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We theoretically study in-plane acoustic phonons of graphene/hexagonal boron nitride moiré
superlattice by using a continuum model. We demonstrate that the original phonon bands of
individual layers are strongly hybridized and reconstructed into moiré phonon bands consisting
of dispersive bands and flat bands. The phonon band structure can be effectively described by
a spring-mass network model to simulate the motion of moiré domain walls, where the flat-band
modes are interpreted as vibrations of independent, decoupled strings. We also show that the
moiré phonon has angular momentum due to the inversion symmetry breaking by hBN, with high
amplitudes concentrated near narrow gap region. Finally, we apply the same approach to twisted
bilayer graphene, and we find a notable difference between the origins of the flat-band modes in
G/hBN and TBG, reflecting distinct geometric structures of domain pattern.

I. INTRODUCTION

Moiré pattern plays an essential role in the physi-
cal properties of van der Waals multilayer systems. In
twisted bilayer graphene (TBG), the electronic prop-
erties strongly depend on the twist angle [1–9], where
nearly-flat bands with associated exotic correlated phe-
nomena emerge at a magic angle (∼ 1◦) [10–14]. At the
same time, phonons in TBG are also significantly affected
by the moiré superlattice modulation [15–21]. At low-
frequency, particularly, it was predicted that the in-plane
acoustic phonons are reconstructed into moiré phonons
corresponding to effective oscillations of the moiré pat-
tern, where opening of moiré gaps and flattening of some
specific bands take place [16]. Such modifications of
phonon bands are expected to strongly affect the elec-
tronic [22–26] and thermal [27, 28] transport properties.

A wide variety of 2D materials offers a playground
to explore different types of moiré phonons. For
twisted transition-metal dichalcogenide bilayers, the
moiré-induced phonon renormalization effect was studied
[21, 29–32], and a chiral nature of phonons due to broken
inversion symmetry was predicted [33, 34]. The study of
moiré phonons has also been extended to twisted bilayer
hexagonal boron nitiride [35], twisted trilayer graphene
[36, 37] and twisted multilayer graphenes [37, 38].

In this paper, we investigate low-energy moiré phonons
in graphene on hexagonal boron nitride (G/hBN), as the
first example of hetero bilayer systems. While bulk hBN
is commonly used as a substrate for two-dimensional ma-
terials to achieve high mobility [39], it can also form a
moiré superlattice when aligned with graphene, which
leads to exceptional physical properties [40–52]. In its
relaxed state, the moiré pattern in G/hBN exhibits a
honeycomb domain structure [53–58], in contrast to a tri-
angular pattern in homobilayers such as twisted bilayer
graphene and twisted transition-metal dichalcogenides.

We find that the moiré-phonon dispersion in G/hBN
exhibits a repeating structure consisting of dispersive
bands and flat bands, similarly to TBG phonon bands
[16]. These characteristic structure can be described by
an effective spring-mass network model, which mimics

motion of the domain walls. In particular, we show that
the flat-band phonon modes are interpreted as vibra-
tions of decoupled strings with open boundary condition,
where different flat bands correspond to different fun-
damental vibrating modes of a single string. We apply
the same effective model to TBG, and we find that the
flat phonon bands in TBG [16], correspond to decoupled
strings with closed boundary condition, in contrast to the
open boundary condition in G/hBN. The difference re-
flects the distinction between triangular and hexagonal
geometric structures of the domain wall networks.

We also calculate angular momentum of the moiré
phonons in G/hBN. Generally, a phonon has a finite an-
gular momentum in a system with broken inversion sym-
metry [33, 34]. We find that high amplitudes of angular
momentum are concentrated near the Brillouin zone cor-
ners, where small gaps opened by the inversion symme-
try breaking. We also observe significant amplitudes in
the two lowest moiré phonon modes, which happen to be
nearly degenerate with a small energy spacing.

This paper is organized as follows. We begin with
the description of moiré superlattice in G/hBN system
and introduce a continuum method to calculate long-
wavelength phonons in Sec. II. In Sec. III, we calculate
phonon modes, where we reproduce the qualitative fea-
ture using the effective spring-mass model, and explain
the origin of the flat phonon bands. The phonon angular
momentum is caluclated in Sec. IV. A comparison with
the TBG moiré phonons is given in Sec. V. We briefly
conclude the paper in Sec. VI.

II. METHODS

A. Geometry of moiré superlattice

We consider a twisted bilayer system comprised of a
hBN layer and a graphene layer stacked on top of each
other as illustrated in Fig. 1(a). Both graphene and hBN
have two-dimensional honeycomb lattice structure, where
graphene has carbon atoms at A and B sublattices while
hBN has boron and nitrogen atoms at the A′ and B′, re-
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spectively. The two layers have a slight lattice mismatch,
approximately ε ≡ (a′ − a) /a ≈ 1.8% where a ≈ 0.246
nm is graphene’s lattice constant and a′ ≈ 0.2504 nm is
hBN’s lattice constant [59].

We define an untwisted graphene-hBN bilayer (θ = 0)
by aligning the center of a particular honeycomb cell
from each layer at the origin (x, y) = (0, 0). The hBN
layer is then rotated by an angle θ around the origin,
to construct a twisted bilayer system. The lattice con-
stant difference and the relative twist create a moiré pat-
tern which is periodic at a larger scale. The primitive
lattice vectors of graphene are defined as a1 = a(0, 1)

and a2 = a(1/2,
√

3/2), and those of hBN are given by

a′i = M̂R̂ ai (i = 1, 2) with isotropic expansion matrix

M̂(ε) = (1 + ε)Î and rotation matrix R̂(θ). The recipro-
cal lattice vectors of graphene and hBN, denoted by bi
and b′i, respectively, satisfying ai · bj = a′i · b′j = 2πδij .

