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We propose a highly efficient and accurate numerical scheme named Truncated Atomic Plane
Wave (TAPW) method to determine the subband structure of Twisted Bilayer Graphene (TBG)
inspired by the Bistritzer-MacDonald (BM) model. Our method utilizes real space information of
carbon atoms in the moiré unit cell and projects the full tight binding Hamiltonian into a much
smaller subspace using atomic plane waves. Using our new method, we are able to present accurate
electronic band structures of TBG in a wide range of twist angles together with detailed moiré
potential and screened Coulomb interaction at the first magic angle. Furthermore, we generalize
our formalism to solve the problem of low frequency moiré phonons in TBG.

I. INTRODUCTION

Twisted Bilayer Graphene (TBG), formed by stacking
one single layer on the other with a small twist, provides a
great platform for physicists to study novel quantum phe-
nomena. More attention has been attracted after the dis-
covery of unconventional superconductivity, orbital mag-
netism and correlated insulating phases [1–18] in TBG
systems at the magic angle, around 1.1◦. The mecha-
nism behind these observations is still an open question.

Unlike aligned bilayer graphene, in TBG systems, a
moiré pattern forms in the real space which breaks orig-
inal periodicity of graphene. This pattern leads to the
difficulty for band structure calculations due to the huge
amount of atoms in a single unit cell. In order to over-
come this kind of difficulty, several low energy effective
models [19–31] were developed, by which the most inter-
esting physics in TBG systems at the magic angle – flat
bands, has been predicted theoretically. In the widely
used Bistritzer-MacDonald (BM) model [21], the moiré
potential is expanded to leading order by Fourier Trans-
formation and a general model Hamiltonian for arbitrary
twist angles can be constructed. With such model, B&M
predict that flat bands emerge when twist angle is around
1.1◦ which is called “magic angle”. The “magic” happens
because the low energy band is so flat that the velocity
of electrons vanishes. In these flat band systems, the
electron-electron interactions dominate the band struc-
ture and could result in various exotic correlated phe-
nomena. More accurate calculation based on density
functional theory (DFT) [32–35] can also be performed
using large scale parallelized DFT code integrated with
van der Waals functional to catch the details of the band
structure. However, this kind of computation is very time
consuming and hard to implement for systems with small
twist angles.
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Although BM model provides a clear picture of flat
bands near the first magic angle and is easy to implement
numerically, the model itself ignores microscopic details
such as atomic relaxation [24, 32–34, 36–42] in the moiré
scale which can explain the insulating phase of MATBG
at ±4 filling. For many 2D materials, tight binding (TB)
models are often used to describe electronic band struc-
tures. Compared with BM model, tight binding scheme
can easily take atomic relaxation into consideration by re-
setting the coordinates of carbon atoms and the related
hopping parameters can be determined by fitting to small
scale DFT calculation results. Full tight binding calcu-
lation [43–47] in the framework of Slater-Koster theory
[48] is performed and provides reliable results. Several ab
initio TB models [29–31, 49–51] have been carefully de-
signed to make the band structures of TBG much closer
to DFT results. However, full TB model will generate a
huge Hamiltonian matrix when twist angle is small which
makes further calculations hard to perform.

In this manuscript, we present a well designed nu-
merical scheme named Truncated Atomic Plane Wave
(TAPW) method to project the full tight binding Hamil-
tonian onto the truncated atomic plane waves. TAPW
shows very accurate band structures compared with those
retrieved from full TB Hamiltonian. The key point of our
new method is to combine the advantages of both the BM
model and full TB model. First, like full TB model, the
atomic plane wave basis will be constructed with full in-
formation of the real atomic positions. Next, like the
treatment in BM model, for small enough twist angles,
the atomic valley degree of freedom can still be treated as
a good quantum number and then the complete Hilbert
space of full TB model can be truncated into two groups
of atomic plane waves, where only the wave vectors close
enough to the graphene K/K′ points are included. After
the basis truncation, the total dimension of the Hamil-
tonian can be reduced significantly from several tens of
thousand to only several hundreds. Our scheme has the
following advantages compared with existing models:
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1. It saves computing resources compared with a full
TB scheme but shares the same accuracy of low
energy bands.

2. The parameters of the TB model can be carefully
designed, using a Slater Koster scheme [43–47] or
an ab initio TB scheme [29–31, 49–51].

3. The whole workflow is simple and straightforward
without manually expanding BM model to higher
orders [24, 27, 28, 30, 31], or fitting parameters [28,
52].

4. Follow up studies, such as Hartree Fock (HF), con-
strained Random Phase Approximation (cRPA) or
dynamic mean field (DMFT) calculations can be
carried out based on our method.

5. The relaxation effect and symmetry constraint can
be considered appropriately by setting real space
coordinates of carbon atoms like other TB models.

Based on this kind of numerical strategy, we develop an
open source Python package hosted on GitHub [53]. We
also extend our method to describe the moiré phonons
and determine the screened Coulomb interaction of
Magic Angle Twisted Bilayer Graphene (MATBG) using
constrained Random Phase Approximation (cRPA).

II. FROM BM MODEL TO TRUNCATED
ATOMIC PLANE WAVE METHOD

A. Geometry of TBG

We define a1 = a(
√

3/2,−1/2),a2 = a(
√

3/2, 1/2) as
the lattice vectors for the atomic structure of monolayer
graphene and b1 = 2π/a(

√
3/3,−1),b2 = 2π/a(

√
3/3, 1)

as their corresponding reciprocal lattice vectors. a =
0.246 nm is the graphene lattice constant. The geometry
of TBG can be defined by rotating two different layers
of AA-stacking bilayer graphene around the AA-stacking
point. After anti–clockwisely rotating the layer (1) by
+θ/2 and the layer (2) by−θ/2, the lattice vectors should

be a
(1)
i = D

(
θ
2

)
ai,a

(2)
i = D

(
− θ2
)
ai and the reciprocal

lattice vectors are b
(1)
i = D

(
θ
2

)
bi,b

(2)
i = D

(
− θ2
)
bi,

where D(θ) is a 2D rotation matrix.
TBG system will have a commensurate structure [19,

20, 54] if the twist angle obeys:

θ = arcsin

( √
3(2N + 1)

6N2 + 6N + 2

)
, (1)

where N is an integer. As illustrated in Fig.1, the unit
lattice vectors for the moiré super cell are:

L1 = D

(
θ

2

)
[−Na1 + (2N + 1)a2] ,

L2 = D

(
θ

2

)
[−(2N + 1)a1 + (N + 1)a2] .

