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Understanding the electronic transport properties of iron under high temperatures and pressures
is essential for constraining geophysical processes. The difficulty of reliably measuring these prop-
erties under conditions prevalent in Earth’s core calls for first-principles methods that can support
diagnostics. We present results on the electrical conductivity obtained by simulating the microscopic
Ohm’s law using time-dependent density functional theory and place them in the context of recent
experimental measurements.

I. INTRODUCTION

Iron is the most abundant element by mass on planet
Earth [1]. It makes up the majority of its liquid outer core
and solid inner core [2, 3], which is exposed to tempera-
tures of about 6000 K and pressures of about 300 GPa.
Understanding the properties of iron under these extreme
conditions is of great geophysical importance because
they determine the internal structure of Earth. Like-
wise, the behavior of iron under elevated temperatures
and pressures also plays a major role in materials sci-
ence. A wide range of novel steel micro-structures can be
produced with minor changes in composition and proper
thermal treatment of iron-based alloys [4, 5].

The iron phase diagram [6–11] and its equation of state
[7, 8, 12–19] have been well studied in the past decades.
Beyond equation-of-state data, the transport properties
of iron, such as its electrical and thermal conductivity, are
intricately related to the geophysical dynamics that take
place in the planetary interior. Most prominently, the
heat flux between the planetary core and mantle drives
the dynamo action [20, 21] which generates the magnetic
field of the Earth.

However, information on electronic transport prop-
erties under the conditions of Earth’s core is sparse.
This is due to the difficulties of achieving accurate mea-
surements in experiments. These are commonly per-
formed in diamond-anvil cells (DAC) [22–24], with wire-
heating techniques [25, 26], as well as using static and
dynamic shock-compression [27–29]. Shock compres-
sion techniques combined with x-ray Thomson scattering
(XRTS) provide diagnostics for the dynamical and static
conductivity, which have been measured in warm dense
metals [30]. Most recently, terahertz transmission mea-
surements of the time-resolved electrical conductivity in
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warm dense gold [31] have shown promise as a viable
approach for further probing transport properties under
extreme conditions.

The above-mentioned experiments with laser-heated
diamond anvil cells [23, 24] have led to a notable contro-
versy in the measurement of electronic transport prop-
erties in iron at the core-mantle boundary (CMB) and
Earth-core conditions [32]. Ohta et al. [23] infer a ther-
mal conductivity of 226 Wm−1K−1 by measuring the
electrical resistance of iron wires and converting it into a
thermal conductivity using the Wiedemann-Franz law.
On the other hand, Konôpková et al. [24] measured
the thermal diffusion rate for heat transferred between
the ends of solid iron samples, inferring a thermal con-
ductivity of 30 Wm−1K−1 from the agreement with a
finite-element model. The discrepancy in these measure-
ments has deep implications for predicting the age of the
Earth [32]. Since the uncertainty in the electrical con-
ductivity, both from experiment and theory, is so high,
reliable knowledge about the fundamental processes gen-
erating Earth’s magnetic field is lacking as well. Due
to the disagreement among existing experimental data,
computational modeling of electronic transport proper-
ties under extreme conditions is indispensable in support-
ing current and future efforts in further probing these
properties under conditions prevalent in Earth’s core [33].

The pioneering theoretical works use the Kubo-
Greenwood (KG) formula [34] and have been applied
in modeling degenerate plasma states [35–37] and liq-
uid metals [38–40]. These evaluate the KG formula us-
ing the Kohn-Sham (KS) orbitals, eigenvalues, and occu-
pation numbers obtained from density functional theory
(DFT) calculations at finite electronic temperature [41–
43]. Most recently, Korell et al. [44] have investigated
the effects of spin-polarization on the electrical conduc-
tivity obtained from the KG formula, specifically for the
paramagnetic state of liquid iron. This formulation has
also been used for evaluating the electrical and thermal
conductivity of iron and iron-silicon mixtures at Earth-
core conditions [45–47]. The direct use of KS quanti-
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ties in the KG formula, however, is based on a response
function lacking an interaction kernel that is needed to
capture collective effects. This is especially relevant un-
der the conditions when the electrons in iron are strongly
correlated [48].

Improvements in transport properties of iron at ex-
treme conditions computed using DFT are possible by
means of dynamical mean field theory (DMFT) [49]. This
approach takes into account the on-site Coulomb inter-
action, which is particularly strong for the localized 3d
electrons in iron [50]. The net conductivity consists of
electron-lattice scattering usually evaluated with the KG
formula and the electron-electron scattering (EES) evalu-
ated with DMFT which takes into account the electronic
correlations and the thermal disorder. EES contributions
in HCP iron are reported to be insignificant compared
to electron-lattice scattering at the conditions of Earth’s
core but have important contributions to the total ther-
mal conductivity [51].

