices of the graph

Γ.
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We can now answer the first question raised in Section 2.1: find all the ZN -valued discrete

harmonic functions. We first transform the ZN -valued function h(i) to a new basis:

h′a =
∑
i

(Q−1)aih(i) mod N , (A.1)

In this basis, the discrete Laplace equation (2.2) is “diagonal”:

rah
′
a = 0 mod N , a = 1, . . . ,N . (A.2)

We can solve this equation independently for each a. The most general solution is

h′a =
Npa

gcd(N, ra)
mod N , a = 1, . . . ,N , (A.3)

where pa = 0, . . . , gcd(N, ra)− 1. Transforming back to the original basis, the most general

ZN -valued discrete harmonic function is

h(i) =
N∑
a=1

NQiapa
gcd(N, ra)

mod N . (A.4)

Let us now address the second question raised in Section 2.1: find all the equivalence

classes under the equivalence relation “∼”. Since the Laplacian matrix L is symmetric,

taking the transpose of R = PLQ gives another Smith decomposition R = QTLP T . Using

this, we transform the ZN -valued function g(i) to a (different) new basis

g′′a =
∑
i

g(i)Qia mod N . (A.5)

We define g̃′′a similarly for another function g̃(i) in the same equivalence class. In this basis,

the equivalence relation (2.3) is “diagonal”:

g̃′′a − g′′a = raf̂a mod N , (A.6)

where f̂a =
∑

i f(i)P−1
ia mod N . Therefore, the equivalence class of g(i) is completely

determined by N congruence classes:

g′′a mod gcd(N, ra) , a = 1, . . . ,N . (A.7)

Going back to the original basis, a representative of the equivalence class “pa mod gcd(N, ra)”
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is

g(i) =
N∑
a=1

pa(Q
−1)ai mod N , (A.8)

where pa = 0, . . . , gcd(N, ra)− 1 for a = 1, . . . ,N.

B 3+1d anisotropic Z2 Laplacian model

In this appendix, we use the relation between the 3+1d anisotropic Z2 Laplacian model of

Section 4.2 and the 3+1d anisotropic Z2 lineon model to compute the GSD and restricted

mobility of the former.

B.1 Ground state degeneracy

Recall that the stabilizer terms of the 3+1d anisotropic Z2 Laplacian model are given by

(4.4), which are equivalent to those of the 3+1d anisotropic Z2 lineon model of [13,26] on a

tilted lattice. Moreover, the latter is an anisotropic extension of the 2+1d Z2 Ising plaquette

model [25] on the tilted lattice.

Now, the identifications on the original lattice are (4.1)

(x, y) ∼ (x+ Lx, y) ∼ (x, y + Ly) , (B.1)

In the new coordinates (x′, y′) = (x+y
2
, y−x

2
), the identifications on the tilted lattice take the

schematic form

(x′, y′) ∼ (x′ + Lux′ , y
′ + Luy′) ∼ (x′ + Lvx′ , y

′ + Lvy′) . (B.2)

The authors of [32] analyzed the 2+1d Z2 Ising plaquette model on a 2d spatial torus with

such identifications. Their strategy was to reduce the identifications to the form

(x′, y′) ∼ (x′ +MLeff
x′ , y

′) ∼ (x′ +KLeff
x′ , y

′ + Leff
y′ ) , (B.3)

where gcd(M,K) = 1. Then, they showed that

GSD2+1d Z2 Ising plaq = gcd(2,M) · 2L
eff
x′+L

eff
y′ −1

. (B.4)

It follows that (see footnote 11)

GSD3+1d aniso Z2 lineon =
[
gcd(2,M) · 2L

eff
x′+L

eff
y′ −1

]2

. (B.5)
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(a) Lx, Ly even (b) Lx odd, Ly even (c) Lx, Ly odd

Figure 5: The minimal identifications on the blue sublattice of Figure 4 for different parities
of Lx and Ly. The black circles represent the identifications (4.1), and the shaded regions
represent the fundamental domains of the blue sublattice under these identifications.

Let us use these results to compute the GSD of the 3+1d anisotropic Z2 Laplacian model:

• Lx, Ly even: In this case, the identifications in (4.1) do not couple the two sublattices.

So, there are two independent copies of the the 3+1d anisotropic Z2 lineon model, and

we can work with one copy at a time, say the blue sublattice in Figure 4. In the new

coordinates (x′, y′), the minimal identifications on the blue sublattice are (see Figure

5(a))

(x′, y′) ∼ (x′ + Lx
2
, y′ − Lx

2
) ∼ (x′ + Ly

2
, y′ + Ly

2
) . (B.6)

Let (L̃x, L̃y) be the integer solution of the equation L̃xLx + L̃yLy = gcd(Lx, Ly). Then,

in the notation of (B.3), we have

MLeff
x′ = lcm(Lx, Ly) , KLeff

x′ =
1

2
(L̃xLx − L̃yLy) , Leff

y′ =
1

2
gcd(Lx, Ly) ,

(B.7)

and hence,

GSD =
[
gcd(2,M) · 2L

eff
x′+L

eff
y′ −1

]4

. (B.8)

Here, the power is 4 rather than 2 because there are two copies of the 3+1d anisotropic

Z2 lineon model, one on each sublattice.

• Lx odd, Ly even: In this case, the identifications in (4.1) couple the two sublattices so

that effectively there is only one sublattice, say the blue sublattice in Figure 4. Hence,

there is only one copy of the the 3+1d anisotropic Z2 lineon model. The minimal
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identifications on the blue sublattice are (see Figure 5(b))

(x, y) ∼ (x+ 2Lx, y) ∼ (x, y + Ly) , (B.9)

which can be written as

(x′, y′) ∼ (x′ + Lx, y
′ − Lx) ∼ (x′ + Ly

2
, y′ + Ly

2
) , (B.10)

in the new coordinates (x′, y′). Let (L̃x, L̃y) be the integer solution of the equation

L̃xLx + L̃y(
Ly
2

) = gcd(Lx,
Ly
2

). Then, in the notation of (B.3), we have

MLeff
x′ = 2 lcm(Lx,

Ly
2

) , KLeff
x′ = L̃xLx −

1

2
L̃yLy , Leff

y′ = gcd(Lx,
Ly
2

) ,

(B.11)

and hence,

GSD =
[
gcd(2,M) · 2L

eff
x′+L

eff
y′ −1

]2

. (B.12)

• Lx, Ly odd: In this case, once again, the identifications in (4.1) couple the two sublat-

tices so that effectively there is only one sublattice, say the blue sublattice in Figure

4. Hence, there is only one copy of the the 3+1d anisotropic Z2 lineon model. The

minimal identifications on the blue sublattice are (see Figure 5(c))

(x, y) ∼ (x+ 2Lx, y) ∼ (x+ Lx, y + Ly) , (B.13)

which can be written as

(x′, y′) ∼ (x′ + Lx, y
′ − Lx) ∼ (x′ + Lx+Ly

2
, y′ − Lx−Ly

2
) , (B.14)

in the new coordinates (x′, y′). Let (L̃x, L̃y) be the integer solution of the equation

L̃xLx + L̃y(
Lx−Ly

2
) = gcd(Lx,

Lx−Ly
2

). Then, in the notation of (B.3), we have

MLeff
x′ =

LxLy

gcd(Lx,
Lx−Ly

2
)
, KLeff

x′ = L̃xLx + L̃y(
Lx+Ly

2
) , Leff

y′ = gcd(Lx,
Lx−Ly

2
) ,

(B.15)

and hence,

GSD =
[
gcd(2,M) · 2L

eff
x′+L

eff
y′ −1

]2

. (B.16)
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When Lx = Ly = L, we have

Leff
x′ = Leff

y′ =
L

M
, K = 1 , M =

{
2 , L even ,

1 , L odd .
(B.17)

Then, the above expressions for the ground state degeneracy simplify to

GSD =

{
24L , L even ,

24L−2 , L odd .
(B.18)

B.2 Mobility restrictions

Let us now discuss the mobility of the z-lineons in the xy-plane in the 3+1d anisotropic Z2

Laplacian model. First, note that in the 2+1d Z2 Ising plaquette model on a 2d spatial torus

given by the identifications (B.3), the defect describing a single particle of unit charge can

“hop” from (x′, y′) to (x′ + gcd(2,M)Leff
x′ , y

′) [35]. This motion is nontrivial if and only if

gcd(2,M) = 1 and M > 1. It follows that the z-lineons of the 3+1d anisotropic Z2 lineon

model, in addition to moving along the z direction, can “hop” in the xy-plane in the same

way.