(2)

FIG. 1. Schematic diagram for the real space twist using the
geometry stated in the main context when N = 4, i.e. θ =
7.341◦. L1,L2 are moiré unit lattice vectors. Corresponding
k space diagram is shown in Fig.2.

The corresponding moiré reciprocal lattice vectors can

be chosen as: G1 = b
(1)
1 − b

(2)
1 ,G2 = b

(1)
2 − b

(2)
2 . The

system has a D3 point group symmetry [55].

B. BM Model

A widely used way to deal with the band structure of
TBG at small twist angle is BM model [19–23]. In BM
model, the Hamiltonian of valley ξ = ±1 written in real
space is:

Hξ(r) =

[
h(1)(r) U(r)
U†(r) h(2)(r)

]
, (3)

where h(r) represents for intralayer part of the Hamilto-
nian and U(r) is the large scale moiré potential. The
analysis for BM can be done in k-space. For a two-
layer system like TBG, the Bloch basis for each layer
(or atomic Bloch basis) can be defined as:

ψ
(1)
k,α(r) =

1√
N

∑
R

(2)
α

eik·R(1)
α φpz (r−R(1)

α ),

ψ
(2)
p,β(r) =

1√
N

∑
R

(2)
β

eip·R(2)
β φpz (r−R

(2)
β ),

(4)

where N is the number of atomic unit cell in each layer,
and Rα,Rβ is the concrete position of A/B carbon
atoms, (1)/(2) is a notation for different layers.
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Under this kind of basis function, h(r) is naturally di-
agonalized with k and can be approximated as a Dirac
equation when k or p is near atomic K,K′ points. How-
ever, U(r) will couple different k and p satisfying the
following condition [22]:

k = p−m1G1 −m2G2, (5)

m1,m2 are two integers. BM approximates U(r) by keep-
ing three leading Fourier components:

U(r) =

[
UA1A2

UA1B2

UB1A2
UB1B2

]
=

[
u u′

u′ u

]
+

[
u u′ωξ

u′ω−ξ u

]
eiξ(−G1)·r

+

[
u u′ω−ξ

u′ωξ u

]
eiξG2·r,

(6)

where ω = e(i2π/3), and we adopt u = 0.08581 eV, u′ =
0.1032 eV after considering corrugation effect. Parame-
ters are retrieved from our new method, see Appx.A.

C. Truncated Atomic Plane Wave Method:
Theoretical Formalism and Numerical Strategies

The BM model is a good approximation for low en-
ergy physics of TBG at the first magic angle. However,
band structures solved from BM model are not reliable
any more when twist angle gets smaller where relaxation
effect plays an important role [28, 36, 37, 40–42]. Param-
eters like u, u′ in the BM model are highly sensitive to the
structure of TBG and more Fourier components of U(r)
should be considered. To develop a more accurate de-
scription for the low energy physics of TBG, we can still
follow the main idea and keep the key approximation of
BM model:

1. Expand the Hamiltonian using atomic Bloch func-
tion defined in Eq.(4), see ref. [21–24, 27].

2. Intervalley tunneling process can be safely ignored
at small twist angle, so the system has an approxi-
mate Uv(1) symmetry, see ref. [19, 21, 28, 29].

3. Since the low energy physics mainly comes from
atomic K or K′ points, only a group of plane waves
close to Dirac points should be taken into consid-
eration, see ref. [21, 23, 24, 27, 30, 31].

These observations from the BM model studies first
inspire us to directly expand the Hamiltonian of TBG
utilizing atomic Bloch basis defined in Eq.(4). When the
system is commensurate, the atomic Bloch basis could
be modified to match the moiré superlattice. More con-
cretely, the following substitution should work

N = NmNa, k = k̄ + Gn, (7)

where Nm is the number of moiré lattices and Na = M/4,
M is the number of all atoms in a moiré superlattice. k̄
is defined in the first moiré B.Z. and Gn is the moiré
reciprocal lattice vector. These substitution transforms
the atomic Bloch function, which is Eq.(4), to∣∣ψαn(k̄)

〉
=

1√
NmNa

∑
I,i

ei(k̄+Gn)RIiα |φpz (r−RIiα)〉 ,

(8)
where RIiα = LI +τiα for short and LI is the lattice vec-
tor of the moiré unit cell. α = A1, B1, A2, B2 denotes the
sublattice, τiα is the displacement of atom α in the i-th
atomic cell with respect to the I-th moiré cell. The basis
wavefunction, which we call atomic plane wave basis, can
be viewed as a Bloch summation of atomic pz orbitals,
and for unrelaxed TBG, it is naturally normalized.

After using atomic plane wave basis defined in Eq.(8)
to expand the Hamiltonian and further taking advantage
of Eq.(5), we can write down the matrix element Hαn,βm

of the Hamiltonian:

〈
ψαn(k̄)

∣∣Ĥ∣∣ψβm(k̄)
〉

=
1

NmNa

∑
IJ,ij

t(RIiα −RJjβ)e−i(k̄+Gn)RIiαei(k̄+Gm)RJjβ

=
1

NmNa

∑
IJ,ij

e−iGnτiαe−ik̄(LI−LJ+τiα−τjβ)

× t(LI − LJ + τiα − τjβ)eiGmτjβ

=
1

NmNa

∑
I,ij

e−iGnτiαe−ik̄(τ̄iα,jβ)t(τ̄iα,jβ)eiGmτjβ

=
∑
ij

(
e−iGnτiα

√
Na

)
·
[
e−ik̄(τ̄iα,jβ)t(τ̄iα,jβ)

]
·
(

eiGmτjβ

√
Na

)
.