The reciprocal lattice vectors for a long-range moiré
pattern is given by GM

i = bi−b′i. The corresponding real
space lattice vectors LM

i are obtained by the condition
LM
i ·GM

j = 2πδij . The moiré superlattice period LM =

|LM
1 | = |LM

2 | is written as

LM = a
1 + ε√

ε2 + 2(1 + ε)(1− cos θ)
, (1)

while the angle from ai to LM
i defines the superlattice

orientation,

φ = arctan

( − sin θ

1 + ε− cos θ

)
. (2)

Figure 2 shows the dependence of the superlattice period
LM (black line) and orientation φ (red line) on twist angle
from 0◦ to 10◦.

For later convenience, we define the third reciprocal
lattice vectors as b3 = −b1 − b2, b′3 = −b′1 − b′2 and
GM

3 = −GM
1 −GM

2 , where the three vectors of i = 1, 2, 3
are trigonally symmetric.

B. Continuum methods

We describe the moiré phonons in graphene/hBN us-
ing a continuum method. Specifically, we express the
Lagrangian as a functional of smoothly-varying lattice
displacement field (shifts of atoms) and obtain the Euler-
Lagrange equation. The Lagrangian is given by L =
T − (UE + UB) with kinetic energy T , the elastic energy
UE and the interlayer binding energy UB . In the follow-
ing, we extend the formulation for TBG [16, 60] to hetero
moiré bilayers consisting of different 2D materials.

The interlayer binding energy UB is expressed as in-
tegration of the binding energy depending on the local
interlayer configuration. As a simple example, let us con-
sider a one-dimensional system composed of two parallel
atomic chains with different lattice constants. We de-
scribe the atomic periodicities of chain 1 and 2 by sinu-
soidals cos bx and cos b′x, respectively, where minima of

Figure 1. (a) Schematic diagram for the G/hBN system. Due
to misalignments between the two layers, the local stacking
structure varies between AA′, AB′, and BA′ illustrated in
(b). These variation defines the moiré pattern as shown in
(c)-(e) for θ = 0◦, 1.25◦, and 3◦, respectively, each with inset
showing the first Brillouin zone of the superlattice.
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Figure 2. Variation of moiré superlattice period (LM) and
orientation (φ) over twist angle (θ). The second vertical axis
on the left is the dimensionless parameter η defined in Eq. 18.

the functions represent the atomic positions. We assume
|b− b′| � b, b′, i.e., the moiré period is much longer than
the atomic periods. The local structure at position x
is characterized by the phase difference between the two
sinusoidals, ϕ(x) = (b − b′)x. Here ϕ = 0 represents a
perfectly overlapping arrangement where atoms of chain
1 and 2 are aligned, while ϕ = π is a staggered configu-
ration where the atoms are aligned with the midpoint of
bonds of the other chain. The local inter-chain binding
energy can be written as V [ϕ(x)], a functional of the local
phase difference. The V [ϕ] must be a periodic function
satisfying V [ϕ+ 2π] = V [ϕ].

Now we consider the lattice distortion parallel to the
chain, described by smooth displacement field u(x) and
u′(x) for chain 1 and 2, respectively. Then the sinusoidal
functions are changed to cos b(x − u(x)) and cos b′(x −
u′(x)), and hence the phase difference at x becomes

ϕ(x) = b(x− u(x))− b′(x− u′(x))

= GM (x− u+(x)/2) + b̄ u−(x), (3)

where GM = b − b′, b̄ = (b + b′)/2, and u± = u′ ± u are
interlayer-symmetric and asymmetric components of the
displacement. The local inter-chain binding energy in the
presence of the distortion is given by V [ϕ(x)] with ϕ(x)
of Eq. (3).

The binding energy between graphene and hBN can be
described in a parallel manner. The periodicity of indi-
vidual honeycomb lattices are modelled by

∑3
j=1 cosbj ·r

and
∑3
j=1 cosb′j · r for graphene and hBN, respectively,

where minima represent atomic positions. The local in-
terlayer arrangement is characterized by the phase differ-
ence (ϕ1, ϕ2), where ϕj(r) = (bj−b′j)·r for a rigid lattice
without distortion. Here (ϕ1, ϕ2) = (0, 0), (2π/3, 2π/3)
and (4π/3, 4π/3) correspond to AA′, AB′ and BA′ stack-
ing, respectively. Due to 120◦ symmetry of the system,
the local binding energy should be expressed as a sym-
metric function of ϕ1, ϕ2, ϕ3(= −ϕ1 −ϕ2). In the lowest

harmonics, it is written as

V [ϕ1, ϕ2] =

3∑
j=1

2V0 cos [ϕj + ϕ0] + Vconst. (4)

The parameters V0 = 0.202 eV/nm2, Vconst = −0.700
eV/nm2, and ϕ0 = 0.956 are obtained from the bind-
ing energies at three local alignments of AA′, AB′, BA′

[Fig. 1(b)], which are 0, −100, and −10 meV per unit
cell, respectively [56].