In particular, consider Lx = Ly = L. It follows from (B.17) that the two conditions

gcd(2,M) = 1 and M > 1 cannot be simultaneously satisfied for any L. Therefore, the

z-lineons cannot hop in the xy-plane, but can only move in the z-direction (and hence the

name lineon).

A dipole of z-lineons at (x, y) and (x + s, y ± s), where s ∈ Z, can move in the (1,∓1)

direction. This follows from the motion of a dipole of fractons in the 2+1d Z2 Ising plaquette

model in the direction orthogonal to their separation.

C 3+1d anisotropic Zp Laplacian model

In this appendix, we use techniques from commutative algebra to compute the ground state

degeneracy and analyze the restricted mobility of the 3+1d anisotropic Zp Laplacian model

of Section 4.3 when p > 2 is prime. Such techniques were used to analyze translationally

invariant Pauli stabilizer codes [48]. All the mathematical facts used here can be found in

standard textbooks on the subject, such as [52,53].
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C.1 Ground state degeneracy

Recall the relation (4.2) between the GSD of the anisotropic ZN Laplacian model and the

number of equivalence classes of ZN -valued functions under the equivalence relation “∼”

of (2.3). Here, we set N = p > 2, where p is prime,18 and Γ = CLx × CLy , the 2d torus

graph. We first find an exact expression for the logp GSD in terms of commutative-algebraic

quantities using the relation (4.2), then explain how to compute this expression in general

using a Gröbner basis, and finally compute it explicitly for some special values of Lx, Ly. In

particular, we show that there are infinitely many Lx, Ly for which logp GSD is O(Lx, Ly),

and also infinitely many Lx, Ly for which logp GSD is finite.

C.1.1 Exact expression for logp GSD

Since there are LxLy points in the Γ = CLx × CLy torus and since we are interested in Zp-
valued functions on that space, it is clear that there are pLxLy such functions. As in (2.3),

they fall into equivalence classes g(x, y) ∼ g̃(x, y) when g(x, y)− g̃(x, y) = ∆Lf(x, y) mod p.

We would like to find the number of such equivalence classes.

As a first step, we give a more abstract description of these pLxLy functions. Let R =

Zp[X, Y ] be the ring of polynomials with coefficients in Zp, and j = (Qx,Qy) be the ideal of

R generated by the polynomials Qx(X, Y ) = XLx − 1 and Qy(X, Y ) = Y Ly − 1. Given two

polynomials F,G ∈ R, we write19

F(X, Y ) = G(X, Y ) mod j , (C.1)

if and only if F(X, Y )− G(X, Y ) is a polynomial in j. The set of equivalence classes modulo

j is the quotient ring R/j.

Any equivalence class of R/j is represented by a unique polynomial that is a Zp-linear

combination of the monomials XaY b with 0 ≤ a < Lx and 0 ≤ b < Ly. (Here, we used the

equivalence relations to remove higher powers of X or Y . This is a special case of a more

general procedure, called complete reduction, which we will describe below.) Therefore, the

number of equivalence classes is pLxLy . In fact, since Zp is a field, R/j can be thought of as

a vector space over Zp. The above monomials form a basis of this vector space, so

dimZpR/j = LxLy . (C.2)

Here, “dimZp” denotes the dimension of a vector space over Zp.
18Actually, all of the following discussion up to (C.36) works even for p = 2. The discussion after that

does not work for p = 2 for reasons we will explain later.
19We do not write the “mod p” explicitly because we are working in Zp[X,Y ].
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It is convenient to represent a Zp-valued function f(x, y) on the 2d torus graph Γ =

CLx × CLy as a polynomial representing an equivalence class of the quotient ring R/j as

follows:

f̂(X, Y ) =
Lx−1∑
x=0

Ly−1∑
y=0

f(x, y)XLx−x−1Y Ly−y−1 mod j . (C.3)

f̂(X, Y ) can be thought of as a lattice Fourier transform of f(x, y) with X = eikx and

Y = eiky , which depend on the momenta kx and ky.

Observe that, for any integer 0 ≤ k < Lx, we have

Xkf̂(X, Y ) =

[ Lx−k−1∑
x=0

Ly−1∑
y=0

f(x+ k, y)XLx−x−1Y Ly−y−1

+
Lx−1∑

x=Lx−k

Ly−1∑
y=0

f(x− Lx + k, y)XLx−x−1Y Ly−y−1

]
mod j ,

(C.4)

so X can be interpreted as the generator of translations in the x direction.20 The fact that

translating in x by Lx takes the graph CLx back to itself is related to the trivial equation

XLx f̂(X, Y ) = f̂(X, Y ) mod j . (C.5)

Also, the difference operator ∆x is associated with the polynomial X − 1. For convenience,

we define the displaced discrete Laplacian operator, denoted by ∆̃L, as

∆̃Lf(x, y) = (∆2
x + ∆2

y)f(x+ 1, y + 1) . (C.6)

(Here, we extended f(x, y) to a periodic function on Z2.) It is associated with the polynomial

P̃(X, Y ) = Y (X − 1)2 +X(Y − 1)2 . (C.7)

In general, any local difference operator in the xy-plane, after an appropriate displacement,

is associated with a polynomial S ∈ R satisfying S(1, 1) = 0.

Let i = (P̃) be the ideal of R generated by the polynomial P̃(X, Y ). Then, i/(i ∩ j) ∼=
(i + j)/j is an ideal of the quotient ring R/j.21 In fact, it is the subspace of the vector space

20Our functions f(x, y) are defined on LxLy points. They can be extended to periodic functions on Z2.
Then, it is straightforward to apply k translations. The expression (C.4) corresponds to applying such
k translation and then expressing the result in terms of the function f(x, y) in the fundamental domain

0 ≤ x ≤ Lx−1, 0 ≤ y ≤ Ly−1. Equivalently, we can use the periodicity of f to write (C.4) as Xkf̂(X,Y ) =∑Lx−1
x=0

∑Ly−1
y=0 f(x+ k, y)XLx−x−1Y Ly−y−1 mod j.

21Here, i + j = (P̃,Qx,Qy) is the ideal of R generated by the three polynomials P̃(X,Y ), Qx(X,Y ), and
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R/j that corresponds to the Zp-valued functions of the form ∆̃Lf(x, y).

It is then clear that the quotient

R/j
(i + j)/j

∼= R/(i + j) , (C.8)

corresponds to the set of equivalence classes of Zp-valued functions under the equivalence

relation “∼” of (2.3) on the 2d torus graph CLx × CLy . It follows that

logp GSD = 2 dimZpR/(i + j) , (C.9)

or more explicitly,

logp GSD = 2 dimZp
Zp[X, Y ]

(Y (X − 1)2 +X(Y − 1)2, XLx − 1, Y Ly − 1)
. (C.10)

Below, we give a general procedure to compute this quantity.

C.1.2 Computing logp GSD using Gröbner basis

One way to compute the (vector space) dimension of R/(i + j) is by first computing the

Gröbner basis of the ideal i + j. Before defining a Gröbner basis, we need an ordering on all

the monomials. For our purposes, it is sufficient to define a lexicographic monomial ordering :

XmY n � XkY l if and only if m > k, or m = k and n > l. Then, for any polynomial F(X, Y ),

we define its leading term as the term that has the largest monomial among all the terms.

Now, we say a polynomial F(X, Y ) is reducible with respect to a set of polynomials

G = {G1, . . . ,Gn} if some term of F(X, Y ) is a multiple of the leading term of one of the

Gi(X, Y )’s. We say it is irreducible otherwise.

