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In this work we present and analyze two tensor network-based influence functional approaches for
simulating the real-time dynamics of quantum impurity models such as the Anderson model. Via
comparison with recent numerically exact simulations, we show that such methods accurately cap-
ture the long-time non-equilibrium quench dynamics. The two parameters that must be controlled
in these tensor network influence functional approaches are a time discretization (Trotter) error and
a bond dimension (tensor network truncation) error. We show that the actual numerical uncer-
tainties are controlled by an intricate interplay of these two approximations which we demonstrate
in different regimes. Our work opens the door to using these tensor network influence functional
methods as general impurity solvers.

I. INTRODUCTION

The numerical simulation of quantum many-body sys-
tems is in principle an exponentially difficult problem due
to the growth of Hilbert space dimension with system
size. While the advent of tensor network techniques has
made the equilibrium problem more tractable, the appli-
cation of tensor network methods to dynamics has been
limited by the growth of entanglement during time evo-
lution, which can cause exponentially growing resource
requirements to accurately describe the dynamics. Given
the complex nature of this problem, developing new nu-
merical methods and furthering understanding of dynam-
ical phenomena is best done within the context of simple,
yet nontrivial models.

Quantum impurity models offer one such possibility,
with the additional benefit that they are of practical
physical importance, having led to an understanding of
phenomena ranging from the Kondo effect in solids [1]
to the survival of macroscopic quantum coherence effects
in condensed phases [2, 3]. In the past few decades, im-
purity models have gained additional significance as a
key component of computational embedding frameworks
such as dynamical mean field theory [4] and density ma-
trix embedding theory [5, 6]. Here, one must compute
the real-time dynamics of the impurity to obtain an ap-
proximation to the local dynamics of the full problem
via a self-consistently refined effective bath. Thus the ef-
ficacy of such embedding methods is constrained by the
flexibility, speed, and accuracy with which the dynamics
of an impurity coupled to a bath can be simulated.

Numerical approaches for solving impurity problems
must contend with issues around the treatment of a large
(infinite) number of bath degrees of freedom, while si-
multaneously needing to ameliorate the dynamical sign
problem for impurity dynamics. The issue of treating

continuous baths poses an impediment to methods like
diagonalization-based techniques [7–10], and is partially
solved by the advent of tensor network approaches [11–
16]. The treatment of the sign problem saddles dy-
namical Monte Carlo methods [17–23] with an exponen-
tially scaling numerical cost. Although this scaling can
be tamed by inchworm diagrammatic expansions [24–
27], these approaches still incur statistical errors. Meth-
ods based on the Feynman-Vernon influence functional
(IF), such as iterative path integral methods [28–30]
and the hierarchical equations of motion (HEOM) ap-
proach [31, 32] have been used with great success in spin-
boson-type problems but are far less explored in problems
with fermionic baths such as the Anderson model [33].
Generally speaking, treating the problem of impurity dy-
namics using the IF provides a natural formalism to con-
sider continuous baths without invoking stochastic sam-
pling which introduces dynamical sign problems.

Of the above approaches, discretized path integral-
based IF methods, e.g. the quasi-adiabatic path integral
method (QUAPI) [28, 29, 34, 35], are promising, as they
reduce the problem to one of managing Trotter errors
and memory truncation. However, models such as the
Anderson model are more complex than the spin-boson
model, in part because the system part of the system-
bath coupling cannot be written in a simple diagonal
form. Early attempts to generalize these approaches to
the dynamics of Anderson-like models provided a win-
dow to obtain exact non-equilibrium dynamics in some
parameter regimes, but suffered from memory length is-
sues that limited their range of applicability [36, 37]. In
the intervening years, significant progress has been made
marrying tensor network methods and IF methods, par-
ticularly for spin-boson-like models. Specifically, one can
view the Trotterized dynamics as a tensor network and
employ tensor contraction over the environment degrees
of freedom for a fixed propagation time, instead of con-
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tracting along the temporal direction [38–44]. The re-
sulting object can be viewed as a matrix product state
representation of the exact discretized influence func-
tional (MPS-IF), which exists on a temporal lattice. Such
an approach has been successfully applied to harmonic
baths [41, 42, 45–49] as well as finite baths of bosons,
fermions, or spins [41, 50].