A viable alternative to the KG formula is linear re-
sponse time-dependent density functional theory (LR-
TDDFT) [52]. While KS orbitals are used to calcu-
late a non-interacting response function, the Hartree and
exchange-correlation (XC) kernels are used to obtain
an interacting response function that includes electron-
electron correlations. Furthermore, LR-TDDFT yields
full wavenumber and frequency-resolved transport prop-
erties. This method has recently been assessed in detail
for solid and liquid aluminum [53, 54]. However, the cal-
culations using LR-TDDFT [55] rely on matrix diagonal-
ization, which might become restrictive for large systems
or high temperatures.

In this work, we compute the electrical conductivity
directly from the microscopic formulation of Ohm’s law.
This is achieved using the real-time formalism of TDDFT
(RT-TDDFT) [56–58]. By applying a weak external field,
the electronic response, which determines optical proper-
ties and electronic transport properties, is extracted [59–
62]. For certain regimes of electronic excitation and large
systems, RT-TDDFT can be computationally more effi-
cient than LR-TDDFT. As in LR-TDDFT, the response
function computed using RT-TDDFT captures collective
effects that are not captured in the standard approach
using the KG formula.

II. METHODS

The microscopic formulation of Ohm’s law describes
how an external electric field E(ω) gives rise to an in-
duced electric current

J(ω) = σ(ω)E(ω) , (1)

where the constant of proportionality can be identified
as the electrical conductivity σ(ω). Note that Ohm’s
law is formulated in the frequency domain and that both
the current and the electric field are vectors, while the
conductivity is a tensor. Also note that we adopt Hartree

atomic units, i.e., ~ = e = me = a0 = 1, so energies are
expressed in Hartrees and lengths in Bohr radii.

We compute the induced current on the atomistic
level by using RT-TDDFT. By applying an electric field
E(t) = −(1/c)(∂A/∂t), where A is the impressed vec-
tor potential and c is the speed of light, we obtain
the induced time-dependent current density j(r, t) =

=[
∑N

i φ∗n,k(r, t)∇φn,k(r, t)] + n(r, t)AS(r, t)/c. When
integrated over the spatial coordinates, it yields a time-
dependent electric current J(t). By taking the Fourier
transform, we obtain Ohm’s law in the frequency domain
as denoted in Eq. (1). The time-dependent current den-
sity is obtained by solving the time-dependent KS equa-
tions

ĤSφn,k(r, t) = i
∂

∂t
φn,k(r, t) (2)

for the KS orbitals φn,k(r, t). The effective Hamiltonian
is

ĤS =
1

2

[
−i∇+

1

c
AS(r, t)

]2
+ VS(r, t) (3)

where VS(r, t) = Vext(r, t) + VH(r, t) + VXC(r, t) is the
KS potential which is a sum of the external, the Hartree,
and XC potentials, while the effective vector potential
AS(r, t) = A(r, t) +AXC(r, t) comprises the sum of the
external vector potential and the XC contribution. The
following RT-TDDFT results are obtained from an all-
electron full-potential linearized augmented plane wave
(FP-LAPW) method [65] as implemented in the Elk [66]
and Exciting [67, 68] codes. For the sake of clarity and
reproducibility, we provide a comprehensive description
of all computational details and simulation parameters
in the Supplemental Material [69].
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FIG. 1. Dynamical electrical conductivity under Earth-core
conditions (T = 6350 K, P = 322 GPa) from Ohm’s law based
on our RT-TDDFT calculations (red). This is compared with
previous works using the KG formula based on static DFT
calculations at a slightly higher pressure of 328 GPa [63]
(blue) and at a lower temperature of T = 5802 K and slightly
lower pressure of P = 310 GPa [64] (violet).
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We begin with computing the frequency-dependent re-
sponse of the electrons in iron at a pressure of 322 GPa
and a temperature of 6350 K as found in Earth’s core. To
that end, we first prepare an appropriate initial electronic
state. We follow the common procedure of generating
uncorrelated atomic snapshots from Born-Oppenheimer
molecular dynamics simulations based on static DFT at
the given temperature and pressure. Here, our simula-
tion cells contain 16 iron atoms. Subsequently, we apply
a step-like vector potential and solve Eq. (2) for a du-
ration of up to t =1000 a.u. As commonly assumed in
TDDFT, we invoke the adiabatic approximation which
means that we neglect the temporal non-locality of the
time-dependent KS potential and evaluate a ground-state
XC functional on the density at time t. We follow this
common procedure and employ the so-called adiabatic
local density approximation [52]. Based on the solutions
φn,k(r, t), we calculate the time-dependent current den-
sity j(r, t) which we integrate over the spatial coordi-
nates to obtain the electric current J(t). The frequency-
dependent, i.e., dynamical electrical conductivity is then
extracted from the electric current based on Ohm’s law
as given in Eq. (1). Care has to be taken in the choice of
parameters for the external vector potential and for the
Fourier transform of the macroscopic current from the
time to the frequency domain. These details along with
the choice of computational and methodological parame-
ters are also included in the Supplemental Material [69].

