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It has recently been demonstrated that it is possible to open a gap in a magnetic Weyl semimetal,
while preserving the chiral anomaly along with the charge conservation and translational symmetries,
which all protect the gapless nodes in a weakly interacting semimetal. The resulting state was shown
to be a nontrivial generalization of a nonabelian fractional quantum Hall liquid to three dimensions.
Here we point out that a second fractional quantum Hall state exists in this case. This state
has exactly the same electrical and thermal Hall responses as the first, but a distinct (fracton)
topological order. Moreover, the existence of this second fractional quantum Hall state necessarily
implies a gapless phase, which has identical topological response to a noninteracting Weyl semimetal,
but is distinct from it. This may be viewed as a generalization (in a weaker form) of the known
duality between a noninteracting two-dimensional Dirac fermion and QED3 to 3 + 1 dimensions. In
addition we discuss a (3 + 1)-dimensional topologically ordered state, obtained by gapping a nodal
line semimetal without breaking symmetries.

I. INTRODUCTION

Topological order, a concept that originated in the
study of the fractional quantum Hall effect (FQHE) in
two dimensional (2D) electron gas systems,1 continues
to be a subject of intense interest. From the funda-
mental physics prospective, topologically ordered states
provide perfect examples of emergent macroscopic quan-
tum phenomena, with fractionally-quantized electromag-
netic and thermal responses, that are impossible to ex-
plain based on textbook models of weakly-interacting
electrons. Instead, such fractionally-quantized observ-
able responses necessarily imply excitations with frac-
tional charges, fractional and nonabelian statistics, which
can not be constructed out of any finite number of ele-
mentary constituents.2 In addition, such exotic excita-
tions may have future potential practical uses in quan-
tum computing and quantum simulation, as their non-
local topological nature makes them highly resistant to
decoherence and noise.3

Topologically-ordered states in 2D are by now well-
understood. Various theoretical models,4–7 as well as
complete formal classifications of 2D topological orders
exist.8 Although significant progress has been made in re-
cent years,9–19 less is known about topologically-ordered
states in three dimensions (3D). 3D topologically ordered
states are significantly different from the 2D ones. On
the one hand, fractional statistics is impossible in 3D and
quasiparticle excitations may only be bosons or fermions.
This could make one doubt that, for example, fractional
quantum Hall (FQH) states may even in principle be gen-
eralized to 3D, as the existence of anyons, i.e. quasipar-
ticles with fractional statistics, is an essential feature of
the 2D FQHE. On the other hand, in addition to point
quasiparticles, one-dimensional loop excitations exist in
3D, which both adds complexity and opens up new in-
teresting possibilities.

We recently demonstrated that a promising way to
achieve 3D topologically ordered states is through gap-

ping topological semimetals without breaking the pro-
tecting symmetries20–22 (see Refs. 23–29 for related
work). Topological semimetals30–35 are intermediate
phases between insulators of different electronic structure
topology. They may be characterized by unquantized
anomalies,36,37 i.e. topological terms with noninteger and
continuously-tunable coefficients, similar to the electron
filling parameter, characterizing ordinary Fermi liquids.
Much like fractional filling in a Fermi liquid mandates the
existence of a Fermi surface of gapless particle-hole ex-
citations,38 these unquantized anomalies necessarily im-
ply gapless modes and corresponding long-range entan-
glement. The only way gaplessness may be circumvented
in the absence of broken symmetries is through the for-
mation of a topologically-ordered state, which preserves
the anomaly and the long-range entanglement of the gap-
less semimetal.

Specifically, in Ref. 20 we presented an explicit con-
struction of a 3D topologically-ordered state in a gapped
magnetic Weyl semimetal, which exhibits a nontrivial
generalization of the FQHE to 3D. This state is ob-
tained starting from a magnetic Weyl semimetal with
a single pair of nodes, separated by half a reciprocal lat-
tice vector. These nodes may be gapped by breaking
the U(1) charge conservation symmetry while forming a
superconducting state with intra-nodal pairing. In gen-
eral, such states break translational symmetry since the
Weyl nodes exist at nontrivial momenta in the first Bril-
louin zone (BZ). However, when the nodes are separated
by exactly half a reciprocal lattice vector, such a pair-
ing leads to density modulation at the reciprocal lattice
vector, which does not break the crystal translational
symmetry. Restoring the charge conservation symme-
try by proliferating flux 2hc/e = 4π (we will be using
~ = c = e = 1 units throughout this paper) vortices in
the superconducting order parameter leads to a feature-
less fractionalized insulator with Z4 topological order,
that has the same electrical and thermal Hall conductiv-
ities as the original noninteracting Weyl semimetal, i.e.
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exhibits FQHE in 3D. Unlike in 2D FQH liquids, quasi-
particle excitations in this state are bosons and fermions.
What plays the role of the anyons in the 2D FQHE are
intersections of the vortex-loop excitations with atomic
planes. These behave as fractionally-charged particles
with semionic statistics, which may be sharply defined
by considering three-loop braiding processes,15 involving
a line defect of translational symmetry, i.e. an edge dis-
location.