Recently, Abanin and coworkers have focused on the
behavior of MPS-IF approaches for fermionic models, and
have usefully detailed how entanglement properties of
the influence functional temporally evolve [43, 51, 52].
In this paper we follow Abanin et al, considering the
explicit non-equilibrium dynamics of the Anderson im-
purity model directly in the continuous fermionic bath
limit. We use a more general and flexible formulation
of the system-bath coupling to allow for the treatment
different bath densities of state. In addition, we take ad-
vantage of the Gaussian nature of the bath to construct
the MPS-IF in two ways, either by leveraging the Gaus-
sian form of the IF when the bath is noninteracting, or
by propagating it forward iteratively in a similar spirit
to the QUAPI method [29]. The two methods as pre-
sented here have different asymptotic costs with similar
errors in the dynamics, which is suggestive of a hybrid
scheme being useful for simulations to long times. Using
this approach we present a numerical solution of the An-
derson impurity model including a comparative analysis
and optimization of the errors arising from the required
time discretization and bond dimension truncation. We
thus obtain approaches to the impurity problem where
the convergence is not determined by the standard bath
size and sign issues, and which can produce a description
of the true non-Markovian evolution of the impurity with
polynomially-scaling numerical effort and error control.

This paper is organized as follows: In Sec. II we briefly
outline the approach to real time dynamics using dis-
cretized influence functionals and we give two schemes
for constructing a matrix product state representation for
the IF. In Sec. III we compare our approach for the non-
equilibrium dynamics of the Anderson model to recent
exact calculations on the model. This comparison points
to some important specific details of our approaches with
respect to convergence which are then discussed in detail.
In Sec. IV we conclude and discuss outstanding questions
for future study. Details of derivations are contained in
the Supplementary Information.

II. INFLUENCE FUNCTIONALS AND THEIR
REPRESENTATIONS

We consider the quench dynamics of the single impu-
rity Anderson model,

Ĥ =
∑
k,σ

Ek,σ ĉ
†
k,σ ĉk,σ +

∑
k,σ

(
Vk,σ ĉ

†
k,σd̂σ + h.c.

)
+ Un̂↑n̂↓ +

∑
σ

εσn̂σ.
(1)

Here, εσ is the on-site energy for electrons with spin
σ = {↑, ↓} residing on the impurity, U is the Coulomb
repulsion for two electrons that reside on the impurity,
Ek,σ is the conduction (bath) electron energy with mo-
mentum k, and Vk,σ characterizes the strength of the
coupling between the impurity and bath electrons. For
the remainder of this paper we will refer to the terms
in the first and second lines of Eq. (1) as Ĥ0 and Ĥ1

respectively; the bath-only terms within Ĥ0 will also be
denoted by ĤB .

The dynamics we consider starts from an initially
nonequilibrium state, in which the impurity is decoupled
from the bath, ρ̂full = ρ̂(0)ρ̂B [53]. The ensuing evolu-
tion of the impurity is approximated by a second-order
Trotter decomposition as

ρ̂(N∆t) = TrB

[(
e−iL0

∆t
2 e−iL1∆te−iL0

∆t
2

)N{
ρ̂(0)ρ̂B

}]
,

where, for compactness, we have defined the superop-

erators e−iL0/1Â ≡ e−iĤ0/1ÂeiĤ0/1 . The trace over the
bath can be performed in the basis of coherent states
when the statistics of the bath is Gaussian, e.g. ρ̂B ∝
exp(−βĤB) [54]. What remains then is the impurity
dynamics captured by trajectories over coherent states
on the forward (backward) contour, |ηn〉 (|η̄n〉). Each
of these trajectories is weighted by the influence func-
tional IN containing properties of the bath as well as the
impurity-bath coupling, leading to the representation of
the Trotterized dynamics as

〈η∗N |ρ̂(N∆t)|η̄N 〉 =

∫ (∏
n

DηnDη̄n
)
IN [{ηn}, {η̄n}]

(2)

× 〈η∗0 |ρ̂(ti)|η̄0〉ei
∫
dτ Simp[η(τ),η∗(τ)].