III. RESULTS

Fig. 1 illustrates the result of our RT-TDDFT calcu-
lations (red curve) with an energy resolution of 0.17 eV
which is proportional to the inverse of the total propa-
gation time. The calculations converge quickly given a
sufficient set of KS orbitals, even for a modest size of
the supercell. We compare our calculations with prior
results obtained from using the KG formula based on
static DFT [63, 64]. In this particular case, all meth-
ods yield similar results except for a discrepancy in the
ω → 0 limit which corresponds to the DC conductivity.
Note that the KG results are generally more susceptible
to finite-size effects and are very sensitive to the location
and density of the KS eigenvalues.

Next, we come to the central result presented in Fig. 2
where we compare the predictions of our RT-TDDFT
calculations with the discordant experimental measure-
ments reported by Ohta et al. [23], Zhang et al. [70] and
Konôpková et al. [24]. In order to compare our calcu-
lations with the reported experiments, we use the DC
conductivity.

Shown in Fig. 2 is the behavior of the electrical resis-
tivity ρ (the inverse of the conductivity) as a function
of the temperature at fixed, high pressures. The experi-
mental DAC measurements reported by Ohta et al. [23]
(lower filled black and grey squares) and Zhang et al. [70]
(right filled black squares) are contrasted with those by
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FIG. 2. Electrical resistivity and its temperature dependence
at 136(±5) GPa and 212(±6) GPa. Results of diamond anvil
cell measurements were reported by Ohta et al. [23] (lower
filled black and grey squares), Zhang et al. [70] (right filled
black squares) and by Konôpková et al. [24] (upper filled black
squares). The electrical resistivity predicted by Ohm’s law
based on our RT-TDDFT calculations (red circles) are com-
pared with first-principles calculations by Xu et al. [71] (green
circles), interpolated results of Stacey et al. [72] (blue curve),
a modified Bloch-Grüneisen model of Koker et al. [39] (vio-
let curve), and a Bloch-Grüneisen model including resistivity
saturation by Gomi et al. [22] (purple curve).

Konôpková et al. [24] (upper filled black squares). Note
that the data by Konôpková et al. are based on their
thermal conductivity measurements which we have con-
verted into an electrical resistivity using the Wiedemann-
Franz law [73] with a Lorenz number 2.44×10−8 WΩK−2.
In addition, their fit (grey dashed) to the experimental
data is also shown. The proportionality ρ ∝ T (quasi-
linear) at these conditions is observed in other results too,
particularly in the Bloch-Grüneisen model (purple curve)
based on the Debye temperature [74] lying between the
experimental results of Ohta et al. and Zhang et al..
The net effect of increasing pressure is to decrease the
resistivity as is also reported in experiments [22, 70, 75]
and other theoretical work [62] because the smaller am-
plitude of ionic vibrations is responsible for an increase
in the mean free path of the electrons. The striking
feature of this plot is that the electrical resistivity pre-
dicted by Ohm’s law based on our RT-TDDFT calcula-
tions agrees well with the measurements of Ohta et al.,
particularly with the data points at a pressure of 140 GPa
and a temperature of 2500 K (red circles) which are con-
siderably lower than the measurements by Zhang et al.
This suggests our calculations would reasonably be in the
range of both the measurements by Ohta and Zhang et
al. at lower temperatures (<2000 K). Reasonable agree-
ment between the two aforementioned measurements but
at room temperature (300 K) is demonstrated in a re-
cent theoretical effort by Ramakrishna et al. [62]. Other
prior works including the interpolated results of Stacey et
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al. [72] (blue curve), the Bloch-Grüneisen model of Koker
et al. [39] (violet curve), and the first-principles calcu-
lations by Xu et al. [71] including the electron-phonon
contribution (green circles) seem also to be in reason-
able agreement with the results by Zhang et al.. Note
that the contribution of EES in HCP iron to the re-
sistivity under Earth-core conditions is well assessed by
Pourovskii et al. [51] in terms of DMFT leading to a
behavior ρEES ∝ T 2. However, the effects of EES are
negligible for the data points in the range of 2500−3000
K.