Now we consider smooth, in-plane displacement fields
u(1)(r, t) and u(2)(r, t) for graphene and hBN, respec-
tively, which represent atomic shifts at the position r and
time t. We also define the symmetric and antisymmet-
ric components as u±(r, t) = u(2)(r, t) ± u(1)(r, t). The
phase difference becomes

ϕj(r, t) = bj ·
(
r− u(1)(r, t)

)
− b′j ·

(
r− u(2)(r, t)

)
= GM

j ·
(
r− u+(r, t)/2

)
+ b̄j · u−(r, t), (5)

where b̄j = (bj + b′j)/2. The total interlayer binding
energy is then calculated by taking the integral over the
system,

UB =

∫
V [ϕ1(r, t), ϕ2(r, t)] d2r. (6)

The elastic energy cost associated with the in-plane
distortion is described by a standard expression [60, 61],

UE =

2∑
l=1

1

2

∫
(λ(l) + µ(l))

(
u(l)xx + u(l)yy

)2
+ µ(l)

[(
u(l)xx − u(l)yy

)2
+ 4

(
u(l)xy

)2]
d2r,

(7)

where u
(l)
ij = (∂iu

(l)
j + ∂ju

(l)
i )/2 is the strain tensor, and

λ(1) = 3.25 eV/Å2 and µ(1) = 9.57 eV/Å2 are the
Lamé parameters for graphene and λ(2) = 3.5 eV/Å2

and µ(2) = 7.8 eV/Å2 for hBN [57, 62, 63]. Meanwhile,
time-dependent displacement field gives a kinetic energy
which is expressed as

T =

2∑
l=1

∫
1

2
ρ(l)

(
u̇(l)2x + u̇(l)2y

)
d2r, (8)

where the mass density for graphene and hBN are ρ(1) =
7.61×10−8 g/cm2 and ρ(2) = 7.59×10−8 g/cm2, respec-
tively.

The Lagrangian of the moiré bilayer system is given by
L = T − (UE +UB) which is a functional of the displace-
ment vector fields u(l)(r, t). We rewrite the Lagrangian
in terms of the symmetric and antisymmetric displace-
ment vector fields u±. The Euler-Lagrange equation for
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u± is obtained as

1

2

[(
ρ ρ′

ρ′ ρ

)
∂2

∂t2
+

(
K̂ K̂ ′

K̂ ′ K̂

)](
u+

u−

)
=

3∑
j=1

2V0 sin [ϕj(r, t) + ϕ0]

(
−GM

j /2
b̄j

)
, (9)

where

K̂ = −
(

(λ+ 2µ)∂2x + µ∂2y (λ+ µ)∂x∂y
(λ+ µ)∂x∂y (λ+ 2µ)∂2y + µ∂2x

)
, (10)

K̂ ′ = −
(

(λ′ + 2µ′)∂2x + µ′∂2y (λ′ + µ′)∂x∂y
(λ′ + µ′)∂x∂y (λ′ + 2µ′)∂2y + µ′∂2x

)
,

(11)

and

λ =
λ(2) + λ(1)

2
, λ′ =

λ(2) − λ(1)
2

,

µ =
µ(2) + µ(1)

2
, µ′ =

µ(2) − µ(1)

2
,

ρ =
ρ(2) + ρ(1)

2
, ρ′ =

ρ(2) − ρ(1)
2

. (12)

Note that ρ and ρ′ in Eq. (9) are multiplied by a 2 × 2
unit matrix.

We see that λ′, µ′, ρ′ are responsible for the hybridiza-
tion of interlayer symmetric component u+ and anti-
symmetric component u−. In our graphene-hBN system,
λ′, µ′, ρ′ are much smaller than λ, µ, ρ, respectively, and
hence we neglect these hybridization terms hereafter. We
also note that the effect of the moiré interlayer coupling
[the right-hand side of Eq. (9)] is much greater for u−

than for u+ since |b̄j | � |GM
j | in long-range moiré su-

perlattice. Therefore, the superlattice reconstruction of
the phonon bands mainly occurs for the antisymmetric
modes, while it gives only a minor effect on symmetric
modes. In the following, we concentrate on the interlayer
anti-symmetric modes u−.

1. Static solution

We assume a solution for the anti-symmetric mode in
the form of [16]

u−(r, t) = u−0 (r) + δu−(r, t), (13)

where u−0 (r) is the static equilibrium part and δu−(r, t)
is a time-dependent perturbation from the equilibrium.
The equation for the static solution u−0 (r) is given by
setting δu−(r, t) = 0 in Eq. (13). Here we assume that
u−0 has the same periodicity as the original moiré pattern,
and write it as

u−0 (r) =
∑
G

u−0,Ge
iG·r, (14)

Figure 3. The equilibrium structure for (b) θ = 0◦, (c) 1.25◦,
and (d) 0◦ in comparison to (a) the rigid case.

where G = mGM
1 +nGM

2 are the moiré reciprocal lattice
vectors. Eq. (9) then becomes

K̂Gu−0,G =

3∑
j=1

4V0f
j
Gb̄j , (15)

where

K̂q =

(
(λ+ 2µ)q2x + µq2y (λ+ µ)qxqy

(λ+ µ)qxqy (λ+ 2µ)q2y + µq2x

)
, (16)

and f jG is defined by

sin
[
GM
j · r + b̄j · u−0 (r) + ϕ0

]
=
∑
G

f jGe
iG·r. (17)

We solve a set of equations (15) and (17) iteratively
as follows [60]. For a given u−0 , we obtain the Fourier

component f jG by Eq. (17). We then obtain the u−0 of the

next generation by u−0,G =
∑3
j=1 4V0f

j
GK̂

−1
G b̄j [Eq. (15)].