(9)
I, J are moiré lattice indices and iα, jβ are position in-
dices for carbon atoms in the moiré superlattice. α, β
runs over [A1,B1,A2,B2]. τ̄iα,jβ is the distance between
atom iα and atom jβ. t(τ̄iα,jβ) is the hopping inte-
gral under tight binding approximation. Furthermore,
the matrix form of the Hamiltonian, which we denote
as HTAPW, can be written in a more compact way by
inspecting the last step of Eq.(9)

HTAPW =
∑
αβ

X†αTαβXβ

= X†TX,

(10)

where the corresponding matrix elements are (Xα)n,i =

eiGnτiα/
√
Na, (T1αβ)i,j = e−ik̄(τ̄iα,jβ), (T2αβ)i,j =

t(τ̄iα,jβ), T = T1 ∗T2, and “*” is an element-wise prod-
uct.

In Eq.(10), T is exactly the full tight binding matrix
and X is a plane wave projector under continuum ap-
proximation eiGnτiα = eiG·rδ(r − τiα) ≈ eiG·r. When G
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runs over all the moiré reciprocal lattice vectors in the
graphene first B.Z., Eq.(10) is a unitary transformation
and it will restore the full TB model. Following the spirit
of the BM model, we do truncation on the G vectors
within certain fixed distance away from graphene K/K′

points when calculating the band structure of TBG at
a small twist angle, as illustrated in Fig.2. We want to
further emphasize, our method is intrinsically equivalent
to the generalized BM model because we start from the
same basis function (atomic Bloch function) to expand
the Hamiltonian. However, our method requires the sys-
tem to be commensurate, then Eq.(8) can be established.
The advantage of our new method is that TAPW directly
projects the full TB matrix on a series of plane waves
without assuming the tunneling amplitude t between dif-
ferent layers is a smooth function and then manually per-
forming Fourier expansion [21–24, 27, 28, 30, 31]. Inter-
estingly, our TAPW method presents an exact mapping
between the full TB Hamiltonian and generalized contin-
uum model, which is a simple realization of ref. [25].

In our numerics, the hopping integral t(τ̄iα,jβ) is de-
termined by Slater-Koster (SK) formula [23, 46]:

t(r) = −Vπ
(

1− r2
z

r2

)
− Vσ

r2
z

r2
, (11)

with rz = r ·ez, Vπ = V 0
π e−(r−a0)/r0 , Vσ = V 0

σ e−(r−d0)/r0 .
where d0 = 0.335 nm is the average interlayer spacing,
a0 = a/

√
3 is the nearest neighbour distance, r0 = 0.184a

is the characteristic length of the hopping strength, the
hopping amplitudes are set as V 0

π = −2.7 eV and V 0
σ =

0.48 eV. It is worthwhile to mention that the hopping
parameter t(τ̄iα,jβ) can be replaced by a more accurate
SK formula [56] or environment adapted ab initio results
[30, 31, 49, 50], see Appx.B.

For a better understanding of the superiority of our
TAPW method compared with the full TB model, we
then introduce the numerical details in our realization.
Note that the size of G–list is NG and the number of
atoms in the moiré superlattice is M = 4 × Na. The
dimension of the Hamiltonian matrix H is 4NG × 4NG,
the tight binding matrix T is M×M and the plane wave
projection matrix X is 4NG ×M . Our TAPW method
projects the sparse TB matrix T into a much smaller sub-
space. Typically for MATBG (θ = 1.085◦, M = 11164),
we can restore electronic band structure near Fermi level
(±0.6 eV) perfectly compared with full TB result using
only 244 plane waves per valley, i.e., NG = 61. The
TB Hamiltonian for each k point is downfolded from
11164× 11164 to 244× 244 per valley. We transform the
computational complexity of diagonalizing a huge sparse
matrix into the multiplication of sparse matrices together
with diagonalizing a much smaller dense one. The latter
operation saves a huge amount of computational power
and preserves low energy electronic band structure (see
detailed discussion in Sec.II E). The sparse matrix opera-
tions are boosted by SciPy [57]. It is worth pointing out
the setup of X,T2 is only once during the whole compu-
tational process because they are not k̄ dependent.

FIG. 2. Schematic diagram for rotation in the k space for
N = 4, i.e. θ = 7.341◦. We construct G-list in two cir-
cled areas (centered around K,K′) for two different valleys
when calculating the band structure for moiré electrons and
construct a G list centered at Γ point when calculating the
moiré phonon bands. Two big hexagons represent for the re-
ciprocal lattice of two graphene sheets and the smaller grey
one is moiré reciprocal lattice. High symmetry points of the
moiré reciprocal lattice are denoted as Γ̄, K̄, M̄, K̄′. G1,G2

are moiré reciprocal lattice vector. The small grey dots rep-
resent the plane waves used to expand the TB Hamiltonian
with the first shell conserved. The band structures of TBG
are calculated along high symmetry path (denoted in a red
dashed line).

The construction of plane wave projection matrix X
is fast and the corresponding computational complexity
is O(M × NG). However, setting up transfer integral
matrix T2 and hopping phase matrix T1 is very time
consuming because we have to determine the neighbours
of a specific carbon atom in such a large system with more
than 10,000 atoms. The brute force searching scheme
has a complexity of O(M2) and it fails full TB model in
dealing with a much smaller twist angle.

Another strategy we adopt is using k-d tree [58] to op-
timize the searching scheme of determining neighbours.
We utilize the fact there are only carbon atoms in the
TBG system and the hopping process can mainly hap-
pen between one specific carbon atom and another from
the nearest moiré unit cell. Thus, we construct a 3 × 3
super cell as the searching space. Such super cell may
consist of millions of carbon atoms but it only consumes
a small amount of memory space to store 3D coordi-
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FIG. 3. We design an efficient numerical scheme to build the
hopping matrix T2. The grey block represents for the moiré
super cell and we set up a 3 × 3 super cell to perform a k-d
tree search. The grey block is labeled as area2 and the larger
one as area1. The searching process is performed using k-d
tree algorithm integrated in sklearn [60] which returns the
neighbour pair indices (iα, jβ). The 3D coordinates for neigh-
bour pairs riα−rjβ are stored in NumPy ndarray denoted with
different color blocks. The computation for hopping parame-
ter τ̄iα,jβ(riα−rjβ) is finished in O(1) time taking advantage
of the built in vectorization mechanism of NumPy. Then the
hopping matrix T2 can be constructed with neighbour pair
indices and τ̄ array.

nates. As demonstrated in Fig.3, a highly efficient k-d
tree searching scheme is applied which reduces the related
computational complexity to O(M logM) and t(τ̄iα,jβ)
is calculated in O(1) time enhanced by the vectorization
characteristic of NumPy [59].