In this paper we show that, in addition to the 3D FQH
state of Ref. 20, another state exists, which has identi-
cal topological response, but distinct topological order,
which turns out to be of a fracton type. The existence
of these two distinct states turns out to be closely re-
lated to a very similar property of gapped symmetric
2D Dirac surface states of 3D time-reversal (TR) in-
variant topological insulators (TI).39–43 In this case, two
distinct topologically-ordered states exist. One, called
Pfaffian-antisemion,40,42 is closely related to the 3D FQH
states of Ref. 20 (more precisely, the relation is with the
TR-broken version of this state). The second one, T-
Pfaffian,39,41 is related to the other 3D state we will con-
struct in the present paper (again, more precisely, the
relation is with the TR-breaking version of this state,
which is usually called PH, which stands for particle-
hole-symmetric, Pfaffian44,45).

Another interesting consequence emerges from these
analogies to the 2D TR-invariant TI surface state topo-
logical orders. It is well-known that the PH-Pfaffian is
closely related to the recently discovered duality relation
between a massless noninteracting 2D Dirac fermion and
QED3.44,46–51 Namely, the PH-Pfaffian state is obtained
when the dual Dirac fermion of QED3 is gapped by pair-
ing, which does not break the charge conservation sym-
metry since the dual fermion is neutral. The existence of
the analog of the PH-Pfaffian state in our 3D system then
also implies the existence of a gapless state, which is re-
lated to the noninteracting Weyl semimetal via a duality
relation, somewhat similar to the 2D Dirac duality. We
demonstrate that this is indeed the case. However, we
find that the duality only applies to topological response
in this case and not to the dynamics and is weaker than
the 2D duality in this sense.

The path to topologically ordered insulators through
gapping topological semimetals is quite general and is
not limited to the magnetic Weyl semimetal case. To
emphasize this point, here we also discuss a topologically-
ordered state, which is obtained by gapping a nodal
line semimetal without breaking symmetries. This state
has a topological order, distinct from a gapped Weyl
semimetal, and is characterized by a fractional elec-
tric polarization, impossible in an ordinary weakly-
interacting insulator.

The rest of the paper is organized as follows. In
section II, after a preliminary discussion of topological
field theory description of the electromagnetic response
of Weyl semimetals, we recap the construction of the 3D
analog of the Pfaffian-antisemion state of Refs. 20 and

21. In section III, we demonstrate the existence of a du-
ality relation (which applies to topological response only)
between a noninteracting Weyl semimetal and a QED4,
which describes a time-reversed Weyl semimetal, coupled
to a dynamical gauge field. In section IV we discuss a
topologically-ordered state, obtained by gapping a nodal
line semimetal without breaking symmetries. This state
is characterized by a fractional electric polarization, im-
possible in an ordinary insulator. We conclude in sec-
tion V with a brief discussion of our results.

II. GAPPED SYMMETRY-PRESERVING
STATES IN WEYL SEMIMETALS

A. Preliminaries

To keep the paper self-contained, we will start by re-
capping the construction of the 3D FQH state of Ref. 20
and 21, which, as will be explained below, may be viewed
as a TR-breaking 3D analog of the Pfaffian-antisemion
state on a strongly-interacting 3D TI surface. We will
also put the theory of Ref. 21 on a more rigorous foot-
ing by introducing the language of translation gauge
fields,36,52–55 which allows one to use proper coordinate-
free notation for the corresponding topological field the-
ories.

We start from the simplest cubic lattice model of a
magnetic Weyl semimetal with a pair of nodes34

H =
∑
k

ψ†k [σx sin(kxd) + σy sin(kyd) + σzm(k)]ψk.

(1)
Here σi are Pauli matrices, describing the pair of touching
bands and

m(k) = cos(kzd)− cos(Qd)− m̃[2− cos(kxd)− cos(kyd)],
(2)

where d is the lattice constant, m̃ > 1 and m(k) van-
ishes at two points on the z-axis with kz = ±Q, which
correspond to the locations of the Weyl nodes.

Such a Weyl semimetal is characterized by the anoma-
lous Hall conductivity

σxy =
e2

h

2Q

2π
=

1

2π

2Q

2π
. (3)

This may be expressed as a topological term in the effec-
tive action for probe electromagnetic gauge fields when
the fermions are integrated out56

L = i
2Q

8π
εzναβAν∂αAβ . (4)

In its primitive form above, Eq. (4) does not actually
look like a topological term, since it explicitly contains a
preferred direction in space (z) and depends on a nonuni-
versal microscopic lattice constant d through the Weyl
node separation 2Q.



