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Efficient and accurate computational methods for dealing with interacting electron problems on a
lattice are of broad interest to the condensed matter community. For interacting Hubbard models,
we introduce a cluster slave-particle approach that provides significant computational savings with
high accuracy for total energies, site occupancies, and interaction energies. Compared to exact
benchmarks using density matrix renormalization group (DMRG) for d-p Hubbard models, our
approach delivers accurate results using two to three orders of magnitude lower computational cost.
Our method is based on a novel slave-particle decomposition with an improved description of particle
hoppings, and a new density matrix expansion method where the interacting lattice slave-particle
problem is then turned into a set of overlapping real-space clusters which are solved self-consistently
with appropriate physical matching constraints at shared lattice sites between clusters.

I. INTRODUCTION

One of the outstanding challenges in condensed matter
physics is to find computationally efficient and simultane-
ously accurate methods to describe interacting electron
systems for large lattices (e.g., crystalline materials). For
the case where localized electronic interactions dominate,
the Hubbard model provides a specific theoretical model
that can describe key aspects of many important materi-
als such as superconductors, magnets, or metal-insulator
systems. Hence, a large amount of research effort has
been expended in creating and improving methods for
Hubbard systems.

Exact methods for Hubbard systems are limited to low
dimensions or finite sizes. The ground state of the one-
dimensional (1D) half-filled single-orbital Hubbard model
can be solved analytically using the Bethe ansatz1,2. In
addition, extremely high accurate results can be obtained
using numerical methods including the density matrix
renormalization group (DMRG)3,4 and quantum Monte
Carlos (QMC)5. However, for higher-dimensional mod-
els, only small lattices (or small fragments of lattices)
can be solved by these numerical methods. Hence, an
outstanding challenge is to find methods that work well
in low and high dimensions, and (at present) this requires
making approximations.

One approximate approach for the Hubbard model is
the slave-particle method, also known as the slave or aux-
iliary or subsidiary boson method (e.g., our previously
published Boson Subsidiary-Solver (BoSS) software6. It
was first proposed7,8 for analytical calculations in the
infinite interaction limit and as an alternative to the
Gutzwiller variational approach9,10. It was then gener-
alized to finite interactions by a functional integral ap-
proach based on the slave-particle representation11–13.
Since this approach requires one auxiliary slave-particle
for each possible electronic configuration, whose number
grows exponentially with the number of degrees of free-
dom on each site, the required computations can become
expensive for complex materials. Hence, more econom-

ical slave-particle methods have been developed. These
representations describe the slave-particles via electron
occupation numbers. Different methods have been devel-
oped based on the degrees of freedom treated by the slave
particles, such as the slave-rotor method14,15 which can
serve as an impurity solver16, the slave-spin method17

which is orbital and spin selective, and a generalized
approach that includes the above two (and other vari-
ants) methods18. An auxiliary symmetry-breaking field
approach19 was then introduced to overcome difficulties
in achieving spontaneous symmetry breaking in these ap-
proaches.

In slave-particle methods, the interacting electron
problem is decomposed into a non-interacting spinon
problem on a lattice (easily solved using Bloch’s theorem
and diagonalization) and an interacting slave-particle
problem on a lattice. The most common approach for
solving the latter has been to use a single-site approx-
imation. This is very similar in spirit to the local
single-site approximation in dynamical mean-field theory
(DMFT)20, a state-of-the-art method for (approximate)
solutions to Hubbard models. Single-site slave-particle
approaches predict Mott transitions in high-dimensional
systems very well21–26. However, as a result of stronger
fluctuations in low-dimensional systems, the single-site
treatments can cause significant errors. For example, the
exact solution of the half-filled 1D Hubbard model2 has
no Mott transition for any finite interaction strength U ,
but a false Mott transition is predicted in the single-site
slave-particle theory and DMFT19,27–29.

For higher accuracy, one must go beyond the single-site
approximation and consider a local cluster of interact-
ing lattice sites. Several cluster extension methods30,31

were proposed for slave-particle problems based on a
cluster mean-field approximation. If one sets certain
quasiparticle renormalization factors to unity, the clus-
ter slave-particle theory can be simplified27,32 to the
density-matrix embedding theory (DMET)33,34. How-
ever, setting the renormalization factors to unity leads
to the appearance of the bare inter-site hopping in the
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embedding spinon Hamiltonian, and this cannot repro-
duce interaction-induced band narrowing, e.g., as pre-
dicted by GW or DMFT calculations35–38. In addition,
all existing cluster slave-particle, cluster DMFT and clus-
ter DMET methods describe the cluster as a multi-site
impurity connected to an averaged external bath. In-
evitably, some chemical bonds with large associated hop-
pings are approximated as inter-cluster hoppings between
different fragments of the systems, and the cutting and
modification of these bonds to form the clusters can cause
large errors39–41. Consequently, the finite cluster size ef-
fects lead to a trade-off between cluster size and errors in
these cluster methods27,39,40,42,43. The finite size errors
are even more difficult to control in higher dimensional
systems since the cluster surface grows with cluster ra-
dius r as rd−1.

In this work, we introduce a novel slave-particle
method that addresses many prior shortcomings. We
present a bond-dependent slave-particle theory along
with a cluster decomposition based on a density matrix
expansion. It has the following key features:

(i) The degrees of freedom involved in each slave bond
are orbital+spin+bond, and the free parameters in the
slave operators are designed so that all unphysical, parti-
cle non-conserving inter-site hoppings are forbidden (this
was impossible in prior slave-particle approaches).

(ii) Instead of coupling the interacting problem (site
or cluster) to a mean-field bath, a density matrix ex-
pansion approach is used to reduce the interacting slave-
particle lattice problem to a set of separate cluster prob-
lems solved under appropriate constraints. The clusters
overlap with each other to span the whole lattice, so that
they connect via the interacting density matrices on the
shared sites instead of via a mean-field bath.

(iii) The resulting numerical method is highly efficient
and parallelizable: all the benchmark tests on d-p Hub-
bard models described below take on the order of one
CPU minute or serial computation to complete on a mod-
ern commodity laptop computer. In addition, for a gen-
eral d-dimensional lattice and for a fixed cluster size, the
computational cost only grows quadratically with the
number of clusters in the whole system. The separate
clusters can be solved in parallel, so that generalizations
to large systems, higher dimensions, and multiple orbitals
per lattice site will have reasonable computational costs.

In the following, we describe the theory and then
present numerical results based on its implementation.
As we will see, our theory reproduces remarkably accu-
rate results with low computational cost compared to
our benchmark results either from exact diagonalization
or DMRG.

II. THE SLAVE-BOND REPRESENTATION

In this section, we introduce our slave-bond represen-
tation and explain how it generalizes standard site-based
slave-particle methods in a manner that allows one to

avoid all unphysical particle-number-violating hopping
processes in the slave-particle problem. We compare our
method to more familiar existing methods at each step
to allow for a clear comparison in the reader’s mind.

We consider Hubbard Hamiltonians of the form

Ĥ = −
∑
αβ

tαβ ĉ
†
αĉβ +

∑
α

εαn̂α + Ĥint , (1)

where Greek-letter indices α, β combine the site indices
i, j, orbital indices m,m′, and spin indices σ, σ′ together,
ranging over all sites, orbitals, and spins in the system,
i.e., α ≡ imσ. The ĉα is a fermion annihilation operator
removing an electron from localized state α, and n̂α =
ĉ†αĉα is the fermion number counting operator for state
α. The tαβ and εα denote hopping and onsite energies,

respectively. The electron-electron interaction term Ĥint

is the sum of local operators at each site Ĥint
i , which in

the simplest case are given by the classic Hubbard “U”
form

Ĥint =
∑
i

Ĥint
i =

∑
i,m

Uimn̂im↑n̂im↓ , (2)

where each site and spatial orbital can, in principle, have
its unique interaction strength Uim. Additional local in-
teractions that depend on the electron counts n̂α are com-
pletely straightforward to include requiring no change of
formalism18,19.

The standard approaches for slave-
particles14–19,30,31,44 replace the physical electron
operators on each site by a combination of a non-
interacting fermion (called a spinon) and an interacting
auxiliary or slave particle in a completely local manner:

ĉα → f̂αÔα

where f̂α is the non-interacting fermion annihilation op-
erator, and Ôα is the lowering ladder operator for the
slave particles. Accordingly, the original physical elec-
tron Hilbert space is mapped onto a larger Hilbert space
H → Hf⊗Hs where Hf and Hs are the Hilbert spaces of
the spinons and slave particles, respectively. The spinon
Hilbert space Hf , being a fermionic one, contains the
same degrees of freedom as the original electron prob-
lem, but the physical modes for the slave particles vary
based on the type of slave model chosen. For example, if
all degrees of freedom α are explicitly described in slave-
particle Hilbert space, it is known as the “slave-spin” or
“spin+orbital” method17,18.

The eventual goal of any slave-particle method is to
have the spinons carry the fermionic spin of the origi-
nal electron, while the slave-particles carry the charge of
the electron, and by decoupling them one has two eas-
ier problems to solve (see the next section). However, at
this stage, one is still considering an exact reformulation,
so the spinons and slave particles always move together
during a hopping process in a correlated manner. Math-
ematically, it means that in the enlarged Hilbert space
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Hf ⊗ Hs, there is a subset of physical states where the
number of spinons and slave particles are equal for each
state α which form a faithful one-to-one representation
of the original states of the physical electrons |nα〉:

|nα〉 → |nfα = nα;Nα = nα〉 , (3)

where nα, n
f
α, Nα are the occupation numbers of the

physical electron, spinon, and slaves, respectively, and
can take the values of 0 or 1. We will call these states
the “physical” or “number-matching” states in what fol-
lows.