D. Corrugation and Relaxation

In TAPW, the information of atomic position in the
moiré scale is encoded through tight binding descrip-
tion by definition. The deviation of TBG system from
a rigid structure can be considered naturally by setting
the 3D coordinates of carbon atoms. As observed in the
DFT calculation [32–34] and molecular dynamics simu-
lations [24, 40–42] for TBG near the first magic angle,
the two graphene sheets are not totally flat and there ex-
ists some fluctuation in the real space. The z direction

FIG. 4. Computational efficiency comparison between full
tight binding scheme and truncated atomic plane wave
scheme. Tight binding solver for twisted bilayer graphene is a
new feature of WannierTools (WT) , a popular Fortran rou-
tine to solve tight binding Hamiltonian and related topological
properties. TAPW is a submodule of our Python package. The
left panel plots the time consumed to set up the tight binding
kernel versus number of atoms in the moiré superlattice. WT

uses a brute force searching scheme to build SK tight binding
kernel while TAPW uses a k-d tree searching scheme. The right
panel plots the time consumed to diagonalize the Hamiltonian
per k point versus the number of atoms in the moiré superlat-
tice. WT utilizes the power of ARPACK (Lanczos algorithm) to
calculate the eigenvalues of the sparse tight binding Hamilto-
nian and TAPW uses the proposed projection algorithm. The
benchmark is performed serially on an 8-core, 16-thread Intel
Xeon W-3223 processor with WannierTools V2.6.2.

displacement can help separate flat bands away from re-
mote bands near the first magic angle and further sta-
bilize the insulating phase of MATBG at ±4 filling [33].
This kind of corrugation effect can be easily simulated
in our TAPW method by adding displacements along z
direction for carbon atoms [23, 32],

d(1) =
1

2
d0 + d1

∑
n=1,2,3

cos (Gn · τ ) ,

d(2) =
1

2
d0 − d1

∑
n=1,2,3

cos (Gn · τ ) ,

(12)

where d0 = 3.43 Å is average interlayer distance for TBG,
d1 = 0.278 Å is obtained from looking at the difference
of the interlayer distance between AA–stacking bilayer
and AB–stacking bilayer. G3 = −(G1 + G2) is the third
smallest moiré reciprocal lattice vector. τ is the atomic
position of the carbon atom in the moiré unit cell.

Moreover, the local geometry of rigid TBG can be
classified into three different regions: AA-stacking area,
AB/BA-stacking area and saddle point (SP) area. As
pointed out in DFT study [40], AB/BA-stacking area and
SP area are more energetically favorable compared with
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AA-stacking area, but the in-plane strain field can also
compete with such kind of interlayer energy minimiza-
tion. It is also evidenced in STM experiments [6], when
the twist angle is small, TBG undergoes a self-organized
lattice reconstruction to shrink AA-stacking area and ex-
pand AB-stacking area which forms a triangular lattice
in the moiré scale. These microscopic in-plane distor-
tions can be well captured in TAPW by reconstructing
the Bloch function [27]:

ψ
(1)
k,α(r) =

1√
N

∑
R

(2)
α

eik·R(1)
α φpz (r−R(1)

α − u(R(1)
α )),

ψ
(2)
p,β(r) =

1√
N

∑
R

(2)
β

eip·R(2)
β φpz (r−R

(2)
β − u(R

(2)
β )).

(13)
u is an abstract displacement vector field which slowly
varies in the atomic scale with a moiré periodicity. We
can still follow the proposed procedure to perform cal-
culation and take valley as a good quantum number
when the twist angle is small. The Hamiltonian can
be solved in an elegant way by just resetting hopping
matrix T2 with the relaxed coordinates of the carbon
atoms. The full atomic relaxation can be performed us-
ing classical molecular dynamics with the rigid structure
as a start point. The electronic band structures of re-
laxed MATBG computed using TAPW method are sum-
marized in Appx.B.

E. Numerical Results and Comparison

Based on the theoretical formalism of TAPW, we de-
veloped a robust Python package to perform calculation.
Numerical schemes including full TB method, TAPW
method and BM model are all realized. Their charac-
teristics are briefly summarized in Table.I.

We take WannierTools (WT) [61] as a benchmark for
the full TB calculation. In TB calculation, the whole
process can be divided into two parts: setting up the
hopping matrix T2 or hopping integral file hr dat and
diagonalizing the TB Hamiltonian. Our numerical strat-
egy takes several seconds to set up the hopping integral
matrix T2 at the first magic angle (θ = 1.085◦) while
WT takes more than one hour to build the hopping inte-
gral file hr dat. TAPW presents a huge advantage when
the twist angle gets even smaller, as clarified on the left
panel of Fig.4. For band structure calculations, we diag-
onalize the projected matrix instead of struggling with
a huge sparse matrix like WT (WT diagonlizes the sparse
TB Hamiltonian using Lanczos algorithm integrated in
ARPACK [62], this feature is also realized in our Python
package.) Our method saves a large amount of time and
reproduces low energy band structures perfectly in a wide
range of twist angles, as shown in the right panel of Fig.4
and Fig.5, respectively.

We denote vt to be the t−th eigen vector (column vec-
tor) of the full TB matrix (t is labeled from Fermi level)

and v̄t to be the corresponding one of the projected TB

matrix. Then we take η = |v†t · X · v̄t| as a criteria to
evaluate the performance of TAPW basis. The better it
will be for TAPW basis if η is closer to 1 (X · v̄ restores
the full tight binding eigenvector). At the first magic
angle, we take 244 atomic plane waves per valley (488
bands in total) to expand the full TB matrix and find
that η > 99% for eigen vectors of four flat bands at the
Γ̄ point. Now one can be convinced that TAPW method
outputs high quality eigen wavefunctions.