3

To fix these issues, it proves useful to introduce the
concept of a translation gauge field.36,52–55 Recall that
Bravais lattice points R of a perfect crystal may be
described as intersections of families of crystal planes,
perpendicular to primitive reciprocal lattice vectors bi,
where i = 1, 2, 3 (or x, y, z for a cubic crystal). Mathe-
matically, this is expressed by the equation

θi(r, t) = bi · r = 2πni, (5)

where ni are sets of integers, labeling the crystal planes
in a family i and the Bravais lattice vectors r = R are the
solutions of this equations. Eq. (5) implies that the recip-
rocal lattice vectors in a perfect crystal may be expressed
as gradients of the phases bij = ∂jθ

i. This may be gen-
eralized to a distorted crystal, including time-dependent
distortions, by introducing translation “gauge fields”

eiµ =
1

2π
∂µθ

i. (6)

The fields eiµ may in fact be viewed as true (strictly
speaking, integer valued) gauge fields, if one explicitly
takes account of the fact that the phases θi on crys-
tal planes may be relabelled in arbitrary 2π × Z incre-
ments.54,55 This will not make a significant difference in
our case and either viewpoint is acceptable.

In a convenient differential form language, we may view
ei as a one-form

ei = eiµdx
µ. (7)

In a crystal without dislocations,

dei =
1

2
(∂µe

i
ν − ∂νeiµ)dxµ ∧ dxν = 0, (8)

as clearly follows from the definition Eq. (6). On the
other hand, if a dislocation with a Burgers vector along
bi is present, the integral of ei around a loop, enclosing
the dislocation line is

∮
ei = 1.

The benefit of introducing translation gauge fields be-
comes apparent if we now replace a reciprocal lattice vec-
tor along the z-direction in Eq. (4) with the correspond-
ing translation gauge field

2π

d
δzµ → 2πezµ. (9)

Then Eq. (4) becomes

L = i
λ

4π
εµναβe

z
µAν∂αAβ = i

λ

4π
ez ∧A ∧ dA, (10)

where λ = 2Q/(2π/d) is a dimensionless separation be-
tween the Weyl nodes in units of the reciprocal lattice
vector. Now Eq. (10) looks like a proper topological term,
which only contains gauge fields and a universal coeffi-
cient. The nonuniversal and variable lattice constant d
has been absorbed into the definition of the translation
gauge field and we will henceforth set d = 1 for simplicity.

Since we are using the imaginary-time formulation, upper
and lower indices do not need to be distinguished and we
will use lower indices for space-time components of the
gauge fields throughout. Varying Eq. (10) with respect
to ezz produces response per atomic xy-plane, which is de-
termined by a universal numerical coefficient λ. A nonin-
teger value of the coefficient λ requires gapless modes in
the form of a pair of Weyl nodes to be present,36,37 since
a fractional value (in units of e2/h) of the Hall conduc-
tance per atomic plane is impossible in a noninteracting
gapped insulator.

B. 3D analog of the Pfaffian-antisemion state

To derive the field theory of the gapped 3D FQH state
of Ref. 20 we first move to a dual description of the non-
interacting Weyl semimetal of Eq. (1), in which the elec-
tric charge is separated from the fermions and is repre-
sented in terms of a two-form gauge potential, which cou-
ples to the vortex loop excitations.21,57,58 This approach
is similar to what is known as “functional bosoniza-
tion”,59–62 apart from unimportant technical details. We
start by representing the fermion operators in Eq. (1)
(after Fourier transforming them to real space) as

ψr = eiθrfr, (11)

where r label the sites of a cubic lattice, eiθr repre-
sents a spinless charged boson (chargon) and fr is a neu-
tral fermion (spinon). After straightforward and stan-
dard manipulations,21,63,64 one obtains the following ex-
act representation of the Weyl semimetal Lagrangian L

L = Lf + Lb (12)

where Lf is the Lagrangian of the spinons fr, which has
a form, identical to the lattice Lagrangian of the original
electrons ψr, except that fr are coupled to a compact
statistical gauge field aµ rather than the probe electro-
magnetic field Aµ. The statistical field expresses U(1)
gauge invariance of the parton decomposition Eq. (11)
and serves the purpose of gluing together the spinons
and the chargons. The chargon Lagrangian has the form

Lb =
i

4π
(Aµ − aµ)εµναβ∆νbαβ +

1

8π2χ
(εµναβ∆νbαβ)2.

(13)
Here bµν = −bνµ is a two-form 2π×Z valued lattice gauge
field, which represents integer chargon currents Jµ as

Jµ =
1

4π
εµναβ∆νbαβ , (14)

∆µ is a lattice derivative and χ is a positive constant.
Lattice site indices r have been suppressed everywhere
for brevity.

To avoid dealing with discrete variables, we may imple-
ment the 2πZ constraint on bµν by adding a term i

2 J̃µνbµν
to Lb and summing over integer-valued variables J̃µν ,
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which have the meaning of vortex loop currents. Gauge
invariance of Eq. (14) with respect to a transformation
bµν → bµν + ∆µgν −∆νgµ implies a conservation law

∆µJ̃µν = 0, (15)

which may be solved as

J̃µν =
1

2π
εµναβ∆αcβ , (16)

where cµ are 2πZ valued one-form gauge fields. The con-
straint on cµ may, in turn, be softened by adding a term
−t cos(∆µφ+ cµ), where the presence of a new compact
angular variable φ takes account of the gauge invariance
of Eq. (16) with respect to cµ → cµ + ∆µφ. In essence,
the particle created by eiφ, is the original chargon.