Since Ĥ0 is quadratic by construction the influence func-
tional takes the general Gaussian form,

IN [η, η̄] = exp

[η̄1

η̄2

...

 ·GGG · (η1 η2 · · ·
)
,

]
, (3)

where GGG is a matrix describing the temporal correlations
in the impurity’s trajectories. For the single impurity
case we consider here, the trajectory at time step N is
specified using four states. In particular, for each branch
on the Keldysh contour (forward and backward), we must
keep track of the impurity’s state before and after it is
acted on by exp(±iĤ1∆t) at time N∆t. Thus, the IF at
the Nth time step requires GGG to be a 4N × 4N matrix.
The explicit expressions of Eqs. (2) and (3) are rather
involved and are presented fully in [53].

To represent and compute quantities associated with
IN [η, η̄], we can treat the Grassmann variables ηn and η̄n
as fermionic operators [51, 55]. This turns the IN [η, η̄]
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into a generalized Gaussian state |IN 〉,

|IN 〉 ∝ exp

1

2

∑
i,j

ĉ†iGi,j ĉ
†
j

 |01 . . . 04N 〉. (4)

Having constructed GGG, the brunt of the numerical ef-
fort now lies in representing |IN 〉. This can be accom-
plished using matrix product states (MPS), which cir-
cumvents memory resource requirements growing expo-
nentially with N . Moreover, it has been recently demon-
strated that for impurity models of the type consid-
ered here, the maximum entanglement entropy in |IN 〉
typically saturates to an area-law behavior as N →
∞ [43, 51]. This suggests that |IN 〉, and therefore the
impurity dynamics, can be efficiently simulated using an
MPS with low bond dimension, at least for some classes
of impurity models. The efficiency hinges crucially on
the approach used to construct an MPS approximation
of |IN 〉 (MPS-IF). We now outline two methods for do-
ing so: one which directly constructs each site tensor of
the MPS-IF to produce an optimal low-rank MPS ap-
proximation, and another which reuses information from
previous timesteps.

A. Direct Construction

A many-body MPS can be constructed from its site
tensors by considering the overlaps of Schmidt states for
two different bipartitions of |IN 〉 [56]. Here, one can
leverage the fact that |IN 〉 is a Bardeen-Cooper-Schrieffer
(BCS) state [51] and therefore can be transformed into
a Hartree-Fock state, for which an efficient method ex-
ists to construct its MPS representation directly [57].
The transformation into a Hartree-Fock state proceeds
by finding the Bogoliubov quasiparticles, which can be
done by diagonalizing the matrixGGG in Eq. (4) at a cost of
O(N3) for the Nth timestep, and performing a particle-
hole transformation. This allows for a direct construction
of the Schmidt decomposition of any bipartition of |IN 〉
between sites (`, `+ 1) as,

|IN 〉 ∝
2N∏
i=1

[√
ν

[`]
i φ̂

[`]†
i,L +

√
1− ν[`]

i φ̂
[`]†
i,R

]
|0[`]
L 〉 ⊗ |0

[`]
R 〉.

(5)

The {φ̂[`]†
i,L/R} is a set of orthonormal single-particle op-

erators acting on the left/right partition, and {ν[`]
i } are

their associated eigenvalues [58]. Note that the left and
right Schmidt states are guaranteed to be Hartree-Fock
states. We can directly pick out the D most relevant
Schmidt states without needing to directly construct
them. While we can do so at the single-particle level

(i.e., approximating all but log2D values ν
[`]
i with 0 or

1), we will keep the D Schmidt states of highest weight.

Having picked out the relevant Schmidt states, the site
tensor A[`]σ` at the `-th site is specified by the overlaps,

A[`]σ`
α`−1,α`

=
(
〈α`−1,L| ⊗ 〈σ`|

)
|α`,L〉, (6)

where α`,L labels the left Schmidt states of the bipar-
tition at the `th bond. Via Wick’s theorem, the ele-
ments of the site tensor are straightforwardly found from
determinants of overlaps of single particle states, e.g.