Given an ideal I of R and a polynomial F ∈ R, one can ask what the equivalence class

of F(X, Y ) in R/I is. One way to answer this question is to reduce F(X, Y ) with respect

to a generating set B of I repeatedly until we are left with a polynomial H(X, Y ) that is

irreducible with respect to B. (Such a procedure is known as a complete reduction of F(X, Y )

with respect to B.) One might hope that H(X, Y ) uniquely specifies the equivalence class of

F(X, Y ). However, for a generic B, the H(X, Y ) so obtained depends on the choices made

in the repeated reductions, and hence, may not be unique.

A Gröbner basis G = {G1, . . . ,Gn} is a special generating set of I such that F(X, Y ) can

Qy(X,Y ). It is known as the sum of ideals i and j.
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be written as

F(X, Y ) = H(X, Y ) +
n∑
i=1

Hi(X, Y )Gi(X, Y ) , (C.11)

where H(X, Y ) is uniquely determined by the requirement that it is irreducible with respect

to G .22 In this case, we write

F(X, Y ) = H(X, Y ) mod G . (C.12)

It follows that there is a one-one correspondence between R/I and the set of all polynomials

that are irreducible with respect to G . Indeed, the set of all monomials that are irreducible

with respect to G forms a basis of the vector space R/I. From this we conclude that

dimZpR/I equals the number of monomials that are irreducible with respect to G .

While there is an algorithm, known as Buchberger’s algorithm, to compute a Gröbner

basis of an ideal given its generators, it is not always easy to compute it analytically.23

Nonetheless, for fixed values of p, Lx, Ly, the Gröbner basis, and therefore the GSD, can be

readily computed with the help of computer programs. Let us do an explicit calculation

for the GSD when p = 3 and Lx = Ly = 4 as an example. Using the GroebnerBasis

command with Modulus → 3 in Mathematica, we can compute the Gröbner basis for the

ideal (P̃,Qx,Qy) = (Y (X − 1)2 +X(Y − 1)2, X4 − 1, Y 4 − 1) in this case. We find G =

{Y 4−1, XY +X−Y 3−Y 2, X2 +Y 3−Y 2 +Y +1} under the lexicographic ordering X � Y .

The leading terms of G are {Y 4, XY,X2}, and the 5 irreducible monomials with respect to

G are 1, Y, Y 2, Y 3, X. We conclude that dimZ3R/(i + j) = 5, and hence log3 GSD = 10. In

fact, the plot of logN GSD as a function of Lx = Ly = L in Figure 2 was obtained exactly in

this way.

Fortunately, for the problem at hand, it is possible to simplify the expression (C.9) for

the GSD further analytically. To prepare for the simplified expression, we first define a few

things:

A field F is algebraically closed if any polynomial in F [X] can be factorized completely

into linear factors in F [X]. For example, R is not algebraically closed because the polynomial

X2 + 1, which is in R[X], cannot be factorized into linear factors in R[X]. In contrast, it is

well-known that C is algebraically closed. Every field, by definition, contains the multiplica-

tive identity 1.

22Note that Hi(X,Y )’s are not uniquely determined by this procedure. Indeed, shifting H1(X,Y ) by
G2(X,Y ) and H2(X,Y ) by −G1(X,Y ) gives another complete reduction of F(X,Y ) with respect to G .

23For the ideal j = (Qx,Qy), the generating set {Qx,Qy} is already a Gröbner basis, and moreover, the
irreducible monomials are XxY y for 0 ≤ x < Lx and 0 ≤ y < Ly, which form a basis of R/j. (This fact

was used in the analysis leading to (C.2).) However, for the ideal i + j = (P̃,Qx,Qy), the generating set

{P̃,Qx,Qy} is not always a Gröbner basis.
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The characteristic of a field is the smallest positive integer n such that 1+· · ·+1(n times) =

0. It is clear that Zp is a field of characteristic p. By convention, the characteristics of Q,

R, and C are all defined to be 0. It is known that the characteristic of any field is either 0

or a prime number. As we see, there are several fields with the same characteristic p.

For finite fields, the field is uniquely specified by the number of its elements and the

characteristic. In particular, for any integer k ≥ 1 and prime p, Fpk denotes the unique (up

to field isomorphisms) finite field of order pk and characteristic p. Furthermore, Fp∞ denotes

the unique algebraically closed field of characteristic p.24

Let S = Fp∞ [X, Y ] be the ring of polynomials in X, Y with coefficients in Fp∞ . We use

the same symbols i and j for the ideals of S generated by the polynomials P̃(X, Y ) and

Qx(X, Y ),Qy(X, Y ) respectively. The algebraic set of i + j, denoted as V (i + j), is the set of

distinct solutions (X0, Y0) ∈ F2
p∞ of the system of polynomial equations

XLx − 1 = Y Ly − 1 = P̃(X, Y ) = 0 . (C.13)

We will find it convenient to parameterize Lx and Ly in terms of the order of our group

Zp as

Lx = pkxL′x , Ly = pkyL′y , gcd(p, L′x) = gcd(p, L′y) = 1 . (C.14)

Now, for each solution (X0, Y0) ∈ V (i + j), we define the polynomials

Q̃x,X0(X, Y ) = (X −X0)p
kx
, Q̃y,Y0(X, Y ) = (Y − Y0)p

ky
, (C.15)

and the ideal i′X0,Y0
= (P̃, Q̃x,X0 , Q̃y,Y0) of S.

With these preparations, the simplified expression for the GSD (C.9) is

logp GSD = 2
∑

(X0,Y0)∈V (i+j)

dimFp∞ S/i
′
X0,Y0

. (C.16)

It is obtained using techniques from commutative algebra (see e.g., [52,53]), that were used

in [48]. For readers who are familiar with such techniques, a derivation of (C.16) is given

below. Others, who are willing to accept it, can skip directly to Appendix C.1.3, where we

compute the GSD for some special values of Lx, Ly explicitly.

Derivation of (C.16)

Since R/(i + j) is a finite-dimensional vector space over Zp, it is an Artinian ring,25 and

24More explicitly, Fp∞ =
⋃∞
n=1 Fpn! . Here we used the fact that Fpk is a subfield of Fpm if and only if k

divides m.
25A ring R is Artinian if it satisfies the descending chain condition, i.e., if I1 ⊇ I2 ⊇ I3 ⊇ · · · is a

30



hence, it has finitely many maximal ideals.26 Moreover, for an Artinian ring, it is known

that
R/(i + j) ∼=

⊕
m

[R/(i + j)]m , (C.17)

where the sum is over all maximal ideals of R/(i+ j), and [R/(i+ j)]m denotes the localization

of R/(i + j) at m.27 It follows that

logp GSD = 2
∑
m

dimZp [R/(i + j)]m . (C.18)

So, we can compute dimension for each term in the sum and then add them up. However,

the maximal ideals of R/(i + j) are a bit complicated to work with. Instead, we proceed as

follows.

We can replace Zp by Fp∞ in (C.9) and get the same answer for logp GSD. More concretely,

we have28

dimZpR/(i + j) = dimFp∞ S/(i + j) , (C.19)

where, on the right hand side, i and j are ideals of S generated by the same polynomials as

before. Since S/(i + j) is also Artinian, we have

logp GSD = 2
∑
m

dimFp∞ [S/(i + j)]m , (C.20)

where the sum is over all maximal ideals of S/(i + j). We now characterize the maximal

ideals of S/(i + j).

descending chain of ideals, then there is a k ≥ 1 such that Ik = Ik+1 = Ik+2 = · · · . For example, the ring
of integers Z is not Artinian because (2) ⊃ (4) ⊃ (8) ⊃ · · · , where (n) denotes the ideal generated by the
integer n. On the other hand, for any integer n, the ring of integers modulo n, Z/(n) = Zn, is Artinian.
Moreover, any ring that is also a finite dimensional vector space over a field is always Artinian, which is
exactly the case here.