Then, after taking the continuum limit, the chargon
Lagrangian takes the dual form

Lb =
i

4π
(Aµ − aµ + cµ)εµναβ∂νbαβ + . . . , (17)

where . . . contain both the higher-derivative terms for
bµν and the additional terms for cµ whose form depends
on the value of the parameter t. In particular, when t
is large, eiφ boson is condensed, leading to a mass term
for cµ (i.e. gap for vortices), which may then be ignored.
Integration over bµν the simply sets Aµ = aµ, i.e. the
electric charge is re-attached to the spinons and we re-
cover the original Weyl semimetal. In contrast, when t
is small, eiφ particle is gapped, which leads to a Maxwell
term, (ε∂c)2, for the gauge field cµ. In this case, integra-
tion over cµ produces a mass term b2 for the two-form
gauge field, which corresponds to a charge gap. This
state is a Mott insulator, which has gapless spinons that
retain the Weyl semimetal band structure.

To obtain a fully gapped state, which preserves topo-
logical response of the Weyl semimetal Eq. (10) and does
not break any symmetries, we place the spinons into
a paired state. For weak pairing, only the intra-nodal
pairing state opens a gap.65–68 Such a pairing generally
breaks translational symmetry, except when 2Q = π or
λ = 1/2,20 to which we now specialize. With such an
intra-nodal pairing term, the spinon Hamiltonian may
be brought to the form

H =
1

2

∑
k

f†k {σx sin(kx) + σy sin(ky)

+
[√

∆2 + cos2(kz)− m̃(2− cos(kx)− cos(ky))
]
σz

}
fk,

(18)

where ∆ is the pairing amplitude. This Hamiltonian de-
scribes a 3D topological p-wave superconductor, which
has a chiral Majorana mode, spanning the full extent of
the BZ. This may also be viewed as a stack of 2D topo-
logical superconductors, since the pairing gap does not
close at any value of kz.

The spinon pairing produces a term ∝ − cos(2aµ)
for the statistical gauge field, which leaves only aµ =

0, πmod 2π possible values at low energies and makes it
a Z2 gauge field. While nontrivial π-flux configurations of
aµ (visons69) are still possible, these may be easily shown
to bind gapless 1D Majorana mode in their cores, which
is a direct consequence of the fact that the spinon super-
conductor is topologically nontrivial. This means that in
any fully gapped symmetry-preserving state such vison
loop excitations must be gapped, which means that we
may set aµ = 0 mod 2π at low energies. This detaches
the boson and fermion sectors of the theory. The fermion
sector thus contributes the same thermal Hall response
as the noninteracting Weyl semimetal at λ = 1/2, which
arises from the chiral Majorana mode, spanning the full
BZ. The electrical response must entirely come from the
boson sector.

In order to reproduce the electrical response of the non-
interacting Weyl semimetal, it is necessary to condense
double (i.e. flux 4π) vortices of the boson field eiθ. This
is accomplished by the following modification of the field
theory Eq. (17)

Lb =
i

4π
(Aµ + 2cµ)εµναβ∂νbαβ +

2i

4π
εµναβe

z
µcν∂αcβ

+
1

2g
(εµναβ∂αcβ)2 +

i

2
bµν j̃µν + icµjµ. (19)

The extra factor of 2 in front of cµ, compared to Eq. (17),
expresses the fact that double (flux 4π) vortices are be-
ing condensed. This also means that the quasiparticle,
which is minimally coupled to the gauge field cµ, carries
a charge 1/2. The second term is a topological term,
which will give rise to the correct electrical Hall con-
ductivity, as will be shown below. This term may be
viewed as describing a layered integer quantum Hall state
of the charge-1/2 bosonic quasiparticles. The third term
is the Maxwell term. It is subdominant to the topological
term at long wavelengths, but has been included explic-
itly since the topological term only contains components
of cµ, transverse to the translation gauge field ez. In par-
ticular, if ezµ = δzµ, cz does not enter into the topological
term and its dynamics is governed by the Maxwell term.
Finally, jµ and j̃µν represent bosonic quasiparticle and
vortex source currents, which are minimally coupled to
the gauge fields cµ and bµν correspondingly.