〈0[`]
L |φ̂

[`−1]
i,L φ̂

[`]†
j,L |0

[`]
L 〉. Note that the matrix of overlaps

only needs to be computed once per site tensor, as the re-
quired determinants can be formed from its submatrices.
The cost of constructing all O(N) single particle opera-

tors {φ̂[`]†
i,L/R} and the overlap matrix is O(N3). Further-

more, the evaluation of determinants for each site matrix
can be sped up by the fact that certain orbitals are always
occupied in all the considered Schmidt states. The deter-
minant calculation can be broken up into the product of
the determinant of the occupied block with the determi-
nant of its Schur complement. In all, a single site tensor
can be constructed at a cost ofO(N3+D2N2 log2D) [57],
meaning that the cost of constructing the full MPS-IF
at timestep N is O(N4 + D2N3 log2D). Note that the
above procedure constructs each tensor independently,
which leads to trivial parallelization, but the time may
also be reduced if the truncated tensors are constructed
in the basis of preceding tensors.

B. Iterative Construction

In addition to using the generalized Gaussian nature
of |IN 〉 to directly construct an MPS-IF, we can take
an approach in the same spirit as similar methods for
bosonic impurity problems, i.e. the time-evolving matrix
product operator (TEMPO) reformulation of the QUAPI
approach [45, 46, 49, 50]. In TEMPO, the MPS-IF can
be propagated from the (N − 1)th to Nth timestep by
contracting it with a layer of matrix product operators
(MPOs), which contain information on how the impurity
state at timestep N correlates with the impurity state at
all previous times. To work in the same spirit, let us start
from Eq. (4) and decompose the quadratic exponent into
the form,

|IN 〉 =
∏
j

exp
[
Gj−1,j ĉ

†
j−1ĉ

†
j

]
· · · exp

[
G1,j ĉ

†
1ĉ
†
j

]
|0〉

=
∏
j

exp

[(
j−1∑
i=1

∆Gi,j ĉ
†
i

)
ĉ†j

]
|IN−1〉, (7)

where ∆GGG denotes the change in GGG between timesteps
N − 1 and N [59]. Let us examine one grouping of oper-
ators at fixed j and define for convenience gi ≡ ∆Gi,j ≡
|gi|eiφi ,

exp

[(
j−1∑
i=1

giĉ
†
i

)
ĉ†j

]
= 1 +

(
j−1∑
i=1

giĉ
†
i

)
ĉ†j . (8)
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This operator explicitly contains long-ranged couplings.
While there are more sophisticated ways to represent
such an object as an MPO [60], we will instead use
a straightforward approach of decomposing it as a se-
quence of nearest-neighboring unitary transformations
V̂i−1,i. These are defined such that they transform a

linear combination of two fermions into a single effective
fermion,

gi−1ĉ
†
i−1 + giĉ

†
i = V̂i−1,i

(
eiφi−1

√
|gi−1|2 + |gi|2 ĉ†i

)
V̂ †i−1,i,

from which one finds

V̂i−1,i = exp

[
i

(
φi − φi−1

2

)
(ĉ†i ĉi − h.c.)

]
exp

[(
arctan

|gi−1|
|gi|

)
(ĉ†i−1ĉi − h.c.)

]
. (9)

Combining these transformations gives a representation
of Eq. (8) for a single j. Constructing the MPS-IF at
the Nth timestep from the (N − 1)th timestep requires
the O(N) applications of Eq. (8), each of which involves
O(N) 2-site gates. To keep the bond dimension man-
ageable, truncations via singular value decompositions
are performed after each application of Eq. (8) for each
j. In total, cost of the MPO-MPS applications and the
SVD truncations makes this method’s asymptotic cost
O(D3N2), for an iterative step (which must be performed
N times for the evolution).