26A proper ideal is an ideal that is not the ring itself. For example, in Z, the ideal (4) is proper because it
does not contain 1. (The only ideal containing 1 is the entire ring itself.) A maximal ideal is a proper ideal
that is not contained in any other proper ideal except itself. For example, in Z, (4) is not a maximal ideal
because it is contained in the proper ideal (2). The latter is maximal; in fact, the ideal (n) is maximal if
and only if n is prime.

27Intuitively, given a multiplicatively closed subset S of a ring R, the localization of R with respect to S,
denoted as S−1R, means “formally adding multiplicative inverses” for all the elements of S. For example,
in Z, the subset of nonzero integers is multiplicatively closed, and localizing with respect to this set gives
the rationals Q. In any ring R, given a maximal ideal m, the set R \m is always multiplicatively closed. So
we define the localization of R at m, denoted by Rm, as the localization of R with respect to R \m.

28Given a field F , one can talk about extending it to a larger field F ′ such that F is a subfield of F ′.
For example, R is a subfield of C, or equivalently, C is an extension of R. Now, let V be a vector space
over F . One can “extend the base field” from F to F ′ by tensoring V with F ′, denoted as V ⊗F F ′. Then,
dimF V = dimF ′(V ⊗F F ′). Since Fp∞ is an extension of Zp, the result in (C.19) follows.
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By the correspondence theorem for quotient rings, the maximal ideals of S/(i + j) are in

one-one correspondence with the maximal ideals of S that contain the ideal i+ j. Moreover,

since Fp∞ is algebraically closed, by Hilbert’s Nullstellensatz, the maximal ideals of S are in

one-one correspondence with ideals of the form (X−X0, Y −Y0), where (X0, Y0) ∈ F2
p∞ . Now,

the ideal (X−X0, Y −Y0) contains i+ j if and only if (X0, Y0) is a root of all the polynomials

in i + j. It follows that the maximal ideals of S/(i + j) are in one-one correspondence with

ideals of S of the form (X − X0, Y − Y0), where (X0, Y0) is a solution of the system of

polynomial equations

XLx − 1 = Y Ly − 1 = P̃(X, Y ) = 0 , (C.21)

i.e., (X0, Y0) ∈ V (i + j), the algebraic set of i + j. Then,

logp GSD = 2
∑

(X0,Y0)∈V (i+j)

dimFp∞ [S/(i + j)](X−X0,Y−Y0) . (C.22)

We can simplify it further. Let Li = pkiL′i with gcd(p, L′i) = 1. Recall that since Fp∞ is

algebraically, any polynomial in Fp∞ [X] can be factorized completely into linear factors in

Fp∞ [X]. Using this fact, we have

XLx − 1 = (XL′x − 1)p
kx

=
∏

ξ∈Fp∞ : ξL
′
x=1

(X − ξ)pkx ,
(C.23)

That is, there are L′x distinct ξ’s in Fp∞ that satisfy ξLx = 1, each with multiplicity pkx .

Let (X0, Y0) ∈ V (i + j). It is clear that X0 is one of the ξ’s in (C.23). Consider the

localization S(X−X0,Y−Y0). Recall that every element outside the ideal (X − X0, Y − Y0)

becomes a unit in the localization S(X−X0,Y−Y0).
29 In particular, the polynomial Qx(X, Y ) =

XLx − 1 generates the same ideal in S(X−X0,Y−Y0) as the polynomial Q̃x,X0(X, Y ) = (X −
X0)p

kx
because the other linear factors in (C.23) associated with ξ 6= X0 all have inverses.30

Similarly, Qy(X, Y ) = Y Ly − 1 generates the same ideal as Q̃y,Y0(X, Y ) = (Y − Y0)p
ky

. It

follows that

(i + j)(X−X0,Y−Y0) = (P̃, Q̃x,X0 , Q̃y,Y0)(X−X0,Y−Y0) , (C.24)

in the localization S(X−X0,Y−Y0). Here, we use the notation Im to denote the ideal in Sm
generated by the image of the ideal I ⊆ S under the localization map S → Sm, where m is

a maximal ideal of S.

29A unit is an element of the ring that has a multiplicative inverse. In any ring, the multiplicative identity
1 is its own inverse, so it is always a unit. In particular, in Z, ±1 are the only units, whereas in Q, any
nonzero rational is a unit.

30More abstractly, if r is one of the generators of an ideal I of R, then we can replace it by ur, where u
is a unit.
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Defining i′X0,Y0
= (P̃, Q̃x,X0 , Q̃y,Y0), we then have

[S/(i + j)](X−X0,Y−Y0)
∼= S(X−X0,Y−Y0)/(i + j)(X−X0,Y−Y0)

∼= S(X−X0,Y−Y0)/(i
′
X0,Y0

)(X−X0,Y−Y0)

∼= (S/i′X0,Y0
)(X−X0,Y−Y0) ,

(C.25)

where in the first and third lines, we used the slogan “localization commutes with quotient-

ing”, and the second line follows from (C.24). Now, the quotient S/i′X0,Y0
is also Artinian,

and by Hilbert’s Nullstellensatz, its only maximal ideal is (X − X0, Y − Y0). Hence, by a

result similar to the one in (C.17), we have

(S/i′X0,Y0
)(X−X0,Y−Y0)

∼= S/i′X0,Y0
, (C.26)

and therefore,

logp GSD = 2
∑

(X0,Y0)∈V (i+j)

dimFp∞ S/i
′
X0,Y0

. (C.27)

C.1.3 Computation of logp GSD for special values of Lx, Ly

Given the expression (C.16) for the GSD, all we need to do now is to compute a Gröbner

basis of i′X0,Y0
in S for each (X0, Y0) ∈ V (i+ j). First, we note certain “symmetries” in the set

V (i+ j). Recall that V (i+ j) is the set of (X0, Y0) ∈ F2
p∞ that solve the system of polynomial

equations

XL′x − 1 = Y L′y − 1 = P̃(X, Y ) = 0 , (C.28)

where we used the facts that XLx − 1 = (XL′x − 1)p
kx

and Y Ly − 1 = (Y L′y − 1)p
ky

in

F2
p∞ [X, Y ]. (Here, we used the parametrization (C.14).) Given a solution (X0, Y0) of (C.28),

we can generate three more solutions using the transformations

X0 → X−1
0 , Y0 → Y −1

0 , (C.29)

because the equations (C.28) are invariant under these transformations. (These transforma-

tions are well defined because X0 6= 0 and Y0 6= 0.) Furthermore, if L′x = L′y, we can generate

four more solutions using the exchange

X0 ↔ Y0 . (C.30)

It is clear that (1, 1) is the only solution that is invariant under all these transformations.

We will exploit these transformations in our analysis below.

In general, it is hard to compute a Gröbner basis of i′X0,Y0
for arbitrary (X0, Y0) ∈ F2

p∞
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except when (X0, Y0) = (1, 1). So, below, we specialize to those values of Lx, Ly for which

(X0, Y0) = (1, 1) is the only solution of (C.28). These special values of Lx, Ly contain infinite

families of Lx, Ly with interesting behaviors of GSD.

1. Consider the special case L′x = L′y = 1, where (C.28) becomes

X − 1 = Y − 1 = P̃(X, Y ) = 0 . (C.31)

Clearly, (X0, Y0) = (1, 1) is the only solution of (C.31). In this case, changing the

variables X and Y to X̃ = X − 1 and Ỹ = Y − 1, we have i′1,1 = (X̃2Ỹ + X̃Ỹ 2 + X̃2 +

Ỹ 2, X̃pkx , Ỹ pky ). We can assume that kx ≥ ky without loss of generality. Then, with a

lexicographic monomial order on X̃, Ỹ with X̃ � Ỹ , a Gröbner basis of i′1,1 is given by

the following:

• When ky > 0,

G1(X̃, Ỹ ) = Ỹ pky ,

G2(X̃, Ỹ ) = X̃Ỹ pky−1δkx,ky ,

G3(X̃, Ỹ ) = X̃2 + (X̃ + 1)Ỹ 2

pky−3∑
i=0

(−Ỹ )i − X̃Ỹ pky−1δkx,ky .