With this short review concluded, we now define our
slave-bond formalism. Our formalism lives in the same
Hilbert space as beforeHf⊗Hs, and the novelty is in how
we choose to define the slave-particle operators. Our ap-
proach is based on using the full microscopic set of local
quantum numbers α ≡ imσ for the slave-particle descrip-
tion. We take a pair of localized states α, β to define the
bond αβ with associated hopping operators ĉ†αĉβ which
moves an electron from β to α. We define our slave-bond
representation by using the spinon fermionic operators

f̂α as before but defining slaves-particle operators that
have a bond index 〈αβ〉, so the operator replacement is
now given by

ĉ†αĉβ → f̂†αf̂βÔ
†
α〈αβ〉Ôβ〈αβ〉 . (4)

To make the action of f̂†αf̂βÔ
†
α〈αβ〉Ôβ〈αβ〉 on the physical

states |nfα = nα;Nα = nα〉 identical to that of ĉ†αĉβ on
the original electron states |nα〉, Appendix A shows that

the lowering operator Ôα〈αβ〉 must take the form

Ôα〈αβ〉 =

(
0 1

cα〈αβ〉 0

)
, (5)

with the basis ordered as {|Nα = 0〉, |Nα = 1〉}. The
number cα〈αβ〉 is often called the “gauge”, and its value
is arbitrary at present since we are dealing with the ex-
act problem with no approximations within the physical
subspace. The constraints determining its value will be
described in Sec. III. Appendix A also shows that the
form of Eq. (5) also guarantees that anti-commutation
relations are obeyed for the collective bond spinon+slave
operator: {

f̂βÔβ〈αβ〉, f̂
†
αÔ
†
α〈αβ〉

}
= δαβ . (6)

It is important to clarify that the individual site-based
slave-particle lowering operators Ôα〈αβ〉 resemble but are
not bosonic field operators. They are defined in such a
way to obey Eq. (6). Hence, our theory is a slave-particle
theory and not a slave-boson theory.

In contrast to prior slave-particle theories, the slave-
bond operators in our theory are non-local. Fig. 1
shows examples of bonds (double-arrow lines) on a
checkerboard lattice, where the bonds can correspond
to hopping processes in the Hamiltonian, e.g., nearest-
neighbor hopping (orange) and next-nearest-neighbor

FIG. 1: An illustration of a checkerboard lattice structure
representing a metal oxide 2D layer. Red circles represent
correlated d sites (transition metals), and blue circles are non-
interacting p sites (oxygens). The double-arrow lines illustrate
examples of bonds used to define the slave-particle operators.
The dashed black ellipses indicate the d−p−d clusters in the
layer which overlap with each other on the correlated d-sites.

hopping (green). However, one can also consider longer-
ranged slave-bonds (purple). Therefore, in principle,
there are a huge number of bonds in a crystalline sys-
tem. But, in practice, only a small subset contributes
to observables like the Hamiltonian. For example, only
bonds with non-zero hoppings tαβ 6= 0 contribute to the
total energy, and these are typically only the nearest and
next-nearest neighbors. From a pragmatic viewpoint, in
our work below we only need to define slave-bond oper-
ators on the bonds that appear with tαβ 6= 0 in Eq. (1).

To compare to previous slave-particle methods, for a
given bond 〈αβ〉, our slave-bond approach can be viewed
as a recipe similar to the prior site-based slave-particle
approaches where one does the replacement

ĉα → f̂αÔα〈αβ〉 . (7)

Even though the mapping of Eq. (7) is mathematically
correct (as detailed in Appendix A), it shows an index
mismatch from both sides. Physically, it originates from
the fact that the slave bonds are non-local; operationally,
what it means is that mapping of Eq. (7) only makes
sense in the context of the hopping part of the Hamilto-
nian which is the sum over bonds: for each bond αβ, one
can do the mapping in Eq. (7) without confusion.

III. SLAVE-PARTICLE DECOMPOSITION

With the slave-bond representation, the Hamiltonian
of Eq. (1) in the enlarged Hilbert space turns into

Ĥ = −
∑
αβ

tαβ f̂
†
αf̂βÔ

†
α〈αβ〉Ôβ〈αβ〉 +

∑
α

εαn̂α +
∑
i

Ĥi
int ,

(8)

where, again, i is a site index and Greek-letter indices
combine site, orbital, and spin together. The local inter-
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action term in the original electron Hamiltonian can be
described by the slave particles alone through Ĥi

int =∑
m UimN̂im↑N̂im↓. The difficulty is that in addition

to the physical or number-matching states, the enlarged
Hilbert space Hf ⊗Hs also contains numerous unphysi-
cal states, e.g., a state such as |nfα = 0;Nα = 1〉 where
the number of spinons and slaves do not match for lo-
calized state α. In an exact treatment of the interacting
problem, these states are excluded. However, to make
practical progress, one must make approximations.

The first approximation common to all slave-particle
approaches, including ours, is to decouple the spinon and
slave problems. The simplest way forward is to approx-
imate the density matrix for the joint spinon+slave sys-
tem ρtot by a product of a spinon density matrix ρf and
a slave density matrix ρs, i.e., ρtot = ρf⊗ρs. This decou-
ples the two problems at the cost of losing the concerted
or correlated description of the spinon and slave particles
during the hopping process along each bond. The best
one can do is to ensure agreement on average. Hence,
one enforces a matching of the expectation values of the
number operators for each state α,

〈n̂α〉f = 〈N̂α〉s . (9)

Here, expectations are defined in the standard way: for
any operator Â acting in the spinon space, we have
〈Â〉f = Tr(Âρ̂f ); similarly, for any operator B̂ acting

in the slave space, we have 〈B̂〉f = Tr(B̂ρ̂s). Here n̂α
and N̂α are number operators in spinon and slave Hilbert
space, and we will drop the f superscript on the spinon
number operator going forward.

Given this approximate density matrix, the average of
a hopping process along a bond in Eq. (4) factorizes as

〈f̂†αf̂βÔ
†
α〈αβ〉Ôβ〈αβ〉〉 = 〈f̂†αf̂β〉f 〈Ô

†
α〈αβ〉Ôβ〈αβ〉〉s . (10)

Most generally, the expectation of the product operator
ÂB̂ of a spinon operator Â and slave operator B̂ factor-
izes as

〈ÂB̂〉 = Tr
(
ÂB̂ρ̂f ⊗ ρ̂s

)
= Tr

(
Âρ̂f

)
Tr
(
B̂ρ̂s

)
= 〈Â〉f 〈B̂〉s .

(11)

The decoupling in Eq. (10) results in two simpler prob-
lems to be solved instead of the original electron problem.
The easiest way to achieve this is to consider the varia-
tional problem of minimizing the total energy E = 〈H〉
under the occupation number constraints of Eq. (9) as
well as more obvious constraints of the normalization of
the density matrices Tr(ρ̂f ) = Tr(ρ̂s) = 1. Using the
Lagrange multiplier approach, we consider the uncon-
strained minimization of the function F

F = 〈Ĥ〉 −
∑
α

hα

(
να − 〈N̂α〉s

)
−
∑
α

h′α (να − 〈n̂α〉f )

− εf (Tr(ρ̂f )− 1)− εs (Tr(ρ̂s)− 1) .

(12)

Here hα, h
′
α are Lagrange multipliers for the mean oc-

cupation numbers of the slaves and spinons, while εf , εs
are the Lagrange multipliers for the normalization con-
straints. For convenience, we have enforced occupa-
tion number matching via separate matching to tar-
get spinon occupancies να, whose values are determined
variationally19.

The differential of F versus the two independent vari-
ables ρ̂f and ρ̂s takes the form

dF = Tr([Ĥf − εf Î]dρ̂f ) + Tr([Ĥs − εsÎ]dρ̂s)

where the effective Hamiltonians for spinons (Ĥf ) and

slaves (Ĥs) are

Ĥf =−
∑
αβ

tαβ〈Ô†α〈αβ〉Ôβ〈αβ〉〉sf̂
†
αf̂β +

∑
α

(εα + h′α) n̂α .

Ĥs =−
∑
αβ

tαβ〈f̂†αf̂β〉f Ô
†
α〈αβ〉Ôβ〈αβ〉 +

∑
α

hαN̂α +
∑
i

Ĥi
int .

(13)

Therefore, the original interacting electron problem
is turned into a non-interacting spinon problem with
symmetry-breaking field (onsite energies) h′α and an in-
teracting slave problem with onsite energies hα. Both
Hamiltonian problems contain hopping terms that are
renormalized by averages of the other problem, and
the renormalization factors are to be determined self-
consistently at the minimum energy configuration. The
expectation values of observables are then described by
the minimizing spinon and slave density matrices.

Since we have created an approximation to the prob-
lem, the choice of gauge numbers cα〈αβ〉 will now matter.

In previous slave-particle methods14,17,18, the gauge is
chosen to ensure that in the non-interacting limit, the
spinon system alone will faithfully describe the original
electron problem. In these prior approaches, the purely

local replacement ĉα → f̂αÔα goes hand-in-hand with a
single-site slave-particle approximation where ρ̂s is ap-
proximated as a product over single-site density matri-
ces ρ̂is as ρ̂s ≈

⊗
i ρ̂
i
s. Then the slave expectation over

each bond factorizes as well 〈Ô†αÔβ〉s ≈ 〈Ô†α〉s〈Ôβ〉s. The

gauge numbers cα are then chosen to ensure 〈Ôα〉s = 1

when Ĥi
int = 0, and thus in the non-interacting limit, the

spinon Hamiltonian Ĥf of Eq. (13) will become identical
to the original electron Hamiltonian since the slave hop-
ping renormalization factor 〈Ô†αÔβ〉s is replaced by unity.
As we explain below, this methodology permits unphysi-
cal particle-number-violating hopping process which cre-
ates significant errors in the total energy.