Compared with BM model, our method generates a
similar matrix structure to describe the Hamiltonian if
the same G–list is used. In BM model, people do Fourier
analysis for Uα,β(k, r), as commonly analyzed in ref. [23]:

Uα,β(k, r) =
∑
m1,m2

Ũα,β(m1b1 +m2b2 + k)

× exp[i(m1b1 +m2b2) · δα,β ]

× exp[i(m1G1 +m2G2) · r],

(14)

where,

Ũα,β(q) = − 1

S0

∫
t[R + d(R− δα,β)ez]e

−iq·RdR. (15)

BM model adopts two important assumptions for the de-
scription of moiré potential.

1. Ũ(q) decays in q ≈ 1/r0 because the transfer in-
tegral t is determined by Slater Koster formula
in Eq.(11) which exponentially decays in R ≈ r0.
That’s the reason why BM model only conserves
three largest Fourier components: (m1,m2) =
(0, 0), (−1, 0), (0, 1) for K valley.

2. When performing k sampling in the area that is
close to K, BM model always assumes U(k, r) =

U(K, r). It is a good approximation that Ũ(|k|) ≈
Ũ(|K|) at the first magic angle when |k − K| ≤
|G| ≈ |K| [21], because |K| ≈ 30|G| � |G|.

In common practice, k sampling is performed in the
area that |k−K| ≤ 4|G| [23] when calculating the band
structure of MATBG. When |k−K| ≤ |G|, it brings us
the accurate flat band picture which is the original BM
model [21]. When |k−K| > |G|, these assumptions are
rough and result in more deviation on the bands away
from Fermi surface compared with the full TB results, as
shown in Fig.5 of ref. [46]. Additionally, atomic relax-
ation at small twist angle will make high order G compo-
nents of moiré potential more significant than the rigid
one [24, 28–31].

Above analysis suggests a more accurate description
for the moiré potential is needed. Different from exist-
ing studies which expand BM manually to higher orders
[24, 27–31] and integrate a k-linear term in the interlayer
coupling [27–29], our new method automatically expands
the moiré potential into a tensor form UαGi,βGj

(k̄),

where k̄+Gi = k ≈ K. As demonstrated in the first row
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FIG. 5. Electronic Band structures of TBG along high symmetry points K̄ − Γ̄ − M̄ − K̄′ at different twist angles using
different methods when corrugation effect is taken into consideration. (a)-(c): Band structures computed using BM model for
θ = 2.134◦, 1.297◦, 1.085◦, respectively. (d)-(f): Band structures computed using full TB (SK-parameterization) and TAPW
method for θ = 2.134◦, 1.297◦, 1.085◦, respectively. The full TB reference results are denoted in red dots while the TAPW
results are in blue lines. TB results show a particle hole asymmetry compared with BM model.

TABLE I. Comparison between different kinds of Band Calculation Methods in TBG system.

Methods Full TB model BM model TAPW method
Basis Size number of atoms 4× number of G vectors 4× number of G vectors
Computational Cost High Low Medium
Computational Accuracy High Medium High
Corrugation and Relaxation Set Coordinates Set u, u′ Set Coordinates

Incommensurate System % X %

Easy to Use % X X

of Fig.6 where we fix k = Γ + G0 ≈ 1/2(K(1) + K(2)),
corrugation in MATBG brings high order G components
into effect and creates a difference between u and u′. In
the second row of Fig.6 , we see U does rely on k by
conserving the largest G component of U at different k

points in the area |k − K| < 5|G|. These corrections
on BM provide us a clear picture for electron and hole
asymmetry in the flat bands.
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FIG. 6. Moiré potential Uα,β(k,G) calculated using TAPW method when θ = 1.085◦. (a)-(c): G dependence of U when k is
fixed at Γ + G0, G0 = 30(G1 + G2). The largest G component is located at G0, G0 −G2, G0 + G1 as the ones from BM.
As shown, corrugation effect brings more high order G components into effect. (d)-(f): k dependence of U when the largest G
component is reserved which BM totally smears out. (a),(d): Rigid structure as input, u = |UAA| = |UAB|. (b),(e): Corrugated
structure as input, u = |UAA|. (c),(f) Corrugated structure as input, u′ = |UAB|.

III. APPLICATIONS

A. Low Frequency Moiré Phonons

Moiré phonons [63–66] also received great attention
as novel collective phenomena are observed in twisted
bilayer graphene [67] and twisted MoS2 [68, 69] using
Raman spectra technique. It is natural to generalize
our TAPW method for moiré phonons by mapping tight
binding Hamiltonian for electrons to dynamic matrix for
lattice vibrations. In this section, we provide a rigor-
ous derivation of TAPW method for moiré phonons and
study the low frequency moiré phonons for TBG systems
as an example.

The equation of motion for the phonon field uν(RJjβ)
for TBG under harmonic approximation can be written
as:

1

Mc

∑
Jjβν

Φµν(RIiα−RJjβ)uν(RJjβ) = ω2uµ(RIiα). (16)

Mc is the mass for the carbon atoms and Φµν(RIiα −
RJjβ) is the force constant between two carbon atoms

and µ, ν represent for the Cartesian coordinates. After
Fourier Transforming the phonon field taking advantage
of the moiré periodicity and Born–von Karman boundary
condition, we get:

uµ(RIiα) =
1√
Nm

∑
q̄∈m.B.Z.

ũiαµ(q̄)eiq̄·RIiα , (17)

which leads to the full tight binding description for moiré
phonons:∑

jβν

Diαµ,jβν(q̄)ũjβν(q̄) = ω2(q̄)ũiαµ(q̄), (18)

and the dynamic matrix Diαµ,jβν(q̄) defined in the moiré
B.Z. is:

Diαµ,jβν(q̄) =
1

Mc

∑
RJ

Φµν(0+τiα−RJjβ)eiq̄·(RJ+τjβ−τiα).