We iterate the process until the solution converges.
Figure 3 shows the contour map of the interlayer bind-

ing energy V [ϕ1(r), ϕ2(r)] in the optimized u−0 (r) for
θ = 3◦, 1.25◦, and 0◦ . As the system relaxes, the most
stable AB′ local stacking region expands to achieve min-
imum internal energy, and it dominates the system in
small twist angles. The resulting optimal structure is an
honeycomb array of domain walls which connects AA′

and BA′ stacking regions [55–57].
The order of relevant number of harmonics in the

Fourier transformation of u−0 is characterized by a di-
mensionless parameter [60],

η =
LM

a

√
V0

λ+ µ
. (18)

As shown in Fig. 2 The parameter η is a function of the
twist angle θ, and it monotonically increases when θ is
reduced.
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2. Dynamical solution

The time dependent part in Eq. (13) can be expressed
in a Fourier series as

δu−(r, t) =
1√
S

∑
G

∑
q

δu−q+G(t)ei(q+G)·r, (19)

where S is the system’s total area, q is the phonon wave
vector within MBZ. The equation of motion, Eq. (9), is
then written as

ρr
d2

dt2
δu−q+G = −

∑
G′

D̂q(G,G′)δu−q+G′ , (20)

where ρr = ρ/2 is the relative mass density, D̂q(G,G′) =

(1/2)K̂q+GδG,G′ + V̂G′−G is the dynamical matrix, and

V̂ is defined as

V̂G = −2V0

3∑
j=1

hjG

(
b̄j,xb̄j,x b̄j,xb̄j,y
b̄j,y b̄j,x b̄j,y b̄j,y

)
, (21)

with

cos
[
GM
j · r + b̄j · u−0 (r) + ϕ0

]
=
∑
G

hjGe
iG·r. (22)

At a given q, we then obtain the phonon eigen modes
by solving the following eigenvalue equation,

ρrω
2
n,qCn,q(G) =

∑
G′

D̂q(G,G′)Cn,q(G′), (23)

where n is the mode index, ωn,q is the eigenfrequency,
and Cn,q(G) = (Cxn,q(G), Cyn,q(G)) is the eigenvector

normalized by
∑

G |Cn,q(G)|2 = 1.
While we neglect distortion on the out-of-plane direc-

tion throughout this work, the real G/hBN sample is ex-
pected to be corrugated as in TBG [64–66], since the op-
timal interlayer spacing is generally registry-dependent.
Accordingly the out-of-plane phonon modes (flexural
phonons) would also be subject to some superlattice ef-
fect. It is expected to be relatively minor compared to
the complete restoration of in-plane phonon since out-
of-plane motion does not affect the moiré pattern un-
like in-plane interlayer sliding [16]. Also, the corrugated
structure may cause some finite coupling between the in-
plane modes and out-of-plane modes, but it is negligible
within harmonic approximations [67].

III. MOIRÉ PHONONS

A. Twist angle dependence

The calculated phonon dispersion of graphene/hBN is
shown in Fig. 4. Here the panel (a) is for the case of
zero interlayer coupling, which corresponds to the empty-
lattice folding of the intrinsic phonons into the MBZ.

Figure 4 (b)-(d) are for twist angles of θ = 3◦, 1.25◦ and
0◦, respectively. The left vertical axis is scaled by the
characteristic frequency unit,

ω0 =
2π

LM

√
λ

ρ
, (24)

and the right vertical axis is in meV. The horizontal axis
is scaled by 2π/LM, where labels indicate the symmetric
points of the MBZ [Fig. 1 (c-e)]. Since both the verti-
cal and horizontal axes are scaled by ∝ 1/LM, we can
directly compare band velocities (gradient of band lines)
of different panels. The moiré effect is observed as the ap-
pearance of gaps at the MBZ edges and the flattening of
the phonon bands. As the twist angle θ is decreased be-
low θ = 3◦, the original phonon bands are strongly mod-
ified yielding a completely different structure. At θ = 0◦,
in particular, we see that the fourth are seventh bands
are extremely flat in energy, which are special modes of
hexagonal moiré systems discussed below.

Figure 5(a-g) illustrates the phonon wave functions
of the seven lowest modes of θ = 0◦ case at q =
[0, 2π/(6LM)]. The phonon modes are seen as effective
oscillations at the moiré scale; for example, the lowest
and the second lowest modes can be viewed as longitudi-
nal and transverse modes of the moiré honeycomb lattice.

These oscillations originate in distortion of the atomic
lattice of graphene layers. In each panel of Fig. 5, we
show the spatial distribution of the amplitude of the
atomic displacement δu− [Eq. 13] in the bottom right in-
set. The high amplitudes are concentrated in the vicin-
ity of the domain wall. Importantly, we observe that
the fourth and seventh modes [corresponding to the flat
bands in Fig. 4 (d)] clearly exhibit nodes where the am-
plitude is completely vanishing. As we argue in the next
sections, this indicates that the wave function is com-
posed of fundamental oscillation modes of independent
strings, and it is intimately related to the band flatness.