One of the virtues of our bond-based approach is that it
eliminates such unphysical processes. Consider the orig-
inal electron Hamiltonian: the hopping on a given bond
〈αβ〉 is described by the term −tαβ ĉ†αĉβ+h.c.. This term
is Hermitian and particle-conserving. In the Fock space,
its only non-zero matrix elements are between the two
states |nα = 0;nβ = 1〉 and |nα = 1;nβ = 0〉. Within the



5

exact slave-particle description in the physical subspace,
the same is true of the corresponding hopping opera-

tor −tαβ f̂†αf̂βÔ
†
α〈αβ〉Ôβ〈αβ〉 + h.c. because the fermionic

spinon part f̂†αf̂β alone can ensure that all other matrix
elements are zero. However, once we approximately sep-
arate the spinon and slave problems, the slave-particle
Hamiltonian Ĥs of Eq. (13) does not necessarily conserve

particle number. The hopping along bond 〈αβ〉 in Ĥs is
proportional to

Ô†α〈αβ〉Ôβ〈αβ〉 + h.c. =

0 0 0 v∗

0 0 u∗ 0
0 u 0 0
v 0 0 0

 , (14)

where the basis is ordered as {|Nα = 0;Nβ = 0〉,
|Nα = 0;Nβ = 1〉, |Nα = 1;Nβ = 0〉, |Nα = 1;Nβ = 1〉},
and v = cα〈αβ〉 + cβ〈αβ〉 and u = 1 + cα〈αβ〉c

∗
β〈αβ〉. The

physical processes are proportional to u while the un-
physical ones are proportional to v. In contrast to prior
slave-particle methods where the gauge cα is a fixed num-
ber for each local slave mode α, our approach provides
the additional bond index which allows us to require
the additional constraint v = cα〈αβ〉 + cβ〈αβ〉 = 0 or
cα〈αβ〉 = −cβ〈αβ〉. And the remaining gauge freedom
for bond 〈αβ〉 (i.e., the value of cα〈αβ〉) is chosen to en-

sure the correct non-interacting limit for Ĥf , namely that

〈Ô†α〈αβ〉Ôβ〈αβ〉〉s = 1 at zero interaction strengths. We

take the gauge numbers cα〈αβ〉 to be real so that the num-
ber of constraints (two) matches the number of gauge
variables on each bond. Detailed analytical formulae are
summarized in Appendix C.

For a non-interacting problem, the slave renormaliza-
tion factors are unity, so that the spinon Hamiltonian
alone is sufficient to compute the total energy 〈Ĥ〉 and
match the original electron problem. In addition, slave-
particle methods are analytically exact at the large in-
teraction limit7,8, so one can view them as interpolation
methods for finite interaction strengths.

From a practical viewpoint, the spinon problem on
the lattice is trivial to solve by diagonalizing the as-
sociated one-particle Hamiltonian matrix Ĥ0 given by
Ĥ0
αβ = −tαβ+δαβ(εα+h′α) using Bloch’s theorem. How-

ever, the slave Hamiltonian is still an interacting many-
body problem on a lattice and is impossible to solve ex-
actly for a large lattice. Some approximations are re-
quired as per the next section.

IV. CLUSTER APPROXIMATION

We now describe a novel cluster approximation based
on a density matrix expansion that maps the infinite lat-
tice slave problem onto a set of coupled finite-sized inter-
acting clusters. We use overlapping clusters so that each
chemical bond, e.g., transition metal-oxygen bond, is in-
cluded in some clusters and will be described explicitly.

Interacting density matrix

Local approximation:

−

Non-local correction in clusters:

−

+

+

=

ෝ𝝆

ໆ

𝒊

ෝ𝝆𝒊

෍

𝓒

ෝ𝝆𝓒 −ໆ

𝒊∈𝓒

ෝ𝝆𝒊 ໆ

𝒌∉𝓒

ෝ𝝆𝒌

FIG. 2: An illustration of density matrix expansion for a one-
dimensional system with red and blue atoms, where black
dashed clusters overlap at red atom sites. The interacting
density matrix and its reduced density matrices on sites are
shown as dark blue rectangles. The direct product of den-
sity matrices is represented by black solid lines connecting
rectangles.

A choice of overlapping clusters for a two-dimensional
corner-sharing (checkerboard) metal oxide layer is illus-
trated by the dashed black ellipses in Fig. 1 where each
cluster consists of three sites: two interacting d sites and
the p site between them.

Each cluster C is small enough that one can, in prin-
ciple, solve the many-body interacting slave problem for
that cluster directly. For describing ground states, this
would provide us with the cluster density matrix ρ̂C . The
question we address is how to take the set of {ρ̂C} over
all the overlapping clusters and create a global quantum
state (density matrix) for the entire lattice which we can
then use to compute observables like the total energy.

The density matrix ρ̂ of the entire interacting slave
problem will be approximated via the following real-
space, site-based cluster expansion:

ρ̂ =
⊗
i

ρ̂i +
∑
C

(
ρ̂C −

⊗
i∈C

ρ̂i

)⊗
k/∈C

ρ̂k . (15)

The indices i and k refer to sites (atoms) in the system,
and ρ̂i is the single-site density matrix for site i obtained
by tracing out the degrees of freedom at all other sites

ρ̂i ≡ Trj 6=i(ρ̂) . (16)

The first term in ρ̂ of Eq. (15) approximates the den-
sity matrix of the entire system as the tensor product
over the single-site density matrices, and this represents
the complexity of almost all current slave-particle ap-
proaches: each site i is solved separately from the rest
(albeit self-consistently via some type of bath linking the
sites). The second term in Eq. (15) improves by incorpo-
rating the additional correlations described by the cluster
compared to the single-site approximation. Fig. 2 illus-
trates the density matrix expansion of Eq. (15). One
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begins with the collection of single-site density matrices
ρ̂i creating an approximation which is then improved by
adding the cluster-wide density matrix contributions be-
yond the single-site approximation. This expansion is
trivially exact for an infinitely large cluster, while for
finite-sized clusters, spatial correlations up to the clus-
ter size are explicitly included. These clusters connect
or handshake with each other via the single-site density
matrices ρ̂i on the shared sites as explained below.

Since the ρ̂C are the basic variables describing the full
system ρ̂, the single-site ρ̂i of Eq. (16) must also be deriv-
able from the ρ̂C . Inserting Eq. (15) into Eq. (16) yields
the consistency condition

ρ̂i =
1

Mi

∑
C|i∈C

TrC−i(ρ̂C) , (17)

where TrC−i(ρ̂C) is shorthand for

TrC−i(ρ̂C) ≡ Trk∈C|k 6=i(ρ̂C) (18)

which is the trace over all sites in cluster C excluding site
i. The number Mi is the number of clusters that include
site i: e.g., a d site in Fig. 1 has Mi = 4 whereas a p site
belongs to a single cluster so it has Mi = 1. We will also
use the shorthand

ρ̂
(C)
i = TrC−i(ρ̂C) (19)

for the single-site density matrix at site i coming from
the cluster density matrix of cluster C.

Eq. (17) states the sensible condition that ρ̂i is the
average over all single-site density matrices coming from
the cluster that overlap at site i. However, to describe
a consistent quantum state specified by ρ̂ for all sites,
we require a stronger consistency condition where the
density matrix at each site is well-defined and unique.
Namely, we insist on the additional constraints that

ρ̂i = ρ̂
(C)
i ∀C|i ∈ C (20)

separately for all clusters C containing i: i.e., all the Mi

contributions in Eq. (17) are the same. Mathematically,
for site i in cluster C we employ a matrix of Lagrange

multipliers Λ̂
(C)
i with associated Lagrange multiplier term

Tr(Λ̂
(C)
i [ρ̂i − ρ̂(C)i ]) to enforce the constraint.

Two additional properties of this constrained density
matrix expansion are: (i) it has a consistent description
of short-ranged density matrices from the total density
matrix ρ̂, so Trk/∈C(ρ̂) = ρ̂C and Trk 6=i(ρ̂) = ρ̂i; and (ii) it
approximates the long-range behavior of the true density
by single-site products: when sites i and j are far enough
apart that they are not both in a single cluster, then
Trk 6=i,j(ρ̂) = ρ̂i ⊗ ρ̂j .

Using the density matrix of Eq. (15), the total energy

E = Tr(Ĥ[ρ̂f ⊗ ρ̂s]) turns into

E =
∑
α

εα〈n̂α〉ρf +
∑
i

〈Ĥi
int〉ρi −

∑
αβ|〈αβ〉∈∃C

tαβ〈f̂†αf̂β〉ρf 〈Ô
†
α〈αβ〉Ôβ〈αβ〉〉ρC

−
∑

αβ|〈αβ〉/∈∀C

tαβ〈f̂†αf̂β〉ρf 〈Ô
†
α〈αβ〉〉ρi|α∈i〈Ôβ〈αβ〉〉ρj|β∈j .

(21)

In this formula, the hopping energy has two parts. The first is an intra-cluster hopping term describing hopping
between two states α, β that are both inside of a cluster C (notation 〈αβ〉 ∈ ∃C): we can compute the associated
slave hopping expectation directly using the cluster density matrix without any factorization approximation. The
second inter-cluster hopping term is for long-ranged hoppings between α, β when both are not in a single cluster: here
the slave hopping expectation factorizes into the product of two single-site averages, and the consistency condition
Eq.(20) ensures that the single-site averages of the hopping operators are well defined.

To minimize E with the required constraints, we use the Lagrange multiplier approach and consider the minimization
of the function F :

F = E −
∑
i

∑
C|i∈C

Tri

Λ̂
(C)
i


 1

Mi

∑
C′|i∈C′

ρ̂
(C′)
i

− ρ̂(C)i




−
∑
α

∑
C|α∈C

h(C)α

(
να − 〈N̂α〉ρC

)
−
∑
α

h′α
(
να − 〈n̂α〉ρf

)
− εf

(
〈Î〉ρf − 1

)
−
∑
C
εC

(
〈Î〉ρC − 1

)
.

(22)

Each cluster has its own Lagrange multipliers h
(C)
α to enforce mean occupancy matching with the spinons 〈n̂α〉f =

〈N̂α〉ρC , and εC enforce that the trace of the cluster density matrices are unity. Interestingly, as proved in Appendix D,

the additional constraints introduced by Λ̂
(C)
i turn out to be redundant for the Hamiltonians of interest here given

that the mean particle numbers are already matched to the spinon occupancies 〈n̂α〉f for a slave mode α at site i. So

we can set all the Λ̂
(C)
i = 0 which is a significant simplification.
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Redoing the logic of the minimization problem for this function F yields the spinon Hamiltonian Ĥf and slave

Hamiltonian ĤC governing each cluster C

Ĥf = −
∑
αβ

tαβ〈Ô†α〈αβ〉Ôβ〈αβ〉〉ρf̂
†
αf̂β +

∑
α

(εα + h′α) n̂α .

ĤC =
∑
i|i∈C

1

Mi
Ĥi
int +

∑
α|α∈C

h(C)α N̂α −
∑

αβ|〈αβ〉∈C

tαβ〈f̂†αf̂β〉ρf Ô
†
α〈αβ〉Ôβ〈αβ〉

−
∑
β|β∈C

α|〈αβ〉/∈∀C′

tαβ
Mβ
〈f̂†αf̂β〉ρf

[
〈Ô†α〈αβ〉〉ρi|α∈iÔβ〈αβ〉 + h.c.

]
.