Let us now demonstrate that Eq. (19) indeed re-
produces topological response of a noninteracting Weyl
semimetal. Let us set j̃µν = 0 and integrate out bµν . This
gives cµ = −Aµ/2. Substituting this back into Eq. (19),
we obtain

Lb =
i

8π
εµναβe

z
µAν∂αAβ −

i

2
Aµjµ. (20)

The first term in Eq. (20) correctly reproduces the electri-
cal Hall conductivity of a noninteracting Weyl semimetal
with λ = 1/2, which is half conductance quantum σxy =
1/4π per atomic plane. The second term tells us that
quasiparticle excitations in the gapped state, described
by Eq. (19), are bosons with electric charge 1/2. To es-
tablish gapped nature of this state it is important to note
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the following. If we reinsert the statistical gauge field aµ
into Eq. (19), it is clear that fluctuations of bµν effec-
tively constrain cµ = (aµ − Aµ)/2. This implies that,
since aµ is made a Z2 gauge field by spinon pairing, cµ
becomes a discrete Z4 gauge field. This is important,
since, unlike in 2 + 1 dimensions, a (3 + 1)-dimensional
Maxwell-Chern-Simons theory with U(1) gauge fields is
gapless.70,71

The most straightforward way to see that this the-
ory also correctly captures the thermal Hall conductivity
κxy = 0 is to consider the boundary theory, that cor-
responds to Eq. (19). To derive the boundary theory
we follow the standard method.2 We choose a gauge, in
which on the boundary, taken to be in the xz-plane, we
set the temporal components of all the gauge fields to
zero, i.e. c0 = 0, b0µ = 0. Then, integrating out c0, we
obtain

ε0νλρ∂νbλρ = ε0νλρ∂ν(ezλcρ − ezρcλ), (21)

while integrating b0ν gives

ε0νλρ∂λcρ = 0. (22)

Eqs. (21) and (22) along with dez = 0 imply that

ε0νλρ∂νbλρ = 0. (23)

Eq. (23) may then be solved as

bij = ∂igj − ∂jgi, (24)

where i, j = x, z refer to spatial coordinates on the
boundary, while Eq. (22) is solved as

ci = ∂iϕ. (25)

Plugging this back into what remains of Eq. (19) after
integrating out c0 and b0µ, we obtain

Lb =
i

2π
ε0νλρe

z
ν∂λϕ∂τ∂ρϕ−

i

π
ε0νλρ∂νϕ∂τ∂λgρ, (26)

where ∂τ ≡ ∂0. Integrating this in the presence of a
boundary, perpendicular to the y-direction, gives

Lsurf =
i

2π
εije

z
i ∂τϕ∂jϕ−

i

π
εij∂τϕ∂igj , (27)

where i, j = x, z. Adding symmetry-allowed non-
topological terms and the electromagnetic field, we finally
obtain the following surface state Lagrangian

Lsurf =
i

2π
εije

z
i ∂τϕ∂jϕ−

i

π
εij∂τϕ∂igj +

vϕ
2π

(∂iϕ)2

+
vg
2π

(∂igj − ∂jgi)2 +
i

2π
εµνλAµ∂νgλ. (28)

Setting ezµ = δzµ and Fourier transforming, we obtain the
following expression for the excitation spectrum of the
surface modes

ε(k) = −vgkx
2

+

√(
v2g
4

+ vgvϕ

)
k2x + vgvϕk2z . (29)

This looks like an ordinary anisotropic 2D superfluid dis-
persion, except for a “tilt” in the x-direction due to the
first term. However, the dispersion is still nonchiral, since
there is always a pair of left- and right-handed modes for
every value of kz. Consequently, a straightforward calcu-
lation gives a vanishing thermal Hall conductivity in this
state

κxy ∼
∫
dkxdkzvx(k)ε(k)

∂nB [ε(k)]

∂T
= 0, (30)

where vx(k) = ∂ε(k)
∂kx

and nB(ε) is the Bose-Einstein dis-

tribution. The integral over kx in Eq. (30) vanishes since
the left-handed (kx < 0) and right-handed (kx > 0)
modes give a contribution that is equal in magnitude but
opposite in sign.

By construction, this state is a fully gapped symmet-
ric state, which has an identical topological response to
a noninteracting Weyl semimetal at λ = 1/2. Note again
that, while there does exist a close connection between
this state and the 2D Pfaffian-antisemion state, it may
not be viewed as a simple stack of such 2D states. In par-
ticular, there are no semion quasiparticles, but isolated
intersections of 2π vortex loop excitations with atomic
xy-planes do behave as semions.

C. 3D analog of the PH-Pfaffian state

Now we note that a second distinct gapped symmet-
ric state, reproducing topological response of a nonin-
teracting Weyl semimetal, actually exists. This state is,
in a way, simpler than the 3D analog of the Pfaffian-
antisemion above and, as we will demonstrate, may be
viewed as a 3D analog of the PH-Pfaffian.39,41,44,45

To construct this state, we take a time-reversed copy
of our Weyl semimetal with λ = 1/2. Writing its La-
grangian in terms of spinon and chargon variables, we
have