(19)
For moiré systems like TBG, we can always expand
phonon fields using the periodicity of single layer
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FIG. 7. Low frequency phonon band structures of TBG along high symmetry points K̄− Γ̄−M̄− K̄′ at different twist angles,
(a): θ = 7.341◦, (b): θ = 5.086◦, (c): θ = 3.150◦. The full tight binding results are denoted in red dots while TAPW bands are
in blue lines. The dispersionless layer breathing (LB) mode is located at ω ≈ 80 cm−1.

graphene:

uµ(RIiα) =
1√
N

∑
q∈B.Z.

ūαµ(q)eiq·RIiα

=
1√

NmNa

∑
q̄,Gn

ūαµ(q̄ + Gn)ei(q̄·RIiα+Gm·τiα).

(20)
Substitute Eq.(20) to the equation of motion for the
phonon field and use the definition of dynamic matrix
Diαµ,jβν(q̄), we arrive:∑
βνm

D̄αµn,βνm(q̄)ūβν(q̄ + Gm) = ω2(q̄)ūαµ(q̄ + Gn),

(21)
where the projected dynamic matrix D̄αµn,βνm(q̄) is de-
fined as:

D̄αµn,βνm(q̄) =
1

Na

∑
ij

e−iGn·τiαDiαµ,jβν(q̄)eiGm·τjβ .

(22)
The corresponding matrix form reads:

D̄TAPW =
∑
αβ

X†αDαβXβ

= X†DX,

(23)

and α, β now are joint indices for Cartesian coordinates
index, A/B sublattice index and layer index. For low
frequency phonon bands, we construct a truncated G–
list centered at Γ point instead of K or K′ point in the
problem of electrons.

We use frozen phonon method to compute the force
constants Φµν(RIiα −RJjβ) from the relaxed structure:

Φµν(RIiα −RJjβ) =
∂2U

∂RµIiα∂RνJjβ
= −∂FνJjβ

∂RµIiα
. (24)

where U = Ubonded + Unon−bonded is the potential en-
ergy consisting of the bonded intra-layer interactions and
non-bonded van der Waals inter-layer interactions. The
bonded interactions can be modelled by the Dreiding
force fields [71], and the non-bonded van der Waals inter-
actions are modelled by an exponential-6 form [71, 72].
Details are described in Appx.C. Before computing the
force constants, the lattice was relaxed to optimize the
geometry by performing conjugate gradient (CG) algo-
rithm embedded in LAMMPS [73]. With relaxed lattice,
the force constants can be approximated by finite dis-
placement method [74] with a small displacement of 0.01
Å.

The full dynamic matrix D can then be constructed
like full TB Hamiltonian for electrons:

D = T1 ∗Φ, (25)

which is an element-wise product with T1 being hopping
phase matrix. As shown in Fig.7, low frequency phonon
bands solved at a series of twist angles of TBG using our
TAPW method show a perfect consistency with the ones
from direcly diagonalizing dynamic matrix D. Further-
more, polarization vector ũiαµ(q̄) can be restored using
eigen vectors ūαµ(q̄ + Gn) of D̄TAPW:

ũiαµ(q̄) =
1√
Na

∑
n

ūαµ(q̄ + Gn)eiGn·τiα , (26)

which has a simple matrix form ũ = Xū. We plot out-
of-plane vibrations resulting from low frequency optical
phonon modes of MATBG at Γ̄ point (around 0-30 cm−1)
using our TAPW method in Fig.8. The result is con-
sistent with the ones calculated in ref. [70] where the
authors directly solve a huge dynamic matrix (33492 ×
33492). In our calculation, we use 732 atomic plane waves
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FIG. 8. Low frequency optical phonon modes solved at Γ̄ point of MATBG using TAPW method. The black hexagon marks
the Wigner–Seitz cell of TBG. We find all-symmetric-type, dipolar-type, quadrupolar-type and octupolar-type out-of-plane
vibrations as in ref.[70].

centered at Γ point to expand the full dynamic matrix
and the projected dynamic matrix is reduced to 732×732.
Then we can finish the whole computation on a laptop.
(The number of atomic plane waves is 61 × 12 = 732
when NG = 61.) Based on above numerical experiments,
we believe that TAPW method can not only provide ac-
curate band structures but also detailed eigen wavefunc-
tions for moiré phonons.

B. Constrained Random Phase Approximation

Several unrestricted Hartree Fock calculations [75–81]
have been performed to study the competing orders in
the flat band system of MATBG. However, most of the
studies use a manually designed single gated or double
gated form of Coulomb interactions. A more accurate
screened Coulomb interaction should be computed if vir-
tual particle hole exchange from remote bands is taken
into consideration.

As discussed in Sec.II E, our TAPW method generates
high resolution band structures, not only flat bands but
also remote bands, compared with the ones solved from
BM model. In this section, we introduce a reliable cal-
culation scheme to determine the screened Coulomb in-
teraction form [82–84] in MATBG using the technique
of constrained Random Phase Approximation (cRPA)
[85, 86].

Based on previous band structure calculation, it is ob-
vious that the flat bands of MATBG are well separated
from those high energy bands. cRPA allows people to

study the screened Coulomb interaction in this kind of
narrow band system. In cRPA, the single particle Hilbert
space is divided into two parts, which we call the r and d
subspace. The d space contains low energy narrow bands
while the r space hosts high energy bands. The total
polarization Π of the system can be separated into two
parts, Πd is the polarization within the narrow bands and
Πr is the rest of the polarization:

Π = Πd + Πr. (27)

The totally screened interaction Wr can be calculated in
the following way:

Wr =
U

1− UΠr
, (28)

where U is bare Coulomb interaction.
For MATBG, the Coulomb interaction term can be

written directly as:

HI =
1

2S

∑
kk′q<Λ

∑
α,α′

U(q)c†k+q,αc
†
k′−q,α′ck′,α′ck,α, (29)

with U(q) = e2/(εε0

√
q2 + κ2) as bare Coulomb interac-

tion. κ is the inverse screening length and ε is background
dielectric constant. Here, the interaction Hamiltonian is
written in the atomic Bloch basis, and k,k′,q can be
truncated near Dirac points (denoted as Λ). Rewrite the
equation in the extended atomic plane wave basis, we
get:
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FIG. 9. Screened Coulomb interaction calculated when twist angle θ = 1.085◦ on high symmetry points. The G-list is

constructed in a hexagonal shape. We set κ = 0.005Å
−1
, ε = 5. The value of UQ,Q′(k̄)/UQ0,Q0(Γ̄) is plotted on the Q

component, UQ0,Q0(Γ̄) = 0.198eV.