(C.32)

• When ky = 0,

G1(X̃, Ỹ ) = Ỹ ,

G2(X̃, Ỹ ) = X̃δkx,0 + X̃2(1− δkx,0) .
(C.33)

The set of monomials that are irreducible with respect to this Gröbner basis are

{Ỹ i : 0 ≤ i < pky} ∪ {X̃Ỹ j : 0 ≤ j < pky − δkx,ky} . (C.34)

They form a basis of S/i′1,1, so we have

dimFp∞ S/i
′
1,1 = 2pky − δkx,ky . (C.35)

By (C.16), we conclude that

logp GSD = 2
(
2pky − δkx,ky

)
. (C.36)

2. Next, we generalize the previous special case to L′x = L′y = q with q > 2 a prime such
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that p is a primitive root modulo q.31 Then, (C.28) becomes

Xq − 1 = Y q − 1 = P̃(X, Y ) = 0 . (C.37)

We will show that X0 = Y0 = 1 is the only solution of (C.37). We argue by contradic-

tion. We assume that there is a solution with X0 6= 1. Then, any other solution (X0, Y0)

of (C.37) is obtained from a solution of the form (X0, X
s
0) for some 1 ≤ s ≤ (q − 1)/2

using the transformations (C.29) and (C.30).32 Since Xq
0 = 1 and X0 6= 1, X0 is a root

of the cyclotomic polynomial Φq(X) =
∑q−1

j=0 X
j. Moreover, since (X0, X

s
0) satisfies

P̃(X, Y ) = 0, X0 is also a root of the polynomial P̃(X,Xs). We can write

P̃(X,Xs) = X(Xs − 1)2 +Xs(X − 1)2 = X(X − 1)2P̂s(X) , (C.38)

where

P̂s(X) =
(∑s−1

i=0 X
i
)2

+Xs−1 . (C.39)

P̂s(X) is a nonzero polynomial in Zp[X] because P̂s(0) = 1 mod p for s > 1, and 2

mod p for s = 1.33 Since X0 is a root of P̃(X,Xs) and X0 6= 0, 1, it must be a root

of P̂s(X). We now use the fact that Φq(X) is the minimal polynomial of X0 in Zp[X]

because p is a primitive root modulo q [54, Section 11.2.B]. This means Φq(X) divides

P̂s(X). But this is impossible because

degX P̂s(X) = 2s− 2 ≤ q − 3 < q − 1 = degX Φq(X) , (C.40)

So, there is no such X0. In other words, when p is a primitive root modulo q, the only

solution of (C.37) is (1, 1). Then, by the analysis in point 1 above, logp GSD is again

given by (C.36).

3. We now generalize as follows. Let q > 2 be a prime such that p is a primitive root

modulo qm for some m ≥ 2. Set L′x = L′y = qm, so that (C.28) becomes

Xqm − 1 = Y qm − 1 = P̃(X, Y ) = 0 . (C.41)

31In other words, p is a generator of the multiplicative group of integers modulo q, denoted as Z×q . For
any positive integer n, the order of the group Z×n is known as the Euler totient function of n, denoted as
ϕ(n). It is easy to see that ϕ(qm) = qm − qm−1 for any odd prime q and any m ≥ 1.

32Since X0 6= 1, Xq
0 = 1, and q is prime, X0 is a primitive qth root of unity, i.e., powers of X0 generates

all the qth roots of unity. Since Y q0 = 1, it is a qth root of unity, and hence, Y0 = Xs
0 for some 0 ≤ s < q.

But s 6= 0 because there is no solution of (C.37) of the form (X0, 1) for X0 6= 1. Moreover, using the
transformation (C.29), (X0, X

q−s
0 ) is also a solution, so we can restrict s to the range 1 ≤ s ≤ (q − 1)/2.

33This is not true for p = 2 because P̂s(X) = 0 identically for s = 1, so there is always a solution of (C.28)
of the form (X0, X0) even for X0 6= 1.
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Again, we argue by contradiction that the only solution of (C.41) (X0, Y0) ∈ F2
p∞

is (1, 1). We assume that X0 6= 1. Then, any other solution (X0, Y0) of (C.41) is

obtained from a solution of the form (X0, X
s
0) for some 1 ≤ s ≤ (qm − 1)/2 using the

transformations (C.29) and (C.30). Actually, the range of s can be smaller than this.

Let qr be the order of X0 for some 0 ≤ r ≤ m, i.e., Xqr

0 = 1, but Xqr
′

0 6= 1 for any

r′ < r. Since r = 0 corresponds to the trivial solution (1, 1), we have r > 0. Then,

1 ≤ s ≤ (qr − 1)/2. We consider two cases:

• s ≤ ϕ(qr)/2: [See footnote 31 for the definition of ϕ(qr).] Since the order of X0

is qr, it is a root of the cyclotomic polynomial Φqr(X) =
∑q−1

j=0 X
jqr−1

. Since

X0 6= 0, 1, it is also a root of the polynomial P̂s(X) in (C.39). We now use

the fact that Φqr(X) is the minimal polynomial of X0 in Zp[X] because p is a

primitive root modulo qr [54, Section 11.2.B].34 This means Φqr(X) must divide

P̂s(X). But this is impossible because

degX P̂s(X) = 2s− 2 ≤ ϕ(qr)− 2 < ϕ(qr) = degX Φqr(X) . (C.42)

So, there is no such X0.

• ϕ(qr)/2 < s ≤ (qr − 1)/2: Let X0 = Z2
0 , where Z0 also has order qr. (Such a Z0

exists because gcd(2, q) = 1 for q > 2.) Then, the solution (X0, Y0) is of the

form (Z2
0 , Z

2s
0 ). By the transformation (C.29), (Z2

0 , Z
t
0) is also a solution, where

t = qr − 2s. Then

ϕ(qr)

2
< s ≤ qr − 1

2
=⇒ 1 ≤ t < qr−1 ≤ qr − qr−1

2
=
ϕ(qr)

2
, (C.43)

where the rightmost inequality holds for q > 2. Clearly, Z0 is a root of Φqr(X).

Since (Z2
0 , Z

t
0) satisfies P̃(X, Y ) = 0, Z0 is a root of P̃(X2, X t). We can write

P̃(X2, X t) = X2(X t − 1)2 +X t(X2 − 1)2

=

{
X(X − 1)2P̌1(X) , t = 1 ,

X2(X − 1)2P̌t(X) , t > 1 ,

(C.44)

where

P̌t(X) =

{
X + (X + 1)2 , t = 1 ,(∑t−1

i=0 X
i
)2

+X t−2(X + 1)2 , t > 1 .
(C.45)

34Here, we used the fact: p is a primitive root modulo qm =⇒ p is a primitive root modulo qr for all
r ≤ m. In fact, for m ≥ 2: p is a primitive root modulo qm =⇒ p is a primitive root modulo qm+1.
Combining these facts: p is a primitive root modulo q2 =⇒ p is a primitive root modulo qm for all
m ≥ 1 [49, Section 2.8].
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P̌t(X) is a nonzero polynomial because P̌t(0) = 1 mod p for t 6= 2, and 2 mod p

for t = 2.35 Since Z0 is a root of P̃(X2, X t) and Z0 6= 0, 1, it is a root of P̌t(X) as

well. We now use the fact that Φqr(X) is the minimal polynomial of Z0 in Zp[X]

because p is a primitive root modulo qr [54, Section 11.2.B]. This means Φqr(X)

must divide P̌t(X). But this is impossible because

degX P̌t(X) = t+ max(t, 2)− 2 + δt,1 ≤ 2t < ϕ(qr) = degX Φqr(X) , (C.46)

where in the third line, we used (C.43). So, there is no such Z0.

Therefore, when p is a primitive root modulo qm, then (1, 1) is the only solution of

(C.41), and hence, logp GSD is still given by (C.36).