(23)

Here Mα is a shorthand that equals the number of clus-
ters to which the state α belongs and is equivalent to Mi

for any α ∈ i. The scaling factors of 1/Mi and 1/Mα in

ĤC originate from the relations Eq. (16) and (17) for the
single-site density matrix ρ̂i. The cluster Hamiltonian
ĤC contains intra-cluster hoppings (first hopping term)
as well as long-range inter-cluster hoppings (〈αβ〉 is not
in any single cluster) going outside the cluster C whose
renormalization factors depend on the spinons and also
the other slave clusters.

Using the cluster approximation, the lattice slave-bond
Hamiltonian Ĥs of Eq. (13) is mapped into a set of clus-

ters, each with its own Hamiltonian ĤC . The density ma-
trix of the interacting slave-bond lattice problem is then
described by the density matrices of the clusters from
Eq. (15). The cluster Hamiltonians ĤC in Eq. (23) are,
in general, not particle conserving due to the inter-cluster
hopping terms that involve single raising/lowering Ô op-
erators. In addition, the mean number of particles on any
site or over any cluster is, in general, not an integer for a
pd type model due to d-p hybridization. Hence, the clus-
ter density matrix ρ̂C will describe a mixed state, auto-
matically involving nearly-degenerate low-energy states.
In practice, we describe these mixed states using a Boltz-
mann distribution for each cluster using a very small tem-
perature. In this work, we use exact diagonalization to
solve each interacting cluster problem and then use the
eigenstates to compute the Boltzmann distribution: this
is not prohibitively difficult for the small three-site clus-
ters we consider here. For larger clusters or more complex
systems, more efficient methods of finding the Boltzmann
distributed density matrix not involving naive diagonal-
ization can be explored in the future.

V. TESTS ON THE HUBBARD DIMER

We begin with a simple system where the analytical
solution of the electron problem as well as the single- and
cluster-slave problems is possible. We consider the half-
filled two-site Hubbard model (Hubbard dimer), whose

(a)

(b)

FIG. 3: (a) Total energy and (b) (mean) double occupancy
of each site for the half-filled Hubbard dimer as a function
of the interaction strength U/t, where the nearest-neighbor
hopping strength t is the energy unit. Cluster slave-particle
(SP) results are identical to the exact diagonalization (ED)
results marked by blue circles, while single-site SP results are
represented by red squares.

Hamiltonian is

Ĥ = −t
∑
σ

(ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ) + U

2∑
i=1

N̂i↑N̂i↓ (24)

For such a small system, a single two-site slave cluster
encompasses the whole system, so it is not surprising that
the cluster-based method will provide excellent results.
In fact, as detailed in Appendix B, exact diagonalization
of the original electron Hamiltonian and solution of our
cluster slave-particle method result in the same ground-
state energy E =

(
U −

√
U2 + 16t2

)
/2 as well as the
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same double occupancy

Di ≡ 〈N̂i↑N̂i↓〉 =

(
1− U√

U2 + 16t2

)
/4 (25)

This double occupancy is always positive for any real-
valued U and t, direct evidence of the absence of a Mott
transition in this system (also true of the one-dimensional
half-filled one-band Hubbard model2). Fig. 3 shows the
exact E and Di in blue.

However, analytical solution (see Appendix B) of the
associated single-site slave-particle problem results in
E = −(U−8t)2/32t for U/t < 8 and E = 0 when U/t ≥ 8
and double occupancy Di = (8t− U)/32t when U/t < 8
and Di = 0 when U/t ≥ 8. Both energy and double
occupancy indicate a Mott transition at U/t = 8 within
this (erroneous) single-site approximation. Fig. 3 shows
the single-site E and Di in red. This (false) Mott tran-
sition at U/t = 8 disagrees with the exact solution but
is also inevitable within a single-site approach: a single
site connected to a bath described by a single expectation
〈O〉s cannot know if the bath is meant to describe a zero
or high dimensional material problem; since a Mott tran-
sition can happen in higher dimensional systems and is
achievable in the single-site theoretical description when
〈O〉s = 0, it occurs for some sufficiently large U/t in the
single-site picture.

VI. TESTS ON d-p MODELS

Moving beyond the analytically solvable Hubbard
dimer, we numerically test our theory on larger and more
realistic models. In terms of modeling transition metal
oxides, basic chemical considerations show that a mini-
mal model should include both the d-orbitals of the tran-
sition metal atoms and the p-orbitals of the oxygen atoms
(a “d-p” model). For example, the single-orbital-per-site
d-p model, also known as the Emery model45–47, is in-
tensively studied as a potential framework of the high-Tc
copper-based superconductors. Due to the complexity
caused by the explicit inclusion of the p states, the d-p
model is numerically more challenging to solve but is also
more realistic48–50 than further simplified models such
as the one-band Hubbard model51 or the t-J model52.
Hence, our numerical tests in this section will focus on
the d-p model, while complementary one-band Hubbard
model tests can be found in Appendix E.

For the systems studied below, the hopping renor-
malization factors and occupancies are determined self-
consistently in a numerical fashion. In Appendix G, we
describe the workflow of the self-consistent calculations
involved in our numerical studies. As we will see below,
our slave-bond method produces very accurate results
compared to high-quality benchmark results in both 1D
and 2D d-p systems.

We begin our tests with 1D d-p systems which have
the lattice illustrated in Fig. 4(a). In all the following
results, the nearest neighbor d-p hopping strength is set
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FIG. 4: Panel (a) illustrates the one-dimensional d-p chain
with periodic boundary conditions, where red atoms represent
d sites while blue atoms represent p sites. The black dashed
ellipses are the clusters used in the slave-bond calculation.
Upper panel of (b), panels (c) and (d) show the total energy
per unit cell in units of t, d-site occupancy, and d-site double
occupancy versus the interaction strength U , respectively, for
a four-site unit cell linear chain with periodic boundary con-
ditions. The results of exact diagonalization (ED), single-site
slave-particle (SP), and cluster SP are marked by blue cir-
cles, black diamonds, and red squares respectively. The lower
panel of (b) shows the total energy error of the cluster SP
method in units of t.

to be −t as illustrated in Fig. 4(a), where t is real pos-
itive and treated as the energy unit; all other hoppings
are set to zero. The onsite energy of d-sites are set to be
εd = +2t, while the onsite energy of p-sites are εp = 0.
There is only one orbital for each site. In addition, a
small temperature of kBT = 5 × 10−3t is introduced to
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allow the Boltzmann distribution to create a mixed state
from multiple eigenfunctions of the Hamiltonian which is
necessary as discussed in Sec. IV. The finite tempera-
ture does create errors in the calculation of ground-state
properties, but as shown in Appendix F, these errors are
controllable by reducing the temperature. Other con-
vergence thresholds are set low enough to give accurate
results: e.g., mean d-site occupancies are converged so
that they differ between physically identical d sites by
less than 10−7.

We employ two types of benchmarks. For small sys-
tems, we use exact diagonalization (ED) of the starting
electron Hamiltonian with a Boltzmann distribution at
the same kBT listed above. For larger problems, ED
is infeasible, so we turn to DMRG. All DMRG calcula-
tions in this work use the ITensor software package (Julia
version)53,54, where the energy cutoff is set to be 10−8t;
the maximum bond dimension increases by system size
up to 1,600 for a 96-site system; and the maximum num-
ber of sweeps is 1,600. For the single-site slave parti-
cle results, we use the Boson Subsidiary-Solver (BoSS)
software6 with orbital- and spin-resolved slave particles
using the same finite temperature.

A. Four-site 1D model

We begin with a small four-site model (i.e., a d-p-d-
p chain) with periodic boundary conditions (PBC). The
upper panel of Fig. 4(b) shows the total energy versus
interaction strength U . Both slave-particle (SP) meth-
ods reproduce exact total energy at U = 0 and U → ∞
by construction. However, while the single-site method
shows qualitatively correct behavior versus U , the clus-
ter method shows quantitative accuracy. The same is
true for the mean d-site occupancy nd = 〈N̂d↑ + N̂d↓〉
in Fig. 4(c). The double-occupancy D = 〈N̂d↑N̂d↓〉 in
Fig. 4(d) is computed in the slave-particle sector of the
problem which has no reason to match the exact answer
at U = 0, and the two SP calculations will match the
exact answer only at U → ∞. However, the cluster SP
method remains very accurate for all values of U .

We note that for both energy and d-site occupancy,
both cluster SP results agree with ED for both small
and large U which is as expected. In the non-interacting
limit, the c-gauges enforce the spinon Hamiltonian alone
to reproduce the non-interacting electron Hamiltonian:

with 〈Ô†α〈αβ〉Ôβ〈αβ〉〉 = 1 and zero interaction terms, the

total energy of Eq. (21) is the non-interacting energy. In
the large U or atomic limit, the p-sites are filled while
the d-sites are half-filled in both SP or ED calculations.
Thus, the cluster SP reproduces the exact energy and
occupation numbers in both limits. The single-site SP
method has the same properties in both limits but has
larger errors at finite U .

The lower panel of Fig. 4(b) shows the error of the to-
tal energy of the cluster SP as a function of interaction
strength (U/t) calculated by subtracting the ED energy

from the cluster SP energy. To further reduce the fi-
nite temperature effect, the temperature is decreased to
kBT = 1 × 10−4t in this particular calculation. Among
all the 81 different interaction strengths U/t sampled
from 0 to 8, the maximum energy error in cluster SP
is 3.5×10−3t at U/t = 1.2, while such error is about 50
times larger in the single-site SP method. The maximum
errors for occupancy and double occupancy in cluster SP
are 1.1×10−3 and 1.6×10−3, respectively.

B. System-size dependence in 1D

Beyond the four-site d-p system where exact diagonal-
ization is possible, we have tested longer 1D chains with
8, 16, 32, 64, 96 and 128 sites at U/t = 0 and 8. Here
we assume translational symmetry with the 4-site unit
cell which is then replicated: the objective is to gauge
convergence versus system size. Benchmark results on
the different-sized systems are generated by either exact
diagonalization at U = 0 or DMRG3 with open bound-
ary condition (OBC) at finite U . We note that PBC
is replaced by OBC in the DMRG calculations because
PBC is computationally much more expensive than OBC
according to the area law55. Correspondingly, we calcu-
late and report the total energy per four-site unit cell in
Fig. 5(a) for OBC DMRG calculations to compare it with
cluster SP and exact diagonalization results. The d-site
occupancy and double occupancy in Fig. 5(b)(c) is com-
puted around the middle point of the chain for DMRG
so as to be the farthest away from the open boundaries.
For the cluster SP calculations with PBC, we can use the
translational symmetry to work with the 4-site unit cell
together with k-point sampling of the spinon problem:
larger systems correspond to denser k-sampling of the
non-interacting spinon problem. This makes for a very
cheap computational scaling versus system size.