L = f̄γµ(∂µ+iaµ)f− i

8π
ez∧a∧da+

i

4π
(A−a)∧db, (31)

where the first term is the contribution of the gapless
Weyl fermions while the second term is the topological
contribution from all the filled negative-energy states.
We will switch to the index-free notation henceforth.
We now place the chargons into a stack of independent
ν = 1/2 quantum Hall states in each xy-atomic plane.
Technically, this means that we take the two-form gauge
field b to be “foliated”72–75

b = ez ∧ b̃, (32)

where b̃ = b̃0dτ+b̃xdx+b̃ydy is a one-form field that lacks

the z-component, and add a term − 2i
4π e

z ∧ b̃ ∧ db̃ to the
Lagrangian Eq. (31). Furthermore, we place the spinons
into the intra-nodal pairing state of Eq. (18), which leads
to a 3D p + ip topological superconductor with a chiral
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Majorana mode, spanning the surface BZ, whose chirality
is, however, opposite to the chirality of the Fermi-arc
state of the original noninteracting Weyl semimetal. This
gaps out the gauge field aµ and decouples the boson and
fermion sectors.

The boson sector Lagrangian now reads

Lb = − 2i

4π
ez ∧ b̃ ∧ db̃+

i

2π
ez ∧A ∧ db̃. (33)

Integrating over b̃ leaves the effective action

Lb =
i

8π
ez ∧A ∧ dA, (34)

which describes topological electrical response, which is
identical to that of the original [i.e. not the time-reversed
one of Eq. (31)] noninteracting Weyl semimetal, Eq. (10).
The thermal Hall effect, coming from Lb, is twice that
of the noninteracting Weyl semimetal, however a minus
a half is contributed by the opposite-chirality Majorana
surface state of the paired time-reversed spinons. Thus
we fully reproduce both electrical and thermal topologi-
cal responses of the original noninteracting gapless Weyl
semimetal.

This state may be viewed as a 3D generalization of
the 2D PH-Pfaffian state. Note that, unlike the 3D ana-
log of the Pfaffian-antisemion state, described above, this
state is not a 3D incompressible liquid, but exhibits a
fracton-type order.72–75 If we ignore fermions, Eq. (33)
describes a stack of independent 2D PH-Pfaffian states.
The charge-1/2 anyon excitations in these 2D states are
only able to move within a given plane and can not tun-
nel between the planes. Neutral fermions propagate in
3D and connect the individual layers together, but the
anyons remain confined within 2D layers.

III. “DUAL” WEYL SEMIMETAL

The existence of a 3D analog of the PH-Pfaffian has an
important implication, which we will now discuss. Let us
first return back to the 3D Pfaffian-antisemion state. Let
us note that, in this case, the topological response of a
noninteracting Weyl semimetal is only reproduced when
the fermionic spinons are gapped by pairing and vison
vortex loops excitations are gapped. If the pairing gap is
taken to zero, the statistical field a is no longer massive
and its coupling to the gapless Weyl spinons produces a
topological term i

8π e
z ∧ a ∧ da, so that the Lagrangian

may be written as

L = f̄γµ(∂µ + iaµ)f +
i

8π
ez ∧ a ∧ da

+
i

4π
(A− a+ 2c) ∧ db+

i

2π
ez ∧ c ∧ dc. (35)

Integrating out b and c gives

L = f̄γµ(∂µ + iaµ)f +
i

4π
ez ∧ a ∧ da

− i

4π
ez ∧A ∧ da+

i

8π
ez ∧A ∧ dA. (36)

To obtain the electromagnetic response, we now integrate
out a. This may be done perturbatively, treating the re-
sponse of the gapless low-energy modes, i.e. the first
term in Eq. (36) as a perturbation, compared to the sec-
ond term. This is possible, because the response of the
gapless modes, treated in the random phase approxima-
tion (RPA), is given by

Sf =
1

2

∑
q

aµ(q)Πµν(q)aν(−q), (37)

where

Πµν(q) = (q2δµν − qµqν)f(q2), (38)

is the polarization operator of the massless 3D Dirac
fermion and

f(q2) =
1

12π2
ln

(
4Λ2

q2

)
+O(1). (39)

Here Λ � q is the cutoff momentum, and a convention
q0 = −Ω is used (Ω is the Matsubara frequency). Note
that Πµν(q) is almost the same as the polarization op-
erator of the massive 3D Dirac fermion, in which case
f(q2) would have been a constant at small q. Even with
the log nonanalyticity, Πµν(q) is still much smaller, in
the long wavelength limit, than the topological contribu-
tions, which are of first order in q.

At leading order we may then ignore the gapless
fermions and vary the Lagrangian with respect to a,
which gives at the saddle point a = A/2 and leaves the
Lagrangian

L = f̄γµ(∂µ + iAµ/2)f +
i

16π
ez ∧A ∧ dA, (40)

which clearly corresponds to half of the Hall conductivity
of a noninteracting Weyl semimetal, i.e. the theory with
gapless spinons does not reproduce topological response
of the noninteracting Weyl semimetal.