HI =
1

2S

∑
ss′

∑
k̄k̄′q̄

∑
GnGn′Qm<Λ

∑
αα′

U(q̄ + Qm)

c†
s,k̄+q̄+Gn+Qm,α

c†
s′,k̄′−q̄+Gn′−Qm,α′cs′,k̄′+Gn′ ,α′cs,k̄+Gn,α,

(30)
where s is the index for spin and valley (we consider
there’s no spin-valley flipping), k̄, k̄′, q̄ are defined in the
moiré B.Z. and Gn,Gn′ ,Qm are all moiré reciprocal lat-
tice vector. S is the size of the real space, which equals
to NkΩ (Ω is the size of moiré unit cell.)

In cRPA, the non–dynamic screened interaction for flat
bands reads:

Uscreened(q̄) = U(q̄)(1− U(q̄)Π0(q̄))−1. (31)

The matrix form of bare interaction U(q̄) is defined by

U(q̄)m,m′ = U(q̄ + Qm)δm,m′ , (32)

and polarization tensor Π0(q̄)QmQm′ is:

Π0(q)m,m′ =
2

S

∑
k̄

∑
GnGn′

∑
``′αα′〈

Gnα
∣∣E`(k̄)

〉 〈
E`′(k̄ + q̄)

∣∣Gn + Qmα
〉

×
〈
E`(k̄)

∣∣Gn′α′
〉 〈

Gn′ + Qm′α′
∣∣E`′(k̄ + q̄)

〉
×n(E`(k̄))− n(E`′(k̄ + q̄))

E`(k̄)− E`′(k̄ + q̄)
.

(33)
The summation of band index ` should exclude the ones
for flat bands.

We determine the screened Coulomb interaction
Uscreened(q̄)QQ′ for a corrugated TBG structure when
twist angle θ = 1.085◦. We set up the single parti-
cle wavefunctions using our TAPW method on a 6 × 6
k-mesh and then perform cRPA calculation to retrieve

screened Coulomb interaction. The numerical results are
presented in Fig.9. Single gated or double gated Coulomb
interaction can be replaced by Uscreened(q̄)QQ′ to improve
the credibility of HF results.

IV. SUMMARY AND OUTLOOK

As a summary, we present TAPW, a carefully opti-
mized numerical scheme to downfold the full “tight bind-
ing” Hamiltonian for TBG to a low energy effective model
using a series of truncated atomic plane waves. Our
method shows a perfect consistency with the low energy
bands solved from full tight binding Hamiltonian, not
only for moiré electrons but also for moiré phonons. This
kind of low cost projection can be generalized to other
twisted moiré systems if credible tight binding Hamilto-
nian is constructed to describe electrons or faithful dy-
namic matrix for phonons. For example, parameterized
tight binding Hamiltonian for twisted transition metal
dichalcogenides (TMDCs) [87, 88] has been proposed re-
cently. Lattice dynamics of several important 2D ma-
terials can be simulated using semi-classical molecular
dynamics integrated with modern force fields [89, 90].
In this paper, we further visualize moiré potential of
MATBG by projecting interlayer interaction U to a se-
ries of atomic plane waves which clarifies the importance
of high order G components and related k dependence
in the band structure at small twist angles.

TAPW provides a systematical way to study moiré
electrons and phonons in a single particle manner. By
freezing lattice vibrations induced by specific phonon
mode, TAPW can build low energy effective model con-
taining electron phonon coupling [91, 92]. As pointed
out in ref. [93–95], the iTO phonon-induced local Kekulé
distortion may correspond to fruitful phase diagrams in
MATBG and this kind of distortion has been observed in
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a recent nano Raman experiment [67].
Another feature of TAPW is the model itself is in-

trinsically equivalent to the generalized BM model. The
projected Hamiltonian shares the same structure which
makes further computation easy to implement. We carry
out cRPA calculation to determine screened Coulomb in-
teraction of TBG at the first magic angle. This kind of
screened Coulomb interaction can be taken as a lower
bound to replace commonly used single gated or double
gated Coulomb interaction in Hartree Fock calculation.
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Appendix A: High Order Fourier Components of
Moiré Potential

We tabulate the six largest Fourier components of
the moiré potential U(r) for MATBG (θ = 1.085◦) at
high symmetry k̄ points using our TAPW method with
Slater Koster TB parameters in Table.II. TAPW method
can help extract effective parameters in generalized BM
model by reading these Fourier components.

Appendix B: More Electronic Band Structure
Results for MATBG

We plot single particle electronic spectrum of MATBG
(θ = 1.085◦) using different input structures (rigid, corru-
gated and relaxed TBG structure) with different methods
(TAPW and full TB) and TB parameterization (Slater-
Koster (SK) TB model and Fang-Kaxiras (FK) TB model
[49]) in Fig. 10. TAPW results all present good agree-
ment with the full TB results. Lattice relaxation is per-
formed using molecular dynamics with the force field
developed in Appx.C. The FK-TB parameterization for
twisted graphene systems is also integrated in our Python
package.

For FK-TB model, which is more accurate according to
recent DFT research [50], the intra-layer hopping integral
tintra is determined by [30, 31]

tintra(r) = t0e−α0r̄
2

cos(β0r̄) + t1r̄
2e−α1(r̄−r1)2 . (B1)

Different from Slater-Koster description for inter-layer
tunneling, which is isotropic, the inter-layer hopping inte-
gral tinter(r) in FK model is determined by [30, 31, 49, 50]

tinter(r)

=V0(r) + V3(r)

(
1

3

3∑
α=1

cos
(

3θ
(α)
12

)
+

1

3

3∑
α=1

cos
(

3θ
(α)
21

))

+V6(r)

(
1

3

3∑
α=1

cos
(

6θ
(α)
12

)
+

1

3

3∑
α=1

cos
(

6θ
(α)
21

))
.