The system-size dependencies are shown in Fig. 5,
where the total energy is quoted per four-site unit cell.
Unsurprisingly, the cluster SP method is equivalent to
exact diagonalization at U = 0 as discussed at the end of
Sec. III. We also notice that both cluster SP and DMRG
converge faster versus system size at U/t = 8 case than
at U/t = 0. This comes from the intensively studied
“band narrowing” effect18,35,56 due to finite U/t which
makes the quasiparticle bands less dispersive and allows
sparser k-sampling for the same accuracy. In addition,
cluster SP is well converged for most of the observables
when the system size is larger than 16 sites, while DMRG
needs more than one hundred sites for the same level of
convergence. The slower convergence of DMRG is due
to edge effects induced by the open boundary condition
needed to reduce bond dimension53,54.

From a computational vantage point, to converge the
total energy to 10−7t, each data point takes less than 1
CPU minute on a laptop for the slave SP calculations
regardless of system size. On the other hand, for the
OBC DMRG, we require about 6 CPU hours for a 64-site



10

(a)

(b)

(c)

E
n

e
rg

y
E

n
e

rg
y

O
c

c
u

p
a

n
c

y
O

c
c

u
p

a
n

c
y

D
o

u
b

le
 o

c
c

u
p

a
n

c
y

D
o

u
b

le
 o

c
c

u
p

a
n

c
y

Number of sites

FIG. 5: Convergence of observables versus system size for the
1D half-filled d-p Hubbard chain: system sizes used are 8, 16,
32, 64, 96 and 128 sites. Panels (a-c) show the total energy
of each four-site unit cell in units of t, the d-site occupancy,
and the d-site double occupancy versus the number of sites,
respectively. For each panel, the interaction strength used is
U = 0 for the upper sub-panel is and U = 8t for the lower
one. The results of DMRG with OBC, cluster SP with PBC
and ED with PBC are marked by blue circles, red squares and
green diamonds, respectively.

calculation and takes longer than one day for a 128-site
calculation on a standard, contemporary Linux cluster.

We further examine the 64-site system as a function
of U/t in Fig. 6. The cluster SP results marked by
red squares assume a translational period of 4 sites and
match well with the DMRG results marked by blue cir-
cles. As a comparison, the single-site SP method as-

(a)
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FIG. 6: Panels (a-c) show the total energy of each four-site
unit cell in units of t, d-site occupancy, and d-site double occu-
pancy versus the interaction strength U respectively. All re-
sults come from 64 sites 1D d-p system, blue circles represent
DMRG results with OBC; black diamonds represent single-
site SP results assuming a translational period of 4 sites; red
squares and green crosses almost completely overlap with each
other and represent cluster SP assuming a translational pe-
riod of 4 sites and 8 sites.

suming the same translational period is marked by black
diamonds, which shows much larger errors in all three
observables. Moreover, an additional cluster SP calcula-
tion assuming a translation period of 8 sites is performed,
whose results are marked by green crosses. This calcula-
tion with a double-sized unit cell behaves almost exactly
the same as the 4-site unit cell calculation, which indi-
cates the convergence of unit cell size in our cluster SP
results.

C. Doped 1D chains

We perform further tests on the 64-site 1D d-p sys-
tem by hole doping, where the average doping density
ranges from 0 up to 0.5 holes for each d-p pair. The lo-
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FIG. 7: Panels (a-c) show the total energy of each four-site
unit cell (units of t), d-site occupancy, and d-site double oc-
cupancy respectively. They are plotted as functions of the
average hole doping level on each d-p pair. Blue circles repre-
sent the DMRG results as benchmarks, while the red squares
stand for the cluster SP results assuming a translational pe-
riod of 4 sites.

cal interaction strength on d-site is fixed to be U = 2t,
while other parameters such as the onsite energies, hop-
ping strengths, and the temperature are unchanged from
the no-doping calculations of the previous sections. We
choose U/t = 2 because the errors caused by the clus-
ter SP method are relatively large around this choice, as
shown in the lower panel of Fig. 4(b), providing a strin-
gent test of the cluster SP.

Our results of the doped systems are summarized in
Fig. 7, where the two curves are results from cluster SP
and DMRG. In panels (a) and (b), the two curves are
almost overlapping with each other, indicating that the
cluster SP method reproduces the energy per unit cell
and the d-site occupancy of the ground state extremely
precisely. In panel (c), the cluster SP reproduces good
d-site double occupancy D with some small variations.
While both DMRG and cluster SP methods show a nice
linear relation between the total energy and doping level

in panel (a), they both show small discrepancies away
from linear relations in panel (b)(c). This is because both
DMRG and the cluster SP methods are variational ap-
proaches for the ground state total energy, so a high level
of energy convergence is guaranteed, but the convergence
of other non-variational observables such as the site oc-
cupancy or double occupancy is much poorer. Note that
the double occupancy deviations are below 0.01, which
is adequately small and about the same order of magni-
tude as other errors caused by the cluster approximation
and finite temperature effect and is almost invisible in
Fig. 6(c). It is one order of magnitude smaller than the
error caused by single-site SP approximation.

In short, based on all these tests, our cluster SP
method reproduces overall very accurate results hundreds
of times faster than DMRG for the one-dimensional d-p
model. It also represents a significant quantitative im-
provement over the single-site SP method.

D. 2D d− p systems

The generalization to two-dimensional systems is
straightforward in our cluster slave-particle theory. We
choose a checkerboard lattice where the lattice structure
and the clusters used in the calculations are illustrated
in Fig. 1. The red and blue circles represent d- and p-
sites, where each site contains only one orbital. This is
a frequently studied model for cuprates known as the
“three-band model”48,49.

Fig. 8(a) illustrates a primitive cell used in the calcu-
lation which is a parallelogram and contains two d-sites
and four p-sites. This is because we are permitting for
Néel checkerboard anti-ferromagnetic (AFM) correlation
(if we assumed a stripe pattern, the unit cells would be
chosen differently). Similar to the 1D calculations dis-
cussed above, the nearest neighbor hopping strength t is
treated as the energy unit. All the onsite energy of d-
sites are set to be εd = +2t, while the onsite energy of
p-sites are εp = 0, and the small temperature applied is
kBT = 5 × 10−3t. Only nearest-neighbor d − p hopping
is included.

Figs. 8(b-d) show our results for a small system with
only one primitive cell, where ED is feasible. As before,
the cluster SP results match well with the ED ones for all
three observables studied in this work, while the single-
site SP method causes much larger errors. We note that
while a larger system is very straightforward to treat with
cluster SP simply by using translational symmetry and
k-point sampling, it is much more difficult to find a good
exact benchmark for a large 2D system, especially for the
three-band model. Such a comparison will be a topic of
future work.
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FIG. 8: Panel (a) illustrates the purposed spin structure
in a checkerboard lattice, where the nearly half-filled d-sites
marked by red circles are spin-polarized, while the nearly full-
filled p-sites marked by blue circles are not spin-polarized.
The orange dashed parallelogram represents the primitive cell
under the Néel AFM correlation. Panels (b-d) show the to-
tal energy for each primitive cell, d-site occupancy, and d-
site double occupancy versus the interaction strength U re-
spectively. The results of ED, single-site SP, and cluster SP
methods are marked by blue circles, black diamonds, and red
squares respectively.

VII. CONCLUSION

We have introduced a novel non-local slave-particle
representation defined on bonds, which improves
the slave-particle decomposition by enforcing particle-
conserved hoppings on each bond, in addition to the site-
centered spinon-slave number matching constraints from

previous slave-particle methods. We have further devel-
oped a cluster approximation for the interacting slave-
particle problem based on the expansion and matching
of density matrices which maps the slave-particle prob-
lem to a set of small overlapping clusters that can be
solved self-consistently.

As a significant improvement to the previous single-site
slave-particle theory, our theory correctly predicts the
absence of Mott transition in the 1D half-filled Hubbard
model (single-site slave-particle methods predict a false
Mott transition). The method also shows remarkably
high accuracy for a wide range of interaction strengths,
unit cell sizes, doping levels, and in both one and two
dimensions when compared to exact or high accuracy
benchmark methods. Computationally, the method is
very efficient and requires only a few minutes of CPU
time on a serial laptop to find the ground state of the
coupled spinon and slave problems. Future work will
benchmark this method more extensively in 2D as well
as on more complex multi-orbital real material systems.

Appendix A: Mapping and Commutation relations

Electrons obey the anti-commutation relations{
ĉα, ĉ

†
α′

}
= δαα′ , (A1)

The spinons (f̂α) obey the same commutation relations
as well, as they are fermions. The slave-particle lowering
operator Ô is then defined to obey the mapping from the
original electron Hilbert space to the number-matching
states in the enlarged spinon+slave Hilbert space. The
mappings in Eq. (4) and (7) and (4) are made to match
all matrix elements. That is, for each bond 〈αβ〉, we
require

〈n′|ĉα|n〉 = 〈nf ′ = n′;N ′ = n′|f̂αÔα〈αβ〉|nf = n;N = n〉 .
(A2)

Also, the operator f̂αÔα〈αβ〉 should still obey anti-
commutation relations like Eq. (A1):

〈nf ′ = n′;N ′ = n′|
{
f̂αÔα〈αβ〉, f̂

†
α′Ô

†
α′〈α′β′〉

}
|nf = n;N = n〉 = δαα′ .

(A3)

In the following, we are going to prove that the most
general form of Ôα〈αβ〉 shown in Eq. (5) always obeys
the two requirements in Eq. (A2) and (A3).

For the right side of Eq. (A2), the matrix element can
be rewritten as the product of two matrix elements from
spinon and slave, separately.