To conclude, when Lx = pkxqm and Ly = pkyqm, where q is an odd prime such that p

is a primitive root modulo qm, and kx, ky,m ≥ 0, the ground state degeneracy of the 3+1d

anisotropic Zp Laplacian model is given by

logp GSD = 2
[
2pmin(kx,ky) − δkx,ky

]
. (C.47)

When m = 0, we see that logp GSD scales as 4 min(Lx, Ly). This gives an infinite family of

Lx, Ly for which logp GSD is O(Lx, Ly).

Say q is such that p is a primitive root modulo q2. Then, p is a primitive root modulo

qm for all m ≥ 1 (see footnote 34). Then, for kx = ky = 0 and any m ≥ 0, we see that

logp GSD = 2, a finite number. This gives an infinite family of Lx, Ly for which logp GSD

remains finite.36

Note that the last conclusion relies on the existence of an odd prime q such that p is

a primitive root modulo q2. However, we do not know of a proof for general p. Another

interesting possibility is the following. By Artin’s conjecture on primitive roots [50],37 there

are infinitely many prime q such that p is a primitive root modulo q. (Recall from footnote 34

that this does not imply that p is a primitive root modulo q2.) Then, choosing Lx = Ly = q

for all such q gives another infinite family of Lx, Ly for which logp GSD = 2. However,

Artin’s conjecture is still unproven, except under the assumption of the generalized Riemann

hypothesis [51], which is also unproven.

35Once again, this is not true for p = 2 because P̌t(X) = 0 identically when t = 2, so there is always a
solution of (C.28) of the form (Z2

0 , Z
2
0 ) even for Z0 6= 1.

36In contrast, when N = 2, log2 GSD in (B.18) always scales as 4L for any L. This is because, when p = 2,
the above arguments do not go through, as explained in footnotes 33 and 35.

37The conjecture is actually stronger: the set of such q has positive asymptotic density inside the set of
all primes.
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C.2 Mobility restrictions

We now discuss the mobility of z-lineons in the xy-plane in the 3+1d anisotropic Zp Laplacian

model. The lineons are represented as defects in the low-energy theory and their motion is

implemented by operators acting at fixed time.

These operators fall into two kinds. First, there are operators supported in a small region,

e.g., the line joining the two points. Second, there are also situations where the operator

spans over O(Lx, Ly) sites. Operators of the second kind exist only for certain special values

of Lx, Ly depending on some number-theoretic properties of Lx, Ly, whereas the first kind

exist for all Lx, Ly. In particular, only the first kind exist on an infinite square lattice. (See

the discussion in [35,23].)

As an example of the second kind of operator, consider Lx = Ly = qm, where q > 2 is

a prime such that p is a primitive root modulo qm. In Appendix C.1, we showed that for

Lx = Ly = qm, where q > 2 is a prime such that p is a primitive root modulo qm, the ground

state degeneracy is given by logp GSD = 2. It follows that | Jac(Cqm × Cqm , p)| = p, or

equivalently, Jac(Cqm × Cqm , p) = Zp. Therefore, in this case, the only selection imposed by

the Jac(Cqm ×Cqm , p) time-like symmetry is that the total charge of the defects is conserved

modulo p. In particular, a z-lineon can move anywhere within the xy-plane when Lx =

Ly = qm. However, we show below that a z-lineon is completely immobile when Γ is an

infinite square lattice. This means, the operator that moves a z-lineon on the 2d torus graph

Cqm × Cqm must be of the second kind.

We now show that a z-lineon is completely immobile on an infinite square lattice. In fact,

we show that any finite configuration of z-lineons is completely immobile (except in some

trivial cases) as long as their charges and the separations between them are fixed during the

motion, i.e., we allow only “rigid” motion. Without this restriction, the groups of lineons

can move. We will not discuss this motion.

Our analysis will be similar to the analogous discussion in [23]. The main difference

between them is that here our variables are in Zp and therefore various properties of the

polynomials will depend on p.

Consider n z-lineons, with charges qi and positions (xi, yi) for i = 1, . . . , n, described by

the defect

exp

[
2πi

p

∑
τ

n∑
i=1

qimτ (τ + 1
2
, xi, yi)

]
(C.48)

(Since they are z-lineons, we can assume without loss of generality that they all have the

same z coordinate, and omit writing it.) They can move “rigidly” by (x0, y0) 6= (0, 0) if there
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is a defect of the form

exp

[
2πi

p

∑
τ<0

n∑
i=1

qimτ (τ + 1
2
, xi, yi)

]
× exp

[
2πi

p

l∑
j=1

sjm(0, xj, yj)

]

× exp

[
2πi

p

∑
τ≥0

n∑
i=1

qimτ (τ + 1
2
, xi + x0, yi + y0)

]
.

(C.49)

This defect is gauge invariant if and only if

n∑
i=1

qi [k(0, xi + x0, yi + y0)− k(0, xi, yi)] =
l∑

j=1

sj(∆
2
x + ∆2

y)k(0, xj, yj) mod p , (C.50)

for any integer gauge parameter k in (3.9).

Using a formal Laurent power series

k̂(X, Y ) =
∑

(x,y)∈Z2

k(0, x, y)X−xY −y , (C.51)

associated with the gauge parameter k(0, x, y), the condition (C.50) can be written as

(Xx0Y y0 − 1)Q(X, Y ) = S(X, Y )P(X, Y ) mod p , (C.52)

where

P(X, Y ) = (X − 2 +X−1) + (Y − 2 + Y −1) , (C.53)

is the Laurent polynomial (i.e., an element of Zp[X,X−1, Y, Y −1]) associated with the discrete

Laplacian operator ∆2
x + ∆2

y, and

Q(X, Y ) =
n∑
i=1

qiX
xiY yi , S(X, Y ) =

l∑
j=1

sjX
xjY yj , (C.54)

are also Laurent polynomials. The coefficients and monomials in Q(X, Y ) and S(X, Y ) are

obtained from the defect (C.49).

If there is a Laurent polynomial R(X, Y ) such that Q(X, Y ) = R(X, Y )P(X, Y ), then

(C.52) can be trivially satisfied by choosing S(X, Y ) = (Xx0Y y0 − 1)R(X, Y ). However, in

this case, the defect (C.48) can end at τ = 0 as follows:

exp

[
2πi

p

∑
τ<0

n∑
i=1

qimτ (τ + 1
2
, xi, yi)

]
× exp

[
−2πi

p

l′∑
j′=1

rj′m(0, xj′ , yj′)

]
(C.55)
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where rj′ ’s and (xj′ , yj′)’s are obtained from R(X, Y ) =
∑l′

j′=1 rj′X
xj′Y yj′ . Therefore, in this

case, the defect (C.49) describes the annihilation of the n z-lineons at their original positions

and their creation at positions displaced by (x0, y0) at time τ = 0.

A more interesting situation occurs for a defect like (C.49) when Q(X, Y ) cannot be

written as R(X, Y )P(X, Y ) for any Laurent polynomial R(X, Y ). Then, to satisfy (C.52),

P(X, Y ) and Xx0Y y0 − 1 must share a nontrivial factor.38 Let us show that this cannot

happen. In the following, it is crucial that (x0, y0) 6= (0, 0).

First, note that P(X, Y ) is nonconstant and irreducible up to a monomial in Zp[X,X−1, Y, Y −1]

for any odd prime p.39 So, all we need to show is that Xx0Y y0−1 is not a multiple of P(X, Y )

in Zp[X,X−1, Y, Y −1].

Let pk be the largest power of p that divides both x0 and y0, i.e., x′0 = x0/p
k and

y′0 = y0/p
k are integers and d = gcd(x′0, y

′
0) is not divisible by p. Then, in Zp[X,X−1, Y, Y −1],

we have

Xx0Y y0 − 1 = (Xx′0Y y′0 − 1)p
k

=
[
(Xx′′0Y y′′0 − 1)T(X, Y )

]pk
, (C.56)

where x′′0 = x′0/d, y′′0 = y′0/d, and T(X, Y ) =
∑d−1

c=0(Xx′′0Y y′′0 )c. Now, T(1, 1) = d 6= 0 mod p,

whereas P(1, 1) = 0, so T(X, Y )p
k

is not a multiple of P(X, Y ). Since gcd(x′′0, y
′′
0) = 1,

the factor Xx′′0Y y′′0 − 1 is nonconstant and irreducible up to a monomial for any p [56]. So

(Xx′′0Y y′′0 − 1)p
k

is also not a multiple of P(X, Y ). Therefore, Xx0Y y0 − 1 is not a multiple of

P(X, Y ).