(B2)
In above equation, r is the two-dimensional (projected)
vector connecting two carbon atoms, r = |r| and r̄ = r/a
where graphene lattice constant a = 2.46Å. Note that,
FK description for inter-layer hopping cannot capture the
effect of lattice corrugation. Vi(r) are fitted as:

V0(r) = λ0e−ξ0r̄
2

cos(κ0r̄),

V3(r) = λ3r̄
2e−ξ3(r̄−x3)2 ,

V6(r) = λ6e−ξ6(r̄−x6)2 sin(κ6r̄),

(B3)

and θ12 (θ21) indicates the angle between the projected
inter-layer bond r and nearest neighbour bond of atom-1
(atom-2). α is a bond index. All fitted parameters for
FK-TB model is summarized in Table. III [30, 31, 49, 50].

Appendix C: Details on the Force Field

The potential energy for TBG can be expressed as
a summation of the bonded intralayer interactions and
non-bonded interlayer interactions.

U = Ubonded + Unon−bonded, (C1)

where the bonded interactions can be modelled as
Ubonded = U2 + U3 + U4 by the Dreiding potential [71],
which includes the bond stretch U2 (two-body term), an-
gle bend U3 (three-body term), and dihedral torsion U4

(four-body term).
Specifically, the bond stretch interactions between car-

bon i and carbon j can be described by a simple harmonic
oscillator as U ij2 = 1

2kij(R−R0)2, where R0 is the equi-

librium bond length (i.e. 1.42 Å for graphene), and kij
is a constant set as 700 kcal/(mol · Å2). The three-body
angle bend formed by two bonds of atoms ij and jk which
share a common atom j can be expressed in a harmonic

cosine form as U ijk3 = 1
2Cijk(cos θijk − cos θ0

j )
2. In the

equation, θijk is the angle between bonds ij and jk, and
θ0
j = 120◦ is an equilibrium angle. Cijk is a constant

set as 133.33 kcal/(mol · rad2). The four-body dihedral
interactions ijkl which consists of two bonds ij and kl
connected via a common bond jk can be described by

following form as: U ijkl4 = 1
2Vjk{1 − cos[njk(ϕ − ϕ0

jk)]},
where ϕ is the dihedral angle between ijk and jkl planes
and ϕ0

jk = 180◦ is the equilibrium dihedral angle. njk is
the periodicity, which is set as 2, and Vjk is the barrier
to rotation, which is set as 5 kcal/mol.
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TABLE II. Six largest components of moiré potential UαG0,βGi(k̄) on high symmetry points when θ = 1.085◦ and a corrugated
structure as an input. The unit is electron Voltage (eV). Unlike classical BM model which sets u 6= u′, our method has a
detailed description for higher orders components of moiré potential.

UA1A2(Γ̄) 0.085809 0.079906 0.074568 0.010323 0.010078 0.009875
UA1B2(Γ̄) 0.103212 0.097788 0.092846 0.007722 0.007437 0.007261
UB1A2(Γ̄) 0.103212 0.097788 0.092846 0.007722 0.007437 0.007261
UB1B2(Γ̄) 0.085809 0.079906 0.074568 0.010323 0.010078 0.009874
UA1A2(K̄) 0.080045 0.080045 0.080045 0.010090 0.010090 0.010090
UA1B2(K̄) 0.097890 0.097890 0.097890 0.007460 0.007460 0.007460
UB1A2(K̄) 0.097890 0.097890 0.097890 0.007460 0.007460 0.007460
UB1B2(K̄) 0.080045 0.080045 0.080045 0.010089 0.010089 0.010089
UA1A2(K̄′) 0.085737 0.080045 0.074502 0.010300 0.010123 0.009853
UA1B2(K̄′) 0.103157 0.097890 0.092799 0.007676 0.007527 0.007217
UB1A2(K̄′) 0.103157 0.097890 0.092799 0.007676 0.007527 0.007217
UB1B2(K̄′) 0.085737 0.080045 0.074502 0.010300 0.010123 0.009853
UA1A2(M̄) 0.082864 0.080062 0.077246 0.010195 0.010103 0.009972
UA1B2(M̄) 0.100496 0.097903 0.095316 0.007565 0.007488 0.007336
UB1A2(M̄) 0.100496 0.097903 0.095316 0.007565 0.007488 0.007336
UB1B2(M̄) 0.082864 0.080062 0.077246 0.010195 0.010103 0.009971

The non-bonded van der Waals interactions
Unon−bonded between interlayer TBG can be ex-
pressed by the exponential-6 (X6) form [72] as
UX6

vdW = Ae−R/c − BR−6, where R is the distance
between two interlayer atoms. The parameters A,
c and B are set as 385631.5 kcal/mol, 0.2343 Å and
303.82 kcal/(mol·Å6). The X6 form has more accurate
description regarding the short-range interactions [72].

TABLE III. Parameters in FK-TB model for TBG.

Intra t0 (eV) α0 β0 t1 (eV) α1 r1
-18.4295 1.2771 2.3934 -3.7183 6.2194 0.9071

Inter λi (eV) ξi xi κi
V0 0.3155 1.7543 2.0010
V3 -0.0688 -0.0688 0.5212
V6 -0.0083 2.8764 1.5206 1.5731
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FIG. 10. Electronic Band structures of MATBG (θ = 1.085◦) along high symmetry points K̄ − Γ̄ − M̄ − K̄′ using different
methods and different TB parameters. (a)-(c): Band structures computed using SK-TB model for rigid, corrugated and relaxed
structure, respectively. (d)-(f): Band structures computed using FK-TB model for rigid, corrugated and relaxed structure,
respectively. The full TB reference results are denoted in red dots while the TAPW results are in blue lines.
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