B. Limiting case and effective model

The formation of the peculiar band structure of
G/hBN moiré phonons can be better understood by con-
sidering a limiting case where the parameter η is in-
creased with φ fixed to zero [68]. It corresponds to an
imaginary situation where the interlayer binding energy
V0 is enhanced with the twist angle fixed to 0. Figure 6(a)
shows the phonon dispersion of the limiting case with
η = 2. We see that the same motif composed of a single
completely-flat band [(3n + 1)-th band] and two disper-
sive bands [(3n+2)-th and (3n+3)-th] appear repeatedly
in the spectrum. The fourth and seventh bands obviously
correspond to the flat bands in the original θ = 0 model
[Fig. 4]. When η is further increased, the low-energy
dispersion (after scaling by ω0) does not change much
anymore, while the periodic three-band pattern extends
to higher energies.
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Figure 4. Phonon dispersion of the interlayer antisymmetric phonon modes for the (a) no coupling case, and three different
twist angles, (b) θ = 3◦, (c) 1.25◦, and (d) 0◦.

Figure 7(a) illustrates real space maps of the lowest
seven modes of the limiting case η = 2 at the wave num-
ber of q = [0, 2π/(6LM)]. The patterns are basically
consistent with those in Fig. 5, while the width of the do-
main wall is much thinner and the system looks more like
a honeycomb network of one-dimensional strings. Since
the elastic energy and the binding energy (relative to the
commensurate AB′ stack region) are concentrated in the
vicinity of the walls, the excitation energy of the phonon
modes is proportional to the change of the wall length
(not the squared length) relative to the static equilib-
rium state [16, 17].

Based on this consideration, we construct a discrete
effective model which simulates the domain wall mo-
tion with an array of masses and bonds as illustrated
in Fig. 6(c). A segment of the wall connecting the AA′

vertex (denoted as A sublattice) to the BA’ vertex (B
sublattice) is composed of N small segments (bonds).

The ends of each bond are linked to masses which
can move on two-dimensional plane. We define τj (j =
1, 2, 3) as vectors connecting A to the nearest B points
[Fig. 6(c)]. The equilibrium position of a mass is given
by

r
(j,n)
R = R + nτj/N, (25)

where R = m1L
M
1 + m2L

M
2 is the position of the near-

est A sublattice, and j = 1, 2, 3 represents the direction
of the chain that the mass belongs to, and the index
n = 0, 1, · · · , N specifies the position on the chain as in
Fig. 6(c). The displacement of the corresponding mass

is denoted by u
(j,n)
R = (u

(j,n)
x,R , u

(j,n)
y,R ). This is a quantity

different from the atomic displacement of the graphene

lattice. Note that three vectors u
(j,0)
R (j = 1, 2, 3) are

actually the same variable which represents a shift of a

vertex mass at A, and likewise u
(j,N)
R+τ1−τj

(j = 1, 2, 3) ex-

press a mass at B.

In the presence of the displacement of masses, the
change of total length of the bonds is written in the sec-
ond order as

∆L =
1

2l

∑
R

3∑
j=1

N−1∑
n=0

[
|∆u

(j,n)
R |2 −

(
τ̂j ·∆u

(j,n)
R

)2]
,

(26)

where ∆u
(j,n)
R = u

(j,n+1)
R − u

(j,n)
R and τ̂j = τj/|τj |

is a unit vector along j direction. Here the length

change linear to u
(j,n)
R is considered to be zero, assum-

ing that an overall expansion of the whole system is re-
stricted by the boundary condition. The change in the
total energy is then given by U = αV0wd∆L, where
wd = (a/4)

√
(λ+ µ)/V0 is the width of the wall and

α is a numerical constant to match the energy scale
of original system [16, 60]. By the Fourier transform

u
(j,n)
R =

∑
q u

(j,n)
q exp(iq · r(j,n)R ), U can be written as

U =
K

2

∑
q

3∑
j=1

N∑
n,n′=0

[
u
(j,n′)
−q

]T
D̂j

q(n′, n)u(j,n)
q , (27)

where K = αV0wd/l is the effective spring constant. The

D̂j
q(n, n′) is a 2× 2 dynamical matrix of which non-zero

elements are given by,

D̂j
q(n, n) =

{
T̂j (n = 0, N)

2T̂j (n = 1, 2, · · · , N − 1),
(28)

D̂j
q(n− 1, n) =

[
D̂j

q(n, n− 1)
]†

= −T̂jeiq·τj/N , (29)

where

T̂j =

(
1− (τ̂xj )2 −τ̂xj τ̂yj
−τ̂xj τ̂yj 1− (τ̂yj )2

)
. (30)
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Figure 5. Phonon wave functions for the lowest 7 modes (a-
h) of the interlayer antisymmetric modes in 0◦ G/hBN at
q = (0, 2π

6LM
). The color gradient represents the local binding

energy. The inset at each figure shows the sum of amplitude
distribution of all wave vectors within MBZ for the corre-
sponding phonon branch.

(c)
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(b) Effective model

0
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3rd
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0
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4
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7th

mi
M
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1

Figure 6. (a) Phonon dispersion of limiting case with η ≈ 2.
(b) Phonon dispersion for effective model of N = 20 with
α = 10 (black line) and the inhomogeneous mass case with
α = 10 (red-dashed line) which mass distribution from vertex
A to B is shown in the inset. (c) Schematic diagram for the
effective model. Each section of the honeycomb array is split
into N bonds connecting N + 1 masses indexed from 0 (A) to
N (B).