To conclude, a finite set of z-lineons cannot move “rigidly” in the xy-plane in the 3+1d

anisotropic Zp Laplacian model, unless they can be annihilated.

D ZN Laplacian model on a graph

In this appendix, we analyze a gapped fracton model on a simple, connected, undirected

spatial graph Γ. We refer to it as the ZN Laplacian model because the theory is defined

using the discrete Laplacian operator ∆L on the graph Γ. The anisotropic ZN Laplacian

38By nontrivial factor we mean a nonconstant Laurent factor that is not a Laurent monomial.
39A polynomial in Zp[X,Y ] is said to be irreducible if it cannot be written as a product of two nonconstant

polynomials. A Laurent polynomial F(X,Y ) in Zp[X,X−1, Y, Y −1] is said to be irreducible up to a monomial
if XaY bF(X,Y ) is an irreducible polynomial for some a, b ∈ Z. For example, P(X,Y ) is irreducible up to a
monomial because P̃(X,Y ) = XY P(X,Y ), given by (C.7), is an irreducible polynomial. The irreducibility of
P̃(X,Y ) for any prime p > 6 follows from [55, Corollary 3]. It is easy to verify by hand, or in Mathematica, that
it is irreducible even for p = 3, 5. It is, however, not irreducible for p = 2 because P̃(X,Y ) = (XY +1)(X+Y )
mod 2. This is one way of seeing why a dipole of z-lineons separated in (1,±1) direction can move in (1,∓1)
direction in the 3+1d anisotropic Z2 Laplacian model.
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model in Section 3 is an anisotropic extension of this ZN Laplacian model by adding another

direction.

D.1 Hamiltonian

In the Hamiltonian formulation of the ZN Laplacian model, there are a ZN variable Ui and

its conjugate variable Vi, i.e. UiVi = e2πi/NViUi, on every site of the graph Γ where i labels

the sites. The Hamiltonian is
H = −γ1

∑
i

Gi + h.c. , (D.1)

where
Gi =

∏
j:〈i,j〉∈Γ

ViV
†
j . (D.2)

Here, 〈i, j〉 means i and j are connected by an edge in the graph Γ.

Since all the Gis commute, the ground states satisfy Gi = 1 for all i and the excitations

are violations of Gi = 1. We could take the limit γ1 →∞, in which case, the Hilbert space

consists of only the ground states and the Hamiltonian is trivial. The Euclidean presentation

of this model in this limit will be discussed later in Appendix D.2.

We are particularly interested in those operators that commute with the Hamiltonian

(D.1) and act nontrivially on its ground states. They are the global symmetry operators of

the model in the low energy limit.

The electric symmetry operators are Vi, which trivially commute with the Hamiltonian.

Since the ground states satisfy Gi = 1, some of these operators are equivalent when acting

on the ground states. The independent symmetry operators are

W̃λ =
∏
i

V
λ(i)
i , (D.3)

where λ(i) takes the form (2.6)

λ(i) =
N∑
a=1

pa(Q
−1)ai , pa ∼ pa + gcd(N, ra) . (D.4)

Let us explain the identification on pa. We have pa ∼ pa +N because V N
i = 1. We also have

pa ∼ pa + ra because ra(Q
−1)ai =

∑
j LijPaj and

∏
i V

Lij
i = 1 when acting on the ground

states. Combining the two identifications, we get pa ∼ pa + gcd(N, ra). The symmetry

operators generate a Jac(Γ, N) electric symmetry.
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The magnetic symmetry operators are

Wλ̃ =
∏
i

U
λ̃(i)
i , (D.5)

where λ̃(i) obeys ∆Lλ̃(i) = 0 mod N , and the most general solution takes the form (2.5)

λ̃(i) =
N∑
a=1

NQiap̃a
gcd(N, ra)

, p̃a ∼ p̃a + gcd(N, ra) . (D.6)

The symmetry operators generate a Jac(Γ, N) magnetic symmetry.

A convenient basis of electric and magnetic space-like symmetry operators is given by

W̃ (a) =
∏
i

V
(Q−1)ai
i ,

W (a) =
∏
i

U
N

gcd(N,ra)
Qia

i .
(D.7)

for a = 1, . . . ,N. Both W (a) and W̃ (a) are Zgcd(N,ra) operators. They satisfy the commuta-

tion relations

W (a)W̃ (b) = exp

[
2πiδab

gcd(N, ra)

]
W̃ (b)W (a) , a, b = 1, . . . ,N . (D.8)

For each a, there is only one b that has nontrivial commutation relation. So for each a, there

is an independent Zgcd(N,ra) Heisenberg algebra generated by W (a) and W̃ (a), leading to a

ground state degeneracy

GSD =
N∏
a=1

gcd(N, ra) = | Jac(Γ, N)| . (D.9)

D.2 Euclidean presentation

We now discuss the Euclidean presentation of the ZN Laplacian model. We place the theory

on a Euclidean spacetime lattice CLτ × Γ, where Γ is the spatial slice. We use (τ, i) to label

a site in the spacetime lattice. The integer BF -action of the ZN Laplacian theory is

S =
2πi

N

∑
τ,i

m̃(τ + 1
2
, i)
[
∆τm(τ, i)−∆Lmτ (τ + 1

2
, i)
]
, (D.10)
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where the integer fields m̃ and (mτ ,m) have an integer gauge symmetry

m̃ ∼ m̃+Nk̃ ,

mτ ∼ mτ + ∆τk +Nqτ ,

m ∼ m+ ∆Lk +Nq ,

(D.11)

where k, k̃, and (qτ , q) are integers. (Note that, when working modulo N , the last line of

(D.11) is precisely the equivalence relation discussed in (2.3).) The integer BF -action (D.10)

describes the ground states of the Hamiltonian (D.1).

D.2.1 Ground state degeneracy

We can count the number of ground states by counting the number of solutions to the

“equations of motion” of (mτ ,m):

∆τm̃ = 0 mod N , ∆Lm̃ = 0 mod N . (D.12)

The first equation implies that m̃(τ, i) is independent of τ . Then, as discussed in Section

2.1, the general solution is

m̃(i) =
N∑
a=1

NQiapa
gcd(N, ra)

, pa ∼ pa + gcd(N, ra) . (D.13)

Therefore, the ground state degeneracy is

GSD =
N∏
a=1

gcd(N, ra) = | Jac(Γ, N)| . (D.14)

D.2.2 Global symmetry

The above ground state degeneracy can also be obtained from the (space-like) global symme-

try. There are electric (space-like and time-like) and magnetic (space-like) global symmetries,

whose groups are both

Jac(Γ, N) =
N∏
a=1

Zgcd(N,ra) . (D.15)

The electric global symmetry acts as

(mτ ,m)→ (mτ ,m) + (λτ , λ) , (D.16)

43



where (λτ , λ) is a flat ZN gauge field, i.e., ∆τλ − ∆Lλτ = 0 mod N . Using k, we can set

λτ (τ + 1
2
, i)|τ 6=0 = 0 mod N . Then, by flatness, we have ∆τλ = 0 mod N . This in turn

implies that ∆Lλτ (τ + 1
2
, i)|τ=0 = 0 mod N , which is the discrete Laplace equation (2.2).

The remaining time-independent gauge freedom, λ(i) ∼ λ(i) + ∆Lk(i), is precisely the

equivalence relation in (2.3). Therefore, we can gauge fix λ(i) to

λ(i) =
N∑
a=1

pa(Q
−1)ai , (D.17)

where pa = 0, . . . , gcd(N, ra)−1. Since λτ (τ+ 1
2
, i)|τ=0 satisfies the discrete Laplace equation,

the most general solution is (2.5)

λτ (τ + 1
2
, i)|τ=0 =

N∑
a=1

NQiapτ,a
gcd(N, ra)

, (D.18)

where pτ,a = 0, . . . , gcd(N, ra)−1. The parameters pτ,a and pa generate the electric time-like

and space-like global symmetries respectively.