It is evident from this construction that the compu-
tational requirements can be relaxed if one can neglect
parts of GGG that do not change appreciably between con-
secutive timesteps, or if we impose a restriction on the
memory length e.g. setGi,j = 0 for |i−j| > M . While the
former case becomes exact in the continuous time limit,
the latter case may be admissible given that Gi,j is ar-
gued to decay algebraically with |i−j|, so long as the ini-
tial bath state is not critical [51]. Such a memory trunca-
tion would reduce the number of MPO-MPS applications
from (4N−1)2 to (4N)(2M−3)−(M2−M−1). Similarly,
the number of SVDs is reduced from (4N)(4N − 1)/2 to
(4N)(M − 1)− M

2 (M − 1). In all, the overall scaling for

an iterative step would be reduced to O(D3MN).

III. RESULTS

We consider the dynamics of the single impurity An-
derson model for a hybridization function corresponding
to the density of states of the z →∞ Bethe lattice,

∆(ω) = Γ
√
W 2 − ω2/π, (10)

where W = 10Γ and ω ∈ [−W,W ]. The bath is ini-
tially equilibrated at a temperature Γβ = 2 and is de-
coupled from an unoccupied impurity ρ̂(0) = |0〉〈0|. For
U = −2εσ = 2.5πΓ, we compare our results, gener-
ated using the direct and iterative constructions without
memory length truncations, to those of the MPS time-
dependent variational principle calculations of Kohn and
Santoro [16].

In Fig. 1 we show the quench dynamics of the pop-
ulations, p|ψ〉 ≡ 〈ψ|ρ̂|ψ〉, from the directly constructed
MPS-IF with a maximum bond dimension D = 64. The
timestep used is Γ∆t = 0.05. As seen in the inset, the
absolute difference between our results and those of Kohn
and Santoro is on the order of 10−3 over the time range
Γt ∈ [0, 5]. The deviations are generally larger than vi-
olations of the trace condition Tr ρ̂(t) = 1 [61]. Simi-
lar magnitudes of error are present from the iteratively
constructed MPS-IF, which we show in [53]. Notably,
the dynamics from both construction methods do not
perfectly coincide, due to the use of SVDs to compress
the iteratively constructed MPS-IF. For larger bond di-
mensions, this problem is exacerbated by the fact that
the Schmidt values of |IN 〉 can fall below the precision
of 64-bit floating point numbers so that the accuracy of
the associated Schmidt vectors found by SVD cannot be
guaranteed. This, however, poses no issue for the direct
construction method, for which the Schmidt values are
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FIG. 1. (Color online) Impurity populations p|ψ〉 ≡ 〈ψ|ρ̂|ψ〉
in the symmetric Anderson model with U = 2.5πΓ and εσ =
−1.25πΓ. The bath is initially at temperature Γβ = 2 and the
impurity is initially unoccupied. Solid colored lines are results
from [16], and black dashed lines are results with D = 64
using the direct construction of the MPS-IF with a timestep of
Γ∆t = 0.05. (inset) Absolute deviations in the populations.
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FIG. 2. (Color online) Difference between the double occupancy computed from the MPS-IF with Γ∆t = 0.05, and its exact
value from the solution of a differential equation [53]. The bath defined by Eq. 10 in the U = 0 limit at temperature Γβ = 2,
with an initially unoccupied impurity. The MPS-IF is constructed (a-c) directly and (d-f) iteratively, and D = (a,d) 64,
(b,e) 128, and (c,f) 256. (a and e, inset) The absolute difference for ε = 0 across different bond dimensions. (c, inset) The
exact double occupancies used as reference in the main panels. The red dashed line is the steady state value for ε = 0.

found from products of the
√
νi and

√
1− νi in Eq. (5).

The above considerations suggest that truncation error
in the MPS construction must be carefully examined at
the bond dimensions we use and must be considered in
addition to Trotter error. We thus undertake a closer
examination of these errors below.