The T̂j is a projection operator perpendicular to τ̂j ,

which works for an arbitrary vector x as T̂jx = (δµν −
τ̂µj τ̂

ν
j )xν = x− τ̂j(τ̂j · x).

The kinetic energy of the system is

T =
M

2

∑
q

[
|u̇Aq |2 + |u̇Bq |2 +

3∑
j=1

N−1∑
n=1

|u̇(j,n)
q |2

]
, (31)

where M = ρa2l/wd is the effective mass[16], and uAq =

u
(j,0)
q and uBq = u

(j,N)
q . The Euler-Lagrange equation is

then given by M ü
(j,n)
q = K

∑
n′ D̂

j
q(n′, n)u

(j,n′)
q , which

is solved to obtain eigen phonon frequencies and the cor-
responding wave functions.

The phonon dispersion of the effective model with
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Figure 7. Phonon wave functions for the (a) limiting case and (b) effective model for the same modes and wave vectors as in
Fig. 5. The corresponding total amplitude distributions for all wave vectors in MBZ is also shown as an inset.

N = 20 and α = 10 is shown as the black line in Fig. 6(b).
We see that the effective model qualitatively reproduces
the flat bands and the three-band periodic pattern ob-
served in the limiting case [Fig. 6(a)]. We also see a
perfect correspondence of the wave functions between the

limiting case [Fig. 7(a)] and the effective model Fig. 7(b)].

On the other hand, the effective model does not cap-
ture the gap opening at γ and κ, which is observed in
the original model [Fig. 6(a)]. This can be qualitatively
incorporated by introducing inhomogeneous mass distri-
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bution in a single chain. For example, we assume

Mn/M = 1− b1 (n/N − b2)
2
, (32)

where b1 and b2 are tunable parameters. The result-
ing phonon dispersion with (b1, b2) = (2, 0.4) is shown
in Fig. 6(b) as red-dashed line, with the mass distri-
bution is shown in the inset. Here the gap opening at
κ point results from the inversion symmetry breaking
by the asymmetric mass distribution. In the original
G/hBN system, the inversion symmetry is broken by the
inequivalent binding potential on the AA′ and BA′ stack-
ing regions, which creates sub-meV gap at the κ points
[Fig. 4]. The broken inversion symmetry also gives rise
to chiral moiré phonons [33, 34] which will be discussed
further in Sec. IV. The gap opening at the γ point is not
related to the inversion symmetry, but it is caused by
difference in matching of the mass distribution and the
wave-amplitude distribution.

C. Origin of the flat bands

To consider the origin of the flat bands, we take the
N = 1 case and obtain the analytical solution. Here a
unit cell contains masses only at A and B, and hence the
equation has only four degrees of freedom. The equation
of motion is written as

Mω2

(
uAq
uBq

)
= K

3∑
j=1

(
T̂j −T̂jeiq·τj

−T̂jeiq·τj T̂j

)(
uAq
uBq

)
,

(33)

where ω is the eigen frequency. The obtained phonon
dispersion has a similar structure to the lowest four bands
of N = 20 model, where flat bands appear in the first
and fourth bands with eigen frequencies ω = 0, 3

√
K/M ,

respectively.
The corresponding eigenstates are given by(

uAq
uBq

)
=

(
fq
∓f∗q

)
, (34)

respectively, where

fq =

3∑
j=1

τje
−iq·τj . (35)

It is straightforward to check that Eq. (34) satisfies the
eigen equation Eq. (33), by using the relation

T̂jfq = −T̂jf∗qeiq·τj , (36)

and
∑3
j=1 T̂j = (3/2)I, where I is a 2×2 unit matrix.

The expression of Eq. (34) leads to an important obser-
vation for the motion of the neighboring masses. Let us
consider a pair of masses at A and B points separated by
τj . According to Eq. (34), the motions of the two points

1st

(a) In-phase

7th

(b) Out-of-phase

4th 10th

Figure 8. Phase synchronization for the perpendicular motion
of neighboring vertices in the effective model: (a) in-phase
mode, and (b) out-of-phase mode.

are given by uA(R) = Cfq and uB(R+τj) = ∓Cf∗qeiq·τj ,
where C is a common constant. Using Eq. (36), we im-
mediately have

T̂ju
A(R) = ±T̂juB(R + τj), (37)

for the first and fourth modes, respectively. Noting that
T̂j is the projection operator perpendicular to τj , we
conclude that, in the flat band modes, the neighboring
vertices A and B always move either in phase (the first
mode) or out of phase (the fourth mode) when the mo-
tion is projected perpendicularly to the bond.

Actually, this relationship holds for vertex-site motions
of any flat band modes in N ≥ 1 cases, where 6n + 1-
th and 6n+ 4-th modes are associated with the in-phase
and out-of-phase motions, respectively, as illustrated in
Fig. 8. The phase synchronization of the vertex sites
means that masses in each single chain can collectively
vibrate as a stationary wave of an isolated string. Since
the phase synchronization persists at any q as shown
above, this gives a flat dispersion at the frequency of
the corresponding fundamental mode of the string. The
vertex motions parallel to bonds are not generally syn-
chronized, but they are irrelevant for the band flatness
because the contributions of the parallel shifts to the to-
tal bond length cancel as a whole, and do not change
the total energy. Here note that the energy of an effec-
tive spring is linearly proportional to its length as argued
above.