〈nf ′ = n′;N ′ = n′|f̂αÔα〈αβ〉|nf = n;N = n〉

= 〈nf ′ = n′|f̂α|nf = n〉 · 〈N ′ = n′|Ôα〈αβ〉|N = n〉
(A4)

Now we consider all the cases. When nα = 0, both f̂α
and ĉα kill (zero) the matrix element on both sides of
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Eq. (A2). When nα = 1, since Ôα〈αβ〉|Nα = 1〉 = |Nα =
0〉, the only non-zero spinon and slave matrix elements
come from n′α = 0 and n′γ = nγ for other modes γ 6= α.

We end up with 〈nf ′ = n′|f̂α|nf = n〉 for the right side

of Eq. (A2). Realizing that f̂α and ĉα act identically as
same fermionic annihilation operator on identical Hilbert
spaces, their matrix elements are the same, so Eq. (A2)
always holds.

For Eq. (A3), using the anti-commutation relations of
the spinons, we get{

f̂αÔα〈αβ〉, f̂
†
α′Ô

†
α′〈α′β′〉

}
= Ô†α′〈α′β′〉Ôα〈αβ〉δαα′ + f̂αf̂

†
α′

[
Ôα〈αβ〉, Ô

†
α′〈α′β′〉

] (A5)

The two terms on the right side of Eq. (A5) are discussed
case by case.

When α = α′, using the Eq. (5) we have

Ô†α〈αβ′〉Ôα〈αβ〉 =

(
c∗α〈αβ′〉cα〈αβ〉 0

0 1

)
(A6)

and[
Ôα〈αβ〉, Ô

†
α〈αβ′〉

]
=
(

1− c∗α〈αβ′〉cα〈αβ〉
)
·
(

1 0
0 −1

)
.

(A7)
We substitute this into the matrix element on the left side
of Eq. (A3), and we discuss how the anticommutator acts
on the physical ket state |nf = n;N = n〉. If nα = 0 in

the physical state, then the action f̂αf̂
†
α is the identity

operation on this state. The two terms in Eq. (A5) add

to Ôα〈αβ〉Ô
†
α〈αβ′〉 which acts as identity on for this ket

state. If nα = 1 in the physical state, the second term

of Eq. (A5) is zero due to the zeroing action of f̂αf̂
†
α,

and the remaining Ô†α〈αβ′〉Ôα〈αβ〉 acts as identity on this

state. Thus Eq. (A3) holds for α = α′.
When α 6= α′, the first term in Eq. (A5) is zero. For the

second term, with basis ordered as {|Nα = 0;Nα′ = 0〉,
|Nα = 0;Nα′ = 1〉, |Nα = 1;Nα′ = 0〉, |Nα = 1;Nα′ =
1〉}, we have

Ô†α′〈α′β′〉Ôα〈αβ〉 =


0 0 0 c∗α′〈α′β′〉
0 0 c∗α′〈α′β′〉cα〈αβ〉 0

0 1 0 0
cα〈αβ〉 0 0 0


= Ôα〈αβ〉Ô

†
α′〈α′β′〉 .

(A8)

Thus the commutator vanishes, Eq. (A5) is zero in this
case, and Eq. (A3) holds for α 6= α′ too.

Based on the above, the commutation relations of the
slave-bond operators are[
Ôα〈αβ〉, Ô

†
α′〈α′β′〉

]
= δαα′

(
1− cα〈αβ′〉cα〈αβ〉

)
·
(

1 0
0 −1

)
.

(A9)

This commutation relation means that the “lowering” op-
erators Ô are similar to but are not the same as bosonic
field lowering operators. They are simply defined to obey
the mappings of Eq. (A2) and the anticommutation rela-
tions of Eq. (A3). Hence, we call them slave-particle (as
opposed to slave-boson) operators.

Appendix B: Two-site Hubbard model

In this section, we derive analytical results for the
two-site half-filled Hubbard model using three different
methods: exact diagonalization of the original fermion
Hamiltonian, the single-site slave-particle method, and
our cluster slave-bond method.

1. Exact diagonalization

The ground state of the half-filled two-site Hubbard
model will be a linear combination of the doubly occu-
pied states and the singlet state, so the basis of the sub-
space is | ↑↓, 0〉, |0, ↑↓〉, (| ↑, ↓〉 − | ↓, ↑〉)/

√
2, where the

Hamiltonian is represented in this basis as

Ĥ =

 U 0 −
√

2t

0 U −
√

2t

−
√

2t −
√

2t 0

 . (B1)

The ground state of this Hamiltonian is

|G〉 = A[4t(| ↑↓, 0〉+ |0, ↑↓〉)

+
(
U +

√
U2 + 16t2

)
(| ↑, ↓〉 − | ↓, ↑〉)] ,

(B2)

where A is the normalization factor. The corresponding
ground-state energy is E =

(
U −

√
U2 + 16t2

)
/2 and the

double occupancy on each site is

Di ≡ 〈n̂i↑n̂i↓〉 =

(
1− U√

U2 + 16t2

)
/4 . (B3)

Hence the energy is −2t in the non-interacting limit, and
becomes −4t2/U in the large interaction limit. The dou-
ble occupancy is 0.25 and −2t2/U2 in the same two lim-
its. So there is not a Mott transition for any finite U
based on these exact results. The analytical results of
ground-state energy and double occupancy derived above
match with the numerical results in Fig. 3.

2. Single-site slave-particle

In the single-site slave-particle method, the total en-
ergy is defined as

E = −t
∑
σ

(
〈f̂†1σ f̂2σ〉〈Ô

†
1σ〉〈Ô2σ〉+ c.c.

)
+U

∑
i

〈N̂i↑N̂i↓〉 .

(B4)
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To minimize the total energy, the corresponding spinon
and the first-site slave-particle Hamiltonian is

Ĥf = − t
∑
σ

(
〈Ô†1σ〉〈Ô2σ〉f̂†1σ f̂2σ + h.c.

)
+
∑
iσ

h′iσN̂iσ ,

Ĥs1 = − t
∑
σ

(
〈f̂†1σ f̂2σ〉〈Ô2σ〉Ô†1σ + h.c.

)
+ UN̂1↑N̂1↓ +

∑
σ

h1σN̂1σ ,

(B5)

where h are Lagrange multipliers, while h′ combine the
Lagrange multipliers and the symmetry-breaking fields
to be determined variationally. (The second slave-site

Hamiltonian Ĥs2 is identical to the first site one other
than relabeling.) According to the spin symmetry and
inversion symmetry in this system, we conclude that h′iσ
should be the same for all sites and spins, and the same
statement also holds for hiσ. Based on this symmetry
analysis, the spinon Hamiltonian and solved easily by
diagonalizing 2× 2 matrices for each spin channel. As a
result, the occupancy is 〈niσ〉 = 1/2 for every site and
spin, and the spinon density matrix element of interest

is 〈f̂†1σ f̂2σ〉 = 1/2.
Next, in the basis |0〉, | ↑〉, | ↓〉, | ↑↓〉, we have

Ĥs1 =

 0 −y −y 0
−y h 0 −y
−y 0 h −y
0 −y −y 2h+ U

 , (B6)

where we set hiσ = h based on the symmetry discussed
above, and y ≡ 0.5t(1 + c)〈O2σ〉, in which c is the real
c-gauge number determined to make 〈Oiσ〉 = 1 in the
non-interacting limit.

When U = 0, the ground state of the slave-particle
Hamiltonian is

|G0〉 = (|0〉+ | ↑〉+ | ↓〉+ | ↑↓〉) /2 .

In order to have the spinon hopping renormalization fac-
tor 〈Oiσ〉 = 1 with this state, the c-gauge number is
c = 1, and thus y = t〈O2σ〉.

For a finite interaction U/t > 0, to obey the particle
number matching constraint in Eq. (9), we find that h =
−U/2. So the ground state with finite interaction is

|G〉 = (|0〉+ a| ↑〉+ a| ↓〉+ | ↑↓〉) /
√

2(1 + a2) .

where a ≡
√

(8t+ U)/(8t− U) when U < 8t, while a→
∞ when U ≥ 8t. Finally, using the single-site slave-
particle method, when U < 8t, the ground-state energy
is E = −(U − 8t)2/32t, and the double occupancy is
Di = (8t − U)/32t, while when U ≥ 8t, both ground-
state energy and double occupancy are zero, which match
with the numerical results in Fig. 3. This result clearly
indicates a false Mott transition at U = 8t in contrast to
the exact diagonalization method.

3. Cluster slave-particle method

In the cluster slave-particle method, the total energy
is defined as

E = −t
∑
σ

(
〈f̂†1σ f̂2σ〉〈Ô

†
1σÔ2σ〉+ c.c.

)
+ U

∑
i

〈N̂i↑N̂i↓〉 .

(B7)

where we hide the bond index for Ô operators because
there is only one bond, and the c-gauge for spin up and
spin down are the same by symmetry in this system.
To minimize the total energy, using a two-site cluster,
the corresponding spinon and the cluster slave-particle
Hamiltonian is

Ĥf = − t
∑
σ

(
〈Ô†1σÔ2σ〉f̂†1σ f̂2σ + h.c.

)
+
∑
iσ

h′iσN̂iσ ,

ĤC = − t
∑
σ

(
〈f̂†1σ f̂2σ〉Ô

†
1σÔ2σ + h.c.

)
+
∑
i

(
UN̂i↑N̂i↓ +

∑
σ

hiσN̂iσ

)
,

(B8)

Similarly, h are Lagrange multipliers, while h′ combine
the Lagrange multipliers and the symmetry-breaking
fields to be determined variationally. The spin sym-
metry and inversion symmetry also hold here, and the
spinon Hamiltonian can be solved easily as before: we

find 〈niσ〉 = 1/2 and 〈f̂†1σ f̂2σ〉 = 1/2.
The non-interacting slave Hamiltonian can be

separated by spin channels, where the spin σ
Hamiltonian is represented in the basis ordered as
|0, 0〉, |σ, 0〉, |0, σ〉, |σ, σ〉

ĤCσ =

0 0 0 0
0 h −y 0
0 −y h 0
0 0 0 2h

 , (B9)

where y = 0.5t(1−C2), and C stands for the gauge to be
determined and is assumed to be real. We find that, in
order to have the non-interacting spinon hopping renor-

malization factor 〈Ô†1σÔ2σ〉 = 1 and the particle number
match with the spinon result, the c-gauge number must
be C =

√
3.