A. Convergence Analysis in the Non-Interacting
Limit

We begin our discussion by considering the dynamics
for the case U = 0, εσ 6= 0 since this admits exact nu-
merical solutions [62]. In Fig. 2 we show the deviation
of the double occupancy 〈n̂↑n̂↓〉, as computed by the di-
rect and iterative methods, from the exact values over a
range of onsite energies εσ. The most striking feature in
these plots is a discontinuous rate of growth in the error
δ〈n̂↑n̂↓〉 ≡ 〈n̂↑n̂↓〉 − 〈n̂↑n̂↓〉ref, most prominently exhib-
ited in simulations using MPS-IF with smaller bond di-
mensions and in the cases where the direct construction
approach is used, Fig. 2(a,b,c). Specifically, this behavior
appears in Fig. 2b at Γt∗ ≈ 1.2. In contrast, the nearly
discontinuous behavior appears to be smoothed over in
the iterative construction (Fig. 2(d,e,f)), although the
deviations in the double occupancy generally follow the
same trends as in the directly constructed cases. We
observe t∗ to increase modestly with increasing bond di-
mension. For instance, at D = 256, Γt∗ ≈ 1.6. Since
the deviations of the iteratively constructed method and
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0.001

FIG. 3. Absolute deviations from the exact double occupancy
for U = 0, ε = 0 for various bond dimensions D at fixed
times approaching the steady state of the dynamics. The
bath is initially at temperature Γβ = 2 and the impurity is
initially unoccupied. The MPS-IF is constructed directly with
a timestep of Γ∆t = 0.05.

direct method are qualitatively similar, below we focus
on the behavior of the direct method.

The error incurred by the MPS approximation can be
isolated by examining the ε = 0 case, where there is no
Trotter error. These results are shown in the insets of
Fig. 2(b,e). It can be seen that the error increases dra-
matically with propagation time, growing by five decades
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FIG. 4. Convergence of the double occupancy with respect to ∆t and D, using the data from [16] as the reference. The bath is
initially at temperature Γβ = 2, as before. Data joined by solid (dashed) lines are obtained by the direct (iterative) construction
method.

over 20 time steps for D = 128 before saturating. The
error can be suppressed by increasing the bond dimen-
sion. We generally see doing so decreases the error alge-
braically with D (Fig. 3). Note that this holds at both
intermediate (Γt ∼ 1) and long times (Γt & 2) for which
the impurity dynamics is close to its steady state behav-
ior (see bottom-most curve in the inset of Fig. 2c).

At the same time, over the time range for which the
dynamics are converged with respect to the available
bond dimensions (Γt . 0.6), the Trotter error scales
as (∆t)2 [53]. Thus, ensuring that the Trotter error is
smaller than a tolerance δ implies that ∆t ∝ δ1/2 and
N ∝ δ−1/2. If the cost to reach a truncation error δ
also scales asymptotically as a power law in 1/δ, then
total cost to simulate the noninteracting impurity dy-
namics with the MPS-IF to the specified error tolerance
will scale polynomially with 1/δ.

B. Convergence Analysis in the Interacting Limit

Given that the influence functional is independent of
the details of the impurity Hamiltonian Ĥ1, vestiges of
the irregularities in the error from the non-interacting dy-
namics should also appear for the interacting dynamics.
This fact is useful, since it implies that by examining
the non-interacting dynamics, we can anticipate points
in time to focus convergence efforts for the interacting
problem, e.g. close to the t∗ identified in the previous
section. However, the information gleaned from the non-
interacting dynamics does not tell the full story. For ex-
ample, Fig. 2 shows that the double occupancy appears
to be adequately converged with respect to D around
Γt ≈ 0.7. Yet in the full problem with U = −2εσ = 2.5πΓ
as shown in Fig. 4, we see that the error can behave rather
differently as a function of both D and ∆t. First, for
D & 256, we see that the deviations are most sensitive to
the time step size, though there are small residual trunca-
tion errors independent of the Trotter error. We surmise
that the errors shown in Fig. 4a are mostly due to Trotter

2
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7

2
8

2
9

5.× 10
-4

0.001

0.002

FIG. 5. Comparison of the double occupancy in the U 6= 0
against results from Ref. [16], for various bond dimensions D.