In contrast, let us return to Eq. (31), which describes a
time-reversed Weyl semimetal and add to it the foliated
topological term of Eq. (33), without opening the spinon
pairing gap

L = f̄γµ(∂µ + iaµ)f − i

8π
ez ∧ a ∧ da

+
i

2π
ez ∧ (A− a) ∧ db̃− 2i

4π
ez ∧ b̃ ∧ db̃. (41)

Integrating out b̃ now, we obtain

L = f̄γµ(∂µ+iaµ)f− i

4π
ez∧A∧da+

i

8π
ez∧A∧dA. (42)

This has identical electrical and thermal Hall responses to
the original noninteracting Weyl semimetal. This means
that Eq. (41) describes a distinct gapless state, which
reproduces the topological response of a noninteracting
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Weyl semimetal. This statement is very closely analo-
gous to the statement of duality between noninteract-
ing 2D Dirac fermion and QED3.44,46–51 However, note
that, in contrast to the 2D Dirac duality case, dynami-
cally this system is quite different from a noninteracting
Weyl semimetal. Indeed, integrating out f and then a
in Eq. (42) using RPA produces a Meissner term for the
components of A, transverse to z. The coefficient of the
Meissner term, however, vanishes in the long-wavelength
limit (it is equal to the inverse of the function f(q2), in-
troduced in Eq. (39)). The system thus behaves as a
superconductor at finite length scales and in directions,
transverse to z, but with a phase stiffness that vanishes
in the thermodynamic limit. In contrast, it behaves as
an insulator along z.

IV. TOPOLOGICAL ORDER IN A GAPPED
NODAL LINE SEMIMETAL

We will now extend the ideas, developed above, to
the case of nodal line semimetals, which realize a dis-
tinct kind of (3 + 1)-dimensional topological order, when
gapped without breaking the protecting symmetries. In
the nodal line semimetals, only nodal lines which arise
from touchings of pairs of nondegenerate bands, are topo-
logically nontrivial. In this case, TR symmetry may be
taken to be broken, while the nodal line is then protected
by the mirror reflection symmetry in the plane, contain-
ing the line.76 This may be described by the following
two-band cubic-lattice Hamiltonian77,78

H(k) = [6− t1 − 2(cos kx + cos ky + cos kz)]σx

+ 2t2 sin kzσy. (43)

The nodal line in this model appears in the xy-plane
of the momentum space and is protected by the mirror
reflection symmetry within this plane, where the mirror
reflection operator is σx. The band-touching line in the
xy-plane is given by the solution of the equation

4− t1 − 2(cos kx + cos ky) = 0. (44)

In order construct a gapped symmetric state, it is use-
ful to reinterpret Eq. (43) as a stacking of alternating
electron and hole-like Fermi liquids with the band dis-
persions (see Fig. 1)

ε±(k) = ±[4− t1 − 2(cos kx + cos ky)], (45)

where ± are the two eigenvalues of the mirror reflection
operator σx.37 The Luttinger volumes of the two Fermi
liquids ±VF are equal in magnitude to the area in mo-
mentum space, enclosed by the nodal line. For the two
Fermi liquids, the topological response describes the fill-
ing of the charged particles

L = ± iVF
4π2

ex ∧ ey ∧A, (46)

+ - + + + +- - - -

d d

z

FIG. 1. (Color online) Construction of the nodal line
semimetal as a stack (z is the stacking direction) of alter-
nating coupled electron and hole-like Fermi liquids, indicated
schematically by their dispersions. The Luttinger volume of
each 2D Fermi liquid is equal in magnitude to the area in
momentum space, enclosed by the nodal line. The lattice
constant d is set equal to unity in all the equations.

Consequently, the topological response of the nodal line,
takes the form of fractional electric polarization37,79,80

L = ± iVF
8π2

ex ∧ ey ∧ dA, (47)

impossible in an ordinary insulator without topological
order.

The simplest way to obtain a gapped mirror-symmetric
insulator with the same topological response Eq. (47)
is to stack gapped 2D Fermi liquid states in a mirror-
symmetric fashion. To gap the 2D Fermi liquids, we
follow the same procedure as above. We represent an
electron as a product of a neutral spinon f and a bosonic
chargon eiθ and place the spinons into a fully-gapped
paired state. The simplest fully gapped paired spinon
state is p-wave (since the Fermi liquids are spinless), de-
scribed by the following Hamiltonian

Hf =
∑
k

[
ε±(k)f†kfk +

∆

2
(sin kx + i sin ky)f†kf

†
−k + h.c.

]
.

(48)

Introducing Nambu spinor notation ψk = (fk, f
†
−k), this

may be represented as a massive 2D Dirac Hamiltonian

H =
1

2

∑
k

ψ†k [ε±(k)τz + ∆(τx sin kx − τy sin ky)]ψk,

(49)
where τa are Pauli matrices in the particle-hole space.
This is the Hamiltonian of a Read-Green topological su-
perconductor,81 which hosts chiral Majorana modes at
the edges, with opposite chirality for electron and hole-
like Fermi liquid states. Consequently, an elementary flux
hc/2e = π vortex hosts a zero-energy localized Majorana
bound state and can not be condensed.