With a finite interaction U , matching particle numbers
give the final slave-particle ground state

|G〉 = A[−4t(| ↑↓, 0〉+ |0, ↑↓〉)

+
(
U +

√
U2 + 16t2

)
(| ↑, ↓〉+ | ↓, ↑〉)] ,

(B10)

where A is the normalization factor. The correspond-

ing renormalization factor is 〈Ô†1σÔ2σ〉 = 4t/
√
U2 + 16t2.

In other words, the inter-site hopping (and thus renor-
malization factors) of the slave-bond is always non-zero
in this system which indicates an absence of a Mott
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transition. Finally, observables can be calculated us-
ing the slave-particles ground state expression Eq. (B10).
The ground-state energy given by Eq. (B7) is E =(
U −

√
U2 + 16t2

)
/2. The double occupancy on each

site is

Di ≡ 〈N̂i↑N̂i↓〉 =

(
1− U√

U2 + 16t2

)
/4 , (B11)

where the double occupancy is always non-zero for arbi-
trary U/t. Finally, note that the expressions of ground-
state energy and double occupancy are exactly the same
as the exact diagonalization results derived above in Ap-
pendix B 1.

Appendix C: Formalism for c-gauge

In this section, we derive the analytical formulae of
Eq. (C1) and (C2) for the c-gauge numbers. As we intro-
duced in Section III, the c-gauges are chosen (i) to for-
bid all unphysical intra-cluster hoppings in slave problem
that change particle numbers, and (ii) to ensure that the
spinon problem recovers the original fermion problem in
the non-interacting limit.

1. Intra-cluster hoppings

By definition, both sites of an intra-cluster hopping
can be found in one same cluster. Note that even though
the nearest neighbor hopping such as the d2-p2 hopping
in Fig. 9 can appear as an outward hopping with respect
to the cluster [d1p1d2], it is still treated as a short-ranged
intra-cluster hopping, whose c-gauge is computed in clus-
ter [d2p2d3]. For intra-cluster hoppings, the first con-
straint (i) requires cα〈αβ〉 + cβ〈αβ〉 = 0, and the second

(ii) requires 〈Ô†α〈αβ〉Ôβ〈αβ〉〉 = 1 in the non-interacting

calculation. For each bond 〈αβ〉, there are two c-gauge
variables to be determined, obeying the above two equa-
tions. By solving the two equations, we find

cα〈αβ〉 =

√
1− 1

〈0, 1|ρ̂0αβ |1, 0〉
, (C1)

and ρ̂0αβ is a non-interacting bond density matrix, where
the 0 and 1 in the bras and kets are the occupation num-

bers on the slave modes α and β, respectively. The su-
perscript 0 represents the operators in non-interacting
slave-particle calculations. The bond density matrix is
defined by tracing out other degrees of freedom in the
cluster density matrix ρ̂0αβ ≡ Trγ∈C|γ 6=α,β

(
ρ̂0C
)
.

2. Inter-cluster hoppings

Besides the intra-cluster hoppings, the other hoppings
are long-ranged inter-cluster hoppings, such as the p1-

𝒅𝟏 𝒑𝟏 𝒅𝟐 𝒑𝟐 𝒅𝟑

FIG. 9: An illustration of the one-dimensional d-p chain,
where red atoms represent d-sites while blue atoms represent
p-sites, and each atom is labeled by white letters. The black
dashed ellipses are the clusters used in the cluster slave-bond
calculation.

p2 hopping in Fig. 9. Based on the density matrix ex-
pansion in Eq. (15), an inter-cluster hopping 〈αβ〉 in our

slave-particle approach is decoupled as 〈Ô†α〈αβ〉Ôβ〈αβ〉〉 =

〈Ô†α〈αβ〉〉〈Ôβ〈αβ〉〉. The constraints on the bond 〈αβ〉 are

〈Ôα〈αβ〉〉ρ0 = 〈Ôβ〈αβ〉〉ρ0 = 1 in order to recover the non-

interacting Hamiltonian with the spinons alone (ρ0 is the
non-interacting slave density matrix). Each of these con-
straints is easily solved to get

cα〈αβ〉 =
1

〈0|ρ̂0α|1〉
− 1 , (C2)

where 0 and 1 are the occupation numbers of the slave
mode α. The single-orbital density matrix is determined
as

ρ̂0α ≡
1

Mα

∑
C|α∈C

Trγ∈C|γ 6=α(ρ̂C) , (C3)

where Mα is the number of clusters overlapping on the
slave mode α.

Appendix D: Redundancy of single-site density matrix constraints

In this section, we describe in detail the constraints ensuring that the single-site density matrix ρ̂i at a shared site
i among multiple clusters is described consistently among them. As explained in the main text, these constraints are

imposed by the Lagrange multipliers Λ̂
(C)
i and associated energy terms in the function F defined in Eq. (22) that is

minimized. The key result of this section is that all these Lagrange multipliers Λ̂
(C)
i can be set to zero.

Firstly, there are some redundant Lagrange multipliers in the above set of constraints. For a site i, there are Mi
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Lagrange multiplier matrices Λ̂
(C)
i since there are Mi distinct clusters overlapping on the site i. The task of the Λ̂

(C)
i

is to make all the site density matrices equal to each other (and equal to ρ̂i), ρ̂
(C)
i = ρ̂i. This means that we only

require Mi − 1 distinct Lagrange multiplier matrices at site i, and we can pick one of the clusters to be a reference
cluster C∗i whose single-site density matrix the other clusters must match. For example, if a site i is not shared by
multiple clusters (so Mi = 1), then no Lagrange multipliers should be added to match the single-site density matrix
to itself; if Mi = 2, then we need only match the density matrix of the second cluster with the first. We can safely

set the Lagrange multiplier matrix for our reference cluster to zero, Λ̂
(C∗i )
i = 0.

Secondly, the density matrix matching constraints are obeyed throughout the entire minimization process. This

means that not only ρ̂
(C)
i = ρ̂i at the beginning of the minimization, but also that δρ̂

(C)
i = δρ̂i when minimizing the

function F along the gradient. The gradient of F along ρ̂C is

∂F

∂ρ̂C
= −

∑
αβ|〈αβ〉∈C

tαβ〈f̂†αf̂β〉ρf Ô
†
α〈αβ〉Ôβ〈αβ〉 −

∑
β|β∈C

α|〈αβ〉/∈∀C′

tαβ
Mβ
〈f̂†αf̂β〉ρf

[
〈Ô†α〈αβ〉〉ρi|α∈iÔβ〈αβ〉 + h.c.

]

+
∑
i|i∈C

1

Mi
Ĥi
int +

∑
α|α∈C

h(C)α N̂α − εC ÎC +
∑
i|i∈C

(1− 1/Mi)Λ̂
(C)
i .

(D1)

We collect the derivatives versus all N clusters into the gradient ∇F = (∂F/∂ρ̂C1 , ∂F/∂ρ̂C2 , . . . , ∂F/∂ρ̂CN ). As is
standard in the Lagrange multiplier method, we will project out the part of ∇F that breaks the constraints to
determine the value of the Lagrange multipliers. This is most easily done by considering a step of size η along the

gradient (δρ̂C1 , δρ̂C2 , ..., δρ̂CN ) = η∇F , so the change δρ̂
(C)
i is given by

δρ̂
(C)
i = TrC−i(δρ̂C) = ηTrC−i

(
∂F

∂ρ̂C

)
, (D2)

where, again, TrC−i denotes a trace over the cluster C but excluding the degrees of freedom on site i. The key enabling

observation allowing us to move forwards is that the hopping operators Ô, Ô† are traceless. Hence, the intra-cluster
hopping terms in Eq. (D1) involve hoppings between different sites so they have zero traces, the inter-cluster hopping
terms are zero unless the state β is on the site i, and the remaining terms are local single-site operators. At this stage,
we have

δρ̂
(C)
i = η

− ∑
β|β∈i

α|〈αβ〉/∈∀C′

tαβ
Mβ
〈f̂†αf̂β〉ρf

[
〈Ô†α〈αβ〉〉ρk|α∈kÔβ〈αβ〉 + h.c.

]
+
Ĥi
int

Mi

+
∑
α|α∈i

h(C)α N̂α − εC Îi + (1− 1/Mi)Λ̂
(C)
i + q

(C)
i Îi

 ∏
j∈C|j 6=i

Sj ,

(D3)

where q
(C)
i is a potentially cluster-dependent number coming from traces of local operators not on site i, and Sj is the

dimension of the single-site density matrix Sj ≡ Trj(Îj) (i.e., dimension of the Hilbert space on site j). A moment’s
reflection shows that the first two terms in Eq. (D3) are independent of the cluster C, and we combine them into an

operator X̂i. Upon creating new constants r
(C)
i = εC + q

(C)
i and ζ = η

∏
j∈C|j 6=i Sj , we have

δρ̂
(C)
i = ζ

X̂i +
∑
α|α∈i

h(C)α N̂α + (1− 1/Mi)Λ̂
(C)
i + r

(C)
i Îi

 (D4)

As per Eq. (17), we sum this δρ̂
(C)
i over all cluster C containing site i and divide by Mi to find an analogous expression

for δρ̂i

δρ̂i = ζ

X̂i +
∑
α|α∈i

h̄αN̂α + (1− 1/Mi)Λ̂i + r̄iÎi

 (D5)

where overbars mean averaging over the clusters. Equating Eq. (D4) and (D5) yields

Λ̂
(C)
i = Λ̂i + (1− 1/Mi)

−1
∑
α|α∈i

(h̄α − h(C)α )N̂α + (1− 1/Mi)
−1(r̄i − r(C)i )Îi . (D6)
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The second and third terms above are either redundant or irrelevant: the second term involves shifts of onsite state
energies on site i which can be absorbed into the h(C)α Lagrange multipliers that enforce spinon and slave particle
number matching, while the third term represents a shift of the cluster Hamiltonian ĤC by a constant which does not
change its eigenfunctions, shift all eigenenergies by the same amount, and thus does not change the thermal density

matrix ρ̂C computed from the Boltzmann distribution. Thus the only remaining meaningful term is Λ̂
(C)
i = Λ̂i which

is cluster independent: since we have a reference cluster for which Λ
C∗i
i = 0, all the Λ̂

(C)
i = 0.