error, since δ〈n̂↑n̂↓〉 are identical for D = 256 and 512.
At the same time, the error for D = 64 is mostly unaf-
fected by decreasing ∆t, indicating that truncation errors
are dominant. We conclude that decreasing the time step
size does not necessarily decrease the overall error given
by the MPS-IF at fixed bond dimension. As noted in
Ref. [51], the half-cut von Neumann entanglement en-
tropy of the MPS-IF vanishes as ∆t → 0. However, this
vanishing of the entanglement entropy, which is due to
the scaling of the Schmidt values with ∆t [52, 53], does
not imply that the accuracy of the MPS-IF approxima-
tion with fixed D improves as ∆t→ 0. Our lack of rigor-
ous understanding of the overall error is highlighted by
the growth of deviations with decreasing ∆t for D = 128,
seen in Fig. 4(c-e). We observe a similar error behavior
from the iterative construction, shown in the dashed lines
in Fig. 4c.

Finally, we can make a similar comparison of the in-
termediate to long time dynamics as in Fig. 3 for the full
U 6= 0 problem. Restricting ourselves to the direct con-
struction of the MPS-IF, we show in Fig. 5 the errors in
the double occupancy across bond dimensions, holding
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Γ∆t = 0.05. As in the non-interacting case, the errors at
long times Γt & 2 suggest a power law decay with D with
a similar exponent. In contrast, errors at the intermedi-
ate time Γt = 1 do not exhibit such a decay, taking into
account that the D = 128 dynamics (Fig. 4) suffers from
larger-than-expected errors. Similar to Fig. 4a, it is likely
that the errors at Γt = 1 for D 6= 128 are dominated by
Trotter errors. Achieving convergence with respect to D
and ∆t may require first decreasing ∆t by a factor of ∼ 3,
cf. Fig. 4(a, c). While these results are suggestive of the
long time (Γt & 2) dynamics being convergeable with
polynomial effort for a specified error tolerance, larger
bond dimensions will be required to reach this asymp-
totic convergence regime at intermediate times.

IV. DISCUSSION

In this paper we have presented two representations of
fermionic bath influence functionals with matrix product
states to simulate the real-time dynamics of the single-
impurity Anderson model. We have found that we can
obtain good agreement with other real-time propagation
methods with modest numerical effort. We have shown
that both construction approaches yield similar errors in
the resulting impurity dynamics. The two ways of con-
structing the IF have costs that scale differently with the
number of propagation timesteps, meaning that a hybrid
approach may be a good strategy for dealing with long-
time propagation. Computational costs of both methods
as presented here can be further attenuated by introduc-
ing additional approximations, which we did not consider
here as these would complicate the convergence analysis.
We note that the MPS-IF can treat arbitrary bath den-
sities of state through the specification of its hybridiza-
tion function [53], and obtain systematically converge-
able simulations of non-Markovian dynamics. We stress
here that unlike other dynamics methods, once we have
constructed and saved the MPS-IF, calculations with dif-
ferent impurity Hamiltonians Ĥ1 and different initial im-
purity states ρ̂(0) can be performed trivially. This allows

for the treatment of, e.g., time-dependent forms of Ĥ1

so that problems with external driving can be treated
with no additional cost. Furthermore, viewing the IF
as a “process tensor” of an open quantum dynamics [63]
means that we can easily extract arbitrary multi-time im-
purity correlation functions within the same formalism.

We have also shown that the outstanding sources of
error, Trotter error and truncation error of the MPS-IF,
can likely be controlled with only polynomially growing
resource requirements, but the two errors do not neces-
sarily go hand in hand. In particular, our construction of
the IF as a process tensor allows us to isolate the MPS
truncation error, and gives us a guide to where conver-
gence efforts should be focused. As presented, our ap-
proach should be readily generalizable to other impurity
problems, and with some effort can be adapted as an
impurity solver for DMFT. These considerations, as well
as modifications to improve computational efficiency, will
be taken up in future work.

As it stands, we currently do not have a complete un-
derstanding of the major determinants of errors stem-
ming from truncating the MPS-IF. We anticipate that
insights in this direction will help make the direct con-
struction of the MPS-IF more efficient. Further explo-
rations along these lines are forthcoming.

During preparation of this manuscript, we became
aware of similar work by Thoenniss et al. [64].
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