For a direct comparison with experiments, we con-
vert our calculated resistivities shown in Fig. 2 into a
thermal conductivity (electronic component) using the
Wiedemann-Franz law. At the temperatures and pres-
sures relevant to the CMB (P∼136 GPa, T∼4000 K), we
hence report a thermal conductivity of 179.8 Wm−1K−1

to 219.4 Wm−1K−1. The spread in our prediction is due
to using a Lorenz number that ranges from the ideal to a
deviation of ∼20% based on reported values of the Lorenz
number in previous ab-initio simulations [39, 45, 51] and
measurements [70]. Ohta et al. [23] report a similar value
of 226 Wm−1K−1 which has been recently reported to
be an overestimate. The corrected value by Lobanov et
al. [76] is reported as 185 Wm−1K−1 which is in bet-
ter agreement with our prediction. This is also in the
range of recent calculations using a novel non-equilibrium
molecular dynamics framework by Yue et al. [77] who re-
ported a value of 184 Wm−1K−1 at similar temperature-
pressure conditions (P∼137 GPa, T∼3900 K).

Finally in Fig. 3, we consider the electrical DC conduc-
tivity as a function of the pressure at various fixed tem-
peratures up to the Earth-core conditions. While not as
striking as in Fig. 2, our RT-TDDFT predictions (filled
red, orange, light orange, and yellow circles) are closer
to the experimental results by Ohta et al. (lower filled
black and grey squares) and Zhang et al. (right filled
black squares) then to those by Konôpková et al. (up-
per filled black and grey squares). Note that the Zhang
et al. data at 4000 K are based on their extrapolation
to higher temperatures and pressures using the Bloch-
Grüneisen model. Again, we used the Wiedemann-Franz
law [73] to extract the DC conductivity from the exper-
imental data by Konôpková et al.. We also compare
with results obtained from the Bloch-Grüneisen model
of Koker et al. [39] (red curve), the KG formula by Pozzo
et al. [45, 46, 63] (red and light orange circles), den-
sity functional perturbation theory combined with the
Korringa-Kohn-Rostoker method [79, 80] that includes
electron-phonon contributions by Xu et al. [71] (orange
diamond), and dynamical mean field calculations which
also capture EES in the BCC and HCP phases of iron
by Pourovskii et al. [64] (orange squares) and similarly
for the HCP phase by He et al. [78] (orange triangle).
Overall, the change in the conductivity with pressure is
predicted to be relatively small by all models and theo-
ries.

We conclude this investigation of electronic transport
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FIG. 3. Electrical conductivity and its pressure dependence
at fixed temperature. Results of the experimental diamond
anvil cell measurements reported by Ohta et al. [23] (lower
filled black and grey squares) and Zhang et al. [70] (right filled
black squares) are contrasted with those by Konôpková et
al. [24] (upper filled black and grey squares). Our predictions
of the electrical conductivity (filled circles) are compared with
previously reported calculations, such as the Bloch-Grüneisen
model of Koker et al. [39] (red curve), the KG formula by
Pozzo et al. [45, 46] (red and light orange circles), first-
principles calculations including electron-phonon contribu-
tions by Xu et al. [71] (orange diamond), and first-principles
calculations including electron-electron and electron-lattice
scattering by Pourovskii et al. [64] (orange squares) and He
et al. [78] (orange triangle).

properties by providing a concise assessment of the meth-
ods discussed here. We point out that calculations us-
ing the KG formula do not include an interaction kernel
and, thus, do not take into account collective effects like
plasmons. LR-TDDFT is an extension of the KG for-
mula in terms of an interaction kernel. Both the KG
formula and LR-TDDFT are often limited to the head
of the density response matrix and, therefore, neglect so-
called local field effects originating from the off-diagonals.
In RT-TDDFT, however, we make no such assumption.
Both the complete electronic response and the interac-
tion kernel in terms of Hartree and XC contributions are
considered [81].

IV. CONCLUSIONS

In this work, we have reported results on the electri-
cal conductivity of iron under the conditions of Earth’s
core from the microscopic formulation of Ohm’s law. We
demonstrate the utility of our method, which is based
on the real-time formalism of time-dependent DFT, for
computing transport properties in materials under ex-
treme conditions. It provides a viable alternative to cur-
rent state-of-the-art methods, such as the evaluation of
the KG formula on DFT data. We expect our method
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to become a widely used device for the interpretation
of upcoming free-electron laser scattering experiments at
facilities like LCLS [82], the European X-FEL [83], and
FLASH [84]. While in this work, the perturbing vector
potential was chosen in the linear regime, our method
is also valid in the non-linear regime. This will enable
studying the response of materials under extreme condi-
tions accessible through recent advances in free-electron
lasers [85, 86].
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