The magnetic space-like global symmetry acts as

m̃(τ + 1
2
, i)→ m̃(τ + 1

2
, i) + λ̃(i) , λ̃(i) =

N∑
a=1

NQiap̃a
gcd(N, ra)

, (D.19)

and p̃a = 0, . . . , gcd(N, ra)− 1.

A convenient basis of electric and magnetic space-like symmetry operators is given by

W̃ (a) = exp

[
2πi

N

∑
i

(Q−1)aim̃(τ + 1
2
, i)

]
,

W (a) = exp

[
2πi

gcd(N, ra)

∑
i

m(τ, i)Qia

]
.

(D.20)

for a = 1, . . . ,N. These operators are the low energy counterpart of the operators in (D.7).

The commutation relation (D.8) can now be understood as a mixed ’t Hooft anomaly between

the electric and magentic space-like symmetries.
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D.2.3 Time-like symmetry and fractons

The ZN Laplacian model has defects that extend in the time direction, such as

Wτ (i) = exp

[
2πi

N

∑
τ

mτ (τ + 1
2
, i)

]
. (D.21)

This describes the world-line of an infinitely heavy particle of unit charge at position i ∈ Γ.

Below we discuss the time-like global symmetry that acts on these defects. The electric

time-like symmetry acts as

mτ (τ + 1
2
, i)→ mτ (τ + 1

2
, i) + δτ,0

N∑
a=1

NQiapτ,a
gcd(N, ra)

. (D.22)

Therefore, two defects at sites i and i′ carry the same time-like charges, or equivalently, a

particle can hop from i to i′, if and only if

Qia = Qi′a mod gcd(N, ra) , a = 1, . . . ,N . (D.23)

Indeed, when this condition holds, the defect that “moves” a particle from i to i′ at time

τ = 0 is given by

exp

[
2πi

N

∑
τ<0

mτ (τ + 1
2
, i)

]
exp

[
−2πi

N

∑
a,j

(
Qia −Qi′a

gcd(N, ra)

)
r̃aPajm(0, j)

]

× exp

[
2πi

N

∑
τ≥0

mτ (τ + 1
2
, i′)

]
,

(D.24)

where r̃a is an integer such that r̃ara = gcd(N, ra) mod N .

While the selection rule (D.23) is not very intuitive, it leads to strong mobility constraints

in the special case where the spatial lattice is a square lattice (i.e., Γ is a 2d torus graph

CLx ×CLy). This will be shown in Section D.3.2. In particular, under some mild conditions,

the particles are completely immobile, i.e., they are fractons.

D.2.4 Robustness

We now discuss the robustness of the low-energy limit of the ZN Laplacian model. The only

operators that act nontrivially on the ground states are W (a) and W̃ (a) of (D.20). W (a) is

an extended operator with support spanning over the entire graph. In contrast, W̃ (a) can
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be written as a product of local operators of the form e
2πi
N
m̃(τ+ 1

2
,i). (In (D.20) we defined

W̃ (a) in such a way that its commutation relation (D.8) with the extended operator W (a)

is simple.) Since these local operators act nontrivially in the space of ground states, the

low-energy limit of the model is not robust.

D.3 Examples

D.3.1 Γ = CLx

Let Γ be a cycle graph, i.e., Γ = CLx , where Lx is the number of sites in the cycle. The

operator ∆L associated with the Laplacian matrix of Γ is the same as the standard Laplacian

operator ∆2
x in the x-direction.

In this case, the ZN Laplacian model simplifies to the 1+1d rank-2 ZN tensor gauge

theory of [35]. Indeed, the diagonal entries in the Smith normal form of L are

ra =


1 , 1 ≤ a < Lx − 1 ,

Lx , a = Lx − 1 ,

0 , a = Lx .

(D.25)

To be more concrete, we can write R = PLQ, where

R =

ILx−2 0 0

0T Lx 0

0T 0 0

 , P =

(
P̃ 0

1T 1

)
, Q =

(
Q̃ 1

0T 1

)
, (D.26)

where P̃ and Q̃ are (Lx − 1)× (Lx − 1) integer matrices given by

P̃a,x+1 = min{a, x+ 1} , Q̃x+1,a = δx+1,a − (x+ 1)(1− δx,Lx−2)δa,Lx−1 , (D.27)

where a = 1, . . . , Lx, and x = 0, . . . , Lx − 1. For example, for Lx = 5, the 4× 4 matrices P̃

and Q̃ are

P̃ =


1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4

 , Q̃ =


1 0 0 −1

0 1 0 −2

0 0 1 −3

0 0 0 1

 . (D.28)

The electric (time-like and space-like) and magnetic (space-like) symmetries of the ZN
Laplacian gauge theory are ZN × Zgcd(N,Lx). These are in agreement with the 1+1d rank-2

ZN tensor gauge theory of [35].
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D.3.2 Γ = CLx × CLy

Let Γ be a torus graph, i.e., Γ = CLx ×CLy , where Lx and Ly are the number of sites in the

x-cycle and y-cycle. The operator ∆L associated with the Laplacian matrix of Γ is the same

as the standard Laplacian operator ∆2
x + ∆2

y on a square lattice.

In this case, the ZN Laplacian model can be viewed as the ZN version of the Laplacian

φ-theory or the ZN version of the U(1) Laplacian gauge theory discussed in [22, 23]. Its

ground state degeneracy is the square root of that of the anisotropic ZN Laplacian model,

which is computed in Appendix C.1. When N is a prime, the GSD of the ZN Laplacian

model is thus

logN GSD = dimZN
ZN [X, Y ]

(Y (X − 1)2 +X(Y − 1)2), XLx − 1, Y Ly − 1)
. (D.29)

The GSD depends on Lx, Ly in an erratic way. There exists a sequence of Lx, Ly where the

logN GSD ∼ O(Lx, Ly), but there also exists a sequence where the GSD stays at order 1 if

N > 2.

Like the GSD, the mobility of a particles depends on number-theoretic properties of

Lx, Ly. Since the mobility of these particles is the same as the mobility of the z-lineons of

the 3+1d anisotropic ZN Laplacian model in the xy-plane, the analysis of Appendix C.2

applies here. In particular, when N is an odd prime, there are infinitely many values of

Lx, Ly for which a single particle is completely mobile. In contrast, on an infinite square

lattice, any finite set of particles is completely immobile (unless they can be annihilated),

assuming they move “rigidly.”

When N = 2, the ZN Laplacian model is equivalent to two copies of a known model, the

Z2 Ising plaquette model [25], when both Lx and Ly are even, and only one copy when Lx
or Ly is odd. Therefore, the GSD and mobility restrictions of the Z2 Laplacian model are

relatively simple in this case, and follow from the analysis in Appendix B.

Let us contrast the ZN Laplacian model with the 2+1d rank-2 ZN tensor gauge theory

discussed in [57–61], which is another 2+1d generalization of the 1+1d rank-2 ZN tensor

gauge theory. These two models differ in several aspects:

1. The ZN tensor gauge theory has a ground state degeneracy of

N3gcd(N,Lx)gcd(N,Ly)gcd(N,Lx, Ly) . (D.30)

In particular, the GSD of ZN tensor gauge theory is always bounded by N6, whereas

there are infinitely many Lx, Ly for which logN GSD of the ZN Laplacian model scales

as O(Lx, Ly), at least when N is prime.
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2. Relatedly, the low-energy limit of the ZN tensor gauge theory is robust, whereas the

low-energy limit of the ZN Laplacian model is not.

3. A particle in the ZN tensor gauge theory can always hop by N sites on an infinite

square lattice,40 whereas a particle in the ZN Laplacian model is completely immobile

on an infinite square lattice, at least when N is prime.
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