A notable feature in moiré phonons in the limiting
model (and the corresponding effective model) is the exis-
tence of a flat band at zero frequency. The complete flat-
tening of the lowest branch implies that the regular hon-
eycomb array is unstable against expansion/contractions
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of the hexagonal unit cell. This can be understood by
noting that we can modify a regular honeycomb array
into an irregular pattern without a change in the total
length of the domain wall (and hence the total energy),
by expanding/shrinking hexagons with the orientation
of sides (domain walls) kept unchanged. The situation
is quite similar to solid phases of adsorbed atoms on a
graphite surface, where the commensurate domain wall
formation was discussed [69]. In the real G/hBN super-
lattice, the lowest band is not completely flat as seen
in Fig. 4(d), and therefore the regular honeycomb su-
perlattice is energetically stable. The finite dispersion of
the lowest band would be incorporated by adding vertex-
vertex interaction energy in the effective model.

IV. ANGULAR MOMENTUM

In a system without inversion symmetry, the phonons
generally acquire a chiral nature with finite angular mo-
mentum and the Berry curvature [33, 34, 70]. In the cur-
rent system, the inversion symmetry breaking term en-
ters as a small difference in local binding energy for BA′

and AB′ stacking structures [Fig. 3], which is caused by
the inversion-asymmetric structure of hBN. To clarify the
existence of chiral phonons in G/hBN, we calculate the
out-of-plane component of angular momentum defined as
[33, 71]

Lz = ρ

∫
d2r

2∑
l=1

(
δu(l) × δu̇(l)

)
z
, (38)

where l(= 1, 2) is the layer index and δu(l)(r, t) is the
displacement vector of layer l = 1, 2.

By using the Fourier transformation of the displace-
ment vector [Eq. 19] and the relation δu(2) = −δu(1) =
(1/2)δu−, we can rewrite Eq. (38) as,

Lz =
∑
q

∑
G

(
δu−q+G × δp−q+G

)
z
, (39)

where δp−q = ρrδu̇
−
−q. In terms of phonon creation and

annihilation operators, δu−q+G and δp−q+G are written as

[72],

δu−q+G =
∑
n

Cn,q(G)

√
~

2ρrωn,q
(an,q + a†n,−q),

δp−q+G =
∑
n

iC∗n,q(G)

√
~ρrωn,q

2
(a†n,q − an,−q), (40)

where Cn,q(G) is the normalized eigenvector of Eq. (23).
Substituting these into Eq. 39, we have

Lz =
i~
2

∑
q,G

∑
n,n′

√
ωn′,q
ωn,q

[
Cn,q(G)×C∗n′,q(G)

]
z

× (an,q + a†n,−q)(a†n,q − an,−q). (41)

Finally, the expectation value in equilibrium is written
as

〈Lz〉 =
∑
n,q

Lzn,q

[
f(ωn,q) +

1

2

]
, (42)

where

Lzn,q = i~
∑
G

Cn,q(G)×C∗n,q(G), (43)

and f(ω) = 1/(exp(~ω/kBT ) − 1) is the Bose-Einstein
distribution function, and we note that 〈a†n,qan′,q′〉 =

f(ωn,q)δn,n′δq,q′ , 〈an,qan′,q′〉 = 〈a†n,qa†n′,q′ 〉 = 0, and
ωn,q = ωn,−q.

Figure 9 shows the k-space distribution of the angular
momentum Lzn,q for the lowest six bands in 0◦-stack of
G/hBN. We observe relatively large amplitudes with op-
posite signs in the second and third bands around the BZ
corner κ±. This corresponds to a gap opening caused by
the inversion symmetry breaking [∆

κ−
23 , Fig. 10(a)]. In

the fourth to sixth bands, notable angular momentum is
observed only in the close vicinity of κ±, in accordance
with very small symmetry-breaking gaps in the phonon
band structure.

Figure 10(c) shows the twist-angle dependence of the
angular momentum Lzn,q of the second and the third
bands at κ−. The corresponding plot for the gap width
∆
κ−
23 is shown in Fig. 10(b). We observe that the angular

momenta of these two bands are swapped when the gap
closes at θ ∼ 0.3◦. The absolute values peak at ∼2◦ and
monotonically decrease in larger twist angles, as shown
in the inset of Fig. 10(c).

In Fig. 9, we also observe notable signals of angular
momentum in the two lowest bands around lines con-
necting γ and the κ± points. This can be attributed
to a tiny energy distance between the two bands, where
perturbative matrix elements of the symmetry breaking
terms give rise to sizable angular momentum by hybridiz-
ing these nearly-degenerate bands. We present the twist
angle dependence of the angular momentum of the first
and the second bands at χ ≡ (1/5)γκ− in Fig. 10(c),
and also the corresponding plot of the energy distance
∆χ

12 between the two bands at χ in Fig. 10(b). In in-
creasing the twist angle from 0, the ∆χ

12 become rapidly
increases, and their angular momenta immediately van-
ish correspondingly. Note that this property is not seen
in TBG, where the ratio between longitudinal and trans-
verse phonon velocity converges to

√
3 in the small-angle

limit [16, 37].

V. FLAT PHONON BANDS IN TWISTED
BILAYER GRAPHENE

Moiré phonons have been previously studied for
twisted bilayer graphene (TBG) by one of the authors
and a co-worker [16], where it was shown that flat phonon
bands emerge in small twist angles in a similar way to
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Figure 9. Angular momentum for the lowest sixth bands of
0◦ G/hBN within the MBZ.