To condense higher-flux vortices, we need to consider
the chargon sector of the theory. Suppose we attempt
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to condense flux-2π vortices. The chargon sector will be
described by the following theory82,83

Lb =
i

2π
(A+ c) ∧ db± iVF

(2π)2
ex ∧ ey ∧ c. (50)

Here b is a one-form gauge field, which determines the
charge current

Jµ =
1

2π
εµνλ∂νbλ, (51)

while c is a one-form gauge field, which determines the
vortex current

J̃µ =
1

2π
εµνλ∂νcλ. (52)

The last term of the Lagrangian produces the correct
electromagnetic response of a system with charge ν =
±VF /(2π)2 per unit cell when b is integrated out, setting
c = −A. However, when the filling ν is not an integer,
Eq. (50) can not be the correct theory of a featureless
insulator since the last term is not gauge invariant. With
ν = ±p/q, a featureless insulator may be obtained only
by condensing flux 2πq vortices, which is described by
the theory

Lb =
i

2π
(A+ qc) ∧ db± ipex ∧ ey ∧ c, (53)

where all terms now have properly quantized integer co-
efficients and are gauge invariant. This is because the
quasiparticle, minimally coupled to cµ, carries charge
1/q, as seen from the first term. Therefore, the filling
of such quasiparticles is qν = p (i.e. an integer), which is
what the second term expresses.

Stacking such insulators with alternating sign of ν in
the z-direction in a mirror-symmetric fashion, we obtain

Lb =
i

4π
(A+ qc) ∧ db± ip

2
ex ∧ ey ∧ dc, (54)

where the factor of 1/2 in front of the last term arises
due to the fact that the unit cell of the stack contains a
pair of electron and hole-like 2D Fermi liquids and the
mirror symmetry requires that all neighboring 2D Fermi
liquids in the stack are separated by an equal distance.
The gauge field b in Eq. (54) has now been promoted to a
two-form field, such that the (3 + 1)-dimensional charge
current is given by

Jµ =
1

4π
εµναβ∂νbαβ , (55)

while the two-form vortex current is

J̃µν =
1

2π
εµναβ∂αcβ . (56)

Integrating out b in Eq. (54) gives c = −A/q and the
electromagnetic response described by

L = ± ip
2q
ex ∧ ey ∧ dA = ± iVF

8π2
ex ∧ ey ∧ dA, (57)

which coincides with Eq. (47). Thus we obtain a feature-
less insulator with topological order, which has an iden-
tical topological response to a weakly-interacting nodal
line semimetal. Note that the nodal line semimetal has
no topological thermal response, which is also the case in
the fractionalized insulator that we have constructed.

V. DISCUSSION AND CONCLUSIONS

In this paper we have presented a theory of (3 + 1)-
dimensional topologically ordered states, obtained by
gapping 3D topological semimetals without breaking pro-
tecting symmetries. We started by pointing out that
a second gapped symmetric topologically-ordered state,
preserving the chiral anomaly of magnetic Weyl semimet-
als, exists, in addition to the state, originally proposed
in Ref. 20. We have shown that, while the state of
Ref. 20 may be viewed as a 3D TR-breaking analog of
the Pfaffian-antisemion state in gapped 3D TI surface
states, the new state is the 3D analog of the PH-Pfaffian.
In contrast to the 3D Pfaffian-antisemion state, the 3D
PH-Pfaffian does not exhibit a true 3D topological order,
but a fracton-like order instead, with independent layers
of 2D PH-Pfaffian liquid immersed in a 3D p + ip topo-
logical superconductor of neutral composite fermions.

We then demonstrated that an interesting consequence
of the existence of the 3D PH-Pfaffian, is a duality
relation between a noninteracting Weyl semimetal and
QED4, in which a time-reversed electrically-neutral Weyl
semimetal is coupled to a dynamical gauge field, whose
topological defects (intersections of flux lines with atomic
planes) carry the electric charge. This duality relation
may be viewed as a 3D generalization of the known Dirac
fermion to QED3 duality relation, but is weaker than in
the 2D case, since the duality only applies to the topo-
logical response and not to the dynamics.

Finally, we have extended the theory to include topo-
logical orders in a gapped nodal line semimetal. Other
extensions, in particular to TR-invariant Weyl and Dirac
semimetals are also possible, but do not lead to any fun-
damentally new structure. One lesson we may highlight
is that gapped symmetric topological semimetals provide
a very simple and natural setting for (3 + 1)-dimensional
topologically-ordered states to appear. The simplicity
stems, in part, from the fact that, due to the existence
of a preferred direction, selected by either the separa-
tion between the Weyl points in momentum space, or
the plane of the nodal line, there exists a natural con-
nection to well-studied (2 + 1)-dimensional topological
orders. The connection manifests either directly, in the
form of layered fracton-like order, or less directly, when
intersections of (3 + 1)-dimensional vortex-loop excita-
tions with atomic planes behave as fractionally-charged
and sometimes anyonic (2 + 1)-dimensional quasiparticle
excitations.
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