Hence, we conclude that the mean particle number matching constraints between spinon and slave particles are
sufficient for describing overlapping clusters. Additional constraints, beyond the automatic mean particle number
matching, are redundant.
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FIG. 10: Panel (a) illustrates the one-dimensional Hubbard
model with periodic boundary conditions. The black dashed
ellipses are the clusters used in the cluster slave-particle cal-
culation. Panels (b) and (c) show the total energy per 2-site
unit cell in units of t, and the double occupancy versus the in-
teraction strength U , respectively. All results are for a 64-site
1D single-band Hubbard system at half filling: blue circles
represent DMRG results with OBC, while red squares repre-
sent cluster SP results assuming a translational period of 2
sites (PBC).

Appendix E: Tests on single-band Hubbard models

In this section, we show our benchmarking results for
1D and 2D half-filled single-band Hubbard models, i.e.,
when there is one correlated orbital at each site. This
type of model is a “d”-only model when describing a tran-
sition metal oxide since the oxygen orbitals are removed
from the model. A priori we expect this type of model
to be less accurate than the d− p models studied in the
main text for at least two reasons: (i) the removal of

degrees of freedom can be accommodated by renormaliz-
ing the remaining parameters of the model (e.g., nearest
neighbor hopping element t), but this type of process
is always approximate, and (ii) removal of the oxygen
p orbitals gives rise to effective orbitals (e.g., Wannier
states) on the d sites that are much less localized than
the starting orbitals of the d− p model, so that using an
on-site only form of the interaction is much less justified
for the d-only case than for the d− p case (i.e., the form
of the Hamiltonian is less accurate in the d only case with
only on-site interactions). However, the d-only model is
a standard benchmark in the field so comparisons to it
are still helpful for connecting to prior literature.

As is standard for one-band Hubbard models57, the
nearest neighbor hopping strength is set to be −t, while
all other hoppings are set to zero. The onsite energy of
each d site is set to zero, and the local on-site interaction
strength is set to U . In addition, a small temperature
of kBT = 5 × 10−3t is introduced in the cluster slave-
particle calculations in an identical manner to that for
the d-p models in Sec. VI. (From a practical viewpoint,
to simulate the d-only systems without having to modify
our d − p software implementation, we choose a d − p
model where there are no hoppings involving the p or-
bitals which have a very low energy and are filled with
electrons and thus are completely inert, while direct d−d
hoppings −t are introduced for the remaining electrons
in the d manifold.)

The first set of tests is on a 1D 64-site single-band Hub-
bard model with periodic boundary conditions, whose
lattice is illustrated in Fig. 10(a). The clusters used in
the cluster SP calculation are marked by black dashed
ellipses and consist of two neighboring d sites and neigh-
boring clusters overlap with each other. For cluster SP
calculations with PBC, we assume a translational period
of 2 sites (i.e., a two-site unit cell), while for DMRG
benchmarks, we use OBC as discussed in Sec.VI B. Each
data point requires only about 10 CPU seconds for the
cluster slave-particle calculations but needs about 7 hours
for the DMRG calculations.

Although the two-site SP clusters in these tests are
smaller than the three-site SP clusters used in d-p model
testing in Sec. VI, the two-site clusters are capable of re-
producing high-quality results as shown in Fig. 10. Notic-
ing that the double occupancy of both DMRG and cluster
SP are finite regardless of interaction strength, we cor-
rectly predict the absence of a Mott transition in this 1D
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FIG. 11: Panel (a) illustrates the two-dimensional Hubbard
model with periodic boundary conditions. The black dashed
ellipses are the clusters used in the cluster slave-particle cal-
culation, and the orange dashed parallelogram represents the
two-site primitive cell under the Néel AFM correlation. Pan-
els (b) and (c) show the total energy per 2-site unit cell in
units of t, and the double occupancy versus the interaction
strength U , respectively. The red squares represent cluster
SP results generated by a 64 × 64-site system at half-filling
with PBC, while the blue circles are auxiliary-field quantum
Monte Carlo (AFQMC) benchmarks58 in the thermodynamic
limit.

model in contrast to the false Mott transition predicted
in single-site slave-particle theory and DMFT19,27–29.

Next, we examine a two-dimensional 64× 64-site one-
band Hubbard model at half filling with PBC whose
lattice is illustrated in Fig. 11(a). The 2-site clusters
marked by black dashed ellipses and the 2-site Néel-
ordered unit cell marked by the orange dashed parallel-
ogram are chosen in the same manner as for the 2D d-p
model of Sec. VI D. Fig. 11(b) and (c) show the total
energy and double occupancy results of the cluster SP
method. As a comparison, we also show thermodynamic
limit results from auxiliary-field quantum Monte Carlo
(AFQMC) calculations58. Using SP clusters containing
only two sites, the cluster SP method shows remarkable
quantitative accuracy with a modest computational cost
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FIG. 12: (a) Total energy per unit cell (units of t), (b) d-site
occupancy, and (c) d-site double occupancy versus the inter-
action strength U , respectively, for a 64-site 1D d-p system
with cluster SP method and assuming translational unit cell
of 4 sites. Different curves show results with different tem-
peratures marked by the legend, where the temperatures kBT
are in units of t.

of only about two serial CPU minutes for each data point.

Appendix F: Finite temperature error

Generally, the partial trace of a pure state will be a
mixed state. Thus even if our current cluster SP method
only aims to predict the ground-state (pure state) prop-
erties of the entire (lattice) system, in practice we use a
finite temperature in all the slave-particle cluster calcula-
tions. This is because the mixed state introduced by the
Boltzmann distribution can better capture the cluster’s
statistical properties.

The use of a small but finite temperature Boltzmann
distribution is a straightforward way to generate a mixed
state made from a number of low-energy eigenstates of
the cluster Hamiltonian, but the finite temperature itself
introduces errors due to the inclusion of higher energy
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excited states. Here we show that the errors are quite
small in magnitude and easily controllable.

Numerically, the error in the total energy per unit cell
has the same order of magnitude as the temperature itself
as shown in Fig. 12(a). For example, compared to the
benchmark T = 0 DMRG results in Fig. 6, the largest
error caused by kBT = 0.32t is 0.28t, while the largest
error caused by kBT = 0.16t is 0.10t. For this system, the
finite temperature error in energy gets almost negligible
when kBT is below 0.04t. Similarly, the d-site occupancy
and double occupancy are quite accurate at kBT = 0.04t,
as shown in Fig. 12(b) and (c). All results in the main
text are based on an even lower temperature of kBT =
0.005t, so it is safe to ignore the finite temperature effect
in our results.

From a practical viewpoint, starting from an arbitrary
initial setup, a high-temperature calculation typically
converges much faster than a low-temperature calcula-
tion. Hence, for any given system and set of parameters,
we begin with a high-temperature calculation and use its
self-consistent converged solution as the starting point
for a lower-temperature calculation (and repeat the pro-
cess for ever lower temperatures), a process that leads to
significant computational efficiency.

Appendix G: Workflow

In this section, we describe the workflow of a typical
slave-particle calculation in Fig. 13. It contains the fol-
lowing steps:

1. Initialize all parameters, including all the Lagrange
multipliers h, c-gauge numbers, hopping renor-

malization factors 〈Ô†α〈αβ〉Ôβ〈αβ〉〉 and 〈Ôα〈αβ〉〉.
When starting from scratch, reasonable a priori
choices are zero for h, and unity for c and the renor-
malization factors.

2. For the first iteration, guess some symmetry-
breaking field, typically small random numbers
much smaller in magnitude than t or U . For the
following iterations, choose the symmetry-breaking
field variationally by gradient descent of the total
energy. The updating of the symmetry-breaking
fields is the major outer loop of energy minimiza-
tion.

3. Solve the spinon Hamiltonian in Eq. (23), then
compute the hopping renormalization factors

〈f̂†αf̂β〉 for use in the slave problem in the next step
and the spinon occupation numbers 〈n̂α〉.

4. Solve the non-interacting slave Hamiltonian in
Eq. (23), and search for c-gauge number to obey
the corresponding constraints. This is most easily
done via Newton’s method.

Initialization of parameters

Quasiparticle weight 
converged?

Yes

No

Spinon problem

Non-interacting slave 
problems: find c-gauge 

under constarints

Interacting slave problems: 
find h under constraints

Results

Yes

Choose symmetry 
breaking field

Total energy 
converged?

No

FIG. 13: The workflow of a typical calculation based on the
slave-particle approach.

5. Solve the interacting slave Hamiltonian and search
for the Lagrange multipliers h under the corre-
sponding constraints. Note that these h will be
generally different from the non-interacting h in the
previous step, although the non-interacting ones
provide a good initial guess when starting from
scratch.

6. If the renormalization factors 〈Ô†α〈αβ〉Ôβ〈αβ〉〉 and

〈Ôα〈αβ〉〉 differ from the prior step by more
than a small convergence tolerance, go back to
Step 3 while using the updated renormalization fac-
tors, and repeat the calculation until tolerance is
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achieved.

7. If the total energy is not converged with respect
to the symmetry-breaking field (i.e., the successive
change of energy is too large between updates of
symmetry-breaking fields), then return to Step 2
and update the symmetry-breaking field to mini-
mize the total energy.

We note that methods such as Newton’s method or gra-
dient descent require derivatives, and since they are com-
puted numerically by finite differences (absent analytical
expressions for derivatives at present time), in practice
we encapsulate inner loops (e.g., the non-interacting slave
solver) as routines that are called repeatedly to compute
numerical finite-difference derivatives.

Based on the workflow chart above, we can estimate
the computational cost needed to complete the full cal-
culation. First, the single-particle spinon Hamiltonian is
practically very simple and a variety of methods can be

unleashed to find its ground state (direct diagonalization
is simplest but cubic in system size while linear-scaling
methods are available if needed in the very large sys-
tem limit59). For the more complex cluster slave-particle
problem, the computational cost is ∝ SCNCNL, where
SC is the computational cost of the exact diagonaliza-
tion of one cluster, NC is the number of clusters in one
unit cell, and NL is the total number of cluster solutions
needed (a loop count). NL is the product of the number
of Lagrange multipliers h, the number of self-consistent
steps needed to converge the renormalization factors, and
the number of gradient descent steps needed to converge
the symmetry-breaking fields. Both NC and the number
of Lagrange multipliers h are linear in the volume of the
unit cell while the other two loops count represent inten-
sive quantities (e.g., energy per atom) and are expected
to be (relatively) constant with unit cell size. Hence, the
overall slave part of the calculation will scale quadrati-
cally with unit cell volume for the current approach.
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