G/hBN system. Here we show that the flat bands of
TBG can also be understood as fundamental vibration
modes of a single string, but with a different bound-
ary condition. In Fig. 11(a), the black line represent the
phonon dispersion of TBG at twist angle of θ = 0.25◦,
which is calculated by the the same continuum model in
Sec. II B with ρ(l), λ(l) and µ(l) set to graphene’s param-
eters. Here we chose very small twist angle to achieve
the limiting case with a large η. We also construct an ef-
fective spring-mass model in a similar way to G/hBN’s,
except that the masses and bonds are arranged in a tri-
angular network to be consistent with the domain walls
in TBG system. The corresponding phonon dispersion
for the effective model with N = 15 and α = 12 is shown
in red-dashed lines in 11(a). We observe that the two
models have similar band structures, where flat bands
appear in 3n-th bands.

The phonon wave functions for the two lowest flat
bands (3rd and 6th) in the 0.25◦ TBG and the corre-
sponding effective model are shown in Fig. 11(b) and (c)
respectively, while the amplitudes (δu−) for the former
are given in Fig. 11(d). Again, the vibration of a single
wall segment can be viewed as a fundamental oscilla-
tion mode of an isolated string, but now we see that the
vertices (AA′ region) are stationary at any wavelengths.
This is in contrast to the flat bands in G/hBN case, where
the vertices always correspond to antinodes. The reason
for this is due to the absence of sublattice in the triangu-
lar lattice, which forbids any phase synchronization for
motions of vertices in a finite wave-vector q. Therefore,
stationary waves can exist only when the vertices are
fixed in their position. To summarize, the flat bands in
the G/hBN superlattice (honeycomb lattice) correspond
to string-like oscillations with the open boundary condi-
tion, while ones in TBG (triangular lattice) correspond
to those with the closed boundary condition.

Another notable difference is the zero-energy flat band
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Figure 10. (a) Dispersion of the lowest three bands of 0◦

G/hBN. (b) Twist angle dependence of gap width (∆q
nn′) be-

tween the n-th and n′-th band at q. χ is taken as 1
5
γκ−.

(c) Twist angle dependence of the angular momenta for each
corresponding bands involved in (b) with inset showing larger
range of angle up to θ = 10◦.

which we observed in the G/hBN limiting model does not
exist in TBG. This is because, unlike a honeycomb lat-
tice, it is impossible to distort triangular lattice without
changing its total side length.

VI. CONCLUSION

We have studied the characteristics of moiré phonons
in G/hBN systems, particularly focusing on the origin of
phonon band flattening. By using a continuum approach,
we demonstrate that the phonon band structure exhibits
a regular pattern of flat bands and dispersive bands. The
emergence of the flat phonon bands can be reproduced
by simulating the domain walls with a honeycomb array
of strings, of which energy is proportional to the length.
The flat band mode corresponds to a fundamental vi-
bration of a single string with open boundary condition,
where the projected motions of the neighboring vertices
always synchronize independently of wave vectors. The
flat phonon bands of TBG can also be understood by
a similar string model with a triangular network, where
the flat phonon modes are associated with single-string
vibrations with closed boundary condition due the lack
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Figure 11. (a) Phonon dispersion of TBG with θ = 0.25◦ (black line) and effective triangular model with N = 15 (red-dashed
line) with corresponding wave function for the two lowest flat bands at κ− are given in (b) and (c) respectively. (d) The
oscillation amplitudes distribution for the two lowest flat bands of the TBG.

of sublattice in the triangular lattice. These results sug-
gest that the emergence of flat phonon bands is a general
feature of the long-period moiré superlattice.

We have also calculated the phonon angular momen-
tum. Our results reveal the existence of chiral phonons
not only near the highly symmetric MBZ corners, but
also in the entire k-space region for the lowest bands.
While the former remains finite at large twist angle, the
latter is closely related to the nearly-identical phonon ve-
locities which only occurs at θ ∼ 0◦.

The flat bands in the phonon spectrum are expected
to entail various physical consequences. For instance,
non-propagating phonons in the low-energy spectrum
should be manifested in a considerable suppression of
thermal conductivity relative to intrinsic graphene [28].
Meanwhile, band flatness is generally associated with
the existence of a spatially-localized eigenmode. In our
moiré phonon system, this suggests that highly local-
ized phonon excitation (vibration of a single domain wall
sector) is possible, as was achieved in photonic lattice
[73, 74]. Another possibility is bosonic condensation
into a flat band by an external excitation, which was

realized in an exciton-polariton system [75]. For moiré
phonons, a possible excitation mechanism is through elec-
tromagnetic radiation. Since G/hBN moiré super lattice
has inversion-asymmetric charge densities [76], the moiré
phonon modes at the zone boundary would couple to an
in-plane AC electric field. We also expect an extension
of similar calculations to other heterobilayer moiré sys-
tems straightforward, which could unveil broader roles of
moiré phonons in thermal and electronic transport phe-
nomena.
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hall effect in moiré superlattices, Nature 497, 598 (2013).

[43] B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young,
M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi,
P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C.
Ashoori, Massive dirac fermions and hofstadter butter-
fly in a van der waals heterostructure, Science 340, 1427
(2013), 1303.6942.

[44] P. Moon and M. Koshino, Electronic properties of
graphene/hexagonal-boron-nitride moiré superlattice,
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